
A Simulator for Concurrent Objects

Jeannette M. Wing and Chun Gong

July 19, 1990

1. Introduction

A concurrent object is a data structure shared by concurrent processes. The traditional approach to imple-
menting a concurrent object is to use critical regions [7], letting only a single process access the object at a
time. Critical regions unnecessarily limit the degree of concurrency possible when the type semantics of the
object are ignored [11]. For example, multiple processes wishing to insert elements into a multiset should
be permitted to go on concurrently without one blocking any of the others. Moreover, critical regions are
ill-suited for asynchronous, fault-tolerant systems: if a faulty process halts in a critical region, non-faulty
processes will also be unable to progress [9].

Recently, other approaches for implementing concurrent objects have been proposed [10, 11, 1, 13, 14,
15, 16, 2, 5]. In the design and implementation of a concurrent object, we are faced with two problems:

1. What is our notion of correctness for a system composed of concurrent objects?

2. Given some notion of correctness, how can we show a given implementation is correct?

Answering the first question is one of definition; the second, of method. While there is no general
agreement on an answer to the first, we choose the correctness condition called linearizability, which has
recently captured the attention of the research community. Linearizability, first coined in Herlihy and Wing’s
1987 POPL paper [11], generalizes correctness notions that had previously been defined for specific data
structures like atomic registers and FIFO queues. It is an intuitively appealing notion of correctness, and
also enjoys other properties like locality, which simplifies the proof method, that other notions of correctness
do not.

With regard to the second question, we advocate using the complementary techniques of verification and
testing. This paper in particular describes an environment for testing implementations of concurrent objects
through simulation. Proving linearizability of a data object is a nontrivial task. In [15], the proof of a simple
concurrent set consists of five propositions, one lemma and one theorem. The more definitive approach of
verification is the subject of other papers [6, 15] including Herlihy and Wing’s original POPL paper.

Our simulation package provides a means of finding bugs in implementations, as well as hinting at ways
for improving them. We intend our package to serve the following purposes: (1) to detect an implementation
is incorrect, (2) to give some additional assurance that an implementation is correct 1 (3) as a basis to do

1Testing can show only the presence, not absence of bugs [4].

1

practical performance analysis of implementations by producing useful statistics for comparing the relative
efficiency of different implementations.

In this paper we describe in detail the user interface to the simulator package, the structure of its internal
components, and most importantly, the underlying analysis algorithm used to test an implementation.
Section 2 defines our terminology, in particular the definition of linearizability; we adopt the notations and
definitions as defined in [12], which contains a lengthier discussion and motivating examples. Section 3
describes the structure of the simulation package in detail. Section 4 presents some examples and Section 5
shows part of the package’s source code, in particular the algorithm for checking the correctness of a given
history.

2. Concurrent Objects and Linearizability

2.1. Model of Computation

A concurrent system consists of a collection of sequential threads of control called processes that commu-
nicate through shared data structures called concurrent objects . A concurrent object provides a finite set of
primitive operations that are the only means to manipulate the object. Processes are sequential: each process
applies a sequence of operations to objects, alternately issuing an invocation and receiving the associated
response. Several processes might issue an invocation to the same object concurrently.

Formally, we model an execution of a concurrent system by a history, which is a finite sequence of
operation invocation and response events. An operation invocation is written as x op(args*) A, where x is an
object name, op is an operation name, args* is a sequence of argument values, and A is a process name. The
response to an operation invocation is written as x term(res*) A, where term is the (normal or exceptional)
termination condition and res* is a sequence of result values. We use “Ok” for normal termination. A
response matches an invocation if their object names agree and their process names agree. An invocation
is pending in a history if no matching response follows the invocation. If H is a history, complete(H) is
the maximal subsequence of H consisting only of invocation and matching responses. An operation, e, in a
history is a pair consisting of an invocation, inv(e), and the next matching response, res(e). Operations of
different processes may be interleaved.

A history H is sequential if:

1. The first event of H is an invocation.

2. Each invocation, except possibly the last, is immediately followed by a matching response.

In other words, except for possibly the last event, a sequential history is a sequence of operations, i.e., pairs
of invocation and matching response events. A process subhistory, H|P (H at P), of a history H is the
subsequence of all events in H whose process names are P. An object subhistory, H|X, is similarly defined
for an object x. Two histories H and H

�
are equivalent if for every process P, H

�
P = H

� �
P. A history H is

well-formed if each process subhistory H
�
P of H is sequential.

A history H induces an irreflexive partial order � H on operations:

e0 � H e1 if res(e0) precedes inv(e1) in H �

2

Informally, � H captures the “real-time” precedence ordering of operations in H. Operations unrelated by
� H are said to be concurrent. If H is sequential, � H is a total order.

A set S of histories is prefix-closed if, whenever H is in S, every prefix of H is also in S. A single-object
history is one in which all events are associated with the same object. A sequential specification for an
object is a prefix-closed set of single-object histories for that object. A sequential history H is legal if each
object subhistory H

�
x belongs to the sequential specification for x. Many conventional techniques exist for

defining sequential specifications. In this paper, we use operational specifications expressed as (sequential)
program code. Herlihy and Wing use the axiomatic style of Larch [8].

2.2. Definition of Linearizability

A history H is linearizable if it can be extended (by appending zero or more response events) to some history
H

�
such that:

L1: complete(H
�
) is equivalent to some legal sequential history S, and

L2: � H � � S.

L1 states that processes act as if they were interleaved at the granularity of complete operations. L2
states that this apparent sequential interleaving respects the real-time precedence ordering of operations.

3. Structure of the Package

3.1. The Simulator

The simulation package consists of several C functions stored in separate files. It uses C Threads [3] to
create a user-specifiable number of threads to simulate a MIMD system. C Threads is a run-time library
that provides a C language interface to a set of low-level, language-independent primitives for manipulating
threads of control. We use these primitives to implement various atomic instructions, e.g., TEST AND SET,
FETCH AND ADD, which in turn are used in the implementation of a concurrent object.

Below we first give a high-level description of our simulation package and then implementation details
of each of the components.

3.1.1. User’s View of the Package

Figure 1 shows the logical structure of the package, where we use ovals to represent data and rectangles for
procedures. Solid lines show control flow; dotted lines show data flow.

There are three basic modules: simulate, test, and analyze. Simulate is the user’s interface to the
simulator; its main function is, in response to the user’s request, to test whether a given implementation,
ConcObj, exhibits only linearizable behavior with respect to a given specification, SeqObj. The user can
specify various test conditions for the simulation, e.g., the number of processes to run, whether to use an
input file of test cases (in the form of histories of events) or to generate a random set of test cases. Test creates

3

User

simulate

test

analyze

SeqObj

(specification)

ConcObj

(implementation)

History

Is History linearizable?

yes

no

Figure 1: Simulator Package

N processes, and invokes concurrently on their behalf a finite number of operations on ConcObj. After all N
processes terminate, the resulting finite concurrent history is stored in the event list History and the analyze
function is called to determine the linearizability of the history. If an input file of (a finite number of) test
cases is not given, test loops, thereby generating, upon the user’s request, either an infinite or a finite number
of finite histories to test on a given implementation; it stops if a history is found not to be linearizable even
the user’s request has not been met. A user can always abort the simulation by typing � CTRL � c. >>
Below is a user-level specification of the simulation package. The simulator prompts for values for optional
parameters, indicated in square brackets, if not given at the command line.

simulate [-cConcObj] [-sSeqObj] [-iinput file] [-ooutput file] [-d]
Simulate is the user’s interface to the simulator. It accepts the following options:

-cConcObj Simulate the implementation of the concurrent object whose executable is in the file ConcObj �o.
If ConcObj is not a pathname, simulate will search in the current working directory for the file
ConcObj �o. E.g., given that there exists a queue �ofile to execute, “queue” and “/usr/cgong/sim/bin/queue”
and “/sim/bin/queue” are all reasonable values for ConcObj. If it fails to find the file, simulate termi-
nates, printing an error message.

-sSeqObj SeqObj �o is the sequential specification against which the simulator will test the linearizability of
a history. As with ConcObj, simulate will search in the current working directory for SeqObj �o if a
pathname is not given.

-iinput file The simulator tests each history in the file input file of input test cases. Appendix A contains the
grammar for the input file format. If no input file is specified, the simulator will generate a random

4

set of test cases.

-ooutput file For each history read from input file simulate will write to output file the history and whether
or not it is linearizable. If no input file is specified, then if the simulation conditions are set for the
simulator to run indefinitely, only the first non-linearizable history encountered is written to output file;
if they are set for the simulator to run for a fixed length of time, each history generated and tested
within that time is written, along with its linearizability status, to output file. An output file of histories
can be used as an input file of test cases.

-d Use default simulation conditions as set in the working directory’s �init file. If the user does not
choose the -d option, the simulator will prompt the user to set various simulation conditions. These
conditions include: the number of concurrent processes to execute, an average number of operations
each process should invoke, how long (either in terms of seconds or number of histories generated)
to run the simulator, and the names of input and output files to use. Reasonable default values are: 4
processes, 10 operations, 10 seconds (any negative number indicates “infinite”), and if an input file
name is provided, “/dev/tty” for the output file name.

test(input file : file name � output file : file name)
Test is the main function of the simulation package. It creates the user-specified (or default) N number
of concurrent threads. It tests one history at a time where the history is either taken from input file (the
user-specified input test file) or randomly generated. When all N processes terminate, test stores the history
in a list of events, and then calls analyze (see below) with this history as a parameter. If analyze returns false,
indicating that the input history is not linearizable, test writes the history into output file (the user-specified
output file), and terminates; otherwise it repeats the above steps.

bool analyze(event � p)
This function returns true if the history p (i.e., list of events) is linearizable; otherwise it returns false. This
is the guts of the simulation package; we describe the algorithm used in Section 5.

3.1.2. Implementor’s View of the Package

Users of the simulation package should skip this section in which we discuss the implementation in more
detail.

simulate [-cConcObj] [-sSeqObj] [-iinput file] [-ooutput file] [-d]
This function provides an interactive interface to the simulation package. If not given in the command
line, it prompts the user to choose a concurrent object, ConcObj, to simulate, and a sequential specification,
SeqObj, to test against. Simulate can read its input from input file or generate its own test cases; it writes
its output into output file. It establishes a simulation environment for the concurrent object based on values
obtained from prompting the user or default values set in a �init file.

Given values for these parameters, simulate will first create a simulation environment by linking the
concurrent data object ConcObj �o and the sequential specification SeqObj �o with test. It puts the resulting
executive in a �out. Once the environment is created simulate forks a child process to execute a �out under
the specified or default simulation conditions.

test(input file : file name � output file : file name)
This is the main function of the package. It requires the file name argument output file into which the
simulator can write simulation histories. It takes an optional file name argument input file from which

5

the simulator reads histories to test; if not provided, test generates an infinite number of test histories.
Termination of test also terminates simulate.

test assumes the existence of the following functions:

� Init() (written by user)

� End() (written by user)

� process(outline � p) (provided by package)

� analyze(event � p) (provided by package)

where Init() and End() are called to initialize and clean up ConcObj, process is a (sequential) process that
invokes operations on ConcObj. test links these functions together and establishes various user-specifiable
simulation conditions. It maintains a global data structure, a history, which is represented as a list of events
with head and tail pointers hhead and htail. This list records events of the concurrent processes executing
operations on ConcObj.

test operates as follows:

1. Initializes the concurrent data object the user wants to simulate by calling Init(). The user needs to
define this function and End() when implementing a concurrent object.

2. Defines N process outlines, each of which includes the name of the process and the number of
operations the process will invoke.

3. Creates N threads by executing cthread fork(process � pi) for i = 1 . . . N, where pi is a pointer to
outlinei.

4. Waits until all N threads terminate. At this point, simulator has finished a simulation of one history
with N processes. The history is saved in the list of events pointed to by hhead.

5. Calls the procedure analyze(hhead) to check if the history is linearizable. (a) If yes, clears the working
history, cleans up the concurrent object by calling End(), and then goes back to step 2; (b) otherwise,
it cleans up, returns false, and terminates.

process(outline � p)
The user defines a single (sequential) process using process(outline � p) where outline is a structure that
contains a process name and the number of operations it should invoke. This function assumes the existence
of a set of operations that can be invoked on a ConcObj. According to the outline given, process invokes a
random sequence of operations on the concurrent object and writes the invocation and response events into
the file output file given as an argument to test. To prevent this file from being written by several processes
simultaneously, it is protected by a mutex variable. A global data structure, also protected by a mutex
variable, maintains a record of all processes’ operation invocation and response events.

bool analyze(event � p)
Given a history with a head pointer p, this procedure checks if the history is linearizable. It uses the instances
of the operation function (see below) for the ConcObj to determine if the operation op is allowed on the
current value of the ConcObj.

6

bool operation(char op � char item � char result � bool b)
If b is true, this function simulates an operation op(item) with the argument item on the current value of the
SeqObj and gets a response value result

�
. If b is false, this function undoes the operation op(item). After

simulating an operation, this function returns a true value if result = result
�
, which means that the operation

completes successfully, i.e., is allowed given the current value of SeqObj; otherwise, it returns a false. It
always returns true after undoing an operation.

3.2. Library of Concurrent Objects

Currently we have implemented and simulated the following data objects. A separate paper contains
descriptions of the implementations and proofs of correctness [17].

� Bounded FIFO queues.

� Unbounded FIFO queues.

� Bounded priority queues.

� Unbounded priority queues.

� Semiqueue.

� Stuttering queue.

� Set.

� Multiset.

� Register.

� B-trees.

As a reminder to implementors of other concurrent objectswho wish to use our simulator, implementations
of these objects need to include two functions, Init() and End(), which are called by test respectively before
and after the test of a single history. The name of the implementation file must start with X- where X
indicates the object’s type. For example, for a queue, X should be queue; for a register X, should be register.

4. Examples

In this section we show how the simulator can be used to test both correct and incorrect implementations.

4.1. Simulating a Correct Implementation: FIFO Queue

To show a naive use of the simulator, we give below two sample scripts of a simulation for a bounded
FIFO queue whose implementation appears in Appendix B. The first script shows how the user can set some
simulation conditions. The second uses default values.

7

bin>simulate -cqueue-unbound -ooutput <CR>
Please provide a sequential specification. [filename]
-: ../lib/spec/queue
Just a moment...
How many processes would you like to run?
-: 4
On the average, how many operations do you want to execute per process?
-: 10
Would you like to simulate your object for a fixed length of time? [y/n]
-: y
For how long? [seconds]
-: 10
Start the simulation by typing <start>.
-: start
Starting simulation...
Time has run out!
bin>

At this point, the user could read the file output to see what histories within 10 seconds were generated
and tested by the simulator (since no input file was specified) and whether or not they are linearizable.

In the second script below, the user manually aborts the simulator at the end by typing � CTRL � c.
Since the implementation is correct and an input test file is not given, were the user not to abort the simulator,
it would continue generating and testing concurrent histories forever. Our added comments are prefixed by
*.

% simulate -cqueue-bound -squeue -ooutput -d <CR>

Just a moment...
Starting simulation...

/* This is simulation number 1 */
Q Deq() P1 * P1,
Q Deq() P2 * P2, and
Q Deq() P3 * P3 cannot dequeue anything
Q Enq(b) P4 * on an empty queue.
Q Ok() P4 * P4 enqueues b and
Q Enq(s) P4 * starts enqueueing s.
Q Ok(b) P1 * P1 dequeues b.
Q Enq(y) P1
Q Ok() P1 * P1 enqueues y.
Q Deq() P1
Q Ok(y) P2 * P2 dequeues y.
Q Enq(w) P2
Q Ok() P4 * P4 completes enqueueing s.
Q Enq(j) P4 * P4 starts enqueueing j.
Q Ok(s) P3 * P3 dequeues s.
Q Enq(u) P3 * and starts enqueueing u.
Q Ok() P4 * P4 completes enqueueing j.
Q Enq(w) P4
Q Ok(w) P1 * P1 dequeues w
Q Ok() P4 * enqueued by P4.
<CTRL>c * P3’s enqueue of u is pending.
% * Q’s value is [j], [u, j], or [j, u].

Here we see that four processes, P1, P2, P3 and P4, execute concurrently on queue object Q. In the first
half of the script above we see that P1 returns Q’s first element b, enqueued by P4, and that P1 enqueues a y

8

later dequeued by P2. More enqueues and dequeues occur until at the end of this history, Q’s abstract value
is the set of (sequential) queue values, [j], [u, j], [j, u], corresponding to whether or not P3’s enqueue of u
occurred or not; if so, since it is concurrent with the enqueue of j, it can appear as either the first or second
element in Q.

4.2. Detecting an Implementation is Incorrect: Set

We can use our simulation package to demonstrate that it is possible to detect an implementation exhibits
non-linearizable behavior. Lanin and Shasha [15] give a correct implementation of a concurrent set using
a sliding array algorithm (see Appendix C). Our intentionally incorrect version given below is unlike the
original one in that it does not use locks for the insert operation.

The set operations are implemented in terms of the following atomic instructions (which we implemented
using the primitives provided by C Threads). The first two are operations on integer variables; the last three
on arrays.

int READ(int *x)
ensures Atomically reads and returns the value of the integer pointed to by x.

int INC(int *x)
ensures Atomically increments by 1 the value of the integer pointed to by x and returns the new

value.

char FETCH(char A[], int i)
ensures Atomically reads and returns the value at location i of the character array A.

bool REMOVE(char A[], int i, char x)
ensures Atomically checks whether the value at location i of array A is equal to x. If so, it sets

the value at location i to NULL and returns true. Otherwise, it returns false.

bool ADD(char A[], int i, char x)
ensures Atomically checks whether the value at location i of array A is currently NULL. If so,

it sets the value at location i to x and returns true. Otherwise, it returns false.

The Sliding Array Algorithm: We use an array data structure, containing either characters or a special
NULL value. We use the variable length to hold the length of the currently used portion of the array.

#define S 200 /* Upper bound on size of the array */
char A[S]; /* Array of characters */
int length; /* Length counter */

Member(x) reads the value of length, and then scans the array from 1 up to the index equal to length,

9

looking for x. If it sees x, it returns true; otherwise it returns false.

bool
member(char x) {

int mylength, i;
bool found = false;
char v;

mylength = READ(&length); /* get the current value of index */
i = 0;
while ((i < mylength) && !found) { /* scan the array */

i++;
v = FETCH(A, i); /* get the value at location i */
found = (v == x);

}
if (found) {return(true);} /* x is in the array */
else {return(false);}

}

Delete(x) behaves just like member(x), except that if it sees x in position i, it writes NULL in position i,
and returns true ; otherwise it returns false .

bool
delete(char x) {

int mylength, i;
bool found = false, removed = false;
char v;

mylength = READ(&length);
i = 0;
while (i < mylength && !found) {

i++;
v = FETCH(A, i);
found = (v == x);

}
if (found) { /* x is in location i */

removed = REMOVE(A, i, x); /* if x is still there, remove it */
}
if (removed) {return(true);}
else {return(false);} /* x was removed by other process */

}

Insert(x) also scans the array looking for x just like member and delete. If it sees x, it terminates returning

10

false. Otherwise it increments the length counter, writes x in the returned position and returns true.

bool
insert(char x) {

int mylength, i;
bool found = false, added = false;
int holes[S], nholes = 0;
char v;

mylength = READ(&length);
i = 0;
while (i < mylength && !found) {

i++;
v = FETCH(A, i);
if (v == NULL) { /* find one hole in location i */
nholes++;
holes[nholes] = i; /* remember the index */

}
found = (v == x);

}
if (!found) { /* x is not in the array */

while (!added && nholes > 0) { /* try to find a hole */
added = ADD(A, holes[nholes], x); /* put x in the hole */
nholes--;

}
while (!added) { /* no holes left */
i = INC(&length); /* get another slot */
added = ADD(A, i, x); /* put x in the new slot */

}
}
if (added) {return(true);}
else {return(false);}

}

Note that delete leaves “holes” in the array. These holes might be re-used by subsequent inserts. An
insert keeps track of these holes in the initial scan of the array by an array (holes) of indices. When insert is
ready to write the element, it tries the holes in this array one by one (a concurrent insert might have filled a
hole). If no holes remain, insert then performs an increment on the length counter.

When we simulated this set implementation, we got the following non-linearizable history:

/* This is the simulation number 84: */ * initially, s = {}
S insert(y) P1
S delete(x) P2
S Ok(f) P2 * cannot delete x from empty set
S delete(y) P2
S Ok(f) P2
S delete(p) P2
S Ok(f) P2
S member(e) P2
S Ok(f) P2 * e is not a member of the empty set
S delete(d) P2
S Ok(f) P2
S member(w) P2
S Ok(f) P2

11

S delete(t) P2
S Ok(f) P2
S insert(s) P2
S Ok(t) P2 * S = {s}
S insert(v) P3
S Ok(t) P3 * S = {s, v}
S member(g) P3
S Ok(f) P3
S insert(l) P3
S Ok(t) P3 * S = {s, v, l}
S member(u) P3
S Ok(f) P3
S delete(f) P3
S Ok(f) P3
S insert(c) P3
S Ok(t) P3 * S = {s, v, l, c}
S delete(v) P3
S Ok(t) P3 * S = {s, l, c}
S insert(w) P3
S Ok(t) P3 * S = {s, l, c, w}
S member(t) P4
S Ok(f) P4
S insert(a) P4
S Ok(t) P4 * S = {s, l, c, w, a}
S delete(h) P4
S Ok(f) P4
S member(w) P4
S Ok(t) P4 * w is a member of the set
S insert(t) P4
S Ok(t) P4 * S = {s, l, c, w, a, t}
S insert(i) P4
S Ok(t) P4 * S = {s, l, c, w, a, t, i}
S delete(l) P4
S Ok(t) P4 * S = {s, c, w, a, t, i}
S delete(a) P4
S Ok(t) P4 * S = {s, c, w, t, i}
S insert(z) P4
S Ok(t) P4 * S = {s, c, w, t, i, z}
S Ok(t) P1 * S = {s, c, w, t, i, z, y}
S member(j) P1
S Ok(f) P1
S insert(e) P1
S delete(b) P3
S Ok(f) P3
S member(i) P3
S Ok(t) P3
S insert(b) P3
S Ok(t) P3 * S = {s, c, w, t, i, z, y, b}
S insert(e) P3
S Ok(t) P3 * S = {s, c, w, t, i, z, y, b, e}
S delete(s) P4
S Ok(t) P4 * S = {c, w, t, i, z, y, b, e}
S insert(p) P4
S Ok(t) P4 * S = {c, w, t, i, z, y, b, e, p}
S member(o) P4
S Ok(f) P4
S delete(n) P4
S Ok(f) P4
S insert(i) P4
S Ok(f) P4

12

S insert(x) P4
S Ok(t) P1 * Wrong! p1 should not insert e into S.
S insert(h) P1
S Ok(t) P1
S Ok(t) P4
S delete(q) P4
S Ok(f) P4
/* This history is not linearizable! */

We see that process P1 successfully inserts an e into S after it was inserted already by P3. This situation
can arise since two processes trying to insert the same element x at the same time, while scanning the array
looking for x, may both find that there is no x. Both then proceed to insert x in the set (one after another).
The original (correct) solution associates with each element a lock and requires insert of an element first
acquire the associated lock, thereby allowing only one process at a time to insert a particular element in the
set.

4.3. Detecting an Implementation is Incorrect: Unbounded FIFO Queue

The original implementation of an unbounded queue appeared in [11] and was written in CLU using dynamic
arrays as the representation type for queues. We repeat below an incorrect implementation where we use C
(dynamic) lists as the representation type 2. Appendix B contains the correct version.

We store the elements of the queue in a list with head and tail pointers head, tail. We keep track of the
number of the elements in back.

typedef struct elts {
char item; /* an element in the queue */
struct elts *next; /* pointer to the next element */

} *slotpt;

typedef slotpt slot;

typedef struct {
slot head, tail; /* first and last slots in queue */
int back; /* number of slots in queue */

} reptype;

reptype queue;

The queue operations make use of the following atomic instructions, which as for the set example we
also implemented using mutex locks from the C threads package.

slot FETCH� AND� ADD(reptype Q, slot s)
ensures Atomically allocates a new, empty slot to the queue Q, increases

Q �back by 1, and returns the old value of s, which is a slot.

void STORE(slot s, char x)
ensures Stores x in the slot s.

2We also represent items as characters.

13

int READ(int *x)
ensures Returns the value of the integer pointed to by x.

char SWAP(slot s, char x)
ensures Stores x in the slot s and returns the old value of the item stored

in s.

Enq increments the back pointer by one and stores an element in the empty position.

void Enq(char x) {
slot current;

current = FETCH-AND-ADD(queue, queue.tail); /* get an empty slot and */
/* increase back by 1 */

STORE(current, x); /* store x in empty slot */
}

Deq fixes its search range and scans the list for a non-NULL element. If it does not find one, it changes
its search range and looks again.

char Deq() {
int i, range;
char ch;
slot current;

while (true) {
current = queue.head; /* start from list’s first slot */
i = 1;
range = READ(&(queue.back)) - 1; /* search up to back-1 slots */
while (i <= range) { /* scan list, looking for an non-NULL element */
if (i > 1)

current = current->next;
ch = SWAP(current, NULL); /* put a NULL value in ith slot */
if (ch != NULL) { /* if char returned is not a NULL value */

return(ch); /* return it */
}
i++;
range = READ(&(queue.back)) - 1; /* modify current search range */

}
}

}

We define a partial order � r on the items in the list: x � r y iff the STORE operation for x precedes the
FETCH� AND� ADD for y. We need to show that:

1. An Enq adds an item x that is maximal with respect to � r.

2. A Deq removes and returns an item x that is minimal with respect to � r.

Our incorrect implementation still preserves the first property, but not the second. A process executing
a Deq operation could dequeue an element that is not minimal with respect to � r. Suppose process A is in

14

the middle of performing an Enq(x) on an empty queue and just finished FETCH� AND� ADD (back = 2).
Now process B starts a Deq, finding nothing in its first iteration (since A has not finished its STORE). It is
possible that before B rereads back, A finishes its STORE (x is in position 1) and then another process C also
finishes an Enq(y) (back = 3 and y is in position 2). If at this point B rereads back and enters the loop the
second time, what is going to happen? B will remove and return y instead of x. (Recall that x � r y according
to our definition of � r.)

Running this version of the unbounded FIFO queue through our simulator yielded the following non-
linearizable history:

/* This is simulation number 10 */ * initially, the queue is empty
Q Deq() P1
Q Deq() P2
Q Deq() P3
Q Enq(f) P4
Q Ok() P4 * Q = [f]
Q Enq(y) P4
Q Ok(f) P1 * Q = NULL
Q Ok() P4 * Q = [y]
Q Enq(t) P4
Q Enq(e) P1
Q Ok() P4 * Q = [y, t]
Q Enq(o) P4
Q Ok() P1 * Q = [y, e, t] or Q = [y, t, e]
Q Deq() P1
Q Ok(e) P2 * Wrong! e cannot be the first element of Q.
Q Enq(c) P2
Q Ok(y) P1
Q Ok() P2
Q Ok(c) P3
Q Ok() P4

/* This history is not linearizable! */

5. The Linearizability Analysis Algorithm

For a given data type T, we have two objects, ConcObj and SeqObj, corresponding to a concurrent im-
plementation of an object of type T and a sequential implementation. We use SeqObj as our (operational)
specification for checking whether a history exhibited by ConcObj is linearizable.

The essence of the analysis algorithm is as follows: given a history H of a concurrent object, ConcObj,
we try every possible sequential order of H’s concurrent operations while preserving its real-time order
relation � H. We check if each sequential history Hs is linearizable by executing the operations on SeqObj.
If every possible ordering of H fails, by the definition of linearizability, the history H is non-linearizable.
During this procedure of rearranging the operations of a history, analyze might need to undo some operations
on SeqObj if it finds that a tentative reordering of a subhistory of H is non-linearizable.

15

inv

P1

inv inv

P1
null

sentinel

H

...

...

...

...
...

...

...

...

...

...

...P2 P3 P3

res res res

P2

section 1

section 2

section 3

Figure 2: Snapshot of a History

5.1. The Algorithm

A history H is stored in a double linked list of events:

typedef struct ev {
char item;
char op;
char name[10];
struct ev *match, *next, *prev;
} event;

where item is the argument for the operation op and name is the name of the process that invoked op. Next
and prev are two pointers pointing to the previous and next events in H respectively. For an invocation
event, match points to its matching response event. We use the special “null” event as a sentinel and put it
at the end of the history. Figure 2 depicts a snapshot of a history represented as a list of events.

Definition: A section of a history H is an invocation event, its matching response event and the events in
between them.

Sections of a history H can be ordered by the positions of their first events in H. Figure 2 shows three
sections in the history H.

Analyze calls the procedure search to search iteratively over events.

bool
analyze(event *history) {

bool linearizable;
event *p;

linearizable = ((p = search(history)) != NULL);
return(linearizable);

}

If a history H is linearizable, search returns a linearization of H; otherwise it returns with an empty
list of events. The search function uses a stack to keep track of the portion of H that is linearizable so

16

inv

P1

inv inv

P1
null

sentinel

H

...

...

...

...
...

...

...

...

...

...

...P2 P3 P3

res res res

P2

section 1

pi pr

pi pr

pi pr

stack

inv

inv

inv

Figure 3: Top of the Stack Tracks Current Section and Operation

far. Conceptually, the stack elements are operations (both invocation and response events per operation);
actually, the stack elements are pointers to the operations’ events in H (see Figure 3).

typedef struct {
event *pi, *pr, *inv, *resp;
char item, op, result;
} elt_stack;

typedef struct {
elt_stack value[STACK_LENGTH];
int in;

} stacktype;

We use pi and pr to locate the first section of the subhistory that has not yet been checked; inv and resp
to locate the operation that we select as the first operation of the subhistory; item � op � res to remember this
operation.

We implemented the stack procedures, push, pop, top, and isempty, with their usual semantics (top is
non-mutating), and also the following auxiliary procedures on event lists:

void op copy(event � inv � elt stack � q)
ensures Makes a local copy the operation whose invocation event is inv into q.

bool lift(event � inv � event � resp)

17

inv

P1
inv inv

P1

null

sentinel

H

...

...

...

...
...

...

...

...

...

...

...P2 P3 P3

res

res res

P2

pi pr

pi pr

pi pr

stack

inv

inv

inv

Figure 4: Lifting an Operation in a History

ensures This function “lifts” the invocation and response events inv and resp from the double
linked list (recall that the history is represented as a double linked list of events). If the
invocation event is the first event in the remaining history lif t returns true, otherwise
it returns false. To “lift” an event e from a double linked list means that e is marked
as temporarily removed. Later, we might backtrack and need to return e to its original
position in the history (see Figure 4).

void unlift(event � inv � event � resp)
ensures Puts the invocation and response events inv and resp back in their original positions in

the history H.

event � linearization(stacktype � s)
ensures This function links the operations stored in the stack s from bottom to top, creating and

returning a linearization of the history H.

Informally, search always looks for the next operation in H that could happen (but not conflict with the
partial order relation � H) from the current section and tries to form a legal history. Once it decides that
an operation could happen, it conceptually pushes the operation onto the stack and lifts the events of this
operation from the history; it repeats this procedure on the remaining history until the remaining history is
empty.

More specifically, we sketch below the gist of the search procedure, referring to lines in the code given
in Figure 6:

1. Initialize the stack.

2. Locate the current section of H by the pi and pr pointers of current (lines 3-5) if there is one (see
Figure 3); otherwise return a pointer to the linearized history (line 33).

18

inv

P1

inv inv

P1
null

sentinel

H

...

...

...

...
...

...

...

...

...

...

...P2 P3 P3

res res res

P2

section 1

pi pr

pi pr

pi pr

stack

inv

inv

inv

Figure 5: Select Another Operation

3. From the current section, select an operation and store it in current (line 6, 8).

4. Simulate this selected operation on the sequential implementation of the object by calling operation
(line 9).

5. (a) If operation returns true, meaning those events checked so far consists of a linearizable subhis-
tory, then push this operation onto the stack, lift this operation from the history H (lines 10-12
(see Figure 4) and go back to 2 (line 13);

(b) Otherwise:

i. If in the current section, there is still some unselected operation whose invocation event is
not preceded by any response event, then select one by current’s inv pointer (line 16-18)
and go back to 4.

ii. At this point, every operation in the current section has been tried without success. So we
have to backtrack to the previous section to try another arrangement. If the stack is empty,
meaning that the history is not linearizable, then return a NULL value (line 20). Otherwise,
(1) get the top element of the stack, which contains all information about the previous
section and selected operation, by an auxiliary pointer and pop the stack (line 22-23); (2)
undo the previous operation and put it back to the history (line 24-25) (see Figure 5); (3) set
current’s pointers to the previous section and operation (line 26-29); and (4) go to 5(b)i.

If the history is linearizable, then this procedure returns a pointer to the first event of the history, otherwise
it returns a NULL value.

5.2. The Correctness of the Search Algorithm

We give an informal correctness argument for the search algorithm. For a given history H, and a linearizable
subhistory Hl of H, we maintain the following invariants:

19

/* search for the the next possible operation in the history H */

event *
search(event *h)
{
elt_stack current; /* used to locate the current section and the selected operation */
elt_stack *tmp; /* auxiliary pointer */
event *head; /* head pointer of the remaining subhistory */
bool found;

1 init_stack(&stack); /* initialize stack */
2 head = h;
3 while (head->next != NULL) { /* the remaining subhistory is not empty */
4 current.pi = head; /* let the first section of the remaining */
5 current.pr = head->match; /* subhistory be the current section */
6 current.inv = current.pi; /* try the first operation in the current section */
7 while (true) { /* keep trying until success */
8 op_copy(current.inv, ¤t); /* store the selected operation in current */
9 if (operation(current.op, current.item, current.result, 1)) {

/* this operation is allowed by the sequential object */
10 push(&stack, ¤t);/* push current into stack */
11 if (lift(current.inv, current.resp)) { /* lift the selected */
12 head = current.pi->next; /* operation from H. */

} /* If it’s the first operation of the history, then update head */
13 break;

}
14 else /* this operation is not allowed */
15 do { /* looking for another operation within the current section */
16 current.inv = current.inv->next;
17 found = true;
18 if ((current.inv->op == ’O’) || (current.inv == current.pr)) {

/* every operation in the current section has been tried without success */
19 found = false;
20 if (isempty(&stack)) { /* if no previous section */
21 return(NULL); /* return NULL value */

}
22 tmp = top(&stack); /* backtrack to the previous section */
23 pop(&stack);
24 if (operation(tmp->op, tmp->item, tmp->result, 0)) {

/* undo the previous selected operation */
25 unlift(tmp->inv, tmp->resp); /* put it back in history */
26 current.pi = tmp->pi; /* the previous section */
27 current.pr = tmp->pr; /* becomes the current section */
28 head = tmp->pi;
29 current.inv = tmp->inv;

}
}

30 } while (!found);
}
}

31 current.inv = head;
32 push(&stack, ¤t); /* push an extra event as sentinel */
33 return(linearization(&stack)); /* return linearized history */

}

Figure 6: Source Code for Search Procedure

20

I1: If top = i, then the operations pointed by the pointers inv and resp in stack[1] � stack[2] � . . . � stack[i � 1]
form a linearizable subhistory Hl of H and � Hl � � H.

I2: The pointers pi and pr in stack[top] identify the first section of the subhistory H � Hl (H with those
operations of Hl removed) and inv and resp in stack[top] identify an operation whose invocation event is in
the first section.

I3: The pointer tmp always points to the head of the first section in H � Hl.

We claim that search returns a non-NULL value if and only if H is linearizable, and argue inductively as
follows:

1. search can return a non-NULL value only at step 3 and only under the condition that the remaining
history is empty. At this point, we have processed the entire history successully, identifying a
linearization of H operations stored from stack[1] � . . . � stack[top] �

2. Suppose the history H is linearizable, then there must be a sequential H
�

such that H
�

is legal and
� H � � H

� (definition). According to the definition of relation � H, the first operation of H
�

must be in
the first section of H and cannot be preceded by any response event (step 5(b)i). Search will eventually
select this operation as the first operation of the remaining subhistory H � Hl, remove it from H (step 5)
and check the remaining history H1. If H

�
1 denotes the history H

�
with its first operation removed, then

we have � H1 � � H
�

1
. Using similar reasoning, we can prove that search will arrange H in the same

order as in H
�
. Since H

�
is legal, i.e., it is linearizable, search will return a non-NULL value.

6. Acknowledgments

The authors thank Maurice Herlihy for earlier collaborative work on linearizability and Francesmary Mod-
ugno for suggesting a polynomial-time analysis algorithm for the FIFO queue. This research was provided
in part by the National Science Foundation under grant CCR-8906483 under the special NSF/DARPA joint
initiative on Parallel Computing Theory.

21

Appendix A. Grammar for Input File Format

<file> ::= <history>*
<history> ::= <history_1> blank_line
<history_1> ::= [<comment new_line>] <event_line>* [<comment>]
<event_line> ::= <event> new_line
<event> ::= <object_id> <white_space>+ <oper>(<arg_list>) <white_space>+ <process_id>

| <object_id> <white_space>+ <resp>(<res_list>) <white_space>+ <process_id>
<comment> ::= /* ascii_text */
<object_id> ::= <id>
<process_id> ::= <id>
<oper> ::= <id>
<resp> ::= <id>
<arg_list> ::= <id,>*
<resp_list> ::= <id,>*
<id> ::= alphaNumeric+
<white_space>::= blank | tab

22

Appendix B. The Correct Version of the Unbounded Queue

typedef struct elts {
char item; /* an element in the queue */
struct elts *next; /* pointer to the next element */

} *slotpt;

typedef slotpt slot;

typedef struct {
slot head, tail; /* the first and the last slot in the list */
int back; /* the number of slots in the queue */

} reptype;

reptype queue;

mutex_t back_lock, store_lock;

void Enq(char x) {
slot current;

current = FETCH-AND-ADD(queue, queue.tail);
STORE(current, x);

}

char Deq() {
int i, range;
char ch;
slot current;

while (true) {
current = queue.head;
range = READ((&queue.back)) - 1;
for (i = 1; i <= range; i++) {

if (i > 1) {
current = current->next;

}
ch = SWAP(current, NULL);
if (ch != NULL) {

return(ch);
}

}
}

23

Appendix C. The Correct Version of Set

#define S 200
#define CHAR_A 97

char A[S];
int length;
mutex_t lock[26];

member(x)
char x;

{
int mylength, i;
int found = 0;
char v;

get_length(&mylength);
i = 0;
while ((i < mylength) && !found) {

i++;
atomic_read(i, &v);
found = (v == x);

};
if (found)

return(’t’);
else return(’f’);

}

delete(x)
char x;

{
int mylength, i, found = 0, removed = 0;
char v;

get_length(&mylength);
i = 0;
while (i < mylength && !found) {

i++;
atomic_read(i, &v);
found = (v == x);

};
if (found)

remove(i, x, &removed);
if (removed)

return(’t’);
return(’f’);

}

insert(x)
char x;

{
int mylength, i, found = 0, added = 0;
int holes[S];
int nholes = 0;
char v;

mutex_lock(lock[x - CHAR_A]);
get_length(&mylength);

24

i = 0;
while (i < mylength && !found) {

i++;
atomic_read(i, &v);
if (v == NULL) {

nholes++;
holes[nholes] = i;

};
found = (v == x);

};
if (!found) {

while (!added && nholes > 0) {
add(holes[nholes], x, &added);
nholes--;

};
while (!added) {

increment_length(&i);
add(i, x, &added);

}
};
mutex_unlock(lock[x - CHAR_A]);
if (added)

return(’t’);
return(’f’);

}

25

References

[1] J.E. Burns and G.L. Peterson. Constructing multi-reader atomic values from non-atomic values. In
Proceedings of the Sixth ACM Symposium on Principles of Distributed Computing, pages 222–231,
1987.

[2] B. Chor, A. Israeli, , and M. Li. On procesor coordinationusingasynchronoushardware. In Proceedings
of the Sixth ACM Symposium on Principles of Distributed Computing, pages 86–97, 1987.

[3] Eric C. Cooper. C threads. Technical Report CMU-CS-88-154, School of Computer Science, Carnegie
Mellon University, 1988.

[4] E.W. Dijkstra. Notes on Structured Programming, pages 1–82. Academic Press, 1972.

[5] C.S. Ellis. Concurrent search and insertion in 2-3 trees. Acta Informatica, 1980.

[6] Chun Gong and Jeannette Wing. A library of concurrent objects and their proofs of correctness.
Technical Report CMU-CS-90-151, School of Computer Science, Carnegie Mellon University, 1990.

[7] F.B. Schneider G.R. Andrews. Concepts and notations for concurrent programming. Computing
Surveys, 15(1):1–43, March 1983.

[8] J.V. Guttag, J.J. Horning, and J.M. Wing. The larch family of specification languages. IEEE Software,
2(5):24–36, September 1985.

[9] M.P. Herlihy. Impossibility and universality results for wait-free synchronization. In Seventh ACM
SIGACT-SIGOPS Symposium on Principles of Distributed Computing (PODC), August 1988.

[10] M.P. Herlihy and J.M. Wing. Implementing queues without mutual exclusion. Some queue examples.

[11] M.P. Herlihy and J.M. Wing. Axioms for concurrent objects. In Fourteenth ACM Symposium on
Principles of Programming Languages, pages 13–26, January 1987.

[12] M.P. Herlihy and J.M. Wing. Linearizability: A correctness condition for concurrent objects. Trans-
actions on Programming Languages and Systems, 12(3), July 1990.

[13] L. Lamport. Concurrent reading and writing. Communications of the ACM, 20(11):806–811, Novem-
ber 1977.

[14] L. Lamport. How to make a multiprocessor computer that correctly executes multiprocess programs.
IEEE Transactions on Computers, C-28(9):690, September 1979.

[15] V. Lanin and D. Shasha. Concurrent set manipulation without locking. In Proceedings of the Seventh
ACM Symposium on Principles of Database Systems, pages 211–220, March 1988.

[16] J.M. Mellor-Crummey. Concurrent queues: Practical f etch � and �

�
algorithms. Technical Report

TR 229, Dept. of Computer Science, University of Rochester, November 1987.

[17] J.M. Wing and C. Gong. A library of concurrent objects and their proofs of correctness. Technical
Report CMU-CS-90-151, CMU School of Computer Science, July 1990.

26

