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Raw Code, Specification, and Proof of the Avalon Queue Example

Chtm Gong and Jeannette M. W'mgD

August 10, 1989

1. Introduction

This document contains the code, specification, and proof of the well-worn Avalon/C++ queue example [1, 2]. The
code compiles and rims. We successfully ran the Larch Shared Language (LSL) [3] specifications through the Larch
Checker (LC) which checked for syntactic, type, and static semantic errors. Some minor edits were made to these
specifications (e.g., adding some signattue information to disambiguate some operators) to make them acceptable
input to the Larch Prover (I,P) [4]. We give the LP input vemions of the specifications here too. Finally, we

proved the representation invatiants and the type-specific correctness condition (the so-called "prefix" property [2])
from these specifications using LP. The companion paper [5] gives a high-level description of this specification
and verification exercise, including detailexl statistics on the time and space usage of LP. Hence, what follows is
unedited text that represents the raw code, specification, and proof transcripts.



2. The Avalon Code

2.1. The Representation

mtruct onq_roc {

int item; // Item onquouod.

tranm_id onqr; // Who onqueued it.

onq_ro=(int i, trans_id& on) // Constructor.
{item m i; onq_ n on;}

};

8tru=t doq_re¢ {
int item; // Item dequeued.

trans_id enqr; // Who enqueued it.

trans_id deqr; // Who dequeued it.

deq_rec(int i, trans_id& on, t=ans_id& do); // Constru=tor.
{item - i; enqr - an; deqr - de; }

};

c,].alau atomic_queue : public subatomic {
deq._,.tae..k doqd; // Stack of dequoued items.

enq heap enqd; // Heap of enqueued +items.
public:

atomic_queue() {]; // Create empty que'l,'te.
void onq(int item} ; // Enqueuo an item.

int doq(); // Dequoue an item.

void commit (trans_id& t); // Called on commit.

void abort (trans_id& t); // Called on abort.
};

2.2. The Operations

void atomic_queue: :enq(int item} {
trans id rid -- trans id();

when (doqd.is_ompty() JI (deqd.top() ->enqr < rid) )
enqd. insert (item, tid) ; // Record enqueue.

}

int atomie...queue : :doq () {
tranm id rid m tranm id();

when ((doqd.is_on_ty() I[ deqd.top()->deqr < rid)

&& enqd.minoximts()&& (enqd.gotmln()->enqr< rid)) {
onq_re=* rain er - onqd.delote_min ();

deq_re¢ dx(*_n_or, rid); // Move from onquoued heap...
deqd.push(dr) ; // to doquoued stack.
return min_or->item;

)
)

void atomic_queue : : commit (trans_id& =ommitter) {
when (TRUE) // Always ok to commit.

if (ldeqd.is_ompty() && desoondant(doq_.top()->deq_, oonnnittor) ) {
doqd. cloax() ; // Disca_ all doquoue re=ords.

)
}

void atomic_queue: :abort (t=ans_id& aborter) {
when (TRUE) { // Always ok to abort.

while (Ideqd. is_empty() // Undo aborted dequoue by...
&& desoendant (deqd.top() ->doqr, aborter) ) { // a_orting tranma=tion.

deq_roc* d m deqd.pop(); // Undo aborted dequeuo.
onqd.insert (d->item, d->onqr); // Put it hack.

)
onqd.discard(abortor) ; // Undo aborted onquouom.



}
t



3. Larch Specifications

3.1. Some Basics

Sot (EL, C): trait

introduces

on%_tysot : -> C

insert: C, EL-> C

in: EL, C-> Bool

herin: EL, C-> Bool '

U: C, C-> C

insert: C, C-> C

- : C, C-> C

delete: C, EL-> C

subsotoq: C, C-> Bool

isEn_ty: C -> Bool

assorts C generated by (on_tyset, insert)

C partitioned by (in)

for all (y, yl: C, x, xl: EL)

- (in (x, om_tysot) ),

in(x, insert(y, xl}} -- (z - xl) _ in(x, y),

notin(x, y} u -(in(x, y)),

in(x, U(y, yl)) --in(x, y) I in(x, yl),

in(x, insect(y, yl)) -- in(x, y) & in(x, yl),

in(x, (y - yl)) -- in(x, y) & notin(x, yl),

in(x, delete(y, xl)) _ (x \-xl) & in(x, y),

subsotoq (omptysot, yl),

su_sotoq(insort(y, x), yl} _ subsotoq(y, yl) & in(x, yl),

isEn_ty (on_tysot),

-isEn_ty (insert (y, x) )

end

Stack (EL, C) : trait

introduces

now: -> C

push: C, EL -> C

top: C -> EL

pop: C -> C

isNew: C -> Bool

asmertB

C generated by (new, pumh)

for all (x: C, y: EL)

top (push (x, i') ) -" Y,
_pop (push (x, y) ) -,- x,

isNow (new} ,

- isNow (push (x, y} }

end

Pair (TI, T2, T}: trait

introduces

pair: TI, T2-> T

first: T -> T1

second: T -> T2

assorts

T generated by (pair)

T partitioned by (first, second}

for all (x: TI, y: T2)

first (pair (x,y)) _ x,

second (pair (x, y) ) ms y

end

Triple (TI, T2, T3, T): trait

introduces

trip: TI, T2, T3-> T

first: T -> T1

second: T -> T2

third: T -> T3



asserts

T generated by (trip)

T partitioned by (first, second, third)

for all (x: TI, y: T2, z: T3)

first (trip(x,y, z) ) -- x,

second(trip(x,y,z)) -- y,

third(trip(x,y,z) ) -- z

end

a

3_. Queue R_._en_fion

' Tr_nsID (Tid) : trait

introduces

< : Tid, Tid-> Bool

c xt: -> Tid

asserts for all(xt, xtl, xt2: Tid)

((xt < xtl) & (xtl < xt2)) -> (xt < xt2),

((xt < xtl) _ (xtl< xt)) -> (xt - xtl)
end

Enq_Rec(EL, enq_rec): trait

includes TranmID, Pair(EL, Tid, enq_reo, element for first, enc/t for second)

introduces

e_before: enq rec, enq reo-> Bool

asserts enq_re¢ partitioned by (element)

for all(x, xl: enq_rec)

e_before(x, xl) -- enqt (x) < enqt (xl)
end

Deq_Rec(EL, deq_rec): trait

includes TransID, Enq_Rec,

Triple(EL, Tid, Tid, deq_rec, what for first,

enqr for second, deqr for third)

introduces

d k_efore: deq,...rec, deq....rec-> Bool

convert : deq_rec -> enq_rec

asserts for all (x, xl: deq_re=)

d_before(x, xl) --deqr(x) < deqr(xl),
convert (x) ----pair (what (x) , enqr (x))

end

Enq_Heap (enq heap) : trait

includes Enq_Rec, Set(enq_reo, enq_heap)
introduces

in_heap: enq_rec, enq_heap-> Bool

e_in_heap: EL, enq heap-> Bool

least: enq rec, enq_heap-> Bool

is_top: enq rec, enq heap-> Bool

asserts for all (xp: enq_heap, y, yl: enq_rec, xt: Tid, xe: EL)

in_heap(y, xp) -- in(y, xp),

" e_in_heap(xe, emptyset) --false,

o_in_heap (xe, insert (xp, y) ) -- (element (y) -xe) I e_in_heap (xe, xp) ,

least(y, emptyset) --tEue,

least (y, insert (xp, yl) ) --- (en_t (y)<enqt (yl)) & lea_ (y, xp),

" is_top(y, xp) --in_heap(y,xp) & least(y, xp)
end

Deq_Sta_k (deq_stack) : trait

includes Deq_Rec, Stack(deq_rec, deq_stack)
introduces

deq_before: deq_rec, d_q_rec, deq_sta=k-> Bool

in_stark: deq_rec, deq_stack-> Bool

• in stack: EL, deq_stac.k -> Bool

asserts for all (xk: deq_sta=k, y, yl, y2: deq rec, xt: Tid, xe: EL}

deq before(y, yl, new} --false,

deq_before (y, yl, push (xk, y2) ) -- ((yl-y2) & (in_stack (y, xk) ) ) I



aeq_before(y, yl, xk),

in_stack(y, new) _m false,

in_stack(y, push(xk, yl)) In if y - yl

then true

else in_sta=k (y, xk) ,

• in stack(xe, new) ms false,

e_in_stack(xe, push(xk, y}) mm (what (y) mxe) J e_in_sta=k(xe, xk)
end

.0..i_I.-



3.% LP Input of Basics and Queue Representation

% Last modified on Fri May 19 11:37:29 PDT 1989 by homing
% modified on Men Jun 27 15:10:41 1988 by saxe

set name bool
declare

true: ->heel
fal me :->heel

&:heel, bool->bool

] :bool, bool->bool
<-> :bool, bool->bool
-> : heel, bool->bool
not : bool->bool
b: :heel
bl : :heel
b2 ::heel

op ao <-> & I
op preo <--> &

op pre= <->

add
true & b -> b
false & b -> false

b&b->b

not(b) -> false <-> b
true <-> h -> b

not(b) & b -> false

true I b-> true
false [ b-> b
b I b->h
not(b) I b -> true
b -> bl -> not(b) I bl
(b I bl) _ b -> b
% not(b) & not(b1) -> not(b I bl)
not(b I bl) -> not(b) & not(b1)
% not(b) I not(b1) -> not(b & bl)

not(b & bl) -> not(b) I not(b1)
b & (not(b) I bl) -> h & bl

(b I bl) & not (b) & not (bl) -> falm.
(b I bl) & (b I not(bl)) -> b
(b & hl) I not(bl) -> b I not(bl)
(b & bl) I (b & not(b1)) -> b

b [ (not(b) & bl) -> b I hl
b I (b _ bl) -> b

% Jorgon'm additions
% b I (bl & b2) -> (b I bl) & (b I b2)

(b <-> bl) I (bl <-> b2) I (b <-> b2) -> true
• •

• add-ded

when (b <-> false) m false

yield b -> true
when b <m> bl ms b <-> b2

yield bl --- b2
when if(h, bl, b2} --true

yield b -> bl
b I b2

when if(b, bl, b2) -- false

yield bl -> not (b)
b2 -> h

• •

set name TranmID
declare



xt, xtl, xt2 ::Tid

add

((xt < xtl) _ (xtl < xt2)) -> (xt < xt2)
((xt < xtl) _ (xtl < xt)) -> (xt - xtl)

set name Pair

de¢l are

xn, xnl ::enq_re=
xe: :EL

add-generators

pair : EL, Tid-> enq_re=

aad-dechlotion-rules
when

element (xn) m element (xnl)

.nqt (xn) -- enq_ (xnl)

yield xn _- xnl

add

element (p_ir (xe, xt) } _- xe

enqt (pair (xe, xt) ) --- xt

set name Enq Reo
add-dech_=tion-rules

when

element (xn) -- element (xnl)

yield xn -_ xnl

add

e_l:_fore (x, xl) --= (enqt (x) < enq_c (xl))

set name Triple

add-generators

trip : EL, Tid, Tid-> deq_reo

add-de_cti on- rule s

when

what (y) -- what (z)
enq= (y) --- enqr (z)

deqr(y) _ deqr(z)

yield y -- z

add

what(trip(x, y, z)) -- x
enqr (trip (x, y, z)) -= y
deqr (trip (x, y, z)) -.-z

sot nan_ Doq_Ro=
add

d befoz_(x, xl) -- (aeq=(x) < d_qr(xl))
=onvoEt (x) -- pair (what (x), onqr (x))

sot name Stack

add-generators

new : -> deq..stack

push : deq_stack, deq_re=-> deq_stack

add

top(push(x, y)) _- y
pop(push(x, y)) -_ x
isNew (new)

not (isNew (push (x, y) ))



sot name Deq_Sta_k

dealare xk: :deq sta=k
add

deq_before(y, yl, new) --false

deq_hdfore(y, yl, push(xk, y2)) --- ((yl- y2) & in_stack(y, xk)) l

deq_h_fore(y, yl, xk)

in_stack(y, new} --false

in_stack(y, push(xk, yl) ) --- if(y - yl, true, in_stack(y, xk) )

e in stack(xe, new) -- false

e_in_stack(xe, push(xk, y)) -- (what(y) -xe) I e_in_stack(xe, xk)

set name Sot

add-generators

en%mtyset : -> enq heap

insert : enq_heap, enq_re=-> enq_heap
• •

add-deduation-rules

when

in(x_ml, y) -- in(x11, z)
yield y -- z

add

not (in (x, emptyset) )

in(x, insert(y, xl)) -- (x- xl) I in(x, y)

notin(x, y) -- not (in(x, y)}

in(x, U(y, yl)) _- in(x, y) I in(x, yl)

in(x, inse=t(y, yl)) _- in(x, y) & in(x, yl)

in(x, (y - yl)) --- in(x, y) & notin(x, yl)

in(x, delete(y, xl}) m not{x - xl) & in(x, y)

subseteq (emptyset, yl)

su_seteq(insert(y, x), yl) m. subseteq(y, yl) & in(x, yl)

isentry(.mptyset)
not (isEmpty (insert (y, x) ) )

sot name Enq_Heap

declare xp: :enq heap
add

in_heap (y, xp) --- in (y, xp)

e_in_heap(xe, en%otyset) _ false

e_in_heap(xe, insert(xp, y)) --- (element(y) -xe) I e_in_heap(xe, xp)

least(y, emptyset) n true

least (y, insert (xp, yl) ) us (enqt (y) < enqt (yl)) & least (y, xp)

is_top(y, xp} --- in_heap(y, xp) & least(y, xp)

sot name State

declare

xst : :St

• •
I

add-generat OrS
init : -> St

deq : St, Tid, enq Ee=-> St

enq : St, Tid, EL-> Sta

commit : St, Tid-> St

abort : St, Tid-> St

• •

add-decbaotion-Eules

when

deqd (y) -,- deqd (z)

enqd(y) ms enqd(z)

yield y -- z

• •

add

deqd(init) _- new

IO



enqa (init) -- _tynt

when_enq(xst, z, w, xt, xe) _-( ((aeqa(xst)_new) J (enqr(top(deqd(xst)) )<xt) ) &

not(in_heap(z, enqd(xst)) & (element(z)- xe))) &

not (in_stack(w, deqd(xst) ) & (what (w) - xe) )
deqd(e_(xmt, xt, xe).) --deqd(xmt)

enqd(enq(xst, xt, xe) ) -- insert (enqd(xst), pair(xe, xt) )

when deq(xst, x, xt, xn) -- ((((deqd(xst)-new) I ((deqr(top(deqd(xst)))<xt) &
(enqr (top(deqd(xst)) ) < enqt (xn)) )) &

is_top(xn, enqd(xst))) & (enqt(xn) < xt)) &

not (in_stack(x, deqd(xst) ) & (what (x) - element (xn)) )
deqd(deq(xst, xt, xn) ) -- push(deqd(xst), trip(element (xn), enqt (xn}, xt) )
enqd (aeq (x.t, xt, xn) ) -- del.te (enqd (xst), xn)

d.qd (commit (x.t, xt) ) -- if (not (deqd (xst) - new) & (deqr (top (deqd (xst)) )<xt),
new, deqd(xst) )

enqa(commit (xst, xt)) -- enqd(xat)

in_stack(x, deqd(abort (x.t, xt) )) --- in_stack(x, deqd(x.t) )&not (deqr(x) - xt)

deq_before(x, y, deqd(abort (x.t, xt))) -> deq_before(x, y, deqd(xnt))
in_heap(xl, enqd(a_ort (xst, xt)) ) -> (not (enqt (xl) - xt) &

(in_heap(xl, enqd(xst)) J

(in_stack (trip (element (xl), enqt (xl), xt), deqd (xst)) &

not (in_stack (x,doqd (abort (xst,xt)) )&
(what (x)-element (xl)) ))))

11



3.4. Histories and Abstraction Function

Sequence (EL, Soq): trait

introduces

null: -> Soq

cons: Seq, EL -> Seq

append: Seq, Seq-> Seq

prefix: Seq, Soq -> Bool

sub: Soq, Seq-> Soq

assorts Seq generated h_ (null, cons)

for all (xs, xsl: Seq, xe, xel: EL)

cons(xs,xo)-cons(xsl,xol) -_ (xs_xsl) & (xe_xel),

• append(xm, null) m. xs,

append(null, xs) -_ xs,

append(xs, cons (xsl, xe) ) m. cons (append(xs, xsl) , xe),

prefix(null, xsl) m. true,

prefix (cons (xs, xo), null) ---false,

prefix(ccns(xs, xo), cons(xsl, xel)) m. ((xe_xel) & (xs_xsl)) I profix(cons(xs, xe), xsl),

sub (null, xs) -- null,

sub(xs, null) -_ xs,

sub (cons (xs, xo), cons (xsl, xel) ) --- if ((xs_xsl) & (xe_xol))

then null

else conm(mu_(xs, cons (xsl,xol)) , xo),

~ (null - cons (xs,xe))

end

Event (Ev) : trait

includes Enq_Rec, Deq_Rec,
introduces

E: onq_rec -> Ev

D: deq_rec -> Ev

asserts Ev generated by (E, D)

enq_rec partitioned by (E)

deq_rec partitioned by (D)

for all (x, xl : enq_rec, y, yl : deq_rec)

(x-xl)->(E(x)-E(xl)),
(y-yl) -> (D(y) -D (yl)),
~ (E(x) -D (y))

end

History (H): trait

includes Event, Sequence, Sequence(Ev, H)
introduces

c hl: -> E

c h2: -> H

DEQ: E -> Seq

ENQ: H -> Seq

max: Tid, H-> Bool

min: Tid, H-> Bool

ordered: E -> Bool

discard: Tid, E-> H

asserts for all (xh: H, u:enq_rec, v:deq rec, xt:Tid)

" ENQ (null) am null,

EN@ (cons (xh, E (u)) ) --- cons (EN@ (xh), element (u)),

ENQ(cons(xh, D(v))) m. ENQ(xh),

DEQ(nulI) am null,

DEQ(cons(xh, E(u))) mm DEQ(xh),

DEQ(cons(xh, D(v))) mm conm(DEQ(xh), what(v)),

max (xt, null) ,

max(xt,cons(xh,E(u))) m-max(xt,xh) & (-(enc/c(u)<xt)),

max(xt,cons(xh, D(v) ) ) --- max(xt,xh) & (~(deqr(v)<xt)),
sin (xt, null),

min(xt,cons(xh,E(u})) m_ min(xt,xh) & (~(xt<enc/t(u))),

min (xt, cons (xh, D (v)) ) mm sin (xt,xh) & (- (xt<deqr (v)) ) ,

ordered (null),

ordered(cons(xh,E(u))) mm ordered(xh) & min(enqt(u), xh) ,

ordered(cons (xh, D (v)) ) am ordared(xh) a min(deqr(v), xh),
discard(xt, null) am null,

12



discard(xt, cons (xh,E(u) )) --- if enqt (u)-xt
then discard (xt,xh)

else cons (discard(xt,xh) ,E (u)),

discard(xt, cons(xh, D(v) )) =_ if deq=(v)-xt
then discard (xt,xh)

else cons (discard (xt,xh) ,D (v))
end

13



3.5. LP Input of Histories and Abstraction Function

set name Event

add-generat ors
E : enq_rec-> Ev

D : deq_rec-> Ev

add-dech_=tion-rules

when E (xu: :enq reo) --- E(xv: :esq..tee)
yield xu ::enq_rec --- xv: :enq_re¢

add-deduct ion- rule s

when D(yu: :deq_rec) -- D(yv::deq rec)

yield yu: :deq_rec --- yv: :deq_rec

add

(x-xZ)-> (E (x)-E (xl))

(yu: :deq_rec-yul ::deq_rec) -> (D(yu: :deq_rec) -D (yul::deq rec) )
not (E (x)-D (yu: :deq_rec) )

sot name Sequence

declare xs,xsl ::Seq
declare xe,xel: :EL

add-generators
null : -> Seq

cons : Seq, EL-> Seq

add

cons (xs,xe)-cons (xsl,xel) .m (xs_xsl) & (xe_xel)

append(xs, null) -_ xs

append(null, xs) -_ xs
append(xs, oons(xsl, xe)) _-cons(append(xs, xsl), xe)

prefix(null, xsl) ---true

prefix (cons (xs, xe), null) ---false
prefix (cons(xs, xe), oons(xsl, xel)) _ ((xe - xel) & (xs - xsl)) ]

prefix (cons (xs, xe) , xsl)
sub (nuli, xs) -.- null
sub(xs, null) _- xs

sub (cons (xs, xe), cons(xsl, xel)) _- if((xs - xsl) & (xe - xel), null,

¢ons(sub(x,s, =ons(xsl, xel) ), xe) )
not (null - cons(xs,xe) )

sot name Sequence
declare xh: :H

declare xev,xevl : :Ev

add-generators
null : -> E

cons : H, Ev-> H

add
cons :E,Ev->H (xh,xev)-_ons :E,Ev->H (xhl,xevl) mm (xhmxhl) & (xevmxevl)

append (y.h,null :->H) _ xh

append (null :->E, xh) _ xh
append(xh, cons (xhl, xev) ) -- cons (append(xh, xhl), xev)
prefix (null:->E, xhl) mm true

' prefix (cons (xh, xev), null :->H) mm false
prefix (cons (xh, xev), cons (xhl, xevl) ) --- ((xev - xevl) & (xh - xhl) ) I

prefix (cons (xh, xev), xhl)
sub (null :->E, xh) -_ null :->H
sub (xh, null :->H) .m xh

sub (cons (xh, xev), cons(xhl, xevl)) _ if((xh - xhl)&(xev - xevl), null:->H,
cons (sub (xh, cons (xhZ, xevZ) ), xev) )

not (null:->E - cons (xh,xev))

sot name History

declare ue ::enq_rec
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declare vd: :deq_rec
declare xt ::Tid

declare chl, c_h2 :->H

declare c_ue:->enq rec
add

ENQ (null :->H) n null :->Seq
ENQ (cons (y.h,E (us}}) n cons :Seq, EL->Seq (ENQ (xh), element (us))
F..NQ(cot,. (x.h, V(vd)) ) --- EIqQ(xh)
DEQ (null :->H) --- null :->Seq
DEQ (cons (xh, E (us)) ) --- DEQ (xh)

DEQ (cons (xh, D (vd)) ) m. cons :Seq, EL->Seq (DEQ (xh), what (vd})
max (xt, null :->H)

max(xt, cons(xh, E(ue))) ---max(xt, xh) & not(enqt(ue)<xt)

max(xt, cons(xh, D(vd))) _ max(xt, xh) & not(deqr(vd)<xt)
min (xt, null :->H)

min(xt, cons (y.h, E(ue) )) _ min(xt, xh) & not (xt<enq_ (ue))
min(xt, cons(xh, D(vd))) --min(xt, xh) & not(xt<deqr(vd))
ordered (null :->H)

ordered(cons (xh,X (ue))) --- ordered(xh) & min(enqt (ue), xh)

ordered(cons (xh,D (vd))) _ ordered(xh) & min(deqr(vd), xh)
discard(xt, null:->H) m null:->H

discard(xt, cons(xh, E(ue))) --if(enqt(ue) -xt, xh,

cons(xh,E (us)))
discard(xt, cons(xh, D(vd))) --if(deq_(vd) -xt, xh,

cons (xh, V (vd)) )

met name Set

declare ya, yal, za: :A

add-generators
e_tyset : -> A
insert : A, H-> A

• •

add-deduction- rule s

when in(xh, ya) _ in(xh, za)

yield ya -- za

add

not (in (xh, emptyset :->A) )

in(xh, insert(ya, xhl)) _ (xh m xhl) I in(xh, ya)
notin(xh, ya) --- not (in(xh, ya) )

in(xh, U(ya, yal)) ---in(xh, ya) I in(xh, yal)
in(xh, insect(ya, yal)) _ in(xh, ya) & in(xh, yal)

in(xh, (ya - yal)} m in(xh, ya) & notin(xh, yal)

in(xh, delete (ya, xhl) ) --- not (xh - xhl) & in(xh, ya)
subseteq (emptyset :->A, yal)

submet@q(insert(ya, xh}, yal) n su_metoq(ya, yal) & in(xh, yal}
imEm_ty (em_tyset :->A)

not (isEmpty (insert (ya, xh) ))

set name A_mtraction
declare xst ::St

declare c xt :->Tid
add

in state (null:->H, xmt)

in_state (cons (xh, E (us)), xst) -> (in_state (xh,xst) & (in_heap(ue,emqd(xst))

in_stack (trip (element (us),enc/t(us),c_xt), deqd (xst)) ))
in_state (cons (xh, D (re)), xst) -> (in_state (xh,xst) &in_stack(vd, deqd(xst) ))
in state (xh,xst) -> not (DEQ (xh) - cons: Seq, EL->Seq(ENQ (xh),xe) )

in(xh, af(xst}) -> (ordered(xh)& in_state(xh, xst})

in(xh, af(enq(xst, xt, xe}}) -> (in(appena(c_hl, c_h2), af(xst)) &

(xhmappend (cons (c_hl, E (pair (xe,xt)) }, c_h2) ))
in(xh, af(deq(xst, xt, xn))) -> (in(append(c_hl, c_h2), af(xst)) &

(xh - append (cons (c_hl,

D (trip(element (xn),enqt (xn},xt) )),c_h2) ) &
(DEQ (c_h2) -null :->Seq) )

in (xh, af (conuait(xst, xt) )) -> (DEQ(xh) - null:->Seq)
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in(xh, af(abort(xst, xt))) -> (in(c_hl, af(xst)) & (xh-discard(xt, c_hl)))

(prefix (DEQ (append (xhl, xh2 ) ), ENQ (append (xhl, xh2) ) ) &in (append (xhl, xh2 ), af (xst) ) &

not (prefix (DEQ (append (xhl, xh2) ) ,ENQ (append(cons (xhl, E (pair (xe, xt ) ) ), xh2) ) )) &

ordered(append (cons (xhl,E (pair (xe,xt)) ) ,xh2} ) ) ->

not (enqr (top (deqd (xmt)) )<xt)

(in (xh, af (xst)) &prefix (DEQ (xh), ENQ (xh)) &in (xn, enqd (xst)) &least (xn, enqd (xst)) )

-> prefix (cons :Seq, EL->Seq (DEQ (xh), element (xn) },ENQ (xh))
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4. Proof of Representation lnvariants

4.1. Statement of Representation Invariants

set name Inv&Eiant

add

Invl (xst, x, y) --- (in_stack(x, deqd(xst) )&in_he&p(y, enqa(xst) ) )->

not (what (x) -element (y))
Inv2 (xJt, x, xl) _ doq_before (x, xl, deqd(xat) )->

(enqr (x) <enqr (xl)) & (deqr (x) <deqr (xl))

Inv3 (xst, x) ms in_stack (x, deqa (xst))->(enqr (x) <deqr (x))
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4.2. LP Proof Session of Invariant 1

-> thaw Inv

System thawed from _Inv. frz' .

-> set name thml

The name prefix is now 'thml'.

-> prove Invl(xst,x,y) hy induction xst St

The basis step in an inductive proof of Conjecture thntl.l

Invl(xst, x, y) -> true

involves proving the following lemma(s) :

thml.l.l: 7nvl(init, x, y) -> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture thml.l

Invl(xst, x, y) -> true

uses the following equation (s) for the induction hypothesis :

Induot.2: Invl(o_xst, x, y) -> true

The system now contains 1 equation, 78 rewrite rules, and 9 deduction rules.

Ordered equation Induct.2 into the rewrite rule:

( (element (y) - what (x)) <-> false)

[ (false <-> in(y, enqd(c_xst)) )

[ (false <-> in_stack(x, deqd(c_xst) ) )
-> true

The system now contains 79 rewrite rules and 9 deduction rules.

The induction step involves proving the following lemma(s) :

thml.l.2: Invl(deq(c_xst, vil, vi2), x, y) -> true

which reduces to the equation

(( (trip(element (vi2), enqt (vi2), vil) - x) <-> false)

& (false <-> in_stack(x, deqd(c_xst) ) ))

[ ((element (y) - what (x)) <-> false)

[ (false <-> in(y, enqd(c_xst) ))

I (vi2 - y)

-> true

thml.l.3: Invl(enq(o_xst, vil, vi2), x, y) -> true

which reduoes to the equation

(( (pair(vi2, vil) - y) <-> false)

& (false <-> in(y, enqd(c_xst) ) ) )

I ((element (y) - what (x)) <-> false)

] (false <--> in_stack(x, deqd(o_xst) ) )
-> true

, thml.l.4: Invl(oommit(o_xst, vil), x, y) -> true

[] Proved by normalization

thml.l.5: Invl(a_ort(o_xst, vil), x, y) -> true

which reduces to the equation

. ((element (y) - what (x)) <-> false)

I (false <-> in(y, enqd(abort(o_xst, vil) ) ))

l (false <-> in_stack(x, deqd(c_xst) ))

[ (deqr(x) - vil)

-> true

Proof of _ thml.l.5 suspended.

-> resume by case in_stack(x, deqd(o_xst))

Case. 4.1

in_stack(c_x, deqd(c_xst)) ---true . .
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involves proving Lemma thml. i. 5.1

Tnvl (ak_rt (c_xst, vil), c_x, y) -> true

The case system now contains 1 equation.

Ordered equation Case• 4.1 into the rewrite rule:

in stack (c x, deqd(c xst)) -> true

The case system now contains 1 rewrite rule•.

The system now contains 1 equation, 79 rewrite rules, and 9 deduction rules.

Ordered equation Case. 4.1 into the rewrite rule:

in stack (c x, doqd(c xst)) -> true

The system now contains 80 rewrite rules and 9 deduction rules•

Lemma thml.l•5.1 in the proof by cases of Lemma thml.l.5

Invl (a_ort (c_xst, vil), c_x, y) -> true

Case. 4.1: in_stack(=_x, deqd(c_xst) )

is NOT provable using the current partially completed system. It reduces to

the equation

( (element (y) - what (c_x}) <-> false}

I (false <-> in(y, enqd(abort (a_xst, vil) ) ) )

I (deqr (c_x) - vil)

• -> true J_'i :

Proof of Lemma thml. I•5.1 suspended.

-> resume by case in(y, enqd(abort(c_xst,vil)))

Case. 5.1

in(=_y, enqd(a_ort (c_xst, c_vil) ) ) =_ true

involves proving Lemma thml. I. 5. I. 1

Invl(ak_rt(c_xst, c_vil), c_x, c y) -> true

The case system now contains 1 equation. ° .

Ordered equation Case.5.1 into the rewrite rule:

in(=__, enqd(abort (c_xst, c_vil) ) ) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 80 rewrite rules, and 9 deduction rules.

Ordered equation Case• 5.1 into the rewrite rule:

in(=y, enqd(aboEt(c_xst, c_vil) ) ) -> true

The system now contains 81 rewrite rules and 9 deduction rules.

L@mma thml.l.5.1.1 in the proof by =awes of Le_na thml.l.5.1

Invl(ak_rt(c_xst, c_vil), =_x, c y} -> true

Case.5.1: in(=.,y, enqd(a_ort (c_xst, c_vil) ) )

is NOT provable using the current partially completed system. It reduces to

the equation

((element (c_y} - what (c_x) } <-> false} ] (c_vil - deqr(a_x} ) -> true
o

Proof of Lemma thml. 1.5.1.1 muspended.

-> =tit case with State.14

Critical pairs k_tween rule Case.4.1:

in stack (c x, deqd(c xst)) -> true
and rule State. 14 :

(((enqt(xl) - xt) <-> false)

& ( (in_stack(trip(element (xl), enqt (xl), xt), deqd(xst))
& (((element (xl) - what (x)) <-> false}

] (false <-> in_stark(x, deqd(xst} } }

I (deqr(x) = xt)))
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i in(xl, enqd(xst)) })

I (false <-> in(xl, enqd(abort (xst, xt))) )

-> true

are as follows:

(((enqt(xl) - xt) <-> false)

& ( (instack(trip(element (xl), enqt (xl), xt), deqd(c_xst) )

& (((element (xl) - what (c_x)) <-> false) l (deqr(o_x) - xt)))

I in(xl, enqd(c_xst))))

I (false <-> in(xl, enqd(abort (c_xst, xt) ) ) )

true

The system now contains 1 equation, 81 rewrite rules, and 9 deduction rules.

Ordered equation thml.2 into the rewrite rule:

( ((enqt (xl) - xt) <-> false)

& ((instack(trip(element (xl), enq_ (xl), xt), deqd(o_xst) )

& (((element (xl) - what (c_x)) <-> false) I (deqr(c_x) - xt)))

I in(xl, enqd(c_xst) ) ) )

l (false <-> in(xl, enqd(a_o=t (=_xst, xt) ) ) )
-> true

The system now contains 82 rewrite rules and 9 deduction rules.

Critical pairs between rule Case.5.1:

in(c y, enqd(abort (o_xst, c_vil) ) ) -> true
and rule State. 14 :

( ( (enqt (xl) - xt) <-> false)

& ( (in_stack(trip(element (xl), enqt (xl), xt), deqd(xst) )

& ( ((element (xl) - what (x)) <-> false)

l (false <-> in stack(x, deqd(xst)))

J (deqr(x) - xt)))

I in(xl, enqd(xst))))

I (false <-> in(xl, enqd(abort(xst, xt))))

-> true

are as follows:

( (enqt (c_y) - xt) <-> false)

I (false <-> in(c_y, enqd(abort (abort (c_xst, evil), xt) ) ) )
-- true

( (e_vil - enqt (o_y)) <-> false)

& ( (in stack (t=ip (element (c__y), enqt (c__y), evil), deqd(c_xst) )

& (((element (e y) - what(x)) <-> false)

(false <-> in_stack(x, deqd(c_xst)))

(c_vil - deqr(x) )) )

in(c__y, enqd(c xst) ) )

--- true

The system now contains 1 equation, 82 rewrite rules, and 9 deduction rules.

Ordered equation thml. 3 into the rewrite rule:

((en_(c_y)- xt) <-> false)
I (false <-> in(c y, enqd(abort (abort (=_xst, evil), xt) ) ) )

-> true

The system now contains 83 rewrite rules and 9 deduction rules.

The system now contains 1 equation, 83 rewrite rules, and 9 deduction rules.

Deduction rule boolean. 3 :

when x & y _ true

yield x -_ true

y _-_ true
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has boon applied to equation thml. 4:

( (=_vil - enq_ (c_y)) <-> false)

& ((in_staek(trip(olement(c y), enqt(c y), evil), doqd(=_xst))

& ( ( (element (c_y) - what (x)) <-> false)

I (false <-> in_stack(x, doqd(¢_xst)))

I (c_vil - deqr(x) ) ) )

I in(c__, enqd(e_xlt) ) )

to yield the following equations:

thml.4.1: (cjil m enc/c(c__y)) <-> false mm true

thml. 4.2: (in_stack(trip(element (cy), enqt (c_y), c_vil), doqd(c_xst) )

& ( ( (element (c_y) - what (x)) <-> false)

I (false <-> in stack(x, deqd(c xst)))

I (c_vil - deq_x) ) ) )

I in(c y, onqd(c..xst))
mm truo

Ordered equation thml. 4.2 into the rewrite rule:

(in_stack (trip (element (cy), onqt (cy), evil), deqd(c_xst) )

& ( ( (olmwnt (c__) - what (x)) <-> false)

I (false <m> in_staCk(x, deqd(c_xmt) ) )

[ (c_vil = deqr(x))))

I in(c_y, enqd(c_xmt))
-> true

Deduction rule equality.3 :

when x <m> y m_ true

yield x mm y

has been applied to equation thml.4.1:

(c_vil - encft (c_y)) <-> false -_ true

to yield the following equations:

thml.4.1.1: c vil - enqt(c y) mm false

Ordered equation thml. 4. I. 1 into the rewrite rule:

c_vil - enq_ (c y) -> false

The system now contains 85 rewrite rules and 9 deduction rules.

Computed 3 now critical pairs. Added 3 of them to the system.

-> roaunm hy case in(¢ y,enqd(=_xat))

Case. 6.1

in(c_y,enq_(c_xsC)) -- true
involves proving Lenuna thml. i. 5. I. i. 1

Invl (a_ort (=_xst, c_vil), c_x, c_y) -> true

The case system now contains 1 equation.

Ordered equation Case.6.1 into the rewrite rule:

in(cy, enqd(c_xsC))-> true

The came system now contains 1 rewrite rule.

The system now contains 1 equation, 85 rewrite rules, and 9 deduction rules.

Ordered equation Came.6.1 into the rewrite rule:

in(o y, enqd(c_xst)) -> true

Left-hand side reduced:

(in stack(trip(element (cy), onqt (cy), c_vil), deqd(c_xst) )

& (((element (c_y) m what (x)) <m> false)

I (false <-> in_stack(x, deqa(=_xsC)))
I (c_vil - deqr(x))))
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[ in(c y, enqd(c_xst))
-> true

beoame equation thml. 4.2 :

(in_staok (trip (element (cy), enqt (cy) , c_vil), deqd(c_xst) )

& (((element (o y) - what(x)) <-> false}

l (false <-> in_stack(x, deqd(c_xst) ) )

[ (o_vil - deqr (x)) ) )

true

m= true

The system now contains 85 rewrite rules and 9 deduction rules.

Lemma thml.l.5.1.1.1 in the proof by cases of Lemma thml.l.5.1.1

Invl(a_ort(c_xst, c_vil}, o_x, c__) -> true

Case.6.1: in(c_y, enqd(c_xst)}

is NOT provable using the current partially completed system. It reduces to

the equation

((element (c y) = what (o_x)) <-> false} i (o_vil - deqr(c_x)) -> true

Proof of Lemma thml. I. 5. I. i. 1 suspenaea.

-> ¢rit ¢ase with induct

Critioal pairs between rule Case. 4.1:

in_stark (c_x, aeqd(c_xst) ) -> true
and rule Induct. 2 :

( (element (y) = what (x}) <-> false}

(false <-> in(y, enqd(a xst) ) )

l (false <-> in_stack(x, deqd(c_xst) ) )
-> true

are as follows:

((element(y) = what(c_x)) <-> false) [ (false <-> in(y, enqa(c_xst)))
mm true

The system now contains 1 equation, 85 rewrite rules, and 9 deduction rules.

Ordered equation thml.5 into the rewrite rule:

((element(y) = what(c x)) <-> false} [ (false <-> in(y, enqd(c_xst))) -> true

The system now contains 86 rewrite rules and 9 deauotion rules.

Critioal pairs between rule Case. 6.1:

in(c_y, enqd(o_xst) } -> true
and rule Induct. 2 :

( (element (y) - what (x)) <=> false}

I (false<-> in(y,enqa(c_xst)))
[ (false <--> in_stack(x, deqd(o_xst) ) )

-> true

are as follows:

((element(o_y} - what(x) } <-> false} I (false <-> in_stack(x, aeqd(c_xst} }}
m_ true

" The system now oontains 1 equation, 86 rewrite rules, and 9 aeauotion rules.

Ordered equation thml. 6 into the rewrite rule:

( (element (cy) - what (x)) <-> false) [ (false <-> in_stack(x, deqd(o_xst) ) )
" -> true

The system now contains 87 rewrite rules and 9 deduction rules.

Computed 2 new oritical pairs. Aaaed 2 of them to the system.

-> crit case with thml

Critical pairs between rule Case. 4.1:

in_stack(¢_x, aeqd(a_xst) ) -> true
and rule thml. 6:

((element(c_y} - what(x}) <-> false} [ (false <-> in_stack(x, deqd(c_xst)))
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-> true

are as follows:

(element (c_y) - what (c_x)) <-> false n_ true

The system now contains 1 equation, 87 rewrite rules, and 9 deduction rules.

Deduction rule equality. 3 :

when x <-> y -- true

yield x -- y

has been applied to equation thml. 7:

(element (c_y) - what (=_x)) <-> false m true

to yield the following equations:

thml.7.1: element(c y) -what(c_x) _-false

Ordered equation thml.7.1 into the rewrite rule:

element (c_y) - what (c_x} -> false

The system now contains 88 rewrite rules and 9 deduction rules.

Lomma thml.l.5.1.1.1 in the proof by cases of Lemma thml.l.5.1.1

Invl (abort (c_xst, =_vil), c_x, c y) -> true

Case.6.1: in(c_y, enqd(=_xst) )

[] Proved by rewriting.

Case. 6.2

not(in(c_y,enqa(c_xst))) -- true
involves proving Lomma thml. I. 5. I. i. 2

Invl(ak_rt(c_xst, =_vil), c_x, c y) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <s> y In true

yield x -- y

has been applied to equation Case. 6.2:

false <-> in(c_y, enqd(=_xst)) n_ true

to yield the following equations:

Case.6.2.1: false --- in(c_y, enqd(c_xst) )

Ordered equation Case. 6.2.1 into the rewrite rule:

in (c__, enqd(c_xst) ) -> false

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 85 rewrite rules, and 9 deduction rules.

Deduction rule equality. 3 :

when x <n> y -- true

yield x "-- y

has boon applied to equation Case. 6.2:

false <-> in(c y, enqd(c_xst)) _- true

to yield the following equations:

Case.6.2.2: false _ in(c y, onqd(=_xst))

Ordered equation Case. 6.2.2 into the rewrite rule:

in(c_y, enqd(c_xst) ) -> false

Loft-hand side reduced:

(in_stack(trip(element (c_y), onqt (cy), c_vil), doqd(c_xst) )

& (((element (c y) - what (x)) <-> false)

I (false <-> in_stack(x, deqd(c_xst) ) )

i (c_vil - doqr(x) ) ) )

I in(c__,onqd(c_xst))
-> true

became equation thml. 4.2 :

(in_stack(trip(element (cy), enqt (cy), =_vil), doqd(c_xst) )

& (((element (c__) - what (x)) <-> false)

i (false <-> in_stack(x, deqd(=_xst) ) )
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i (c_vil - deqr (x)) ) )

I false

_-_ trDe

Deduction rule Moolean.3 :

when x & y --- true

yield x -- true

y --- true

, has been applied to equation thml. 4.2:

in_stack(trip(element (c__), enqt (c__), c_vil}, deqd(c_xst) )

& (( (element (c_y) - what (x)) <-> false)

I (false <-> in_stack (x, deqd(c_xst) ) )

, I (c_vil - deqr(x)))

true

to yield the following equations:

thml.4.2.1: in_stack(trip(element (cy), enqt (c_y), c_vil), deqd(c_xst) )
g-_ true

thml.4.2.2: ((element (c y) - what (x)) <-> false)

(false <-> in stack(x, deqd(c_xst)))
I (c_vil - deqr(x))

true

Ordered equation thml. 4.2.2 into the rewrite rule:

( (element (c_y) - what (x)) <-> false)

I (false <-> in_stack(x, deqd(c xst) ) )

l (c_vil - deqr(x))
-> true

Ordered equation thml. 4.2.1 into the rewrite rule :

in_stack (trip (element (cy), enqt (cy), c_vil), deqd(c_xst) ) -> true

The system now contains 87 rewrite rules and 9 deduction rules.

Lemma thml.l.5.1.1.2 in the proof by cases of Lemma thml.l.5.1.1

Invl (a_ort (c_xst, c_vil), c_x, c y) -> true

Case. 6.2: not (in(c_y, enqd(c_xst) ) )

is NOT provable using the current partially completed system. It reduces to

the equation

((element (c y) - what (c_x)) <-> false) I (c_vil - deqr(c_x)) -> true

Proof of Lemma thml. i. 5.1. I. 2 suspended.

Critical-pair computation abandoned because a theorem has been proved.

Co_pute_ 1 new critical pair. Ackled 1 of them to the system.

-> resume by case in stack(x, deqd(c xst))

Case. 7.1

in_stack(c_xl, deqd(c_xst) ) us true

involves proving Lemma thml. i. 5. i. 1.2.1

Invl(ak_rt(c_xst, c_vil), c_x, c y) -> true

The case system now contains 1 equation.

Ordered equation Case. 7.1 into the rewrite rule:

in_stack (c_xl, deqd (c_xst)) -> true

The case system now contains 1 rewrite rule.

Lemma thml.l.5.1.1.2.1 in the proof by cases of Lemma thml.l.5.1.1.2

Invl (abort (c_xst, c_vil), c_x, c y) -> true

Case. 7.1 : in_stack (cy, l, deqd (c_xst))

[] Proved by rewriting (with unreduced rules).

Case. 7.2

not (in_stack(c_xl, deq_(c_xst} ) ) m true
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involves proving Lemma thml. i. 5. i. I. 2.2

Invl (abort (c_xst, c_vil), c_x, c_y) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <m> y u true

yield x -- y

has _n applied to equation Case. 7.2:

false <-> in_stack(c_xl, doqd(c_xst)) u true

to yield the following equations:

Case.7.2.1: false u in_stack(=_xl, doqd(c_xst))

Ordered equation Case. 7.2.1 into the rewrite rule: .

in_sta=k(c_xl, deqd(c_xst} ) -> false

The case system now contains 1 rewrite rule.

thml.l.5.1.1.2.2 in the proof hy cases of Lamina thml.l.5.1.1.2

Znvl (a_ort (=_xst, =_vil), c_x, c_y) -> true

Case.7.2: not(in_Ita=k(c_xl, deqd(c_xst)))

[] Proved by rewriting (with unreduced rules).

thml.l.5.1.1.2 in the proof by cases of Lamina thml.l.5.1.1

Znvl(a_ort(c_xst, c_vil}, c_x, c_y) -> true

Case. 6.2 : not (in (c_y, enqd (c_xst)))
[] Proved by case-,

in_stark(x, deqd(c_xst) ) I not (in_stack(x, doqd(c_xst) ))

Lemma thml.l.5.1.1 in the proof by cases of Lemma thml.l.5.1

Invl(abort(=_xst, c_vil), c_x, c_y} -> true

Case.5.1: in(c_y, enqd(abort(c_xst, c_vil) ) )

[] Proved by cases

in(c y, onqd(c_xst)) I not(in(c y, onqd(c_xst)))

Case. 5.2

not (in(c_y, enqd(abort (c xst, c v_'l) ) ) ) -- true

involves proving Lemma thml. i. 5. I. 2

Znvl(a_ort(c_xst, ¢ vil), c_x, c__) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y u true

yield x -- y

has boon applied to equation Case.5.2:

false <-> in(c__, onqd(abort(¢_xst, a_vil})) _-true

to yield the following equations:

Case.5.2.1: false --- in(c_y, onqd(abort(c_xst, c_vil)))

Ordered equation Case. 5.2.1 into the rewrite rule :

in(= y, onqd(abort (c_xst, =_vil) ) ) -> false

The case system now contains 1 rewrite rule.

Lemma thml.l.5.1.2 in the proof by cases of Lenm_ thml.l.5.1

Znvl (abort (c xst, c_vil), c_x, c_y) -> true +

Case.5.2: not (in(c_y, enqd(abort (c_xst, c_vil) ) } )

[] Proved By rewriting (with unroduced rules}.

Lemma th2ul.l.5.1 in the proof by cases of Lemma thml.l.5

Znvl (skirt (=_xst, vil), c_x, y) -> true

Case. 4.1 : in_stack (c_x, deqd(c_xst) )

[] Proved by cases
in(y, enqd(abort (c xst, vil))) I not (in(y, enqd(abort (c xst, vil))))

Case. 4.2

not (in_sta=k(c_x, deqd(c_xst) ) ) -- true

involves proving Lemma thml. i. 5.2
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Invl (abo_ (c_xst, vil), c_x, y) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y _ true

yield x m y

has h_en applied to equation Case. 4.2:

false <-> in_stack (¢_x, deqd (a_xst)) .m true

• to yield the following equations:

Case.4.2.1: false m in_stack(c_x, deqd(c_xst))

Ordered equation Case.4.2.1 into the rewrite rule:

, in_stack (cx, deqd(c_xst) ) -> false

The case system now contains 1 rewrite rule.

Lemma thml.l.5.2 in the proof by cases of Lemma thml.l.5

Invl (abort (c_xst, vil), c_x, y) -> true

Case. 4.2: not (in_stack(c_x, deqd(c_xst) ) )

[] Proved by rewriting (with unreduced rules).

Lemma thml. 1.5 for the induction step in the proof of Conjecture thml. 1

Invl (abort (=_xmt, vil), x, y) -> true

[] Proved by cases
in_stack (x, deqd(c_xst) ) I not (in_stack (x, deqd(¢_xst) ) )

Lemma thml.l.3 for the induction step in the proof of Conjecture thml.l

Invl(enq(c_xst, vil, vi2), x, y) -> true

is NOT provable using the current partially completed system. It reduces to

the equation

(((pair(vi2, vil) - y) <-> false) & (false <-> in(y, enqd(c_xst) ) ) )

[ ( (element (y) - what (x)) <-> false)

l (false <-> in_stack (x, deqd(¢_xst) ) )
-> true

..

Proof of Lemma thml.l. 3 suspended.

-> resuml by case in(y, enqd(c_xst))

Case. 8.1

in(c_y, enqd(=_xst) ) m true

involves proving Lemma thml. i. 3.1

Invl(enq(=_xst, vil, vi2), x, c.3) -> true

The case system now contains 1 equation.

Ordered equation Case. 8.1 into the rewrite rule:

in(c y, enqd(=_xst)) -> true

The =ale system now contains 1 rewrite rule.

The system now contains 1 equation, 79 rewrite rules, and 9 deduction rules.

Ordered equation Case. 8.1 into the rewrite rule:

in(c _, enqd(c_xst) ) -> true

* The system now contains 80 rewrite rules and 9 deduction rules.

Lemma thml.l.3.1 in the proof by cases of Lemma thml.l.3

Invl(enq(=_xst, vil, vi2), x, c y) -> true

Case.8.1: in(a y, enqd(c_xst))

is NOT provable using the current partially completed system. It reduces to

the equation

( (element (cy) - what (x)) <-> false) l (false <-> in_stack(x, deqd(c_xst) ) )
-> true

Proof of Lemma thml. I. 3.1 suspended.
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-> resume by case in_stack(x, deqd(c xst))

Case. 9.1

in_stack(c_x, deqa(=._xst) ) -= true
involves proving Lemma thml. I. 3. l. 1

Invl (enq(c_xst, vil, vi2), c_x, c__) -> true

The case system now contains 1 equation.

Ordered equation Case. 9.1 into the rewrite rule:

in stack (c x, deqd(c xst)) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 80 rewrite rules, and 9 deduction rules.

Ordered equation Case. 9.1 into the rewrite rule:

in_stack(c_x, deqd(c_xst) ) -> true

The system now contains 81 rewrite rules and 9 deduction rules.

Lemma thml.l.3.1.1 in the proof by cases of Lemma thml.l.3.1

Invl(enq(c_xst, vil, vi2), c_x, c_y) -> true

Case. 9.1: in_stack(c_x, deqd(c_xst) )

is NOT provable using the current partially completed system. It reduces to

the equation

(element (c_y} - what (c_x)) <-> false -> true

Proof of Lemma thml. i. 3. I. 1 suspended.

-> crit case with induct

Critical pairs between rule Case. 8.1:

in(c y, enqd(c_xst)) -> true
and rule Induct. 2 :

( (element (y) - what (x)) <-> false)

I (false <-> in(y, enqd(c_xst)))

I (false <-> in_stack(x, deqd(c_xst) ))
-> true

are as follows:

( (element (c y) -what(x)) <-> false) I (false <-> in_stack(x, deqd(c_xst)))
--- true

The system now contains 1 equation, 81 rewrite rules, and 9 deduction rules.

Ordered equation thml. 8 into the rewrite rule:

((element(c_y) -what(x)) <-> false) I (false <-> in_stack(x, deqd(c xmt)))
-> tEue

The system now contains 82 Eewrite rules and 9 deduction rules.

Critical pairs between rule Case. 9.1:

in_stack(c_x, deqd(c_xst) ) -> true
and rule Induct. 2 :

((element (y) - what (x)) <-> false)

I (false <-> in(y, enqd(c_xst) ) )

i (false <-> in..stack(x, deqd(c_xst) ) )
-> true

are as follows:

((element(y) -what(c_x)) <-> false) I (false <-> in(y, enqd(c_xst)))

The system now contains 1 equation, 82 rewrite rules, and 9 deduction rules.

Ordered equation thml. 9 into the rewrite rule:

((element(y) - what(c_x)) <-> false) i (false <-> in(y, enqd(c_xst))) -> true

The system now contains 83 rewrite rules and 9 deduction rules.
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Computed 2 new critical pairs. Added 2 of them to the system.

-> crit case with thml

Critical pairs _>etween rule Case. 8.1:

in(c y, enqd(c_xst) ) -> true
and rule thml. 9:

((element(y) -what(c_x)) <-> false) I (false <-> in(y, enqd(c_xst))) -> true
are as follows:

(element (c.,y) - what (¢_x) } <-> fal,e .m true

The system now contains 1 equation, 83 rewrite rules, and 9 deduction rules.

Deduction rule equality. 3 :

" when x <-> y .m true

yield x -- y

has been applied to equation thml.10:

(element (c__) - what (=_x)) <-> false mm true

to yield the following equations:

thml.10.1: element (c y) - what (¢_x) mm false

Ordered equation thml. i0.i into the rewrite rule:

element (cy) - what (c_x) -> false

The system now contains 84 rewrite rules and 9 deduction rules.

Lemma thml.l.3.1.1 in the proof by cases of Lemma thml.l.3.1

Invl(enq(c_xst, vil, vi2), c_x, c y} -> true

Case. 9.1 : in_stack (c_x, deqd (=_xst))

[] Proved by rewriting.

Case. 9.2

not(in_stack(cx, deqd(c_xst) ) ) u true

involves proving Lemma thml. i. 3. i. 2

Invl (enq(c_xst, vil, vi2), c_x, c__) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <m> y m. true

yield x -- y

has been applied to equation Case. 9.2:

false <-> in_sta¢k(=_x, doqd(c_xst)) mm true

to yield the following equations:

Case.9.2.1: false ms injta=k(o_x, deqa(c_xst))

Ordered equation Case. 9.2.1 into the rewrite rule:

in_stack (c_x, _eqd (¢_xst)) -> false

The case system now contains 1 rewrite rule.

Lemma thml.l.3.1.2 in the proof by oases of Lemma thml.l.3.1

Invl(enq(¢_xst, vil, vi2) , c_x, c_,y) -> true

Case. 9.2: not (in_stack(c_x, deqd(c_xst) ) )

[] Proved by rewriting (with unreduced rules).

Leans thml.l.3.1 in the proof by cases of Leans thml.l.3

Znvl(enq(=_xst, vil, vi2), x, C_.,V) -> true

Case.8.1: in(c_y, enqd(c_xst) )

[] Proved _ calls
in_stack (x, deqd(c_xst) ) I not (in_stack(x, deqd(c_xst) ) )

Case. 8.2

not (in(e_y, enqd(c_xst) ) )mm true

involves proving Lemma thml. I. 3.2

Invl(enq(=_xst, vil, vi2), x, c y} -> true

The case system now contains 1 equation.
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Deduction rule equality. 3 :

when x <-> y _ true

yield x -- y

ham boon applied to equation Came. 8.2:

false <-> in(c_y, onqd(¢_xmt)) _ true

to yield the following equations:

Came. 8.2.1 : false _ in (=__, onqd(c_xmt) )

Ordered equation Came. 8.2.1 into the rewrite rule:

in (c_y, enqd (c_xst}) -> false

The came system now contains 1 rewrite rule.

The system now containm 1 equation, 79 rewrite rules, and 9 deduction rules. .

Deduction rule equality. 3 :

when x <m> y u true

yield x -- y

ham been applied to equation Came. 8.2:

false <-> in(c__y, enqd(c_xmt)) _ true

to yield the following equationm:

Came.8.2.2: false -- in(c y, onqd(e_xmt})

Ordered equation Came. 8.2.2 into the rewrite rule :

in(c_y, onqd(e_xmt) ) -> false

The system now contains 80 rewrite rules and 9 deduction rules.

Lomma thml.l.3.2 in the proof by cases of Lomma thml.l.3

Invl(enq(c_xmt, vil, vi2), x, c y) -> true

Came.8.2: not (in (c_j_, onqd(c_xst) ) )

is NOT provable using the current partially completed system, it reduces to

the equation

( (c_y - pair(vi2, vil)) <-> false)

l ((element (c_y) - what (x)) <n> false)

(false <m> in_sta_k(x, deqd(c_xmt) ) )
-> true

Proof of Lomma thml.l.3.2 suspended.

Critical-pair computation a_andonod because a theorem ham been proved.

Computed 1 now critical pair. Added 1 of them to the symtem.

-> add when_onq(c_xmt, z,w, vil,vi2: :EL)

Added 1 equation to the symtem.

Deduction rule boolean. 3 :

when x & y _ true

yield x m true

y _ true

ham boon applied to equation thml.ll:

((onqr(top(deqd(c_xmt)) ) < vil) I (doqd(c_xst) - now))

& (((element(z) n vi2) <-> false) [ (false <-> in(z, enqd(c_xst))))

& (((what(w) m vi2} <m> false) I (false <m> in_stack(w, _oqd(=_xmt))))
-> true

to yield the following oquationm:

thml.ll.1: (enq_(top(doqd(e_xmt))) < vil) I (deqd(c_xmt) -new) ---true

thml.ll.2: ((element(z) -vi2) <u> false) [ (false <-> in(z, enqd(o_xmt)))
u_ true

thml.ll.3: ((what(w} m vi2) <m> false} l (false <m> in_stack(w, doqd(c_xmt)))
true

Ordered equation thml. II. 3 into the rewrite rule:

( (what (w} m vi2) <m> false) _ (false <--> in_stack(w, deqd(c_xst) ) ) -> true

Loft-hand side reduced:

( (element (y) - what (x}) <-> false)
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I (false <-> in(y, enqd(c_xst) ) )

I (false <-> in_stack(x, deqd(c_xst) ) )
-> true

k_came equation Induct. 2 :

(false <-> in(y, enqd(c xst) )) I true -> true

Ordered equation thml. ii. 2 into the rewrite rule:

((element(z) - vi2) <-> false) I (false <-> in(z, enqd(c_xst))) -> true

Ordered equation thml. II. 1 into the rewrite rule :

(enqr(tcp(deqd(c_xst))) < vil) I (deqd(c_xst) - new) -> true

The system now contains 82 rewrite rules and 9 deduction rules.

Lenena thml.l.3.2 in the proof by cases of Lemma thml.l.3

Invl(enq(c_xst, vil, vi2), x, c y) -> true

Case.8.2: not (in (¢._y, enqd(c_xst)))

[] Proved by rewriting.

Lemma thml.l.3 for the induction step in the proof of Conjecture thml.l

Invl(enq(c_xst, vil, vi2), x, y) -> true

[]Proved_ cases
in(y, onqd(c_xst) ) I not(in(y, enqd(c_xst) ) )

Lemma thml.l.2 for the induction stop in the proof of Conjecture thml. 1

Invl(deq(c_xst, vil, vi2), x, y) -> true

is NOT provable using the current partially completed system. It reduces to

the equation

(((trip(element (vi2), onqt (vi2), vil) - x) <-> false)

& (false <-> in_stack(x, doqd(c_xst) ) ) )

I ((element (y) u what (x)) <-> false)

l (false <-> in(y, enqd(c_xst)) )

I (vi2 - y)

-> true

Proof of Lemma thml. 1.2 suspended.

-> resunm by case in_stack(x, deqd(c_xst))

Case. 16.1

in_stack(c_x, deqd(c_xst)) --true

involves proving Lenm_ thml. i. 2.3

Invl(deq(c_xst, vil, vi2), c_x, y) -> true

The case system now contains 1 equation.

Ordered equation Case.16.1 into the rewrite rule:

in_stack(c_x,deqd(c_xst))-> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 79 rewrite rules, and 9 deduction rules.

Ordered equation Case.16.1 into the rewrite rule:

in_stack(c_x,deqd(c_xst)) -> true

The system now contains 80 rewrite rules and 9 deduction rules.

Lennna thml.l.2.3 in the proof _y cases of _ thml.l.2

Invl(deq(c_xst, vil, vi2), ¢_x, y} -> true

Case.16.1: in_stack(c_x, deqd(c_xst))

is NOT provable using the current partially completed system. It reduces to

the equation

( (element (y) - what (c_x)) <-> false)

I (false <-> in(y, enqd(a_xst)) )

I (vi2 - y)

-> true

Proof of Lemma thml. i. 2.3 suspended.
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-> crit case with induct

Critical pairs between rule Case.16.1:

in_stack(c_x, doqd(c_xst) ) -> true
and rule Induct. 2 :

( (element (y) - what (x)) <-> false)

l (false <n> in(y, enqd(c_xst)))

I (false <-> in..stack(x, deqd(c..xst} ) )
-> true

are as follows:

((element(y) u what(c_x)} <-> false) l (false <-> in(y, enqd(c_xst)))
-- true

The system now contains 1 equation, 80 rewrite rules, and 9 deduction rules.

Ordered equation thml.18 into the rewrite rule:

( (element (y) - what (c_x)) <n> false) i (false <-> in(y, enqd(c_xst) )) -> true

The system now contains 81 rewrite rules and 9 deduction rules.

Lemma thml.l.2.3 in the proof by cases of Lemma thml.l.2

Invl(deq(c_xst, vil, vi2), c_x, y) -> true

Case.16.1: in_stack(c_x, deqd(c_xst))

[] Proved hy rewriting.

Case. 16.2

not (in_stack (c_x, deqd(c_.xst) ) ) -.- true

involves proving Lemma thml. i. 2.4

Invl(deq(c_xst, vil, vi2), c_x, y) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <i> y =_ true

yield x -- y

has been applied to equation Case.16.2:

false <=> in_stack (c_x, deqd (c_xst)) _= true

to yield the following equations:

Case.16.2.1: false --= in_stack(c_x, deqd(c_xst))

Ordered equation Case. 16.2.1 into the rewrite rule:

in_stack (c_x, deqd(c_xst) ) -> false

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 79 rewrite rules, and 9 deduction rules.

Deduction rule equality. 3 :

when x <-> y =-- true

yield x -- y

has _een applied to equation Case.16.2:

false <-> in_stack(c_x, deqd(c_xst)) --- true

to yield the following equations:

Case.16.2.2: false =_ in_stack(c_x, deqd(c_xst))

Ordered equation Case.16.2.2 into the rewrite rule:

in_stack(c_x, deqd(c_xst) ) -> false

The system now contains 80 rewrite rules and 9 deduction rules.

Lemma thml.l.2.4 in the proof by cases of Lemma thml.l.2

Invl(deq(c_xst, vil, vi2), c_x, y) -> true

Case.16.2: not (in_stack(c_x, deqd(c_xst) ) )

is NOT prov_le using the current partially completed system. It reduces to

the equation

( (c_x - trip (element (vi2), enqt (vi2), vil) ) <-> false)

i ((element (y) - what (=_x)) <i> false)

[ (false <-> in(y, enqd(c_xst)))

(vi2 - y)
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-> true

Proof of Lonna thml.l.2.4 suspended.

Critical-pair computation a_andoned because a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the system.

-> resume by case =_x_trip (element (vi2: :enq rec) ,enqt (vi2: :enq_rec) ,vil)

Case. 17.1

=_x - trip (element (c_vi2) , enqt (c_vi2) , =_vil) m true

involves proving Lomma thml. I. 2.4.1

, Invl(deq(c_xst, c_vil, c_vi2), c_x, y) -> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x s y m true

yield x -- y

has been applied to equation Case.17.1:

c_x - trip(element (c_vi2), enqt (c_vi2), c_vil) ms true

to yield the following equations:

Case.17.1.1: c_x _ trip(element (=_vi2) , enqt (c_vi2), =_vil}

Ordered equation Case. 17. I. 1 into the rewrite rule:

c_x -> trip (element (c_vi2}, enc/t (=_vi2), c_vil)

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 80 rewrite rules, and 9 deduction rules.

Deduction rule equality. 4 :

when x s y _ true

yield x --- y

has been applied to equation Case.17.1:

c_x - trip(eloment(c_vi2), enqt (c_vi2), c_vil) --- true

to yield the following equations:

Case.17.1.2: c_x n_ trip(element (c_vi2) , enqt (c_vi2) , c_vil)

Ordered equation Case. 17. i. 2 into the rewrite rule :

c_x -> trip (element (=_vi2), enqt (c_vi2), c_vil)

Loft-hand side reduced:

in_stac.k(=_x, doqd(c_xst)) -> false

became equation Case.16.2.2:

in_stack (trip (element (=_vi2), encft (=_vi2}, c_vil), deqd(c_xst) ) -- false

Ordered equation Case. 16.2.2 into the rewrite rule:

in_stack(trip(element (=_vi2), onqt (c_vi2), =_vil), doqd(c_xst) ) -> false

The system now contains 81 rewrite rules and 9 deduction rules.

Lomma thml.l.2.4.1 in the proof by cases of Lemma thml.l.2.4

Invl(doq(c_xst, c_vil, c_vi2), c_x, y} -> true

Case.17.1: =_x - trip(element (c_vi2), enqt (=_vi2), =_vil}

is NOT provable using the current partially completed system. It reduces to

the equation

( (element (c_vi2) - element (y)) <-> false)

l (false <-> in(y, enqd(c_xst} })

I (c_vi2 - y)
-> true

Proof of Lomma thml. i. 2.4.1 suspended.

-> resume by case in(y, enqd(c_xst))

Case. 18.1

in (c_y, onqd (=_xst}) n_ true
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involves proving Lemma thml. I. 2.4. I. 1

Invl(deq(c_xst, c_vil, c_vi2), c_x, c_y) -> true

T'ho =ale system now =ontains 1 equation.

Ordered equation Case.18.1 into the rewrite rule:

in (c_y, onqd(c_xst} ) -> true

Th,o case system now =ontains 1 rewrite rule.

The system now contains 1 equation, 81 rewrite rules, and 9 deduction rules.

Ordoroa equation Case. 18.1 into the rewrite rule :

in(c_y, onqd(c_xst) ) -> true

The system now contains 82 rewrite rules and 9 deduction rules.

Lomma thml.l.2.4.1.I in the proof by eases of Lomma thml.l.2.4.1

Invl(aeq(c_xst, c_vil, c_vi2), c_x, c y) -> true

Case.18.1: in(c_y, onqd(c_xst))

is NOT provable using the current partially completed system. It reaucos to

the equation

((element (c_vi2) - element (=_y)) <-> false) _ (c_vi2 - c y) -> true

Proof of Lomma thml. i. 2.4. I. 1 susponae_.

-> crit case with Indu=t

Critical pairs between rule Case.18.1:

in(c y, enqd(c_xst)) -> true
and rule Indu=t. 2 :

( (element (y) - what (x)) <-> false)

I (false <-> in(y, enqd(c_xst) ) }

l (false <-> in_stack (x, doqd (c_xst)) )
-> true

are as follows:

((elemont(o y) - what(x)} <-> false) l (false <-> in_stack(x, deqd(o_xst)))
true

The system now contains 1 equation, 82 rewrite rules, and 9 deduction rules.

Oraorod equation thml.19 into the rewrite rule:

((element (o y) - what (x)) .<-> false) J (false <-> in_sta=k(x, aeqd(c_xst) ))
-> true

The system now contains 83 rewrite rules and 9 dedu=tion rules.

Confuted 2 new =ritical pairs, 1 of which reduooa to an identity. Aaaod 1 of

them to the system.

-> ac_ whon__eq (c_xst, c_x, c_vil, c_vi2 : :onq_roc)

Added 1 equation tO the system.

Deduction rule boolean.3 :

when x & y -- true

yield x -- true

y -- true

has boon applied to equation thml.20:

(onqt (c_vi2) < c_vil)

& in(c_vi2, onqd(c_xst) }

& least (c_vi2, enqd(c_xst) )

& ( ((deqr(top(deqd(c_xst)) ) < c_vil)

& (enqr(top(doqd(c_xst)) ) < enqt (c_vi2) } )

I (aeqd (c...xst) - now} )

-> true

to yield the following equations:

thml.20.1: enqt(c_vi2) < c_vil _= true
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thml.20.2: in(c_vi2, enqd(c_xst)) .m true

thml.20.3: least (c_vi2, enqd(c_xst) ) .m true

thml.20.4: ((deqr(top(deqd(c_xst))) < c_vil)

& (enqr(top(deqd(c_xst))) < enqt(=_vi2)))

I (deqd(c xst) - new)
-- true

Ordered equation thml. 20.4 into the rewrite rule:

((deqr(top(deqd(c_xst)) ) < c_vil) & (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

I (deqd(=_xst) - new)
• -> true

Ordered equation thml. 20.3 into the rewrite rule:

least (c_vi2, enqd(c_xst) ) -> true

Ordered equation thml.20.2 into the rewrite rule:

in (c_vi2, enqd (c_xst)) -> true

Ordered equation thml.20.1 into the rewrite rule:

enqt (c_vi2) < c_vil -> true

The system now contains 87 rewrite rules and 9 deduction rules.

-> crit case with thml

Com_uted 1 new critical pair, which reduced to an identity. Added 0 of them to

the system.

-> resume by case c_vi2-c_y

Case. 19.1

c_vi2 - c y m. true

involves proving Lemma thml. i. 2.4. i. I. 1

Invl(deq(c_xst, c_vil, c_vi2), c_x, c__) -> true

The case system now contains 1 equation.

Deduction rule equality. 4:

when x - y mm true

yield x -- y

has been applied to equation Case.19.1:

c_vi2 - c y m. true

to yield the following equations:

Case. 19.1.I: c_vi2 mm c y

Ordered equation Case.19.1.1 into the rewrite rule:

c_vi2 -> c_y

The case system now contains 1 rewrite rule.

Lamina thml.l.2.4.1.1.1 in the proof by c_ses of Lemm_ thml.l.2.4.1.1

Invl(deq(c_xst, c_vil, c_vi2), c_x, c y) -> true

Case. 19.1: c vi2 -- c y

" [] Proved by rewriting (with unreduced rules).

Case. 19.2

not (c_vi2 - c_y} m. true

involves proving Lemma thml. i. 2.4. I. i. 2

Invl(deq(c_xst, c_vil, ¢_vi2), c_x, c y} -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y -_ true

yield x ms y

has been applied to equation Case.19.2:

(c_vi2 - c_y) <-> false .m true

to yield the following equations:

Case.19.2.1:c_vi2 - c_y -,,-false
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Ordered equation Case. 19.2.1 into the rewrite rule :

c_vi2 - c_y -> false

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 87 rewrite rules, and 9 deduction rules.

D_uction rule equality. 3 :

when x <-> y _ true o

yield x -_ y

has been applied to equation Case.19.2:

(c_vi2 - c__) <-> false -_ true

to yield the following equations:

Case. 19.2.2:c_vi2 - c y m false

Ordered equation Case. 19.2.2 into the rewrite rule:

c_vi2 - c_y -> false

The system now contains 88 rewrite rules and 9 deduction rules.

Lennna thml.l.2.4.1.1.2 in the proof by cases of Lemma thml.l.2.4.1.1

Invl(deq(c_xst, c_vil, =_vi2), c_x, c y) -> true

Case. 19.2 : not (c_vi2 - c_y)

is NOT provable using the current partially completed mystem. It reduces to

the equation

(element (c_vi2) - element (cy}) <-> false -> true

\

Proof of Lemma thml. I. 2.4. I. i. 2 suspended.

-> prove not (element (x) _element (y)) -->not (x_y}

Conjecture thml. 21

not (element (x) - element (y)) -> not (x - y) -> true

is NOT provable using the current partially completed system. It reduces to

the equation

((x - y) <-> false) i (element (x) - element (y)) -> true

Proof of Conjecture thml.21 suspended.

-> resun_ by case x_y

Case. 20.1

c_xl - c._l m true

involves proving Lenena thml.21.1

not (element (c_xl} - element (c_yl)) -> not (c_xl - c yl) -> true

The case system now contains 1 equation.

DeduCtion rule equality. 4:

when x i y ._ true

yield x -- y

has k_en applied to equation Case.20.1:

c_xl - c yl -_ true

to yield the following equations:

Case.20.1.1: o_xl --- c__l

Ordered equation Case. 20. I. 1 into the rewrite rule:

c_xl -> c_yl

The case system now contains 1 rewrite rule.

Lennna thml.21.1 in the proof by cases of Conjecture thml.21

not (element (c_xl) - element (c__l)) -> not (c_xl - c yl) -> true

Case. 20.1: c xl - c yl

[] Proved by rewriting (with unreduced rules).

Case. 20.2

not (c_xl - c yl) -_ true
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involves proving Lemma thml.21.2

not (element (o_xl) - element (c_yl)) -> not (c_xl - c_yl) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y ms true

yield x n y

has been applied to equation Case.20.2:

. (c_xl m c_yl) <-> false m. true

to yield the following equations:

Case.20.2.1: c_xl - o_yl am false

Ordered equation Case. 20.2.1 into the rewrite rule:I

c_xl = c yl -> false

The ease system now contains 1 rewrite rule.

Lemma thml. 21.2 in the proof by cases of Conjecture thml.21

not (element (c_xl) - element (c_,yl)) -> not (c_xl - c_yl) -> true

Case.20.2: not(c_xl - c yl)

[] Proved _y rewriting (with unroduced rules).

Conjecture thml. 21

not (element (x) - element (y)) -> not (x - y) -> true

[] Proved by cases

(x- y) I not(x- y)

The system now ¢ontains 1 equation, 88 rewrite rules, and 9 deduction rules.

Ordered equation thml.21 into the rewrite rule:

( (x - y) <-> false) l (element (x) - element (y)) -> true

The system now contains 89 rewrite rules and 9 deduction rules.

Lemma thml.l.2.4.1.1.2 in the proof by oases of Lemma thml.l.2.4.1.1

Invl(deq(o_xst, c_vil, c_vi2), ¢_x, c y) -> true

Case.19.2:not(¢_vi2 - c y)

is NOT provable using the current partially completed system. It reduces to

the equation

(element (c_vi2) u element (c y) ) <-> false -> true

Proof of Lemma thml. i. 2.4. I. i. 2 suspended.

-> resumm by case element (c_vi2) -element (cy)

Case. 21.1

element (o_vi2) u element (c_y) mR true

involves proving Leaana thml. i. 2.4. I. I. 2.1

Invl(deq(o_xst, c_vil, o_vi2), c_x, c y) -> true

The case system now contains 1 equation.

• Deduction rule equality. 4:

when x u y _m true

yield x -- y

has been applied to equation Case.21.1:

element (c_vi2) - element (c_y) -- true

to yield the following equations:

Case. 21. I. 1 : element (o..vi2) ms element (c_.y)

Ordered equation Case. 21. I. 1 into the rewrite rule :

element (¢_vi2) -> element (cy)

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 89 rewrite rules, and 9 deduction rules.

Deduction rule equality. 4 :
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when x t y m true

yield x n. y

has been applied to equation Case. 21.1 :

elomont(o_vi2} - element (cy) am true

to yield the following equations:

Case. 21. I. 2 : element (c_vi2) m= element (c_)

Deduction rule Enq Roe.l:

when element (xn) .m element (xnl)

yield xn -- xnl

has boon applied to equation Case.21.1.2:

element (c_vi2) .m element (c_y)

to yield the following equations, which imply the original equation:

Case. 21. I. 2.1 : c_vi2 u c_,,y

Ordered equation Case. 21. I. 2 into the rewrite rule:

element (c_vi2) -> element (c_y)

Left-hand side reduced:

in_stack (trip (element (c_vi2) , enqt (c_vi2) , c_vil), doqd(c_xst) ) -> false

boc_mo equation Case. 16.2.2 :

in_stack(trip(element (c_y), enqt (c_vi2), ¢_vil), doqd(c_xst) ) _- false

Ordered equation Case. 21. I. 2.1 into the rewrite rule :

o_vi2 -> c__

Following 6 left-hand sides reduced:

((deqr(top(deqd(c_xst)) ) < c_vil) & (enqr(top(deqd(c_xst))) < enqt (c_vi2)) )

I (deqa(c_xst)- now)
-> true

became equation thml. 20.4 :

((deqr(top(deqd(c_xst)) ) < c_vil) & (onqr(top(deqd(o_xst)) ) < enqt (cy)) )

I (deqd(c_xst)- new)
am true

least (c_vi2, enqd (=_xst)) -> true

became equation thml. 20.3 :

least (c_y, enqd(_xst) ) .m true

in (o_vi2, onqd(c_xst) ) -> true

became equation thml. 20.2 :

in(c y, onqd(c_xst)) nn true

enc_ (c_vi2) < c_vil -> true

became equation thml. 20.1 :

enqt(c y) < ¢ vil m true

c_vi2 - c__ -> false

became equation Came. 19.2.2 :

c y - c_y -_ false

element (o_vi2) -> element (c_y)

became identity Case. 21. i. 2 :

element (c__) m. element (c_y)

Ordered equation Case. 16.2.2 into the rewrite rule :

in_stack(trip(olomont(c__), onqt (c_y), c_vil), doqd(c_xst) ) -> false

Ordered equation thml. 20.4 into the rewrite rule:

( (doqr(top(deqd(c xst) ) ) < o_vil) & (enqr(top(deqd(c_xst))) < enqt (cy)) )

I (decp:1.(c._xst) - new)
-> true

Ordered equation thml. 20.3 into the rewrite rule:

least (c__, onqd (c_xst)) -> true

Ordered oc_lation thml.20.1 into the rewrite rule:

enqt(c__) < c_vil -> true

Equation Case. 19.2.2

true mm false

im inconsistent.

Lom_a thml.l.2.4.1.1.2.1 in the proof by cases of Lemma thml.l.2.4.1.1.2
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Invl(deq(c_xst, c_vil, c_vi2), c_x, c__) -> true

Case. 21. i: element (c_vi2) - element (cy)

[] Proved by impossible case.

Case. 21.2

not (element (c_vi2) - element (cy)) R true

involves proving Lemma thml. i. 2.4. I. I. 2.2

Invl(doq(c_xst, c_vil, c_vi2), c_x, cy} -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y R true

yield x -- y

has been applied to equation Case.21.2:

(element (c_vi2) - element (c y) ) <-> false u= true

to yield the following equations:

Case.21.2.1: element (c_vi2) - element(c_y) n_ false

Ordered equation Case. 21.2.1 into the rewrite rule :

element (o_vi2) - element (cy) -> false

The case system now contains 1 rewrite rule.

Louu_ thml.l.2.4.1.1.2.2 in the proof by cases of Lonm_ thml.l.2.4.1.1.2

Invl(deq(c_xst, c_vil, c_vi2), o_x, o y} -> true

Case.21.2: not (element(c_vi2) - element (c__))

[] Proved by rewriting (with unreduced rules).

Lemma thml.l.2.4.1.1.2 in the proof by cases of Lemma thml.l.2.4.1.1

Invl(deq(c_xst, c_vil, c_vi2), c_x, c y) -> true

Case.19.2:not(c_vi2 - c y)

[] Proved by cases

(element (c_vi2) - element (c_y)) I not (element (c_vi2) - element (c_y))

Lemma thml" 1.2.4.1.I in the proof by cases of Lemma thml.l. 2. 4.1

Invl(doq(c_xst, c_vil, c_vi2), c_x, c y) -> true

Case.18.1: in(c y, enqd(c_xst))

[]Provedby cases
(c_vi2 - c y) I not(c_vi2 -- c y)

Case. 18.2

not (in(c y, enqd(o_xst) ) ) _ true

involves proving Lomma thml. I. 2.4. I. 2

Invl(doq(c_xst, o_vil, c_vi2), c_x, c__) -> true

The case system now contains i equation.

Deduction rule equality. 3 :

when x <-> y _ t_-_e

yield x n_ y

has been applied to equation Case.18.2:

false <-> in(c y, enqd(c_xst)) ms true

" to yield the following equations:

Case.18.2.1: false n_ in(c_y, enqd(c_xst))

Ordered equation Case. 18.2.1 into the rewrite rule:

" in (c_y, onqd (c_xst)) -> false

The case system now contains 1 rewrite rule.

Lomma thml.l.2.4.1.2 in the proof _y cases of Lomma thml.l.2.4.1

Invl(deq(c_xst, c_vil, c_vi2), c_x, c y) -> true

Case.18.2: not (in(c_y, enqd(c_xst) ) )

[] Proved by rewriting (with unreduced rules}.

Lemma thml.l.2.4.1 in the proof by cases of Lomma thml.l.2.4

Invl(doq(c_xst, c_vil, c_vi2), c_x, y} -> true

Case.17.1: c_x - trip(olement(c_vi2) , onqt(c_vi2), c_vil)
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[] Proved by case,

in(y, enqd(c_xst)) J not(in(y, enqd(c_xst)))

Case. 17.2

not (c_x - trip (element (c_vi2), enqt (c_vi2), c_vil) ) ms true

involves proving Lenuna thml. I. 2.4.2

Invl(deq(c_xst, c_vil, c_vi2), c_x, y) -> true

The c_so system now contains 1 equation.

DoduGtion rule equality. 3 :

when x <-> y _m true

yield x -- y

has k_on applied to equation Case.17.2:

(c_x - trip (element (c_vi2), enqt (c_vi2), c_vil) ) <-> false _- true

to yield the following equations:

Case.17.2.1: c_x - trip (element (c vi2) , enqt (c_vi2), c_vil) R false

Ordered equation Case. 17.2.1 into the rewrite rule :

c_x - trip (element (c_vi2), enqt (c_vi2), c_vil) -> false

The came system now contains 1 rewrite rule.

Lennna thml.l.2.4.2 in the proof _y cases of Lonena thml.l.2.4

Invl(doq(c_xst, c_vil, c_vi2), c_x, y) -> true

Case.17.2: not (c_x - trip(element (c_vi2), enqt (c_vi2), c_vil) )

[] Proved _y rewriting (with unroducod rules).

Lamina thml.l.2.4 in the proof by cases of Lomma thml.l.2

Invl(deq(c_xst, vil, vi2), c_x, y) -> true

Case.16.2: not (in_stack(c_x, deqd(c_xst) ) )

[] Proved by cases

(c_x - trip (element (vi2) , enqt (vi2) , vil) )

J not (c x - trip(element (vi2) , enqt (vi2) , vil) )

Lenm_ thml.l.2 for the induction step in the proof of Conjecture thml.l

Invl(doq(c_xst, vil, vi2), x, y) -> true

[] Proved by cases

in_stack (x, doqd (c_xst)) J not (in_stack (x, doqd (c_xst)) )

Conjecture thml. 1

Invl(xst, x, y) -> true

[] Proved by induction over 'xst::St' of sort 'St'.

The system now contains 1 equation, 78 rewrite rules, and 9 deduction rules.

Ordered equation thml.l into the rewrite rule:

((element (y) - what (x)) <-> false}

J (false <-> in(y, enqd(xst) })

J (false <-> in mtack(x,deqd(xmt)))
-> true

D

The system now contains 79 rewrite rules and 9 deduction rules.

-> q
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4.3. LP Proof Session of Invariant 2

-> set axiom o

The axiom use is now 'order-equations-into-rules'.

-> thaw Inv

System thawed from _Inv. frz' .

-> set name thm2

The name prefix is now Ithm2'.

-> prove Inv2(xst,x,y) by induction xst St

The basis step in an inductive proof of Conjecture thm2.1

Inv2(xst, x, y) -> true

involves proving the following lemma(s) :

thm2.1.1: Inv2(init, x, y) -> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture thm2.1

Inv2(xst, x, y) -> true

uses the following equation(s) for the induction hypothesis:

Inauct.2: Inv2(c_xst, x, y) -> true

The system now contains 1 equation, 67 rewrite rules, and 5 deduction rules.

Ordered equation Induct. 2 into the rewrite rule:

( (doqr (x) < deqr (y)) & (en'qr (x) < enqr (y)) )

I not (doq_before (x, y, deqd(c_xst) ) )
-> true

The system now contains 68 rewrite rules and 5 deduction rules.

The induction step involves proving the following lenuna(s) :

thm2.1.2: Inv2(aeq(¢_xst, vil, vi2), x, y) -> true

which reduces to the equation

((deqr (x) < deqr (y)) & (enqr (x) < onqr (y)) )

] not ( ( (trip (element (vi2), onqt (vi2), vil) - y)

in...staak(x, doqd(c...xst) ) )
I deq h_fore(x, y, doqd(=_xst) ) )

-> true

thm2.1.3: Inv2(enq(o_xst, vil, vi2), x, y) -> true

[] Proved by normalization

thm2.1.4: Inv2(commit(c_xst, vil), x, y) -> true

[] Proved by normalization

thm2.1.5: Inv2(a_ort(c_xst, vil), x, y) -> true

which reduces to the equation

( (aeqr (x) < deq'r (y)) s (enqr (x) < onqr (y)) )

- I not (deq_k_foro (x, y, deqd(a_ort(c_xst, vil) ) ) )
-> truo

Proof of Lemma thm2.1.5 suspended.

-> resuml by case deq_k_foro (x,y, deqd(abort (c_xst,vil)) )

Case. 3.1

deq_h4fore (¢_x, c_y, doqd(abort (c_XSt, ¢_vil) ) ) _ true

involves proving Lemma thm2. I. 5.1

Inv2 (abort (c_xst, ¢_vil), =_x, c y) -> true
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The case system now contains 1 equation.

Ordered equation Case.3.1 into the rewrite rule:

deq_before(c_x, c__, doqd(a_ort (c_xst, c_vil) ) ) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 68 rewrite rules, and 5 deduction rules.

Ordered equation Case. 3.1 into the rewrite rule: o

deq_befo=o(c_x,c_y, doqd(a_ort(c_xst,c_vil))) -> true

The system now contains 69 rewrite rules and 5 deduction rules.

Lemma thm2.1.5.1 in the proof by cases of Lenmua thm2.1.5

Inv2(abort(c_xst, c_vil), c_x, c y) -> true

Case.3.1: doq_before(c_x, c_y, deqd(abort (c_xst, ¢_vil) ) )

is NOT provable using the current partially completed system. It reduces to

the equation

(deqr (c_x) < doqr (c_y)) & (enqr (c_x) < onqr (c_y}) -> true

Proof of Lemma thm2. I. 5.1 suspended.

-> crit c_so with State

Critical pairs between rule Case.3.1:

deq before (cx, c_y, deqd(_o_ (c_xst,c_vil) )) -> true
and rule State. 13 :

deq before(x, y, doqd(xst)) I not(deq before(x, y, deqd(a_ort(xst, xt))))
-> true

are as follows:

doq_beforo(c_x, c_y, doqd(c_xst)) mm true

The system now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Ordered equation thm2.2 into the rewrite rule:

deq_before(c_x, c_y, deqd(c_xst)) -> true

The system now contains 70 rewrite rules and 5 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of

them to the system.

-> crit thm2 with Induct

Critical pairs _etwoen rule thin2.2:

deq_beforo (c_x, c_y, deqd(a_xst) ) -> true
and rule Induct. 2 :

((doqr(x) < doqr(y)) & (enqr(x) < onqr(y)))

{ not (deq_before (x, y, deqd(c_xst) ) )
-> true

are as follows:

(deqr(c_x) < deqr(c y) ) & (enqr (c_x) < enqr(c_y) ) -- true

The system now contains 1 equation, 70 rewrite rules, and 5 deduction rules.

Deduction rule boolean.3:

when x & y mm true

yield x -- true

y _ true

has boon applied to equation t_.3:

(deqr (c_) < doqr (c_)) _ (enqr (c_x) < onqr (c_)) -- truo
to yield the following equations:

t_un2.3.1: doqr(c x) < deqr(c_) --true

thin2.3.2: onqr(c_x) < onqr(c_y) .m true

Ordered equation thin2.3.2 into the rewrite rule:

onqr(a x} < enqr (c_y) -> true
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Ordered equation thm2.3.1 into the rewrite rule:

deqr (c_x) < deqr (c_y) -> true

The syst.em now contains 72 rewrite rules and 5 deduction rules.

Lemma thm2.1.5.1 in the proof by cases of Lez=na thm2.1.5

Inv2 (a_ort (c_xst, c_vil), c_x, c y) -> true

Case.3.1: doq_beforo(c_x, c_y, deqd(a_ort (c_xst, c_vil) ) )

[] Proved by rewriting.

Case. 3.2

not(deq_before(c_x, c__, deqd(a_ort(c_xst, c_vil)))) m. true

involves proving Lemma thm2. I. 5.2

Inv2 (abort (c_xst, c_vil), c_x, c_y) -> true
• /

The case system now contains 1 equation.

Deduction rule boolean.l :

when not (x) m. true

yield x m false

has been applied to equation Case. 3.2 :

not (deq__efore (c_x, c y, deqd(abort (c_xst, c_vil) ) )) -- true

to yield the following equations:

Case.3.2.1: deq_before(c_x, c_y, deqd(abort(c_xst, c_vil))) m. false

Ordered equation Case. 3.2 into the rewrite rule:

not (deq_before(c_x, c y, deqd(abort (c_xst, c_vil) } ) ) -> true

Ordered equation Case.3.2.1 into the rewrite rule:

deq_before(c_x, c y, deqd(abort (c_xst, c_vil) )) -> false

Left-hand side reduced:

not (deq_before (c_x, c_y, deqd(abort (c_xst, c_vil)) ) ) -> true

became equation Case. 3.2 :

not (false) m. true

Ordered equation Case. 3.2 into the rewrite rule:

not (false) -> true

The case system now contains 2 rewrite rules.

Lemma thm2.1.5.2 in the proof by cases of Lemma thm2.1.5

Inv2(a_ort(c_xst, c_vil), c_x, c y) -> true

Case. 3.2: not (deq_before (c_x, c.,y, deqd (abort (c_xst, c_vil) ) ) )

[] Proved by rewriting (with unreduced rules).

thm2.1.5 for the induction step in the proof of Conjecture thm2.1

Inv2 (skirt (c_xst, vil), x, y) -> true

[] Provesby cases
deq h_fore (x, y, deqd (abort (=_xst, vil) ) )

I not (deq__fore(x, y, _qd(abort(=_xst, vil) ) ) )

thm2.1.2 for the induction step in the proof of Conjecture thm2.1

Inv2(deq(c_xst, vil, vi2}, x, y) -> true

is NOT provable using the current partially co_pleted system. It reduces to

the equation

• ((deqr(x) < deqr(y)) & (enqr(x) < enqr(y)))

I not (( (trip (element (vi2), enqt (vi2), vil) - y)

& in_stack (x, deqd (=..xst)) )

I deq..k_fore (x, y, deqd (=_xst)) )

-> true

Proof of Lesm_ thin2, i. 2 suspended.

Critical-pair computation abandoned because a theorem has been proved.
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Com_utod 1 new critical pair. Added 1 of them to the system.

-> resume by case deq_bofore (x,y, daqd(a xst))

Case. 4.1
_

daq__ofore(=_x, c_y, doqd(c_xst)) ---true
involves proving Lomma thm2. I. 2.1

Znv2(doq(=_xst, vil, vi2), =_x, c_y) -> true

The case system now contains 1 equation.

Ordered equation Case. 4.1 into the rewrite rule:

deq_bofore(c_x, c_y, doqd(a_xst) ) -> true

The case system now contains 1 rewrite rule.

The system now contain, 1 equation, 68 rewrite rules, and 5 deduction rules.

Ordered equation Case. 4.1 into the rewrite rule :

deq_h4fore (=_x, c_y, doqd(c_xst) ) -> true

The system now contains 69 rewrite rules and 5 deduction rules.

thm2.1.2.1 in the proof _y cases of Lomma thm2.1.2

Inv2(doq(=_xst, vil, vi2), =_x, c__) -> true

Case.4.1: deq_bofore(c_x, c y, deqd(=__xst))
is NOT provable using the current partially completed system. It reduces to

the equation

(deqr (=_x) < deqr (c_y)) & (enqr (c_x) < onqr (c_y)) -> true

Proof of Lomma thm2.1.2.1 suspended.

-> crit case with induct

Critical pairs between rule Case. 4.1:

deq_bofore (c_x, c_y, deqd(c.._xst) ) -> true
and rule Induct. 2 :

((deqr (x) < deqr (y)) & (enqr (x) < enqr (y}))

I not (deq_bofore (x, y, deqd(=_xst) ))
-> true

are as follows:

(deqr(c....x) < deqr(c_,.v)) _ (enqr(c...x) < enqr(c.....v)) -,,, true

The system now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Deduction rule boolean. 3 :

when x & y-- true

yield x -- true
y -- true

has boon applied to equation the2.4:

(deqr (c_x) < deq_ (cy)) & (enqr (c_x) < onqr (c__)) -- true
to yield the following equations:

the2.4.1: deqr(c_x) < doqr(c y) --- true

thm2.4.2: enqr(= x} < enqr(c_y) _ true

Ordered equation thm2.4.2 into the rewrite rule:

enqr (=_x} < enqr (c y} -> true

Ordered equation thm2.4.1 into the rewrite rule:

deqr (%.x) < deqr (c....y) -> true

The system now contains 71 rewrite rules and 5 deduction rules.

Lomma thm2.1.2.1 in the proof by case, of Lomma thm2.1.2

Inv2(doq(c_xst, vil, vi2), c_x, c y) -> true
Case.4.1: doq bofore(c_x, c,.v, doqd(=_xst) )

[] Proved by rewriting.

Case. 4.2

43



not (deq_before (c_x, c y, deqd(=_xst)) ) -- true

involves proving Lenmm thm2. I. 2.2

Inv2(deq(c_xst, vil, vi2), o_x, c__y) -> true

The case system now contains 1 equation.

Deduction rule boolean.l:

when not (x) m. true

yield x -- false

. has h_en applied to equation Case. 4.2:

not (deq before (c_x, c_,y, deqd(c_xst) ) ) --- true

to yield the following equations:

Case.4.2.1: deq_before(c_x, c y, deqd(c_xst)) _-false

Ordered equation Case. 4.2 into the rewrite rule:

not (deq_before (o_x, c__, deqd(c_xst) ) ) -> true

Ordered equation Case. 4.2.1 into the rewrite rule:

deq_before (c_x, c y, deqd(c_xst) ) -> false

Left-hand side reduced:

not (deq_before (c_x, c y, deqd(o_xst)) ) -> true

became equation Case. 4.2 :

not (false) -- true

Ordered equation Case. 4.2 into the rewrite rule:

not (false) -> true

The case system now contains 2 rewrite rules.

The system now contains 1 equation, 68 rewrite rules, and 5 deduction rules.

Deduction rule boolean.l :

when not (x) i true

yield x -- false

has been applied to equation Case. 4.2:

not (deq_before (c'_x, c_y, deqd(c_xst) ) ) -- true

to yield the following equations:

Case.4.2.3: deq_before(c_x, c__, deqd(c xst)) --false

Ordered equation Case. 4.2 into the rewrite rule:

not (deq_before(c_x, c y, deqd(c_xst)) ) -> true

Ordered equation Case,4.2.3 into the rewrite rule:

deq_before (c_x, c y, aeqd(¢_xst)) -> false

Left-hand side reduced:

not (deq...before(c...x, c...y, deqd(c....xst) ) ) -> true
became equation Case. 4.2 :

not (false) --- true

The system now contains 69 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.2 in the proof by cases of Lemma thm2.1.2

Znv2(deq(=_xst, vil, vi2), o_x, c y) -> true

Case. 4.2 : not (deq_before (c_x, c y, deqd (o_xst)) )

is NOT provable using the current partially completed system. It reduces to

the equation

((deqr(c_x) < deqr(c_y)) & (enq=(c_x) < enqr(c__y) ) )

I not (c y - trip(element(vi2), enqt (vi2), vil) )

I not (in_stack (__x, deqd(c_xst) ) )
-> true

Proof of Lemma thm2. i. 2.2 suspended.

Critical-pair computation abandoned because a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the system.
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-> resume by case c_y_trip (element (vi2: :enq_rec) ,enqt (vi2: :enq_rec) ,vil)

Case. 5.1

c__7 -- trip (element (c_vi2) , enqt (c_vi2) , c_vil) m true

involves proving Lomma thm2. I. 2.2.1

Inv2(doq(c_xst, c_vil, c_vi2), c_x, c y) -> true

The case system now contains 1 equation.

Deduction rule equality. 4:

when x u y _ true

yield x -- y

has been applied to equation Case.5.1:

c y n trip(elemont(c_vi2), onc/t(c_vi2), c_vil) _ true

to yield the following equations:

Case.5.1.1: c_y n_ trip(element (c_vi2) , enqt (c_vi2), c_vil)

Ordered equation Case. 5. I. 1 into the rewrite rule:

c y -> trip (element (c_vi2), enqt (c_vi2), c_vil)

The case system now contains 1 rewrite rule.

Th,o system now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Deduction rule equality. 4 :

when x _ y n_ true

yield x -- y

has been applied to equation Case.5.1:

c y - trip (element (c_vi2), enqt (c_vi2) , c_vil) m true

to yield the following equations:

Case.5.1.2: c_y _ trip(element (c vi2) , enqt (c_vi2), c_vil)

Ordered equation Case. 5. I. 2 into the rewrite rule :

c y -> trip(element (c_vi2), enqt (c_vi2) , c_vil)

Loft-hand side reduced:

deq before(c_x, c y, aeqd(c_xst)) -> false

became equation Case. 4.2.3 :

deq_before (c_x, trip (element (c_vi2), onqt (c_vi2), evil), deqd (c_xst))
n_ false

Ordered equation Case. 4.2.3 into the rewrite rule:

deq_bofore(c_x, trip(element (c_vi2), enqt (c_vi2), c_vil), doqd(c_xst) )
-> false

The system now contains 70 rewrite rules and 5 deduction rules.

Lomma thin2.1.2.2.1 in the proof by cases of _ thin2.1.2.2

Inv2(deq(c_xst, c_vil, c_vi2), c_x, c y) -> true

Case.5.1: c y - trip(element (c_vi2), onqt (c_vi2), c_vil}

is NOT provable using the current partially completed system. It reduces to

the equation

((doqr(c_x) < c_vil) & (onqr(c_x) < enqt(c_vi2)))

I not(in_stack(c_x,doqd(c_xst) ) }
-> true

Proof of Lemma thm2.1.2.2.1 suspended.

-> add when_deq(c_xst, c_x, evil, c_vi2)

Added .i equation to the system.

Deduction rule boolean. 3 :

when x & y _ true

yield x --- true

y _ true

has been applied to equation thin2.5:

(onqt (c_vi2) < c_vil)

& in (c_vi2, enqd (c_xst))
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& least (c_vi2, enqd(c_xst) )

& (((deqr(top(deqd(c_xst)) ) < c_vil)

& (enqr (top(deqd(c_xst)) ) < enqt (¢_vi2)) )

J (deqd(c_xst) - new))

& (not (element (¢_vi2) - what (c_x)) I not (in_stack (=_x, deqd (c_xst))) )
-> true

to yield the following equations:

thin2.5.1: enqt(¢_vi2} < c_vil m true

thin2.5.2: in(=_vi2, enqd(c_xst)) ---true

thm2.5.3: least(¢_vi2, enqd(c_xst)) --true

thm2.5.4: ((deqr(top(deqd(c_xst))) < c_vil)

& (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

J (aeqd(c_xst) - now)
_.m true

thin2.5.5: not (element (c_vi2) -what(c_x}) J not(in_stack(c_x, deqd(c_xst)))
mm tEUO

Ordered equation thin2.5.5 into the rewrite rule:

not (element (c_vi2) - what (c_x)) J not (in_stack(c_x, deqd(c_xst) ) ) -> true

Ordered equation thm2.5.4 into the rewrite rule:

((deqr(top(deqd(c_xmt)) ) < c_vil) & (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

I (deqd(c_xst)- new)
-> true

Ordered equation thm2.5.3 into the rewrite rule:

least (c_vi2, enqd(c_xst) ) -> true

Ordered equation thm2.5.2 into the rewrite rule:

in(c_vi2, enqd(c_xst) ) -> true

Ordered equation thm2.5.1 into the rewrite rule:

enqt(c_vi2) < c_vil -> true

The system now contains 75 rewrite rules and 5 deduction rules.

-> re,_ by can deqd(¢_xst)_ew

Case. 6.1

deqd(c_xst) - new -- true

involves proving Lemma thm2. I. 2.2. I. 1

Inv2(deq(c_xst, c_vil, =_vi2), c_x, c y} -> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x w y _ true

yield x -- y

has been applied to equation Case. 6.1:

deqd(c_xst) - new --- true

to yield the following equations:

Case.6.1.1: deqd(c_xst) _ new

Ordered equation Case. 6. i. 1 into the rewrite rule:

deqd (c_xst) -> new

• The case system now contains 1 rewrite rule.

Lemma thin2. I. 2.2. i. 1 in the proof by cases of Lemma thin2.1.2.2.1

Inv2(deq(c_xst, c_vil, =_vi2}, c_x, c y} -> true

Case.6.1: deqd(c_xst) - new

[] Proved by rewriting (with unreduced rules}.

Case. 6.2

not(deqd(c_xst) - new) m true

involves proving Lemma thm2. I. 2.2. I. 2

Inv2(deq(c_xst, c_vil, c_vi2), c_x, c y) -> true



The case system now contains 1 equation.

Deduction rule boolean. 1 :

when not (x) m true

yield x -- false

has k_en applied to equation Case. 6.2:

not(deqd(c_xst) - new) -- true

to yield the following equations:

Case.6.2.1: deqd(c_xst) - new --- false

Ordered equation Case. 6.2 into the rewrite rule:

not(deqd(c xst) - new) -> true

Ordered equation Case. 6.2.1 into the rewrite rule:

deqd(c_xst) - now -> false

Left-hand side reduced:

not(deqd(¢_xst) - new) -> true

k_came equation Case. 6.2 :

not (false) mm true

Ordered equation Case. 6.2 into the rewrite rule:

not (false) -> true

The case system now contains 2 rewrite rules.

The system now contains 1 equation, 75 rewrite rules, and 5 deduction rules.

Deduction rule boolean.l:

when not (x) _ true

yield x -- false

has been applied to equation Case. 6.2:

not(deqd(c_xst) - new) -_ true

to yield the following equations:

Case.6.2.3: deqd(c_xst) - new m. false

Ordered equation Case. 6.2 into the rewrite rule:

not(deqd(¢_xst) - new) -> true

Ordered equation Case. 6.2.3 into the rewrite rule:

deqd (c_xst) - new -> false

Following 2 left-hand sides reduced:

((deqr(top(deqd(c_xst))) < evil) & (enqr(top(deqd(c_xst)) ) < onqt (=_vi2)) )

I (aeqd(c_xst)- new)
-> true

h_¢ame equation the2.5.4 :

((deqr(top(de_d(c_xst)) ) < c_vil)

& (enq_(top(deqd(c_xst)) ) < onqt (c_vi2)) )

I false

true

not (deqd(c_xst) - new) -> true

_¢ame equation Case. 6.2 :

not (false) m_ true

Deduction rule boolean. 3 :

when x & y am true

yield x -- true

y _ t_-ue

ham k_en applied to equation the2.5.4:

(deqw(top(deqd(c_xst))) < c_vil) & (enqr(top(deqd(c_xst)) ) < onqt(c_vi2) )
mn true

to yield the following equations:

the2.5.4.1: deqr(top(deqd(c_xst) ) ) < c_vil --- true

the2.5.4.2: onqr(top(deqd(c_xst) ) ) < onqt (c_vi2) --- true

Ordered equation thm2.5.4.2 into the rewrite rule:

enqr (top (doqd (c_xst)) ) < enqt (c_vi2) -> true
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Ordered equation thm2.5.4.1 into the rewrite rule:

deqr(top(deqd(c_xst) )) < c_vil -> true

The system now contains 77 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.2.1.2 in the proof by cases of Lenuua thin2.1.2.2.1

Inv2(deq(c_xst, c_vil, c_vi2), c_x, c y} -> true

Case. 6.2: not (deqd(c_x,t) - newt

is NOT provable using the current partially completed system. It reduces to

the equation

" ( (deqr (c_x) < c_vil) & (anqr (c_x) < enqt (c_vi2)) )

I not (in_.stack(c..x, deqd(c_xst) ) )
-> true

, Proof of Lemma thin2.1.2.2, i. 2 suspended.

-> resume by case in_stack(c_x, deqd(c_xst))

Case. 7.1

in_sta_ (c_x, deqd (c_xst)) m true

involves proving Lemma thm2. i. 2.2. I. 2.1

Inv2(deq(c_xst, c_vil, c_vi2), c_x, c y) -> true

The case system now contains 1 equation.

Ordered equation Case. 7.1 into the rewrite rule:

in_stack(c_x, deqd(c_xst) ) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 77 rewrite rules, and 5 deduction rules.

Ordered equation Case. 7.1 into the rewrite rule:

in_stack (c_x, deqd(c_xst))-> true

Left-hand side reduced:

not (elennent (c_vi2) - what (c_x)) I not (in_stack (c_x, deqd (c_x,t)_ ) -> true
became equation thm2.5.5 :

not (element (c vi2) - what (c_x)) I not (true} -- true

Deduction rule boolean.l:

when not (x) _ true

yield x -- false

has been applied to equation thin2.5.5:

not (element (c_vi2) - what (c_x} } --- true

to yield the following equations:

thin2.5.5.1: element(c_vi2) -what(c_x} --false

Ordered equation thm2.5.5 into the rewrite rule:

not (elwnent (c_vi2) - what (c_x}) -> true

Ordered equation thm2.5.5.1 into the rewrite rule:

element (o_vi2) - what (o_x) -> false

Left-hand side reduced:

not (element (c_vi2) - what (c_x}) -> true

became equation thin2.5.5 :

• not (false} -_ true

The system now contains 78 rewrite rules and 5 deduction rules.

Lemma thin2.1.2.2.1.2.1 in the proof by cases of Lennna thin2.1.2.2.1.2

Inv2(deq(c_xst, =_vil, c_vi2), c_x, c y} -> true

Case. 7.1 : in_stack (c_x, deqd (c_xst))

is NOT provable using the current partially completed system. It reduces to

the equation

(deqr(c_x) < c_vil) & (enqr(c_x) < enqt(c_vi2)) -> true

Proof of Lemma thin2, i. 2.2. i. 2.1 suspended.
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-> crit case with Induct

Confuted 1 new critical pair, which reduced to an identity. Added 0 of them to

the system.

-> resume by case c x-top(deqd(c xst))

Case. 8.1

c x - top(deqd(= xst)) -- true

involves proving Lenena thm2. I. 2.2. I. 2. I. 1

Inv2(deq(c_xst, c_vil, c vi2), c_x, c y) -> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x i y mm true

yield x -- y

has been applied to equation Case. 8.1:

c x - top(deqd(c_xst)) -- true

to yield the following equations:

Case.8.1.1: c_x -_ tcp(deqd(c_xst))

Ordered equation Case. 8.1. I into the rewrite rule :

c_x -> top (deqd(:_xst)) •

The case system now contains 1 rewrite rule.

Lemma thm2.1.2.2.1.2.1.1 in the proof hy cases of Lennna thm2.1.2.2.1.2.1

Inv2(deq(c_xst, c_vil, c_vi2), c_x, c y} -> true

Case.8.1: c_x - top(deqd(c_xst))

[] Proved by rewriting (with unreduced rules).

Case. 8.2

not(c_x - top(deqd(c_xst))) ms true

involves proving Lemma thm2. i. 2.2. i. 2. i. 2

Inv2(deq(c_xst, c_vil, c_vi2), c_x, c__} -> true

The case system now contains 1 equation.

Deduction rule boolean.l :

when not (x) mm true

yield x mm false

has been applied to equation Case. 8.2:

not(c_x - top(deqd(c_xst))) -- true

to yield the following equations:

Case.8.2.1: c_x - top(deqd(c xst)) -- false

Ordered equation Case.8.2 into the rewzite rule:

not (c_x - top(deqd(c_xst) ) ) -> true

Ordered equation Case. 8.2.1 into the rewrite rule:

c_x -- top(deqd(c_xst)} -> false

Left-hand side reduced:

not (cx - top(deqd(c_xst) ) ) -> true

became equation Case. 8.2 :

not (false) mm true

Ordered equation Case. 8.2 into the rewrite rule:

not (false} -> true

The case system now contains 2 rewrite rules.

The system now contains 1 equation, 78 rewrite rules, and 5 deduction rules.

Deduction rule boolean.l :

when not (x) m true

yield x .m false
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has been applied to equation Case. 8.2:

not (c_x - top(deqd(c_xmt) )) --- true

to yield the following equations:

Case.8.2.3: c_x - top(deqd(c_xst)) _- false

Ordered equation Case. 8.2 into the rewrite rule:

not (c_x - top(deqd(c_xst) ) ) -> true

Ordered equation Case. 8.2.3 into the rewrite rule:

. c_x - top(deqd(c_xst)) -> false

Left-hand side reduced:

not (c..x - top(deqd(c_xst) )) -> true

became equation Case. 8.2 :

not (false) _ true

The system now contains 79 rewrite rules and 5 deduction rules.

Lemma thin2.1.2.2.1.2.1.2 in the proof hy cases of Lemma thin2.1.2.2.1.2.1

Inv2(deq(c_xst, c_vil, c_vi2), c_x, c_y) -> true

Case.8.2: not(c x - top(deqd(c_xst)))

is NOT provable using the current partially completed system. It reduces to

the equation

(deqr(c_x) < c_vil) & (enqr(c_x) < enqt(c_vi2)) -> true

Proof of Lemma thm2. I. 2.2. i. 2. i. 2 suspended.

-> crit case with lemma

Critical pairs between rule Case.7.1:

in_stack(c_x, deqd(c_xst) ) -> true
and rule lemma. 3 :

(top (y) - x) i deq_before(x, top (y), y) I not (in_stack(x, y) ) -> true
are as follows:

deq_before(c_x, top(deqd(c_xst)), deqd(c_xst)) _-true

The system now contains 1 equation, 79 rewrite rules, and 5 deduction rules.

Ordered equation thm2.6 into the rewrite rule:

deq before (c_x, top (deqd(c_xst)), deqd(c_xst) ) -> true

The system now contains 80 rewrite rules and 5 deduction rules.

Compute_ 2 new critical pairs, 1 of which reduced to an identity. Added 1 of

them to the system.

-> prove (deqr (c_x)<deqr (top (deqd (c_xst)) ) ) & (enqr (c_x)<enqr (top (deqd (c_xst)) ))

Conjecture thm2.7

(deqr(c_x) < deqr(top(deqd(c_xmt) ) ) ) & (enqr(c_x) < enqr(top(deqd(c_xst) ) ) )

-> true

is NOT provable using the current partially completed system.

Proof of Conjecture thm2.7 suspended.

-> crit thin2 with Induct

Critical pairs between rule thnu_..6:

deq before(c_x, top(deqd(c_xst) ), deqd(o_xst)) -> true

and rule Induct. 2 :

((deqr(x) < deqr(y)) & (enqr(x) < enqr(y)))

I not (deq_before (x, y, deqd(c_xst) ) )
-> true

are as follows:

(deqr(c_x) < deqr(top(deqd(c_xst) )) ) & (enqr(c_x) < enqr(top(deqd(c_xst) ) ) )
m._ true

The system now contains 1 equation, 80 rewrite rules, and 5 deduction rules.
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Deduction rule boolean.3:

when x & y M true

yield x --- true

y _ true

has h_en applied to equation thm2.8:

(doqr(c x) < deqr(top(doqd(c xst) ) )) & (onqr(c_x) < enqr(top(doqd(c xst) ) ) )
u true

to yield the following equations:

thm2.8.1: deqr(c_x) < deqr(top(doqd(c_xst))) -- true

thin2.8.2 : enqr (c_x} < enqr (top (deqd (c_xst)) ) _ true

Ordered equation thm2.8.2 into the rewrite rule:

enqr(c_x) < enqr(top(deqd(c_xst) ) ) -> true

Ordered equation thm2.8.1 into the rewrite rule:

deqr(c_x) < deqr(top(deqd(c_xst) ) ) -> true

The system now contains 82 rewrite rules and 5 deduction rules.

Conjecture thin2.7

(deqr(c_x) < deqr(top(deqd(c_xst)) ) ) & (enqr(c_x) < enqr(top(deqd(c_xst) ) ) )
-> true

[] Proved by rewriting.

thin2.1.2.2.1.2.1.2 in the proof by oases of Lemma thin2.1.2.2.1.2.1

Znv2(deq(c_xst, c_vil, c_vi2), c_x, c__) -> true

Case.8.2: not(c x - top(deqd(c_xst)))

is NOT provable using the current partially completed system. It reduces to

the equation

(deqr(c x) < c_vil) & (enqr(c_x) < en_c(c_vi2)) -> true

Proof of Lemma thm2. I. 2.2. I. 2. I. 2 suspended.

Critical-pair computation abandoned k_oause a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the system.

-> instantiate xt by deqr(c_x),xtl by deqr(top(deqd(c_xst))),xt2 by c_vil in TransID.l

Equation TransID. 1 :

(xt < xt2) { not(xt < xtl) { not(xtl < xt2) -> true

has been instantiated to equation TransID.l.l:

deqr(c_x) < c_vil -> true

A_:Ided 1 equation to the system.

Ordered equation TransID.l.l into the rewrite rule:

deq_(c x) < c_vil -> true

The system now contains 83 rewrite rules and 5 deduction rules.

Lemmm thin2.1.2.2.1.2.1.2 in the proof by cases of Lemma thin2.1.2.2.1.2.1

Inv2(d_q(c_xst, o_vil, c_vi2), c_x, o y} -> true

Case.$.2: not (c_x - top(deqd(c_xst) ) )

is NOT prov_le using the current partially completed system. It reduces to

the equation

enqr(c_x) < enqt(c_vi2) -> true

Proof of Leauaa thin2. I. 2.2. i. 2. i. 2 suspended.

-> instantiate xt by enqr(c_x),xtl by enqr(top(deqd(c_xst))),xt2 by enqt(c_vi2) in TransID.l

Equation TransID. 1 :

(xt < xt2) I not(xt < xtl) I not(xtl < xt2) -> true

has h_en instantiated to equation TransID.l.2:
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enqr(c_x) < en_t(c_vi2) -> true

Added 1 equation to the system.

Ordered equation TransID.l.2 into the rewrite rule:

onqr(c_x) < enqt (=_vi2) -> true

The system now contains 84 rewrite rules and 5 deduction rules.

Lomma thin2.1.2.2.1.2.1.2 in the proof by cases of Lomma thin2.1.2.2.1.2.1

+ Inv2(doq(c_xst, c_vil, c_vi2), =_x, c y) -> true

Case. 8.2: not (c..x - top(deqd(c_xst) ) )

[] Proved by rewriting.

. Lomma thin2.1.2.2.1.2.1 in the proof by cases of Lomma thm2.1.2.2.1.2

Inv2(doq(c_xst, c_vil, =_Vi2), c_x, c_y) -> true

Case. 7.1 : in_stack (c_x, doqd (c_xmt))

[] Sroved by cases
(c_x - top(deqd(c_xst))) I not(c_x - top(deqd(c_xst)))

Case. 7.2

not (in_stack(c_x, deqa(c_xst))) -- true
involves proving Lo=ma thm2.1.2.2. I. 2.2

Inv2(doq(=_xst, c_vil, a_vi2), =_x, c._y) -> true

The case lystom now contains 1 equation.

Deduction rule boolean.l:

when not (x) _ true

yield x -- false

has boon applied to equation Case. 7.2:

not (in_stack(c_x, doqd(c_xst))) -- true
to yield the following equations:

Case. 7.2.1 : in_stack (cx, doqd (c_xst)) _ false

Ordered equation Case. 7.2 into the rewrite rule :

not (in_stack(c_x, deqd(c_xst) ) ) -> true

Ordered equation Case. 7.2.1 into the rewrite rule:

in_stack (c_x, deqd(c_xlt) ) -> false

Loft-hand side reduced:

not (in_,tack(c_x, de_d(c_xst))) -> true
became equation Case. 7.2 :

not (false) --- true

Ordered equation Calo.7.2 into the rewrite rule:

not (false} -> tEue

The case system now contains 2 rewrite .,,'ules.

Lomma thin2.1.2.2.1.2.2 in the proof by c_sos of Lomma thin2.1.2.2.1.2

Inv2(doq(c_xst, =_vil, =_vi2), =_x, c_y) -> true

. Case.7.2: not(in_stack(=_x, deqd(c_xst}}}

[] Proved by rewriting (with unreduced rules).

Lonma thin2.1.2.2.1.2 in the proof hy cases of Lonmm thin2.1.2.2.1

. Inv2(doq(=_xlt, c_vil, =_vi2}, c_x, C_+y) -> true

Case. 6.2: not (deqd(c_xlt} - new)

[] Proved by cases

in_stack(c_x, deq_(=_xst) ) I not (in_stack(c_x, deqd(=_xst) ) )

Lomma thm2.1.2.2.1 in the proof by cases of Lomma thm2.1.2.2

Inv2(doq(c_xst, c_vil, =_vi2), o_x, c_y) -> true

Case.5.1: c_y - trip(element (=_vi2), onqt (c_vi2) , c_vil)

[] Proved by cases

(doqd(c_xst) -new) I not(doqd(c_xst) -new)

Case. 5.2
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not (o_y m trip (element (¢_vi2), onqt (¢_vi2), c_vil) ) -- true

involves proving Lomma thm2. I. 2.2.2

Znv2(deq(c_xst, ¢_vil, c_vi2) , o_x, o y) -> true

The ¢ame system now oontains 1 equation.

Dodu=tion rule boolean. 1 :

when not (x) u true

yield x -- false

has _eon applies to equation Case.5.2:

not (¢_ - trip(element (o_vi2), enqt (c_vi2), o_vil) ) -_ true

to yield the following equations:

Case.5.2.1: c y m trip(element (_vi2), enqt (o_vi2), o_vil) -_ false

Oraorod equation Case.5.2 into the rewrite rule:

not (c_y - trip (element (o_vi2), enqt (c_vi2), c_vil) ) -> true

Ordered equation Case. 5.2.1 into the rewrite rule:

c_y - trip (element (c_vi2) , enqt (c_vi2), c_vil) -> false

Left-hand side roduood:

not (¢y - trip (element (o_vi2), onqt (o_vi2), =_vil) ) -> true

became equation Case. 5.2 :

not (false) -- true

Oraored equation Case.5.2 into the rewrite rule:

not (false) -> true

The ¢aso system now contains 2 rewrite rules.

Lenm_ thm2.1.2.2.2 in the proof hy oases of Lemma thm2.1.2.2

Inv2(deq(c_xst, c_vil, c_vi2), c_x, c__) -> true

Case. 5.2 : not (=_y - trip (element (c_vi2) , onqt (c_vi2) , ¢_vil) )

[] Proved by rewriting (with unroduooa rules).

Lemma thm2.1.2.2 in the proof by ¢ases of Lemma thm2.1.2

inv2(aeq(c_xst, vil, vi2), o_x, c y) -> true

Case. 4.2 : not (doq_beforo (cx, o y, deqa (¢_xst)) )
[] Proved by oases

(c__ ,,, trip (element (vi2), enqt (vi2) , vil) )

i not (o_y - trip(olement(vi2) , onqt(vi2) , vil) )

Lenm_ thm2.1.2 for the indu=tion stop in the proof of Conjecture thm2.1

Inv2(deq(o_xmt, vil, vi2), x, y) -> true

[] Proved by cases
aeq_beforo(x, 2, doqd(o xst)) I not (deq_t>efore (x, 2, deqd(a xst)))

Conjecture thm2.1

Inv2(xst, x, y) -> true

[] Proved by induotion over _xst: :St' of sort _St'.

The system now contains 1 equation, 67 rewrite rules, and 5 deduction rules.

Ordered equation thm2.1 into the rewrite rule:

((deqr(x) < deqr(2)) & (enqr(x) < enqr(2)))

J not (aeq_before (x, 2, aoqd(xst) ) )
-> true

The system now contains 68 rewrite rules and 5 deduotion rules.

-> qed

All ¢onjeoturos have boon proved.

-> q
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4.4. LP Proof Session of Invariant 3

-> set axiom o

The axiom use is now _order-equations-into-rules'.

-> thaw Inv

System thawed from _Inv. frz' .

L

-> set name thm3

The name prefix is now _thm3'.

-> prove Inv3 (xst,x) by induction xst St

The basis step in an inductive proof of Conjecture thm3.1

Inv3 (xst, x) -> true

involves proving the following lemma(s) :

thm3.1.1: Inv3(init, x) -> true

[] Prov_ by normalization

The induction step in an inductive proof of Conjecture thm3.1

Inv3 (xst, x) -> true

uses the following equation(s} for the induction hypothesis:

Induct.2: Inv3 (c_xst, x) -> true

The system now contains 1 equation, 67 rewrite rules, and 5 deduction rules.

Ordered equation Induct.2 into the rewrite rule:

(enqr(x) < deqr(x)) I not(in_stack(x, deqd(c_xmt))) -> true

The system now contains 68 rewrite rules and 5 deduction rules.

The induction step involves proving the following lemma(s) :

thm3.1.2: Inv3(deq(c_xst, vil, vi2), x) -> true

which r_uces to the equation

(enqr (x) < deqr (x))

[ not ((trip(element (vi2), enqt (vi2), vil) - x)

I in._,,tack(x, deqd(c_.xst) ) )

-> true

thm3.1.3: Inv3(enq(c_xst, vil, vi2}, x) -> true

[] Proved by normalization

thm3.1.4: Inv3(commit(=_xst, vil), x) -> true

[] Prov_ by normalization

thm3.1.5: Inv3(abort(c_xst, vil), x) -> true

[] Proved by normalization

Proof of Lenm_ thm3.1.2 suspended.

-> resumm by case in_stack(x, deqd(¢_xst))

Case. 3.1

in_stack(c_x, deqd(c_xst)) --true

involves proving _ thm3. I. 2.1

Inv3(deq(c_xst, vil, vi2), c_x) -> true

The case system now contains 1 equation.

Ordered equation Case. 3.1 into the rewrite rule:

in stack(=_x, deqd(c_xst)) -> true

The case system now contains 1 rewrite rule.
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The system now contains 1 equation, 68 rewrite rules, and 5 deduction rules.

Ordered equation Case. 3.1 into the rewrite rule :

in_stack(=_x, deqd(c_xst)) -> true

The system now contains 69 rewrite rules and 5 deduction rules.

Lama thm3.1.2.1 in the proof by cases of Lennna thm3.1.2

Znv3(deq(c_xst, vil, vi2), c_x} -> true
Case.3.1: in_sta=k(c_x, deqd(c xst))

is NOT provable using the current partially completed system. It reduces to

the equation

enqT(c_x) < deqr(c_x) -> true

Proof of Lemma thm3.1.2.1 suspended.

-> crit case with Induct

Critical pairs between rule Case.3.1:

in stack(c_x, deqd(c_xst)) -> true
and _ule Induct. 2 :

(enqw(x) < deqr(x) ) I not (in_stack(x, deqd(c_xst)) ) -> true
a=e as follows:

enqw(c_x) < deqr(c_x) -- true

The system now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Ordered equation thm3.2 into the rewrite rule:

enq=(c x) < deqr(c_x) -> true

The system now contains 70 rewrite rules and 5 deduction rules.

Lennna thm3.1.2.1 in the proof by cases of Lemma thm3.1.2

Inv3(deq(c._xst, vil, vi2), c_x) -> true

Case.3.1: in_stack(c_x, deqd(c_xst) )
[] Proved by rewriting.

Case. 3.2

not(in_stack(c_x,deqa(c_xst))) -- true
involves proving Lemma thm3. i.2.2

Znv3(deq(c_xst, vil, vi2), c_x} -> true

The case system now contains 1 equation.

Deduction rule boolean. 1 :

when not (x} u true

yield x -- false
has _en applied to equation Case.3.2:

not (injtack(c x, deqd(c xst) ) ) -- true
to yield the following equations:

Case.3.2.1: in stack(c x, deqd(c xst)) ---false

Ordered equation Case.3.2 into the rewrite rule:

not(in_=tack(c_x,deqd(c_xst))) -> true

Ordered equation Case. 3.2.1 into the rewrite rule :

in_stack(c_x, doqd(c_xst) ) -> false

Left-hand side reduced:

not (in_stack (c_x, doqd(c_xst) )) -> true
_came equation Case. 3.2 :
not (false} _ true

Ordered equation Case. 3.2 into the rewrite rule:
not (false} -> true

The case system now contains 2 rewrite rules.
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The system now contains 1 equation, 68 rewrite rules, and 5 deduction rules.

Deduction rule boolean. 1 :

when not (x) mm true

yield x n false

has _>een applied to equation Case.3.2:

not(in..stack(o.x,de._a(c_.xst))) -- true
to yield the following equations:

Case.3.2.3: in_sta=k(¢_x, deqd(a_xst)) --false

" Ordered equation Case. 3.2 into the rewrite rule :

not(in._sta=k(c_x,deqd(c._xst))) -> true

Ordered equation Case. 3.2.3 into the rewrite rule:

. in_stack (a_x, deqd (c_xst)) -> false

Left-hand side reduced:

not (in_sta=k(¢_x, deqd(=_xst) ) ) -> true

became ec/._ation Case. 3.2:

not (false) in true

The system now contains 69 rewrite rules and 5 deduction rules.

Lemma thm3.1.2.2 in the proof by cases of Lemma thm3.1.2

Inv3(deq(¢_xst, vil, vi2), c_x) -> true

Case.3.2: not (in_mtack(c_x, deqd(c_xst) ) )

is NOT provable using the current partially completed system. It reduces to

the equation

(enqr(c_x) < deqr(c_x) ) { not (c_x - trip(element (vi2), enqt (vi2), vil) )
-> true

Proof of Lemma thm3.1.2.2 suspended.

Critical-pair computation a_andoned because a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the system.

-> resume by case ¢_x_trip (element (vi2: :enq_rec) ,enqt (vi2: :enq_rec) ,vil)

Case. 4.1

c x - trip(element (c_vi2), enqt (¢_vi2), c_vil) m true

involves proving Lem_a thm3. i. 2.2.1

Inv3(deq(=_xst, c_vil, c_vi2), c_x) -> true

The case system now contains 1 equation.

Dedu¢tion rule equality. 4 :

when x n y mm true

yield x --" y

has _>een applied to equation Case.4.1:

c_x - trip(element (c_vi2), enqt (=_vi2), c_vil} m. true

to yield the following equations:

Case. 4.1.1: c_x ms trip(element (c_vi2) , enqt (c_vi2), c_vil)

Ordered equation Case. 4. I.I into the rewrite rule:

c_x -> trip (element (=_vi2), enqt (¢_vi2), =_vil)

The ¢ase system now contains 1 rewrite rule.

The system now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Deduction rule equality. 4 :

when x - y m_ true

yield x --- y

has been applied to equation Case. 4.1:

c x - trip (element (¢_vi2), enqt (c_vi2), ¢_vil) _- true

to yield the following equations:

Case.4.1.2: c_x -_ trip(element (c_vi2), enqt (c_vi2), c_vil)
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Ordered equation Case. 4. i. 2 into the rewrite rule:

=_x -> trip (element (c_vi2), enqt (c_vi2), c_vil)

Loft-hand side redu=ed:

in_stack(=_x, deqd(c_x,t) ) -> false

boc_imo equation Case. 3.2.3 :

in_stack(trip(elomont(c vi2), enqt (¢_vi2), =_vil), deqd(c_xst) ) -- false

Ordered equation Caee. 3.2.3 into the rewrite rule:

in_sta=k(trip(elomont(c_vi2), enq_ (¢_vi2), =_vil), deqd(c_xst) } -> false

The system now =ontains 70 rewrite rules and 5 deduction rules.

Lomm_ thm3.1.2.2.1 in the proof hy oases of Lenmm thm3.1.2.2 °

Inv3(doq(o_xst, c_vil, c_vi2), c_x) -> true

Case.4.1: c_x - trip(element (c_vi2) , enqt (c_vi2) , c_vil)

is NOT provs_le using the current partially =ompleted system. It redu=es to

the equation

enq_ (c_vi2) < c_vil -> true

Proof of Lomma thin3.1.2.2.1 suspended.

-> add when_deq (=_xst, c_x, c_vil, c_vi2 )

A_od 1 equation to the lyltom.

Doau=tion rule boolean. 3:

when x & y mm true

yield x mm true

y mm true

has h4on applied to equation thm3.3:

(onqt (c_vi2) < =_vil)

& in(=_vi2, enqd(c_xst) }

& least (c_vi2, enqd(c_xst) )

& ( ((deqr(top(aoqd(c_xst)) ) < c_vil)

& (enqr(top(doqd(c xst) ) ) < enqt (c_vi2)) )

I (aocla(c.xst) - new) )

-> true

to yield the following equations:

thin3.3.1: enqt(c_vi2) < ¢_vil mm true

thin3.3.2: in(c_vi2, onqd(=_xst)) _m true

thin3.3.3: least(=_vi2, enqd(=_xst) ) -- true

thin3.3.4: ((doqr(top(doqd(c_xst)) ) < ¢_vil)

& (onqr (top (doqd (c_xst)) ) < onqt (c_vi2}) )

I (aeq_(c_xst) - now)
nun true

Ordered equation thm3.3.4 into the rewrite rule :

( (deqr(top(doqd(c xst) ) ) < c_vil) & (onqr(top(deqd(c xst) ) ) < en_c(c vi2) ) )

J (de_ (C .xJt) m new)

-> true

Ordered equation thm3.3.3 into the rewrite rule :

least (c_vi2, onqd(=_xst) ) -> true

Ordered equation thm3.3.2 into the rewrite rule :

in (=_vi2, enqd (=_xst)) -> true

Ordered equation thin3.3.1 into the rewrite rule:

enqt(¢_vi2) < =_vil -> true

The system now =ontains 74 rewrite rules and 5 dodu=tion rules.

Lomma thin3.1.2.2.1 in the proof by cases of Lomma thin3.1.2.2

Inv3(doq(=_xst, c_vil, c_vi2), ¢_x) -> true

Case.4.1: c_x - trip(elomont(c_vi2), onqt(c_vi2), c_vil}

[] Proved by rewriting.
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Case. 4.2

not (¢_x - trip (element (c_vi2), enqt (a_vi2), c_vil) ) -_ true

involvem proving Lemma thm3. I. 2.2.2

Inv3(deq(c_xst, c_vil, c_vi2), c_x) '> true

The case system now contains 1 equation.

Deduction rule boolean. 1 :

when not (x) am true

yield x " false

" has been applied to equation Case. 4.2:

not (=_x - trip (element (c_vi2), enqt (=_vi2), c_vil) ) =m true

to yield the following equations:

Case.4.2.1: a_x - trip(element(c_vi2), enqt(c_vi2), c_vil) -- false

Ordered equation Case. 4.2 into the rewrite rule:

not (c_x - trip (element (¢_vi2), enqt (c_vi2), c_vil) ) -> true

Ordered equation Case. 4.2.1 into the rewrite rule:

c_x - trip (element (c_vi2), enqt (c_vi2), ¢_vil) -> false

Left-hand side reduced:

not (e_x - trip(element (=_vi2), enqt (=_vi2), ¢_vil) ) -> true

became equation Case. 4.2 :

not (false) am true

Ordered equation Case. 4.2 into the rewrite rule:

not (false) -> true

The case system now contains 2 rewrite rules.

Lemma thin3.1.2.2.2 in the proof by cases of Lennna thin3.1.2.2

Inv3(deq(c_xst, a_vil, c_vi2), c_x) -> true

Case.4.2: not (c_x - trip(element (c_vi2) , enqt (c_vi2) , c_vil) )

[] Proved by rewriting (with unreduaed rules).

Lemma thm3.1.2.2 in the proof by cases of Lennna thm3.1.2

Inv3(deq(a_xst, vil, vi2), c_x) -> true

Case.3.2: not (in_stack(a_x, deqd(c_xst) ) )

[] Proved hy cases

(c_x - trip(element (vi2), enqt (vi2), vil) )

{ not (c_x - trip (element (vi2), enqt (vi2), vil) )

Lemma thm3.1.2 for the induction step in the proof of Conjecture thm3.1

Inv3(deq(c_xst, vil, vi2), x) -> true

[]Prov..d by cases
in_stack(x, deqd(c_xmt) ) I not(in_stack(x, deqd(a_xst) ) )

Conjecture thm3.1

Inv3 (xst, x) -> true

[] Proved hy induction over 'xst: :St' of sort 'St'.

, The system now contains 1 equation, 67 rewrite rules, and 5 deduction rules.

Ordered equation thin3.1 into the rewrite rule:

(enqr(x) < deqr(x) ) I not (in_stack(x, deqd(xst))) -> true

The system now contains 68 rewrite rules and 5 deduction rules.

-> qed

All conjectures have been proved.

-> q
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5. Four Sets of Helping Lemmas

5.1. Helping Lemm Set 0

add

(x-pair (y, z) ) -> ( (.lemlne (x) _y) & (.nqt (x) -z) )
(x_trip (u, v, w) ) -> ( (what (x) _u) & (enqr (x) _v) &(deqr (x) _w) )
in_stack (x,y)-> (deq._before (x,top (y),y) [ (x-top (y)) )
• °
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5.2. LP Proof Session of Lemm Set 0

-> thaw ab

System thawed from _ab. frz' .

-> set name lemma

The name prefix is now _lemma'.

-> set axiom o

The axiom use is now _order-equations-into-rules'.

-> prove (x_pair (y, z) )-> ( (element (x) my) & (enqt (x)-z)) by case x_pair (y, z)

Case. i. 1

c_x - pair(c_y, c_z) _= true

involves proving Lemma leans, i. 1

(c_x - pair(c_y, c_z)) => ((c_y - element(c_x)) & (c_z - ehqt(c_x)))
-> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x _ y =-= true

yield x =_ y

has been applied to equation Case.l.l:

c x - pair(c_y, c_z) =_ true

to yield the following equations:

Case.l.l.l: c_x =_ pair(c y, c_z)

Ordered equation Case. I. I. 1 into the rewrite rule:

c_x -> pair (c_y, c_z)

The case system now contains 1 rewrite rule.

Lemma lem_a.l.l in the proof by cases of Conjecture lemma.l

(c_x - pair(c_y, c_z)) --> ((c_y - element(c_x)) & (c_z - enqt(c_x)))
-> true

Case.l.l: c_x - pair(c_y, c_z)

[] Proved by rewriting (with unreducad rules).

Case. i. 2

not (c_x -- pair(c y, c_z) ) --- true

involves proving Lemma iomma. I. 2

(c_x - pair(c_y, c_z)) -> ((c_v n element(c_x)) & (c_z - enqt(c x)))
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <m> y =_ true

yield x -- y

has been applied to equation Case.l.2:

(c_x - pair(c_y, c_z)) <-> false -- true

to yield the following equations:

Case.l.2.1: c_x- pair(c y, c_z) =_ false

Ordered equation Case. i. 2.1 into the rewrite rule:

c_x - pair(c y, c_z) -> false

The case system now contains 1 rewrite rule.

Lemma lemma.l.2 in the proof by cases of Conjecture lemma.l

(c x - pair(c_y, c z)) -> ((c_y - element(c_x)) & (c z = enqt(c x)))
-> true

Case.l.2: not (c_x -- pair(c_y, c_z) )
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[] Proved hy rewriting (with unreduced rules).

Conjecture lemma. 1

(pair(y, z) - x) -> ((element(x) - y) & (enqt(x) - z)) -> true

[] Proved _ cases
(pair(y, z) = x) J not(pair(y, z) -x)

The system now contains 1 equation, 135 rewrite rules, and 12 deduction rules.

Ordered equation lemma.l into the rewrite rule:

((element(x) - y) & (enqt(x) m z)) I ((pair(y, z) - x) <-> false) -> true

The system now contains 136 rewrite rules and 12 deduction rules.

-> prove (x_trip (u, v, w) )-> ( (what (x) -u) & (enqr (x) -v) & (deqr (x) _w) ) by case x-trip (u, v, w)

Case. 2.1

c_x m trip(c_u, c_v, c_w) _ true

involves proving Lemma lemma. 2.1

(c_x- trip(c_u, c_v, c_w))

-> ((c_u - what(c_x)) & (c_v - enqr(c_x)) & (c_w - deqr(c x)))
-> true

The same system now contains 1 equation.

Deduction Eule equality. 4 :

when x m y m. true

yield x m y

has been applied to equation Case.2.1:

c x m trip(c_u, c_v, c_w) _ true

to yield the following equations:

Case. 2.1.I: c_x _ trip(c_u, c_v, c_w)

Ordered equation Case.2.'l.l into the rewrite rule:

c_x-> trip(c_u, c_v, c_w)

The case system now contains 1 rewrite rule.

Lemma lemma.2.1 in the proof by cases of Conjecture lemma.2

(c_x- trip(c_u, c_v, c_w))

-> ( (c_u - what (c_x}) & (c_v - onqr (c_x)) & (c_w - doqr (cx)) )
-> true

Case.2.1: c_x - trip(c_u, c_v, c_w)

[] Proved _y rewriting (with unroducod rules).

Case. 2.2

not (=_x -- trip(c_u, c_v, c_w)} u true

involves proving Lemma lemma. 2.2

(c_x-trip(c_u, c_v, c_w))
-> ((=u = what(cx)) _ (cv - enqr(cx)) _ (cw - deqr(cx)))

-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <m> y -- true

yield x m y

has been applied to equation Case.2.2:

(c_x - trip(c_u, c_v, c_w)) <-> false _ true

to yield the following equations:

Case. 2.2.1: c_x - trip(c_u, c_v, c_w} m= false

Ordered equation Case. 2.2.1 into the rewrite rule :

c_x - trip(c_u, c_v, c_w) -> false

The case system now contains 1 rewrite rule.

Lennna lemma.2.2 in the proof by cases of Conjecture lemma.2

(c_x- trip(c_u, c_v, a_w))
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-> ((c_u - what (c_x)) _ (c_v - enq= (c_x)) _ (c_w - deqr (=_x)))
-> true

Case.2.2: not(c_x- trip(c_u, c_v, c_w))

[] Proved by rewriting (with un=educed rules).

Conjecture lemma. 2

(trip(u, v, w) -x) -> ((deqr(x) -w) & (enqr(x) -v) & (what(x) -u))

-> true

[] Proved b_ cases
, (trip(u, v, w) -x) 0 not(trip(u, v, w) --x)

The system now contains 1 equation, 136 rewrite rules, and 12 deduction rules.

Ordered equation lemma.2 into the rewrite rule:
a

((deqr(x) -w) & (enqr(x) -v) & (what(x) -u))

l ((trip(u, v, w) -x) <-> false)

-> true

The system now contains 137 rewrite rules and 12 deduction rules.

-> prove in_stack (x, y) -> (deq__fore (x, top(y),y) I (x_top(y))) by induction y deq_stack

The basis step in an inductive proof of Conjecture lemma. 3

in stack(x, y) -> ((top(y) -x) _ deq_before(x, top(y), y)) -> true

involves proving the following lemma(s) :

lenlna.3.1: in_stack(x, new) -> ((top(new) -x) I deq_h_fore(x, top(new), new))
-> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemma.3

in stack(x, y) -> ((top(y) - x) I deq_before(x, top(y), y)) -> true

uses the following equation(s) for the induction hypothesis:

Induct.l: in_stack(x, c_y) -> ((top(c__) -x) [ deq_before(x, top(c_y), c_y))
-> true

The system now contains 1 equation, 137 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l into the rewrite rule:

(false <-> in_stack(x, c y}) I (top(cy) -x) I deq_before(x, top(c_y), c y)
-> true

The system now contains 138 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lenena.3.2: in_stack(x, push(c_y, vil))

-> ((top(push(c_y, vil)) -x)

I deq_before(x, top (push(c y, vil) ), push(c y, vil) ) )

-> true

" [] Proved by noEmalization

Conjecture lemma. 3

in stack(x, y) -> ((top(y) - x) _ deq_before(x, top(y), y)) -> true

[] Proved by induction over ly, of sort Ideq_stack'.

The system now contains 1 equation, 137 rewrite rules, and 12 deduction rules.

Ordered equation lemma.3 into the rewrite rule:

(false <-> in_stack(x, y)) [ (top(y) -x) I deq before(x, top(y), y) -> true

The system now contains 138 rewrite rules and 12 deduction rules.

-> forget undo

Undo stack cleared.
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-> freeze theory'

Syst_ frozen in _theo_.frz'.

-> q
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5.3. Helping Lemm Set 1

add

append(append(x, y), z) -> append(x, append(y, z))

(append(x, su_(y, x)) -y) I not(prefix(x, y)) -> true

(cons:Seq, EL->Seq(y, z) -x) I not(prefix(x, cons:Seq, EL->Seq(y, z})) I

prefix(x, y) -> true

append(ENQ(x), ENQ(y) ) -> ENQ (append (x, y) )

append(DEQ(x), DEQ(y) ) -> DEQ (append (x, y) )

" ENQ (append (cons (x, E(y) ), z) ) ->

append(cons:Seq, EL->Seq(ENQ(x), element (y) }, ENQ (z))

ENQ (append (cons (x, D (y)), z) ) -> ENQ (append (x, z) )

DEQ(append(conm(x, E(y) ), z) ) -> DEQ (append (x, z) )

DEQ (append (cons (x, D(y)), z)) ->

append (cons :Seq, EL->Seq (DEQ (x), what (y)), DEQ (z))

(DEQ(x) - DEQ(y)) I not(x - y) -> true

(ENQ(x) - ENQ(y)) _ not(x - y) -> true

(x_null:->H) [ not (in_state (x, init) ) -> true

not (prefix (x, y) ) _ prefix(x, cons:Seq, EL->Seq(y, z) ) -> true

not (prefix(cons:Seq, EL->Seq(x, z), y} ) _ prefix(x, y) -> true

in_state (xh, xst) I not (in_state (oons(xh, we: :Ev) , xst) ) -> true

prefix (x, .append (x, y) ) -> true

(in_state(xh, xst) & pz_fix(DEQ(xh) ,ENQ(xh) ))->

prefix (DEQ (discard (xt, xh) ),ENQ (discard (xt, xh) ) )



5.4. LP Proof Session of Lemm Set 1

-> thaw theory

System thawed from Itheory. frz' .

-> set axiom o

The axiom use is now 'order-equations-into-rules'.

-> set name lem_al

The name prefix is now 'lemmal'. °

-> prove append(x, append(y,z)) - append(append(x,y),z) by induction z Seq

The basis step in an inductive proof of Conjecture lemmal.l

append(append(x, y), z)---append(x, append(y, z))

involves proving the following lemma(s) :

lemmal.l.l: append(append(x, y), null) =_ append(x, append(y, null))

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.l

append(append(x, y), z)=m append(x, append(y, z))

uses the following equation(s) for the induction hypothesis:

Induct.2: append(append(x, y), c_z) ---append(x, append(y, c_z))

The system now contains 1 equation, 138 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:

append(append(x, y), c_z) -> append(x, append(y, c_z))

The system now contains 139 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.l.2: append(append(x, y), cons(c_z, vil) )

--- append(x, append(y, cons(c_z, vil) ))

[] Proved by normalization

Conjecture lemmal. 1

append(append(x, y), z) ---append(x, append(y, z))

[] Proved by induction over 'z' of sort 'Seq'.

The system now contains 1 equation, 138 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.l into the rewrite rule:

append(append(x, y), z) -> append(x, append(y, z))

The system now contains 139 rewrite rules and 12 deduction rules.

-> prove prefix (x, y) -> (append (x, sub (y, x) )my} by inch_ction y Seq

The basis step in an inductive proof of Conjecture lemmal.2

prefix(x, y) -> (append(x, sub(y, x)) -y} -> true

involves proving the following lemma(s) :

lemmal.2.1: prefix(x, null) -> (append(x, sub(null, x)) -null) -> true

which reduces to the equation

(false <-> prefix(x, null)) ] (null - x) -> true

Proof of Lenm_ lemmal.2.1 suspended.

-> resume by induction x Seq

The basis step in an inductive proof of Lemma lemmal.2.1 for the basis step in
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the proof of Conjecture lennnal.2

prefix(x, null) -> (append(x, sub(null, x)) -null) -> true

involves proving the following lennna(s) :

iommal.2.1.1: prefix(null, null) -> (append(null, sub(null, null)) -null)

-> truo

[] Proved by normalization

The induction stop in an inductive proof of Lennna lemmal.2.1 for the basis stop

. in the proof of Conjectuz_ iommal.2

prefix(x, null) -> (append(x, sub(null, x)) -null) -> true

uses the following equation(s) for the induction hypothesis:

. Induct.3: profix(c_X, null) -> (append(c_x, sub(null, c_x)) -null) -> true

The system now contains 1 equation, 139 rewrite rules, and 12 deduction rules.

Ordered equation Induct.3 into the rewrite rule:

(false <-> prefix(c_x, null)) l (c_x - null) -> true

The system now contains 140 rewrite rules and 12 deduction rules.

The induction stop involves proving the following lemma(s) :

lemmal. 2. I. 2 : prefix (cons (c_x, vil), null)

-> (append(cons(c_x, vil), sub(null, cons(c_x, vil))) -null)
-> true

[] Proved by normalization

Lennua lennnal.2.1 for the basis stop in the proof of Conjecture ionnual.2

prefix(x, null) -> (append(x, sub(null, x)) -null) -> true

[] Proved by induction over 'x' of sort 'Soq'.

The induction stop in an inductive proof of Conjecture lemmal.2

prefix(x, y) -> (append(x, sub(y, x) ) - y) -> true

uses the following equation(s) for the induction hypothesis:

Induct.4: prefix(x, c_y) -> (append(x, sub(c_y, x)) -c y) -> true

The system now contains 1 equation, 139 rewrite rules, and 12 deduction rules.

Ordered equation Znduct.4 into the rewrite rule:

(false <-> prefix(x, c_y)) J (append(x, sub(c_y, x)) - c y) -> true

The system now contains 140 rewrite rules and 12 deduction rules.

The induction stop involves proving the following lemma(s} :

lemmal.2.2: prefix(x, cons (c__y, vil) )

-> (append(x, sub (cons (c_y, vil), x)) - cons(c y, vil))

-> true

which reduces to the equation

. (false <-> prefix (x, cons (c_y, vil) ) )

I (append(x, sub(cons(c_y, vil), x)) -cons(c_y, vil))
-> true

Proof of Lmmna lemmal. 2.2 suspended.

-> resunm by induction x Soq

The basis step in an inductive proof of Lemma lemmal.2.2 for the induction step

in the proof of Conjecture lemmal.2

prefix(x, cons(c y, vil))

-> (append(x, sub(cons(c_y, vil), x)) -cons(c_y, vil))
-> true

involves proving the following iomma(s) :

lemmal.2.2.1: prefix(null, cons(c y, vil))

-> (append (null, sub (cons (c_y, vil) , null) ) - cons (c_y, vil) )
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[] Proved by no_nalization

The induction step in an inductive proof of I_mma lemmal.2.2 for the induction

step in the proof of Conjecture 1_1.2

prefix (x, cons (cy, vil) )

-> (append(x, sub(cons(c_y, vil), x)) -con.(c.._, vil))
-> true

uses the following equation(s) for the induction hypothesis:

Induct.5: profix(o_x, cons(c_y, vil))

-> (appond(c_x, sub(cons(cy, vil), c_x)) -cons(c_y, vil))
-> true

The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.

Ordered equation Induct. 5 into the rewrite rule:

(false <-> prefix (c_x, cons (c_, vil) ))

I (appond(c_x, sub(cons(c y, vil), c_x)) -cons(c y, vil))
-> true

The system now contains 141 rewrite rules and 12 deduction rules.

The induction step involves proving the following iomma(s) :

iommal.2.2.2: prefix(cons (c_x, vi2), cons (c_y, vil) )

-> (appond(cons(c x, vi2), sub (cons (c__, vil) , cons(c_x, vi2) ))

- cons(c y, vil))

-> true

which reduces to the equation

( (false <-> prefix (cons (c_x, vi2) , c_y) )

& (((c_x - c_y) <-> false) I ((vil - vi2) <-> false)))

i ((c_x - c_y) & (vil - vi2))

I (appond(cons(c_x, vi2), sub(c_y, cons(c_x, vi2)))- c_y)
-> true

Proof of Lomma iommal. 2.2.2 suspended.

-> resume hy case (c_x-c__) & (vil_vi2)

Case. 3.1

(c_vil - c_vi2) & (a_x - c__) m true

involves proving Lomma iommal. 2.2.2.1

prefix (cons (¢_x, c_vi2), cons (c__, o_vil) )

-> (appond(cons(¢_x, c_vi2), sub(cons(cy, c_vil), cons(c_x, c_vi2)))

- cons (c y, ¢_vil) )

-> true

The case system now contains 1 equation.

Deduction rule boolean. 3 : .

when x & y-- true

yield x --- true

y _ true

has been applied to equation Case.3.1:

(c_vil - c vi2) & (c_x - c y) -_ true

to yield the following equations:

Case.3.1.1: c vil - c vi2 --u true

Case.3.1.2: c_x - c.v u true

Deduction rule equality. 4 :

when x - y -_ true

yield x -- y

has _oen applied to equation Case. 3. I. 2:

c x m c_.y u true

to yield the following equations:

Case.3.1.2.1: c_x _ c_y
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Deduction rule equality. 4 :

when x m y == true

yield x --- y

has h_en applied to equation Case. 3. i. I:

cvil - c vi2 =-= true

to yield the following equations:

Case. 3.1.I.i: c vil =_ c vi2

Ordered equation Case. 3. i. 2.1 into the rewrite rule:

c_x -> c__

The case system now contains 1 equation and 1 rewrite rule.

°

Ordered equation Case• 3. I. I. 1 into the rewrite rule :

cvil -> c vi2

The case system now contains 2 rewrite rules.

Lemma lemmal•2.2.2.1 in the proof k_ cases of Lemma lemmal.2•2.2

prefix (cons (e_x, c_vi2), cons (cy, c_vil) )

-> (append(cone(c_x, =_vi2), sub (cons (c.,y, c_vil), cons(c_x, c_vi2)))

-- cons(c y, =_vil))

-> true

Case.3.1: (c_vil -- =_vi2) & (c_x -- c y)

[] Proved by rewriting (with unreduced rules).

Case. 3.2

not ((c_vil - c_vi2) & (c_x - c__7)) --- true

involves proving Lemma lemmal. 2.2.2.2

prefix (cons (c_x, ¢_vi2) , cons (c_y, c_vil) )

-> (append(cons(c_x, c_vi2), sub(cons(cy, c_vil), cons(c_x, c_vi2)))

- cons (c y, c_vil) )

-> true

The case system now contains 1 equation.

Ordered equation Case.3.2 into the rewrite rule:

((c_vil - c vi2) <-> false) I ((c_x - c y) <-> false) -> true

The case system now cof_tains 1 rewrite rule.

Lemma is=hal. 2.2.2.2 in the proof by cases of Lemma lemmal. 2.2.2

prefix (cons (c_x, =_vi2), cons(c__, c_vil))

-> (append(cons(=_x, =_vi2), sub (cons (c_y, =_vil), cons(c_x, c_vi2)))

- cons (C y, c__vil))

-> true

Case.3.2: not((c_vil = =_vi2) & (c_x = c y))

[] Proved by rewriting (with unreduced rules).

Le_na is=real.2.2.2 for the induction step in the proof of _ lemmal.2.2

prefix (cons (=_x, vi2), cons(c_y, vil))

-> (app.nd(cons(=_x, vi2), sub (cons (c_y, vil), cons (c_x, vi2) ) )

-- con8(c y, vil))

-> true

[] Proved by cases

((c_x - c_y) & (vil - vi2}) I not((c_x - c y) & (vil - vi2))

le=_al.2.2 for the induction step in the proof of Conjecture lemmal.2

prefix(x, cons (c_y, vil} )

-> (append(x, sub(cons(c_y, vil), x)) -cons(c_y, vil))
-> true

[] Proved by induction over 'x' of sort 'Seq'.

Conjecture lemmal. 2
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prefix(x, y) -> (append(x, sub(y, x)) -y) -> true

[] Proved by induction over 'y' of sort 'Seq'.

The system now contains 1 equation, 139 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.2 into the rewrite rule:

(false <-> prefix(x, y)) l (append(x, sub(y, x)) - y) -> true

The system now contains 140 rewrite rules and 12 deduction rules.

-> prove prefix(x, cons:Seq, EL->Seq(y,z))->(prefix(x,y} _ x-cons:Seq, EL->Seq(y,z)) by induction x Seq

The basis step in an inductive proof of Conjecture lemmal.3

prefix(x, cons(y, z)) -> ((cons(y, z) -x) I prefix(x, y)) -> true

involves proving the following lemma(s) :

lemmal.3.1: prefix(null, cons(y, z)) -> ((cons(y, z) -null) I prefix(null, y))

-> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal. 3

prefix(x, cons(y, z)) -> ((cons(y, z) -x) i prefix(x, y)) -> true

uses the following equation(s) for the induction hypothesis:

Induct.6: prefix(c_x, cons(y, z)) -> ((c_x- cons(y, z)) I prefix(c_x, y))
-> true

The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.

Ordered equation Induct. 6 into the rewrite rule:

(false <-> prefix(c_x, cons (y, z)) ) l (c_x - cons (y, z) ) I prefix(c_x, y)
-> true

The system now contains 141 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.3.2: prefix(cons(c_x, vil), cons(y, z))

-> ((cons(c_x, vil) -cons(y, z)) I prefix (cons (c_x, vil), y))
-> true

[] Proved by normalization

Conjecture lemmal. 3

prefix(x, cons(y, z)) -> ((cons(y, z) -x) I prefix(x, y)) -> true

[] Proved by induction over Ix' of sort _Seq'.

The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.3 into the rewrite rule:

(false <-> prefix(x, cons (y, z) ) ) i (cons (y, z) - x) I prefix(x, y) -> true

The system now contains 141 rewrite rules and 12 deduction rules.

-> prove ENQ(append(x,y) )-append(ENQ(x) ,ENQ(y) ) by induction y H

The basis step in an inductive proof of Conjecture lemmal. 4

ENQ (append (x, y) ) -- append(ENQ(x), ENQ(y) )

involves proving the following lemma(s) :

1enmal.4.1: ENQ (append (x, null) ) -- append(ENQ(x), ENQ(nuI1) )

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal. 4

ENQ (append (x, y) ) --- append(ENQ(x), ENQ(y) )

uses the following equation(s) for the induction hypothesis:

Induct.7: ENQ(append(x, c_y) ) --- append(ENQ(x), ENQ(c_y) )

The system now contains 1 equation, 141 rewrite rules, and 12 deduction rules.
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Ordered equation Induct.7 into the rewrite rule:

append (ENQ (x), ENQ (c_y)) -> ENQ (append (x, c_y) )

The system now contains 142 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.4.2: ENQ(&ppend(x, cons(c y, vil)))

us &ppend(ENQ(x), ENQ(cons (c_y, vil) ) )

which reduces to the equation

ENO(cons (append(x, ¢__y), vil) )

=_ append (ENO (x), ENO (cons (c__, vil) ))

o

Proof of Lemma lemmal. 4.2 suspended.

-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemmal. 4.2 for the induction step

in the proof of Conjecture lemmal.4

ENQ(&ppend(x, cons (c_y, vil) ) ) =_ &ppend(ENO(x), ENQ(cons (c_y, vil) ) )

involves proving the following len_a(m) :

lethal.4.2.1: ENQ(&ppend(x, cons(c_y, E(vi2) ) ) )

mm append(ENQ(x), ENQ(conm(c y, E(vi2) ) ) )

[] Proved _y normalization

lemmal.4.2.2: ENQ(&ppend(x, cons(c_y, D(vi2) ) ) )

m= append(ENQ(x), ENQ(cons(c y, D(vi2) )) )

[] Proved by normalization

The induction step in an inductive proof of Lemma lethal. 4.2 for the induction

step in the proof of Conjecture lemmal. 4

ENQ (append(x, cons (cy, vil) ) ) m= &ppend(ENQ (x), ENQ(cons (c_y, vil)) )
i s vaouous.

, Lemma lemmal. 4.2 for the induction step in the proof of Conjecture lemmal. 4

ENO (append (x, cons(c_y, vil) ) ) m= append(ENO(x), ENO(cons(c y, vil) ) )

[] Proved by induction over 'vil: :Ev' of sort 'Ev'.

Conjecture lemmal. 4

ENO (append (x, y) ) --- append(ENQ(x), ENQ(y) )

[] Proved by induction over _y' of sort _H'.

The system now contains 1 equation, 141 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.4 into the rewrite rule:

&ppend(ENQ(x), ENQ(y)) -> ENQ(&ppend(x, y) )

The system now contains 142 rewrite rules and 12 deduction rules.

-> prove DEQ(&ppend(x,y))-append(DEO(x),DEQ(y)) by induction y H

The basis step in an inductive proof of Conjecture lemmal.5

DEQ (append (x, y) ) -- append (DEQ (x), DEQ (y))

involves proving the following lemma(s) :

1emma1.5.1: DEQ(append(x, null)) --append(DEQ(x), DEO(null))

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.5

DEQ(&ppend(x, y) ) --- append(DEQ(x), DEQ(y) )

uses the following equation(s) for the induction hypothesis:

Induct.8: DEO (append (x, c y)) ---appena(DEO(x), DEO(c y))

The system now contains 1 equation, 142 rewrite rules, and 12 deduction rules.

Ordered equation Induct.8 into the rewrite rule:

append(DEQ(x), DEQ(c y) ) -> DEQ (append (x, c_y) )
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The system now contains 143 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.5.2: DEQ(append(x, cons(c y, vil)))

--- &ppend(DEQ(x), DEQ(cons (Cdy, vil) ) )

whioh reduces to the equation

DEQ(cons (append(x, c_y), vil) }

-_ append(DEQ(x), DEQ(cons (cy, vil) })

Proof of _ iml. 5.2 suspended.

-> resume by induction vil Ev

The basis step in an inductive proof of Lenmu_ len_nal.5.2 for the induction step

in the proof of Conjecture lemmal.5

DEQ (append (x, cons (c_y, vil) ) ) m &ppend(DEQ(x), DEQ(cons (c_y, vil) ) )

involves proving the following lemma(s} :

lemmal.5.2.1: DEQ(&ppend(x, cons(c_y, E(vi2) ) ) )

--- &ppend(DEQ(x}, DEQ(cons(c y, E(vi2})))

[] Proved by normalization

lemmal.5.2.2: DEQ (append (x, cons(c y, D(vi2))))

--- append(DEQ(x), DEQ(cons(c y, D(vi2} )) )

[] Proved _y normalization

The induction step in an inductive proof of Lemma lemmal.5.2 for the induction

step in the proof of Conjecture lemmal.5

DEQ (append (x, cons (c__, vil) ) ) _ append (DEQ (x), DEQ (cons (c_y, vil) ) )

is vacuous.

Lemma imi.5.2 for the induction step in the proof .of Conjecture lemmal.5

DEQ(&ppend(x, cons(¢_y, vil) ) ) -_ append(DEQ(x), DEQ (cons (=_y, vil) ) )

[] Proved by induction over _vil: :Ev' of sort _Ev'.

Conjecture iml. 5

DEQ (append (x, y} ) -_ append (DEQ (x), DEQ (y))

[] Proved by induction over _y' of sort _H'.

The system now contains 1 equation, 142 rewrite rules, and 12 deduction rules.

Ordered equation l@mmal.5 into the rewrite rule:

append(DEQ (x}, DEQ(y} ) -> DEQ(&ppend(x, y) )

The system now contains 143 rewrite rules and 12 deduction rules.

-> prove ENQ(append(cons(x,E(y)),z))-&ppend(con,:Soq, EL->Seq(ENQ(x),oloment(y}},ENQ(z)) by induction
z H

The basis stop in an inductive proof of Conjecture lemmal. 6

ENQ (append(cons (x, E (y}), z) ) --- append(cons (ENQ (x), element (y}), ENQ (z) }

involves proving the following lemma(s} :

lemmal. 6.1 : ENQ (append(cons (x, E (y)), null) )

-- append(cons (ENQ(x), element (y)), ENQ(nulI} )

[] Proved by normalization

The induction step in an inductive proof of Conjeoture lemmal. 6

ENQ (append (cons (x, E (y)), z) ) _ append (cons (ENQ (x), element (y) }, ENQ (z))

uses the following equation (s} for the induction hypothesis:

Induct.9: ENO(&ppend(cons(x, E(y) }, o_z) )

append(cons (ENQ(x), element(y) ), ENQ(o_z} )

The system now contains 1 equation, 143 rewrite rules, and 12 deduction rules.

Ordered equation Induct. 9 into the rewrite rule:

ENQ (append (cons (x, E (y)), c_z) } -> append (cons (ENQ (x) , element (y)), ENQ (c_z) }
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The system now contains 144 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lennnal.6.2: ENQ(append(cons(x, E(y) ), cons(c_z, vil) ) )

--- append(cons (ENQ(x), element (y)), ENQ(cons (c_z, vil) ) )

which reduces to the equation

ENQ (cons (&ppend (cons (x, E(y) ), c_z), vil) )

_= append(cons (ENQ(x), element (y)), ENQ(cons (c_z, vil) ) )

Proof of Lemma lemmal. 6.2 suspended.

-> resume by induction vil Ev
+

The basis step in an inductive proof of Lemma lemmal. 6.2 for the induction step

in the proof of Conjecture lemmml. 6

ENQ (append(cons (x, E (y)), cons (c_z, vil) ) )

=_ append(cons (ENQ(x) , element (y}), ENQ(cons (c_z, vil) ) )

involves proving the following lemma(s) :

lemmal.6.2.1: ENQ(&ppend(cons(x, E(y) ), cons(c_z, E(vi2) ) ))

-- append(cons (ENQ(x), element (y}), ENQ(cons (c_z, E(vi2) ) ) )

[] Proved by normalization

le._al. 6.2.2 : ENQ (append (cons (x, E (y)), cons (cz, D (vi2)) ) )

=m append(cons (ENQ(x), element (y)), ENQ(cons (c_z, D(vi2) ) ) )

[] Proved by normalization

The induction step in an inductive proof of Lemma len_nal. 6.2 for the induction

step in the proof of Conjecture lemmal. 6

ENQ(&ppend(cons (x, E (y)), cons (c_z, vil) ) )

=_ append(cons (ENQ(x) , element (y)), ENQ(cons(c_z, vil) ) )
is vacuous.

Lem_a lemmal. 6.2 for the induction step in the proof of Conjecture lemmal. 6

ENQ (append(cons (x, E (y)), cons (c_z, vil) ) }

=_ append(cons (ENQ(x), element (y)), ENQ(cons (c_z, vil) ) )

[] Proved by induction over 'vil: :Ev' of sort 'Ev'.

Conjecture lemmal. 6

ENQ (append (cons (x, E (y)), z) ) --- append (cons (ENQ (x), element (y)) , ENQ (z))

[] Proved by induction over Iz' of sort _H'.

The system now contains 1 equation, 143 rewrite rules, and 12 deduction rules.

Ordered equation lemmal. 6 into the rewrite rule:

ENQ (append (cons (x, E (y)), z) ) -> append(cons (ENQ(x), element (y)), ENQ (z))

The system now contains 144 rewrite rules and 12 deduction rules.

-> prove ENQ (append (cons (x, D (y) ), z} )=&ppend(ENQ(x) ,ENQ(z) ) by induction z H

The basis step in an inductive proof of Conjecture lemmal. 7

" ENQ (append (cons (x, D(y) ), z) ) m append(ENQ(x), ENQ(z) )

involves proving the following lemma(s} :

lemmal.7.1: ENQ(append(cons(x, D(y) ), null)) =m append(ENQ(x), ENQ(nuI1) )

• [] Proved by normalization

The induction step in an inductive proof of Conjecture iml. 7

ENQ (append (cons (x, D(y) ), z) } _= append(ENQ(x), ENQ(z) )

uses the following equation(s) for the induction hypothesis:

Induct.10: ENQ(append(eons(x, D(y) ), c_z) ) --- append(ENQ(x), ENQ(c_z) )

The system now contains 1 equation, 144 rewrite rules, and. 12 deduction rules.

Ordered equation Induct.10 into the rewrite rule:

ENQ(append(cons (x, D(y) ), a_z) ) -> ENQ(append(x, c_z} )
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The system now contains 145 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.7.2: ENQ(append(cons (x, D (y)), cons (c_z, vil) ))

--- append(ENQ(x), ENQ(oons (c_z, vil) ) )

which reduces to the equation

ENQ (cons (append(cons (x, D (y)), o_z}, vil) )

m. ENQ(cons (append(x, c_z), vil) )

Proof of Lemma lemmal.7.2 suspended.

-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemmal. 7.2 for the induction step

in the proof of Conjecture lemmal.7

ENQ(append(cons (x, D (y)), cons (oz, vil) ) )

--- append(ENQ(x), ENQ(oons (c_z, vil) ) )

involves proving the following is--ha(s) :

lemmal. 7.2.1 : ENQ (append(cons (x, D (y)), cons (oz, E (vi2)) ) )

m append(ENQ(x), ENQ(oons(c_z, E(vi2) ) ) )

[] Proved by normalization

le=_al. 7.2.2 : ENQ (append (cons (x, D (y)), cons (o_z, D (vi2)) ) )

.m append(ENQ(x), ENQ(cons(c_z, D(vi2) ) ) )

[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal. 7.2 for the induction

step in the proof of Conjecture lemmal.7

ENQ(append(oons (x, D(y) ), cons(o_z, vil) ) )

--- append(ENQ(x), ENQ(oons(c_z, vil) ))
is vacuous.

Lemma lemmal. 7.2 for the induction step in the proof of Conjecture lemmal. 7

ENQ(append(cons (x, D (y)), cons (c_z, vil) ) )

-_ append(ENQ(x), ENQ(oons(c_z, vil) ) )

[] Proved _y induction over "vil: :Ev' of sort _Ev'.

Conjecture lemmal. 7

ENQ(append(oons(x, D(y) ), z) ) --- append(ENQ(x), ENQ(z) )

[] Proved by induction over Iz' of sort _H'.

The system now oontains 1 equation, 144 rewrite rules, and 12 deduction rules.

Ordered equation lemmal. 7 into the rewrite rule:

ENQ (append (cons (x, D (y)), z) ) -> ENQ (append (x, z) )

The system now contains 145 rewrite rules and 12 deduction rules.

-> prove DEQ(append(cons(x,E(y}),z))-append(DEQ(x),DEQ(z)) by induction z H

The basis step in an inductive proof of Conjecture lemmal. 8

DEQ(append(cons (x, E(y) ), z) ) -- append(DEQ(x), DEQ(z) )

involves proving the following leue-a(s) :

lemmal.8.1: DEQ (append (cons (x, E(y) ), null) ) -- append(DEQ(x), DEQ(nulI) )

[] Proved by normalization

The induction step in an inductive proof of Conje_ure lemmal. 8

DEQ (append (cons (x, E (y)), z) ) -_ append (DEQ (x), DEQ (z))

uses the following equation(s) for the induction hypothesis:

Induot.ll: DEQ(append(oons(x, E(y) ), c_z) ) mm append(DEQ(x), DEQ(c_z) )

The system now contains 1 equation, 145 rewrite rules, and 12 deduction rules.

Ordered equation Induct. ii into the rewrite rule:

DEQ(append(cons (x, E (y)), c_z) ) -> DEQ (append (x, c_z) )
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The system now contains 146 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.$.2: DEQ(append(oons(x, E(y) ), cons(c_z, vil) ) )

J append(DEQ(x), DEQ(cons(c_z, vil) ))

which reduces to the equation

DEQ(oons (append(cons (x, E (y)), o_z), vil) )

, =J DEQ(cons (append(x, c_z), vil) )

Proof of Lemma lemmal. 8.2 suspended.

-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.8.2 for the induction step

in the proof of Conjecture lemmal. 8

DEQ (append(cons ix, E (y)), cons (c_z, vil) ) )

--- append(DEQ(x), DEQ(cons (c_z, vil) ))

involves proving the following lemma(s) :

leamal. 8.2. i : DEQ (append (cons (x, E (y)), cons (c_z, E (vi2)) ) }

J append(DEQ(x), DEQ(oons(c_z, E(vi2) ) ) )

[] Proved by normalization

1emmet. 8.2.2 : DEQ (append icons ix, E (y)), cons (o_z, D (vi2)) } }

J append(DEQ(x), DEQ(cons(o_z, D(vi2) } ) )

[] Proved by normalization

The induction step in an inductive proof of Lemma lennual. 8.2 for the induction

step in the proof of Conjecture le_unal. 8

DEQ (append (cons (x, E(y) ), cons(c_z, vil) ) )

=_ append(DEQ(x), DEQ(oons(c_z, vil) ))
is vacuous.

Lemma lemmal. 8.2 for the induction step in the proof of Conjecture lemmal. 8

DEQ (append (cons (x, E(y) ), cons(c_z, vil) ) )

-J append (DEQ (x), DEQ (cons (c_z, vil) ) )

[] Proved by induction over 'vil: :Ev' of sort 'Ev'.

Conjecture leuwaal. 8

DEQ(append(cons(x, E(y) ), z) ) =_ append(DEQ(x), DEQ(z) )

[] Proved by induction over Iz' of sort _H'.

The system now contains 1 equation, 145 rewrite rules, and 12 de_uotion rules.

Ordered equation lemmal.8 into the rewrite rule:

DEQ(append(oons (x, E (y)), z) ) -> DEQ (append (x, z))

The system now contains 146 rewrite rules and 12 deduction rules.

-> prove DEQ (append (cons (x, D (y)), z ))-append (cons :Seq, EL->Seq (DEQ (x), what (y)), DEQ (z ) ) by induction z
H

The basis step in an inductive proof of Conjecture lemmal. 9

DEQ (append (cons (x, D (y)), z) ) J append icons (DEQ (x), what (y)), DEQ (z))

involves proving the following lemma(s) :

" lemmal. 9.1 : DEQ (append(cons (x, D (y)), null) )

=_ append(cons (DEQ(x), what (y)), DEQ(nulI) )

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal. 9

DEQ(append(cons (x, D (y} }, z} } Is append(cons (DEQ(x}, what (y)), DEQ(z) )

uses the following equation(s} for the induction hypothesis:

Induct.12: DEQ (append (cons (x, D (y)), c_z) )

--- append (cons (DEQ (x), what (y)), DEQ (c_z})

The system now contains 1 equation, 146 rewrite rules, and 12 deduction rules.
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Ordered equation Induct.12 into the rewrite rule:

DEQ (append (cons (x, D (y)), c_z) ) -> append (cons (DEQ (x), what (y)), DEQ (c_z))

The system now contains 147 rewrite rules and 12 deduction rules.

The induction step involves proving the following iomma(s) :

ion_al. 9.2 : DEQ (append(cons (x, D (y)), cons (c_z, vil) ) }

append(cons (DEQ(x), what (y)), DEQ(cons (c_z, vil) ) )

which reduces to the equation

DEQ (cons (append (cons (x, D(y) ), c_z), vil) )

appor_(cons (DEQ(x) , what (y)), DEQ(oons (c_z, vil) ))

Proof of Lomma iommal.9.2 suspended.

-> resume by induction vil Ev

The basis step in an inductive proof of Lonena iommal. 9.2 for the induction stop

in the proof of Conjecture lemmal. 9

DEQ (append (cons (x, D (y)), cons (c_z, vil) ) )

-- append(cons (DEQ(x), what (y)), DEQ(cons (c_z, vil) ) )

involves proving the following ionnna(s) :

ionunal.9.2.1: DEQ(appond(cons(x, D(y)), cons(c_z, E(vi2))) )

--- append (cons (DEQ (x), what (y)), DEQ (cons (c_z, E (vi2)) ))

[] Proved by normalization

iommal.9.2.2: DEQ(appond(cons(x, D(y)), cons(c_z, D(vi2))))

--- append(cons (DEQ (x), what (y)), DEQ (cons (c_z, D (vi2)) ))

[] Proved by normalization

The induction step in an inductive proof of Lonnna Iommal. 9.2 for the induction

step in the proof of Conjecture iommal. 9

DEQ(append(cons(x, D(y) ), cons(c_z, vil) ))

append (cons (DEQ (x) : what (y)), DEQ (cons (c_z, vil) ) )
is vacuous.

Lomma iml. 9.2 for the induction step in the proof of Conjecture iommal. 9

DEQ (append (cons (x, D(y) ), cons(c_z, vil) ) )

append(cons (DEQ(x), what (y)), DEQ(cons (c_z, vil) ) )

[] Proved by induction over 'vil: :Ev' of sort IEv'.

Conjecture iommal. 9

DEQ (append (cons (x, D (y) }, z) ) o append (cons (DEQ (x), what (y)), DEQ (z))

[] Proved by induction over _z' of sort _H'.

The system now contains 1 equation, 146 rewrite rules, and 12 deduction rules.

Ordered equation iommal. 9 into the rewrite rule:

DEQ (append (cons (x, D(y)), z)) -> append (cons(DEQ(x), what(y)), DEQ(z))

The system now contains 147 rewrite rules and 12 deduction rules.

-> prove (x-y} o> (DEQ (x) -DEQ (y)) by induction x H

The basis stop in an inductive proof of Conjecture lennnal.10

(x - y) -> (DEQ(x) - DEQ(y}} -> true

involves proving the following Iomma(s) :

iml.10.1: (null - y) -> (DEQ(nulI) - DEQ(y)) -> true

which reduces to the equation

((null - y) <-> false) l (DEQ(y) - null) -> true

Proof of _ iommal.10.1 suspended.

-> resume by induction y H

The basis stop in an inductive proof of Lomma iommal.10.1 for the basis step in
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the proof of Conjecture lemmal.10

(null - y) -> (DEQ(nuI1) - DEQ(y)) -> true

involves proving the following lemma(s) :

lemmal.10.1.1: (null - null) -> (DEQ(nulI) - DEQ(nulI)) -> true

[] Prove_ by normalization

The induction step in an inductive proof of Lemma lemmal.10.1 for the basis

step in the proof of Conjecture lemmal.10

• (null- y) -> (DEQ(nulI) -DEQ(y)) -> true

uses the following equation(s) for the induction hypothesis:

Induct.13: (c_y - null) -> (DEQ(c_y) - DEQ(nulI)) -> true

The system now contains 1 equation, 147 rewrite rules, and 12 deduction rules.

Ordered equation Induct.13 into the rewrite rule:

((cy - null) <-> false) l (DEQ(c y) - null) -> true

The system now contains 148 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

le.saal.10.1.2: (cons(cy, vil) -null) -> (DEQ(cons(c__, vil)) -DEQ(nu11))
-> true

[] Prove,i by normalization

Lemma lemmal.10.1 for the basis step in the proof of Conjecture lemmal.10

(null - y) -> (DEQ(nulI) - DEQ(y)) -> true

[] Proved by induction over _y' of sort _H'.

The induction step in an inductive proof of Conjecture lemmal.10

(x - y) -> (DEQ(x) - DEQ(y)) -> true

uses the following equation(s) for the induction hypothesis:

Znduct.14: (c_x - y) -> (DEQ(c_x) - DEQ(y)) -> true

The system now contains 1 equation, 147 rewrite rules, and 12 deduction rules.

Ordered equation induct.14 into the rewrite rule:

((c_x - y) <-> false) l (DEQ(c_x) - DEQ(y)) -> true

The system now contains 148 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.10.2: (cons(c_x, vil) -y) -> (DEQ(oons(c_x, vil)) -DEQ(y)) -> true

which reduces to the equation

((cons (c_x, vil) - y) <-> false)

[ (DEQ(cons (c_x, vil)) - DEQ(y))
-> true

Proof of Lemma lemmal.10.2 suspended.

-> resume by induction y H

The basis step in an inauotive proof of Lemma lemmal.10.2 for the induction

step in the proof of Conjecture lemmal.10

(cons (c_x, vil) - y) -> (DEO(cons(c_x, vil)) - DEQ(y) ) -> true

involves proving the following lemma(s) :

lemmal.10.2.1: (cons(c_x, vil) -null) -> (DEQ(cons(c_x, vil)) -DEQ(nulI))
-> true

[] ProveKi by normalization

The induction step in an inductive proof of Lemma lemmal.10.2 for the induction

step in the proof of Conjecture lemmal.10

(cons(c_x, vil) -y) -> (DEO(cons(c_x, vil)) -DEQ(y)) -> true

uses the following equation(s) for the induction hypothesis:
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Induct.15: (c_y- cons(c_x, vil)) -> (DEQ(c__) -DEQ(cons(c_x, vil))) -> true

The system now contains 1 equation, 148 rewrite rules, and 12 deduction rules.

Ordered equation 7nduct.15 into the rewrite rule:

((c_y - cons(c_x, vil)) <-> false) l (DEQ(c__) - DEQ(cons(c_x, vil))) -> true

The system now contains 149 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.10.2.2: (cons(c_x, vil) - cons(c_y, vi2))

-> (DEQ(cons (c_x, vil) ) - DEQ(cons (c y, vi2) ))
-> true

which reduces to the equation

((c_x- c y) <-> false)

J ((vil -vi2) <-> false)

i (DEQ(cons(a_x, vil)) -DEQ(cons(c y, vi2)))
-> true

Proof of _ lemmal.10.2.2 suspended.

-> resume by induction vil Ev

The basis step in an inductive proof of Lennna lennnal.10.2.2 for the induction

step in the proof of _ lemmal.10.2

(cons (c_x, vil) - cons (c_y, vi2) )

-> (DEQ(cons(c_x, vil) ) - DEQ(cons (c y, vi2) ))
-> true

involves proving the following lemma(s) :

lemmal.10.2.2.1: (cons(c_x, E(vi3)) -cons(c_y, vi2))

-> (DEQ(cons (c_x, E (vi3)) ) - DEQ (cons (c y, vi2) ) )
-> true

which r_uces to the equation

((E(vi3) -vi2)<-> false)

l ((c_x - c_y) <-> false)

I (DEQ(c_x) - DEQ(cons(c y, vi2)))
-> true

lennnal.10.2.2.2: (cons(c_x, D(vi3)} -cons(c_y, vi2))

-> (DEQ(cons (c_x, D (vi3)) ) - DEQ(cons (c y, vi2) ) )
-> true

which reduces to the equation

((D(vi3) - vi2) <-> false)

i ((c_x - c_y) <-> false)

i (DEQ (cons (c_y, vi2) ) - cons (DEQ (c_x), what (vi3)) )
-> true

Proof of Lemma le=_al. I0.2.2.2 suspended.

-> rem._,- by case c...x-c_y

Case. 4.1 "

c_x m c_.y m true

involves proving Lennna lemmal. I0.2.2.2.1

(cons (c_x, D (vi3)) - cons (o__, vi2) )

-> (DEQ(cons (=_x, D (vi3)) ) - DEQ(cons (c__, vi2) ))
-> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x m y m true

yield x -- y

has been applied to equation Case. 4.1:

C X " C._ ,,m tEUe

to yield the following equations:

Case.4.1.1: c_x .m c y
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Ordered equation Case. 4.1.1 into the rewrite rule:

c_x -> c_y

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4:

• when x m y --- true

yield x -- y

has been applied to equation Case. 4.1:

c x i c..y am true

, to yield the following equations:

Case.4.1.2: c_x =_ c_y

Ordered equation Case. 4.1.2 into the rewrite rule:

c..x -> c..I,

Following 2 left-hand sides reduced:

((c_x - y) <.> false) # (DEQ(c_x) i DEQ(y} ) -> true

became equation Induct .14 :

((c y - y) <-> false) { (DEQ(c_x) - DEQ(y)) -> true

((c y - cons(c_x, vil)) <-> false) { (DEQ(c__) - DEQ(cons(c_x, vil)))
-> true

k_ecame equation Induct. 15 :

((c y- aons(c__, vil)) <-> false) { (DEQ(c y) -DEQ(cons(c_x, vil)))
-> true

Ordered equation induct.14 into the rewrite rule:

((c_y - y) <-> false} I (DEQ(c_y) - DEQ(y)) -> true

The system now contains 149 rewrite rules and 12 deduction rules.

• LemmuL lenunal.10.2.2.2.1 in the proof by cases of Lemma lemmal.10.2.2.2

(cons (c_x, D(vi3) ) - cons (c y, vi2))

-> (DEQ(cons (c_x, D (vi3))) - DEQ(cons (c y, vi2) } )
-> true

Case. 4.1: c_x - c_y

is NOT provable using the current partially completed system. It reduces to

the equation

((D (vi3) = vi2) <=> false)

{ (DEQ(cons (c y, vi2) ) m cons (DEQ(c y), what (vi3)) )
-> true

Proof of Lemma lemmal, i0.2.2.2.1 suspended.

-> resume by induction vi2 Ev

The basis step in an inductive proof of _ lemmal.10.2.2.2.1 in the proof by
cases of Lemma lemmal, i0.2.2.2

(cons (c_x, D (vi3)) - cons (c y, vi2} )

, -> (DEQ(cons (c_x, D (vi3)) ) - DEQ(cons (c y, vi2) )}
-> true

Case.4.1: c x m c_y

involves proving the following lemma(s} :

lemmal.10.2.2.2. I. 1

(cons (c_x, D(vi3)) m cons (c y, E(vil)) )

=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, E(vil)}))
-> true

[] Proved by normalization

len=aal.10.2.2.2. I. 2

(cons (c_x, D(vi3) ) = cons (c y, D (vil)) )

=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, D(vil))))
-> true

which reduces to the equation

( (D (vil) = D (vi3)) <-> false) I (what (vil) - what (vi3)) -> true
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Proof of _ ionnnal.10.2.2.2.1.2 suspended.

-> resume by came D (vil: :deq_rec) -D (vi3 : :doq_rec)

Case. 5.1

D(c_vil) - D(c_vi3) --- true

involves proving _ lemmal. I0.2.2.2. i. 2.1

(cons (c_x, D (c_vi3}) - cons (¢_y, D (=_vil)) )

-> (DEQ (cons (c_x, D (=_vi3) } ) - DEQ (cons (c__, D (c_vil}) ) }
-> t ,L"v.3.o

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x m y =.= true

yield x -- y

has boon applied to equation Case.5.1:

D(c_vil) m D(c_vi3) --- true

to yield the following equations:

Case.5.1.1: D(c_vil) in D(c_vi3)

Ordered equation Case. 5. I. 1 into the rewrite rule :

D (c_vil) -> D (c_vi3)

_he case syit4L_ now contains 1 rewrite rule.

le_nal.10.2.2.2.1.2.1 in the proof by cases of Lemma lemmal.10.2.2.2.1.2

(cons (c_x, D(c_vi3)) - cons (c y, D (c_vil)) )

-> (DEQ(cons (c_x, D (c_vi3)) ) - DEQ(cons (c_y, D (c_vil)) ))
-> true

Case.5.1: D(c_vil) - D(c_vi3)

[] Proved by rewriting (with unreducod rules).

Case. 5.2

not (D (c_vil) . D (c_vi3)) --- true

involves proving Lemma lennnal. I0.2.2.2. i. 2.2

(cons (c_x, D (c_vi3)) - cons (c_y, D (c_vil)) )

-> (DEQ (-cons (c_x, D (c_vi3)) ) - DEQ (cons (c_y, D (c_vil)) ))
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <=> y =_ true

yield x == y

has _on applied to equation Case.5.2:

(D(c_vil) - D(= vi3)) <.> false --- true

to yield the following equations:

Case.5.2.1: D(c_vil) = D(c_vi3) =_ false

Ordered equation Case. 5.2.1 into the rewrite rulo:

D(c_vil) - D(c_vi3) -> false

The case system now contains 1 rewrite rule.

Lemma l_mnal.10.2.2.2.1.2.2 in the proof by cases of Lemma lemmal.10.2.2.2.1.2

(cons (c_x, D(c_vi3) ) ,,, cons (c y, D(c_vil) ) )

-> (DEQ(cons(c_x, D(c_vi3))} - DEQ(cons(c_y, D(c_vil))))
-> true

Case.5.2: not (D (c_vil) m D(c__vi3))

[] Proved by rewriting (with unreduced rules).

Lemma lemmal.10.2.2.2.1.2 for the basis step in the proof of

lemmal.10.2.2.2.1

(cons (=_x, D(vi3) } - cons (c y, D (vil)) )

-> (DEQ(cons(c_x, D(vi3))) - DEQ(cons(c_y, D(vil))))
-> true

[] Proved by cases

(D(vil) - D (vi3)) I not (D(vil) m D (vi3))
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The induction step in an inductive proof of Lemma lemmal.10. 2. 2. 2.1 in the

proof by cases of Lemma lemmal.10.2.2.2

(cons (c_x, D (vi3)) - cons (c y, vi2))

-> (DEQ(cons (c_x, D (vi3)) ) - DEQ(cons (c_y, vi2) ) )
-> true

Case.4.1: c_x - c_y
I m VACUOUS.

- Lemma le_aal.10.2.2.2.1 in the proof by cases of Lemma lemmal.10.2.2.2

(cons (c_x, D (vi3}) - cons (c_y, vi2) )

-> (DEQ(cons (c_x, D (vi3}) ) - DEQ(cons (c_y, vi2) ) )
-> true

, Case.4.1: c_x =, c.,y

[] Proved by induction over 'vi2::Ev' of sort 'Ev'.

Case. 4.2

not (c-x m C.,y) ----true

involves proving Lemma lemmal. I0.2.2.2.2

(cons (c_x, D (vi3)) m cons (c_y, vi2) )

-> (DEQ(cons (c_x, D (vi3)) ) m DEQ(cons (c_y, vi2) ) )
-> true

The came system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y m true

yield x -- y

has been applied to equation Case. 4.2:

(c_x - c y) <-> false m. true

to yield the following equations:

Case. 4.2.1: c_x m c...y =-= false

Ordered equation Case. 4.2.1 into the rewrite rule:

c_x m c_.,y -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.10.2.2.2.2 in the proof by cases of Lemma lemmal.10.2.2.2

(cons (c_x, D (vi3)) - cons (c y, vi2) )

-> (DEQ(cons (c_x, D (vi3)) ) - DEQ(cons (c_y, vi2) ) )
-> true

Case. 4.2: not(c_x m c y}

[] Proved _y rewriting (with unreduced rules).

Lemma lemmal.10.2.2.2 for the basis step in the proof of Lemma lemmal.10.2.2

(cons (c_x, D(vi3} ) m cons (c y, vi2} )

m> (DEQ(cons (c_x, D (vi3)) ) m DEQ(cons (c y, vi2) ) )
-> true

[] Proved by cases
(c...= - c-y) I not(c-x - c..y)

, _ lemmal.10.2.2.1 for the basis step in the proof of Lemma lemmal.10.2.2

(cons(c-x, E(vi3) ) m cons (c_y, vi2) )

m> (DEQ(cons (c_x, E (vi3)) ) m DEQ(cons (c_y, vi2) ) )
-> true

• is NOT provable using the current partially completed system. It reduces to

the equation

((E(vi3) m vi2} <m> false}

I ( (c...x - c._'} <=,> false)

I (DEQ (c_x} - DEQ (cons (c_y, vi2) ) }
-> true

Proof of Lemma lemmal. I0.2.2.1 suspended.

-> resu=m k_ case c_xmc y

Case. 6.1

c..x= c_y-- true

80



involves proving Lemma lemmal, i0.2.2, i. 1

(cons (c_x, E (vi3)) - cons (c y, vi2) )

-> (DEQ(cons (c_x, E (vi3)) ) - DEQ (cons (c y, vi2) ) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x m y m. true

yield x -- y

has been applied to equation Case. 6.1:

c x m c y m. true

to yield the following equations:

Case.6.1.1: c_x m c_y

Ordered equation Case. 6.1.1 into the rewrite rule:

c..,.x -> c.v

The case symtem now contains 1 rewrite rule.

The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4: +

when x m y .m true

yield x --- y

has been applied to equation Case. 6.1:

c_x _ c y am true

to yield the following equations:

Case.6.1.2: c_x ms c_y

Ordered equation Case. 6.1.2 into the rewrite rule:

c..x->c.+7

Following 2 left-hand sides reduced:

((c_x - y) <-> false) [ (DEQ(c_x) - DEQ(y)) -> true

_ecame equation Induct. 14 :

((c y - y) <-> false) ] (DEQ(cx) - DEQ(y)) -> true

((c_y - cons(c_x, vil)) <-> false) [ (DEQ(c y) - DEQ(cons(c_x, vil)))
-> true

k_came equation Induct.15 :

((c_y -- cons(c y, vil)) <--> false) i (DEQ(c y) - DEQ(cons(c_x, vil)))
-> true

Ordered equation Induct.14 into the rewrite rule:

((c__ - y) <-> false) J (DEQ(c y) - DEQ(y)) -> true

The system now contains 149 rewrite rules and 12 deduction rules.

Lemm_ lemmal.10.2.2.1.1 in the proof _y cases of Lemma lemmal.10.2.2.1

(cons (c_x, E (vi3)) - cons (c_y, vi2) )

-> (DEQ(cons (c_x, E (vi3)) ) - DEQ(cons (¢_y, vi2) ))
-> true

Case. 6.1: c_x - ¢ y

is NOT provable using the current partially completed system. It reduces to

the equation

((E(vi3) - vi2) <-> false) [ (DEQ(c_y) - DEQ(cons (c_y, vi2) ) ) -> true

t

Proof of Leamaa lemmal, i0.2.2, i. 1 suspended.

-> resume by induction vi2 Ev

The basis step in an inductive proof of Le_ lea_l.10.2.2.1.1 in the proof by
cases of Lemma imi.I0.2.2.1

(cons (c_x, E (vi3)) - cons (c y, vi2) )

-> (DEQ(cons(c_x, E(vi3) )) - DEQ(cons(c_y, vi2) ) )

-> true

Case. 6.1: c_x - c_y

involves proving the following lemma(s) :

81



lemmal.10.2.2.1.I.I

(cons (c_x, E (vi3)) - cons (o_y, E (vil)))

=> (DEQ(cons(c_x, E(vi3))) - DEQ(cons(c_y, E(vil))))
-> true

[] Proved _y normalization

lemmal.10.2.2. I. i. 2

(cons (c_x, E(vi3)) - cons (c y, D(vil) ) )

=> (DEQ(cons(c_x, E(vi3))} - DEQ(cons(c y, D(vil))))
-> true

- [] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.10.2.2.1.1 in the

proof by cases of Lemma lemmal.10.2.2.1

, (cons (c_x, E (vi3)) - cons (c_y, vi2) )

=> (DEQ(cons (c_x, E (vi3)) ) - DEQ(cons (o_y, vi2) ) )
-> true

Case. 6.1: c_X m c_.y .w+'- _:
is vacuous.

Lemma lemmal.10.2.2.1.1 in the proof by oases of Le=m_ lemmal.10.2.2.1

(cons (o_x, E (vi3)) - cons (c y, vi2) )

m> (DEQ(oons(c_x, E(vi3) ) ) m DEQ(cons(c_y, vi2) ) )
-> true

Case. 6.1: o x m c_._'

[] Proved by induction over 'vi2: :Ev' of sort 'Ev'.

Case. 6.2

not (c_x - c_y) --- true

involves proving Lemma lemmal. I0.2.2. I. 2

(cons (c_x, E (vi3)) i cons (c y, vi2) )

-> (DEQ (cons (c_x; ''._-(vi3)) ) - DEQ (cons (cy, vi2) ) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y m true

yield x -- y

has been applied to equation Case. 6.2:

(c_x - c_y) <-> false m. true

to yield the following equations:

Case. 6.2.1: c_x - o__y m_ false

Ordered equation Case. 6.2.1 into the rewrite rule:

c_x - o_y -> false

The case system now contains 1 rewrite rule.

Lemma lemmal, i0.2.2.1.2 in the proof by cases of Lemma lemmal, i0.2.2.1

(cons (c_x, E (vi3}) i cons (o y, vi2) )

-> (DEQ (cons (c_x, E (vi3)) ) - DEQ (cons (o.,y, vi2) ) )
-> true

, Case. 6.2: not(c_x - c y)

[] Proved by rewriting (with unreduced roles).

Lemma le_nal.10.2.2.1 foe the basis step in the proof of _ lemmal.10.2.2

. (cons (c_x, E (vi3)) - cons (c y, vi2) )

-> (DEQ(cons (c_x, E(vi3} ) } - DEQ(cons (o y, vi2) ) )
-> true

[] Proved _ cases

(o._x- c_v) I not(c..x - c_y)

The induction step in an inductive proof of Lemma lemmal.10.2.2 for the

induction step in the proof of Le_aa lemmal.10.2

(cons (c_x, vil) - cons (c y, vi2) )

-> (DEQ(cons (c_x, vil) ) - DEQ(cons (o_y, vi2} ) }
-> true

is vacuous.
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Lomma iommal.10.2.2 for the induction step in the proof of Lemma iommal.10.2

(conm (c_x, vil) - conm (c y, vi2) )

-> (DEQ(oons(c_x, vil} ) - DEQ(oons(c_y, vi2) ) )
-> t_o

[] Proved by induction over _vil::Ev' of sort _Ev'.

Lo_na ionual.10.2 for the induction stop in the proof of Conjecture iommal.10

(ocnm(o_x, vil} - y) -> (DEQ(cons (c_x, vil) ) - DEQ(y) } -> true

[] Proved by induction over _y' of mort _H'.

Conjecture iommal, i0

(x - y} -> (DEQ(x) - DEQ(y)} -> true

[] Proved by induction over _x' of sort IH'.

The system now contains 1 equation, 147 rewrite rules, and 12 deduction rules.

Ordered equation iommal.10 into the rewrite rule:

((x - y) <-> false) [ (DEQ(x) - DEQ(y}) -> true

The system now contains 148 rewrite rules and 12 deduction rules.

-> prove (x'T) m> (ENQ (x) -ENQ (y) } _y in,orion x H

The bamim stop in an inductive proof of Conjecture iommal.ll

(x - y) -> (ENQ(x} - ENQ(y} } -> true

involvom proving the following iomma(s) :

lemmal.ll.l: (null- y) -> (ENQ(nulI) -ENQ(y)) -> true

which reduces to the equation

((null - y) <-> false} I (ENQ(y} - null) -> true

Proof of Lomma iommal, ii.i suspended.

-> ros_uuo by induction y H

The basim stop in an inductive proof of Lomma lemmal.ll.l for the basis stop in

the proof of Conjecture iommal.ll

(null - y) -> (ENQ(nulI) - ENQ(y)) -> true

involves proving the following iomma(s) :

ionu_l.ll.l.l: (null - null} -> (ENQ(nulI} - ENQ(nulI}) -> true

[] Proved by normalization

The induction mtep in an inductive proof of Lomma iommal.ll.l for the basis

stop in the proof of Conjecture lemmal.ll

(null- y) -> (ENQ(nulI} -ENQ(y)) -> true

uses the following equation(m} for the induction hypothemis:

Induct.16: (c y - null} -> (ENQ(c_y) - ENQ(nulI} ) -> true

The mymtom now contains 1 equation, 148 rewrite rules, and 12 deduction rules.

Ordered equation Induct.16 into the rewrite rule: °

((c__ - null) <-> false) I (ENQ(c_y} - null) -> true

The mymtom now contain8 149 rewrite rulom and 12 dodu_ion rulom.

The induction stop involvem proving the following iomma(s} :

lemmal.ll.l.2: (=ons(c y, vil) - null) -> (ENQ(cons(c.__, vil)) - ENQ(nulI))
-> true

[] Proved by normalization

Lo_ua Ioa_al.ll.l for the bamis stop in the proof of Conjecture iommal.ll

(null - y) -> (ENQ(null} - ENQ(y) ) -> true

[] Proved by induction over _y' of sort _H'.

The induction stop in an inductive proof of Conjecture iommal.ll

(x - y} -> (ENQ(x) - ENQ(y}} -> true
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uses the following equation(s) for the induction hypothesis:

Induct.17: (=_x - y) -> (ENQ(c_x) - ENQ(y)) -> true

The system now contains 1 equation, 148 rewrite rules, and 12 deduction rules.

Ordered equation Induct.17 into the rewrite rule:

((c_x - y) <-> false) I (ENQ(c_x) - ENQ(y)) -> true

, The system now contains 149 rewrite rules and 12 deduction rules.

The induction stop involves proving the following iomma(s) :

+

, iommal.ll.2: (cons(c_x, vil) -y) -> (ENQ(cons(c_x, vil)) -ENQ(y)) -> true

which reduces to the equation

((cons(c_x, vil) -y) <-> false)

I (ENQ(cons (c_x, vil) ) - ENQ(y) )

-> true

Proof of Lmmna lemmal.ll.2 suspended.

-> roluml _y induction y H

The basis step in an inductive proof of Lemma lenmml.ll.2 for the induction

step in the proof of Conjecture lemmal. II

(cons(c_x, vil) -y) n> (ENQ (cons (=_x, vil)) -ENQ(y)) -> true

involves proving the following lemma(s) :

io-znal.ll.2.1: (cons(c_x, vil) -null) -> (ENQ(cons(c_x, vil)) -ENQ(nulI))
-> true

[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.ll. 2 for the induction

step in the proof of Conjecture lemmal.ll

(aons(c_x, vil) -y) -> (ENQ(cons(c_x, vil)) -ENQ(y)) -> true

uses the following equation(s) for the induction hypothesis:

Induct.18: (=_y- cons(=_x, vil)) -> (ENQ(c_y) -ENQ(cons(c_x, vil))) -> true

The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Ordered equation Induct.18 into the rewrite rule:

((c y m cons(c_x, vil)) <-> false) I (ENQ(c__y) - ENQ(cons(c_x, vil))) -> true +_

The system now contains 150 rewrite rules and 12 deduction rules.

The induction stop involves proving the following iomma(s) :

lemmal.ll.2.2: (cons(c_x, vil) -cons(c y, vi2))

-> (ENQ(=ons(c_x, vil) ) - ENQ(cons(c_y, vi2) ) )
-> true

which reduces to the equation

, ((c_x- c y) <-> false)

I ((vil -vi2) <-> false)

I (ENQ(cons(c_x, vil)) m ENQ(cons(cdy , vi2)))
-> true

Proof of Lemma lemmal, ii. 2.2 suspended.

-> resumm by induction vil Ev

The basis step in an inductive proof of Leamm lemmal.ll.2.2 for the induction

step in the proof of Lemma lemmal.ll.2

(cons (c_x, vil) - cons (c_y, vi2) )

-> (ENQ(aons (c_x, vil) ) - ENQ(cons (c y, vi2)))
-> true

involves proving the following leumm (s) :

lemmal.ll.2.2.1: (cons(c_x, E(vi3)) -cons(c._y, vi2))
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m> (ENQ(cons (c_z, E(vi3) ) ) m ENQ(cons (c y, vi2) ) )
-> true

which reduces to the equation

((E(vi3) m vi2) <m> false)

l ((c_x - c y) <u> false)

[ (ENQ(cons (c y, vi2) ) m cons (ENQ(c_x), element (vi3)) )
-> true

lemmal.ll.2.2.2: (cons(c_x, D(vi3)) m cons(c_y, vi2))

m> (ENQ(cons(c_x, D(vi3))) m ENQ(cons(o y, vi2)))
-> true

which reduces to the equation

( (D (vi3) m vi2) <m> false)

l ((o_x - o y) <-> false)

I (ENQ(c_x) m ENQ(cons (o_y, vi2) ) )
-> true

Proof of Lemma lemmal.ll. 2.2.2 suspended.

-> resummby case c_x-c_y

Case. 7.1

o_x m O y m_ true

involves proving _ lesmml. Ii. 2 •2.2.1

(cons (c_x, D(vi3) ) m cons(o y, vi2))

m> (ENQ(oons (o_x, D (vi3)) ) m ENQ(oons(o_y, vi2) ) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x m y mm true

yield x -- y

has been applied to equation Case.7.1:

c_x m c__ mm true

to yield the following equations:

Case.7.1.1: c_x u c_y

Ordered equation Case. 7.1.1 into the rewrite rule:

c_x -> c_y

The case system now contains 1 rewrite rule.

The system-now contains 1 equation, 150 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x m y mm true

yield X m y

has been applied to equation Case. 7.1:

c x _ c_v _ true

to yield the following equations:

Case. 7.1.2: c x us c y

Ordered equation Case. 7.1.2 into the rewrite rule:

c_x -> c_y

Following 2 left-hand sides reduced:

((c_x - y) <-> false) [ (ENQ(c_x) - ENQ(y)) -> true

became equation Induct. 17 :

((c__ - y) <-> false) ] (ENQ(c_x) - ENQ(y)) -> true

((c y- cons(c_x, vil)) <-> false) [ (ENQ(c y) -ENQ(cons(c_x, vil)))
-> true

]:)ecame equation Induct. 18 :

((c_y - oons(c__, vil)) <-> false) [ (ENQ(c_y) - ENQ(cons(c_x, vil)))
-> true

Ordered equation Induct.17 into the rewrite rule:

((c_y - y) <-> false) l (ENQ(c_y) - ENQ(y)) -> true

The system now contains 150 rewrite rules and 12 deduction rules.
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Lemma lemmal.ll.2.2.2.1 in the proof by cases of Lemma lemmal.ll.2.2.2

(cons (c_x, D (vi3)) - cons (c y, vi2) )

->" (ENQ(cons (c_x, D (vi3))) - ENQ(cons (c y, vi2) ) )
-> true

Case. 7.1 : c_x - c_y

is NOT provable using the current partially completed system. It reduces to

the equation

((D(vi3) - vi2) <-> false) I (ENQ(c y) - ENQ(cons (c y, vi2) )) -> true

Proof of Lemma lemmal, ii. 2.2.2.1 suspended.

-> resumm by induction vi2 Ev

The basis step in an inductive proof of Len-ua lemmal.ll.2.2.2.1 in the proof by
cases of Lemma lemmal. Ii. 2.2.2

(cons (c_x, D (vi3)) - cons (c__, vi2) )

-> (ENO(cons (c_x, D (vi3)) ) - ENQ(cons (c y, vi2) ) )
-> true

Case.7.1: c_x - c_y

involves proving the following lemma(s) :

lemmal.ll. 2.2.2. i. 1

(cons (c_x, D (vi3)) - cons (c y, E (vil)) )

-> (ENO(cons(c_x, D(vi3})) - ENQ(cons(c_y, E(vil))))
-> true

[] Proved by normalization

lemmal.ll. 2.2.2. I. 2

(cons (o_x, D (vi3)) - cons (c_y, D (vil)))

-> (ENQ(cons (c_x, D (vi3))) - ENQ(cons (c y, D (vil)) ))
-> true

[] Proved _y normalization

The induction step in an inductive proof of Lennna lemmal.ll.2.2.2.1 in the

proof by cases of Lemma lemmal.ll.2.2.2

(cons (c_x, D (vi3)) - cons (c y, vi2) )

-> (ENQ(cons (c_x, D (vi3)) ) - ENQ(cons (c_, vi2) ) )
-> true

Case. 7.1: c_x - c y
is vacuous.

Lemma lemmal. II. 2.2.2.1 in the proof by cases of Lemma lemmal. II. 2.2.2

(cons (c_x, D (vi3)) - cons (c y, vi2) )

-> (ENQ(cons (c_x, D (vi3)) ) - ENQ(cons (c y, vi2} ) )
-> true

Case.7.1: c x - c_v

[] Proved by induction over Ivi2: :Ev' of sort 'Ev'.

C_se. 7.2

not (¢_x - c._) mm true

involves proving Lennna lemmal. Ii. 2.2.2.2

(cons(c x, D(vi3}} - =ons(c y, vi2))

. m> (ENQ(cons (c_x, D(vi3} ) ) m ENQ(cons (c y, vi2) ) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y _ true

yield x --- y

has been applied to equation Case. 7.2:

(c_x - c_y) <-> false Is true

to yield the following equations:

Case. 7.2.1: c_x - c y -- false

Ordered equation Case. 7.2.1 into the rewrite rule :

c_x - c y -> false

The case system now contains 1 rewrite rule.
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Lemma lemmal.ll.2.2.2.2 in the proof by cases of Lemma lemmal.ll.2.2.2

(cons (c_x, D (vi3)) - cons (c._, vi2) }

-> (ENQ(cons (c_x, D (vi3}) ) - ENQ(cons (c y, vi2} ) )
-> true

Case. 7.2: not(c_x m C y}

[] Proved by rewriting (with unreduced rules}.

Lemm_ lemmal.ll.2.2.2 for the basis step in the proof of Lemma lemmal.ll.2.2

(cons (c x, D(vi3} ) -¢ons (c__y, vi2) )

=> (ENQ(cons (c_x, D (vi3))) - ENQ(cons (c y, vi2) ))
-> true

[] Prov,.i by cases
(C__X -- C y} I not(¢_x -- c.,y}

Lemma lemmal.ll. 2. 2.1 for the basis step in the proof of Lemma lemmal.ll.2.2

(cons (c_x, E (vi3)) - cons (c_y, vi2) )

-> (ENQ(cons (c_x, E (vi3)) ) - ENQ(cons (c y, vi2} ) }
-> true

is NOT provable using the current partially completed system. It reduces to

the equation

((E(vi3) -vi2} <-> false}

I ((¢_x - c y) <-> false)

I (ENQ(cons (c _, vi2) ) m cons (ENQ(¢_x), element (vi3} } }
-> true

Proof of Lemma lemmal. Ii. 2.2.1 suspended.

-> resu.- by case =._x-c_.y

Case. 8.1

c_x m c.,y m= true

involves proving Lenm_ lemmal. II. 2.2. I. 1

(cons (c_x, E (vi3)) m ¢ons (c_y, vi2) )

=> (ENQ(cons (c_x, E (vi3)) ) = ENQ(cons (c y, vi2) ) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x - y m= true

yield x --- y

has been applied to equation Case. 8.1:

c_x m c_.y mm true

to yield the following equations:

Case.8.1.1: c_x am c_y

Ordered equation Case. 8. i. 1 into the rewrite rule:

c_x -> c__

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 150 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x m y am t z,ae

yield x am y

has been applied to equation Case. 8.1:

c_x m c V am true

to yield the following equations:

Case.8.1.2: c_x -- c_y

Ordered equation Case. 8. i. 2 into the rewrite rule:

c._x-> c..y

Following 2 left-hand sides reduced:

((c_x - y) <-> false} [ (ENQ(c_x} - ENQ(y)) -> true

be=ame equation Induct. 17 :

((c_y - y) <-> false} [ (ENQ(c_x) - ENQ(y)) -> true
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((c y- cons(c_x, vil)) <-> false) I (ENQ(c y) -ENQ(cons(c_x, vil)))
-> true

_came equation Induct.18:

((c y- cons(c__, vil)) <-> false)-J (ENQ(oj) --ENQ(cons(c_x, vil)))
-> true

Ordered equation Induct.17 into the rewrite rule:

((c y - y) <-> false) I (ENQ(o_y) - ENQ(y)) -> true

, The system now contains 150 rewrite rules and 12 deduction rules.

Lemma lemmaal. II. 2.2. I.i in the proof by cases of Lemma iommal, ii. 2.2.1

(cons (c_x, E (vi3)) - cons (c y, vi2) )

-> (ENQ(cons(c_x, E(vi3))) - ENQ(cons(c y, vi2)))
-> true

Came.8.1: c_x - c y

is NOT provable using the current partially completed system. It reduces to

the equation

((E(vi3) -vi2) <-> false)

i (ENQ(cons (= y, vi2)) - cons (ENQ(o_y), element (vi3)))
-> true

Proof of Lemma lemmal, ii. 2.2. i. 1 suspended.

-> resume by induction vi2 Ev

The basis step in an inductive proof of Lemm_ le_al.ll.2.2.1.1 in the proof by

cases of Lemma lemmal, ii. 2.2.1

(cons (c_x, E (vi3)) - cons (c_y, vi2) )

-> (ENQ(cons (c_x, E (vi3)) ) - ENQ (cons (c y, vi2) ) )

-> true

Case.8.1: c_x - c__y

involves proving the following lemma(s) :

lemmal.ll.2.2. I.i.I

(cons (c_x, E (vi3)) - cons (c_y, E (vil)) )

-> (ENQ(cons(c_x, E(vi3))) - ENQ(cons(c__, E(vil))))

-> true

which reduces to the equation

((E(vil) - E (vi3)) <-> false) I (element (vil) - element (vi3)) -> true

lemmal.ll.2.2.1.I. 2

(cons (c_x, E (vi3)) - cons (c y, D(vil) ))

-> (ENQ(cons(c_x, E(vi3))) - ENQ(cons(c_y, D(vil))))
-> true

[] Proved by normalization

PEoof of Lemma lemmnal. Ii. 2.2. I. 1.1 suEpended.

-> resumm by case E (vil: :enq rec)-E (vi3 ::enq,_rec)

Came. 9.1

E(c_vil) - E (c vi3) --- true

involves proving Lemma lemmaal. Ii. 2.2. I. I. I. 1

(cons (c_x, E (c_vi3)) - cons (c y, E (c_vil)) )

-> (ENQ (cons (c_x, E (c_vi3)) ) - ENQ (cow (c_y, E (c_vil)) ) )
-> true

The came system now contains 1 equation.

Deduction rule equality. 4 :

when x m y -- true

yield x -_ y

has been applied to equation Case. 9. I:

E (c_vil) - E(c_vi3) --- true

to yield the following equations:

Case.9.1.1: E(c_vil) _- E(c_vi3)

Ordered equation Case. 9. I. 1 into the rewrite rule:
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E (c_vil) -> E (¢_vi3)

The case system now contains 1 rewrite rule.

Lenm_ Iommal.ll. 2.2.1.I.i. 1 in the proof by cases of Lenm_ lemmal.ll. 2.2.1.i.i

(cons (c_x, E (c_vi3)) - cons (c__, E (c_vil)) )

-> (ENQ(cons(c_x, E(c_vi3))) - ENQ(cons(c y, E(c_vil))))
-> true

Case.9.1: E(c_vil) - E(c_vi3)

[] Proved by rewriting (with unreduoed rules).

Case. 9.2

not (E (c_vil) - E (c_vi3)) mm true

involves proving Lemma lemmal. Ii. 2.2. i. i. I. 2

(cons (c_x, E (c_vi3)) - cons (c y, E (c_vil)) )

-> (ENQ (cons (c_x, E (c_vi3)) ) - ENQ (cons (c_y, E (c_vil)) ) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y am true

yield x .m y

has boon applied to equation Case. 9.2:

(E (c_vil) - E(c_vi3)) <-> false .m true

to yield the following equations:

Case.9.2.1: E(c_vil) - E(c_vi3) m_ false

Ordered equation Case. 9.2.1 into the rewrite rule:

E (c_vil) - E(c_vi3) -> false

The case system now contains 1 rewrite rule.

Lemma lenunal, ii. 2.2.1.I.I. 2 in the proof by cases of Lemma lemmal.ll. 2.2.1. I.I

(cons (c_x, E (c_vi3)) - cons (c_y, E (c_vil)) )

-> (ENQ(cons(c_x, E(c_vi3})) - ENQ(cons(c y, E(c_vil))))
-> true

Case. 9.2: not (E (c_vil) - E (c_vi3))

[] ProveKi by rewriting (with unreduced rules).

Lemma lemmal.ll.2.2.1.1.1 for the basis step in the proof of Lemma
lemmal.ll. 2.2. i. 1

(cons (c_x, E(vi3) ) - cons(c y, E (vil)) )

-> (ENQ(cons(c_x, E(vi3))) - ENQ(cons(c y, E(vil))))
-> true

[] Prov,.:t by cases
(E(vil) - E(vi3)) J not(E(vil) - E(vi3))

The induction step in an inductive proof of Lomma lemmal.ll.2.2.1.1 in the

proof _y cases of Lenm_ lwmaal.ll. 2.2.1

(cons (c_x, E (vi3)) - cons (c y, vi2) }

-> (ENQ(cons (c_x, E (vi3) } ) - ENQ(cons (c y, vi2) ) )
-> true

Case. 8.1: c..x - 0.3
is vacuous.

Lennna le_mal, ii. 2.2. I.I in the proof by cases of Lemma lemmal, ii. 2.2.1

(cons (c_x, E (vi3)) - cons (c_,y, vi2) )

-> (ENQ(cons(c_x, E(vi3))) - ENQ(oons(c y, vi2)))
-> true

Case.8.1: c_x - c_y

[] Proved by induction over 'vi2: :Ev' of sort 'Ev'.

Case. 8.2

not(c.x m c y) mm true

involves proving Lemma lemmal. Ii. 2.2. i. 2

(cons (c_x, E (vi3} } - cons (c y, vi2) )

-> (ENQ(cons (c_x, E (vi3)) ) - ENQ(cons (c y, vi2) ) )
-> true
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The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y --- true

yield x --- y

has k_sen applied to equation Case. 8.2:

(c_x - c y) <-> false =_ true

to yield the following equations:

, Case. 8.2.1: c_x - c y _= false

Ordered equation Case. 8.2.1 into the rewrite rule:

c_x - c_y -> false

" The case system now contains 1 rewrite rule.

Lemma lemmal.ll.2.2.1.2 in the proof by cases of Lemma lemmal.ll.2.2.1

(cons (c_x, E (vi3)) - cons (c__y, vi2) )

-> (ENQ(cons (c_x, E (vi3)) ) - ENQ(cons (c__y, vi2) ) )
-> true

Case. 8.2: not(c_x - c_y)

[] Proved by rewriting (with unreduced rules).

Lemma lemmal.ll.2.2.1 for the basis step in the proof of Lemma lemmal.11.2.2

(cons (c_x, E (vi3)) m cons (c_y, vi2) )

-> (ENO(cons (c_x, E (vi3)) ) - ENO(cons (c_y, vi2) ) )
-> true

[]Provedby cases
(c..x - c..,,v) l not (=.._x - c_y)

The induction step in an inductive proof of Lemma lemmal.ll.2.2 for the

induction step in the proof of _ iml.ll.2

(cons (c_x, vil) - cons (c_y, vi2) )

-> (ENQ(cons (c_x, vil) ) - ENQ(cons (c_y, vi2) ))
-> true

lS VACUOUS.

Lemma lemmal.ll.2.2 for the induction step in the proof of Lemma lemmal.ll. 2

(cons (c_x, vil) - cons (c_y, vi2) )

-> (ENQ(cons (c_x, vil) ) - ENQ(cons (c y, vi2) ))
-> true +

[] Proved by induction over 'vil: :Ev' of sort _Ev' .

Le_ma lemmal.ll.2 for the induction step in the proof of Conjecture lemmal.ll

(cons(c_x, vil) -y) -> (ENQ(cons(c_x, vil)) -ENQ(y)) -> true

[] Proved by induction over 'y' of sort IH'.

Conjecture lemmal. II

(x m y) m> (ENQ(x) m ENQ(y)) -> true

[] Proved by induction over 'x' of mort _H'.

The system now contains 1 equation, 148 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.ll into the rewrite rule:

((x - y) <-> false) l (ENQ(x) - ENQ(y)) -> true

The system now contains 149 rewrite rules and 12 deduction rules.

-> prove in_state(x, init)m>(x_null:->H) by induction x H

The basis step in an inductive proof of Conjecture lemmal.12

in_state(x, init) -> (null-x} -> true

involves proving the following lemma(s) :

lemmal.12.1: in state(null, init) -> (null-null) -> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.12

in state(x, init) -> (null - x) -> true



uses the following equation(s) for the induction hypothesis:

Induct.20: in_state(c_x, init) -> (c_x- null) -> true

The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Ordered equation Induct.20 into the rewrite rule:

(false <-> in_state(c_x, init)) I (c_x - null) -> true

The system now contains 150 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.12.2: in_state(cons(c_x, vil), init) -> (cons(c_x, vil) -null) -> true

which r_uces to the equation

false <-> in_state (cons(c_x, vil), init) -> true

Proof of Lemma lemmal.12.2 suspended.

-> resume by induction vil Ev

The basis step in an inductive proof of Lennna lemmal.12.2 for the induction

step in the proof of Conjecture lennnal.12

in_state (cons (c_x, vil), init) -> (cons (c_x, vil) - null) -> true

involves proving the following lemma(s) :

lennal.12.2.1: in_state(cons(c_x, E(vi2)), init) -> (cons(c_x, E(vi2)) -null)
-> true

which r_uces to the equation

false <-> in_state (cons (c_x, E (vi2)) , init) -> true

lennnal.12.2.2: in_state(cons(c_x, D(vi2)), init) -> (cons(c_x, D(vi2)) -null)
-> true

which reduces to the equation

false <->" in_state (cons(c_x, D (vi2)) , init) -> true

Proof of Lennna lennnal. 12.2.2 suspended.

-> resunm by case in_state (cons (c_x, D (vi2 : :deq_rec) ), init)

Case. II. 1

in_state (cons (c_x, D (c vi2) ), init) -- true

involves proving Lemma lemmal. 12.2.2.1

in_state (cons (cx, D (c_vi2)), init) -> (cons (c_x, D (c_vi2)) - null) -> true

The case system now contains 1 equation.

Ordered equation Case. II. 1 into the rewrite rule:

in_state (cons (c_x, D (c_vi2)), init) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 150 rewrite rules, and 12 deduction rules.

Ordered equation Case.ll.l into the rewrite rule:

in_state (cons (c_x, D (c_vi2)), init) -> true

The system now contains 151 rewrite rules and 12 deduction rules.

Lemma lemmal. 12.2.2.1 in the proof _y cases of Lennna lemmal. 12.2.2

in_state (cons (c_x, D (c_vi2)), init) -> (cons (c_x, D (c_vi2)) - null) -> true

Case.ll.l: in_state(cons(c_x, D(c_vi2) ), init)

is NOT provable using the current partially completed system. It reduces to

the equation

false -> true

Proof of Lennna lemmal. 12.2.2.1 suspended.

-> crit c_se with Abstraction. 3
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Critical pairs between rule Case.ll.l:

in_state (cons (c_x, D (c_vi2)) , init) -> true
and rule A_straction. 3 :

(in_stack(vd, deqd(xst) ) & in_state(xh, xst) )

I (false <-> in state (cons (xh, D (vd)) , xst))

-> true

are as follows:

false <-> in_state (cons (cons (c_x, D (c_vi2)), D (vd)), init) m true
false --- true

The system now contains 1 equation, 151 rewrite rules, and 12 deduction rules.

Deduction rule equality. 3 :

when x <m> y mm truew

yield x --- y

has 1>een applied to equation lemmal.28:

false <u> in_state (cons (cons (c_x, D (c_vi2)), D (vd)), init) .m true

to yield the following equations:

lemmal.28.1: false ms in_state (cons (cons (c_x, D (c_vi2)) , D (vd)) , init)

Ordered equation lemmal.28.1 into the rewrite rule:

in_state(cons(cons(c_x, D(c_vi2) ), D(vd)), init) -> false

The system now contains 152 rewrite rules and 12 deduction rules.

The system now contains 1 equation, 152 rewrite rules, and 12 deduction rules.

Equation lemmal. 29

false -- true

is inconsistent.

Lemma lemmal.12.2.2.1 in the proof _y cases of Lemma lemmal.12.2.2

in_state(cons(c_x, D(c_vi2)), init) -> (cons(c_x, D(c_vi2)) -null) -> true
Case.ll.l: in_state(cons(c_x, D(c_vi2)), init)

[] Proved by impossible case.

Case. ii. 2

not (in_state (cons (c_x, D (c_vi2)), init) )mm true

involves proving Lemma lemmal. 12.2.2.2

in_state (cons (c_x, D (¢_vi2)), init) -> (cons (=_x, D (c_vi2)) - null) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <m> y --- true

yield x -- y

has h4en applied to equation Case.ll.2:

fal'se <m> in_state (cons (a_x, D (¢_vi2}), init) --- true

to yield the following equations:

Case. II. 2.1 : false mm in_state (cons (¢_x, D (c_vi2)), init)

Ordered equation Case. II. 2.1 into the rewrite rule :

in state (cons (c_x, D (c_vi2)) , init) -> false

The case system now contains 1 rewrite rule.

Lenena lemmal. 12.2.2.2 in the proof by cases of Lennna lethal. 12.2.2

" in_state(cons(c_x, D(c_vi2)), init) m> (cons(c_x, D(c_vi2)) m null) -> true

Case.ll.2: not(in_state(cons(c_x, D(c_vi2)), init))

[] Proved by rewriting (with unreduced rulem).

Lemma lemmal.12.2.2 for the basis step in the proof of _ lemmal.12.2

in_state(cons(c_x, D(vi2)), init) m> (cons(c_x, D(vi2)) -null) -> true

[] Proved by cases

in_state (cons (c_x, D (vi2)) , init) i not (in_state (cons (c_x, D (vi2)), init) )

Lemma lemmal.12.2.1 for the basis step in the proof of Lenm_ lenunal.12.2

in_state (cons (c_x, E (vi2)) , init) m> (cons (c_x, E (vi2)) m null) -> true

is NOT provable using the current partially completed system. It reduces to
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the equation

false <-> in_state (cons (c_x, E (vi2)), init) -> true

Proof of Lomma lemmal. 12.2.1 suspended.

Critical-pair oom_utation a_andoned because a theorem has boon proved.

Computed 2 now critical pairs. Added 2 of them to the system.

-> rosuwm by case in_state (cons (c_x,E (vi2: :enq_roc) ) ,init)

Case. 12.1

in_state (cons (o_x, E (c_vi2)), init) mm true

involves proving Lemma lemmal. 12.2. i. 1

in_state (cons (c_x, E (c_vi2)) , init) -> (cons (o_x, E (c_vi2)) - null) -> true

Tho ¢aso system now contains 1 equation.

Ordered equation Case. 12.1 into the rewrite rule:

in_state (cons (c_x, E (c_vi2)) , init) -> true

The caso system now contains 1 rewrite rule.

The system now contains 1 equation, 150 rewrite rules, and 12 deduction rules.

Ordered equation Case ol2.1 into the rewrite rule:

in_state (cons (o_x, E (o_vi2)) , init) -> true

The system now contains 151 rewrite rules and 12 deduction rules.

lemmal.12.2.1.1 in the proof hy cases of Lomma lemmal.12.2.1

in_state (cons (c_x, E (c_vi2)), init) u> (cons (¢_x, E (c_vi2)) - null) -> true

Case.12.1: in_stato(cons(c_x, E(c_vi2)), init)

is NOT provable using the current partially completed system. It reduces to

the equation

false -> true

Proof of Lo_na iommal.12.2. I.I suspended.

-> crit case with Abstraction.2

Critical pairs between rule Case.12. i:

in_state (cons (o_x, E (c_vi2) } , init) -> true
and rule &_straction. 2 :

(in(us, onqd(xst} ) & in state(xh, xst) )

[ (false <-> in state (cons (xh, E (us)), xst) )

-> true

are as follows :

false <-> in_state (cons (cons (c x, E (c_vi2)), E (us)), init) nm true
false _ t_o

The system now contains 1 equation, 151 rewrite rules, and 12 deduction rules.

Deduction rule equality. 3 :

when x <n> y m= true

yield x -- y

has boon applied to equation Iommal. 30:

false <u> in_state (cons (cons (c_x, E (c_vi2)), E (uo}), init) m, true

to yield the following equations:

iommal.30.1 : false is in_state (cons (cons (o_x, E (c_vi2}), E (us)) , init)

Ordered equation iommal. 30.1 into the rewrite rule :

in_state (cons (cons (=_x, E (o_vi2}), E (us)), init) -> false

The system now contains 152 rewrite rules and 12 deduction rules.

The system now contains 1 equation, 152 rewrite rules, and 12 deduction rules.

Equation lemmal. 31
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false =_ true

is inconsistent.

Lemma lenzual. 12.2. i. 1 in the proof by cases of Lemma lemmal. 12.2.1

in_state (cons (c_x, E (=_vi2)), init) m> (cons (c_x, E (c_vi2)) - null) -> true

Case. 12.1: in_state (cons (c_x, E (c vi2) ), init)

[] Proved by i_possihle case.

Case. 12.2

not(in_state(cons(c_x, E(c_vi2) ), init) ) mm true

involves proving _ lemmal. 12.2.1.2

in_state (cons (c_x, E (=_vi2)), init) m> (cons (c_x, E (c_vi2)) m null) -> true

The case system now contains "I equation.

Deduction rule equality. 3 :

when x <m> y mm true

yield x -- y

has been applied to equation Case.12.2:

false <-> in state(cons(c-x, E(c_vi2)), init) mm true

to yield the following equations:

Case. 12.2.1: false mm in_state (cons (c_x, E (c_vi2)), init)

Ordered equation Case. 12.2.1 into the rewrite rule:

in_state (cons (=_x, E (=_vi2)), init) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal. 12.2. I. 2 in the proof by cases of Lenana lenanal. 12.2.1

in_state (cons (c_x, E (c_vi2)), init) m> (cons (c_x, E (c_vi2)) m null) -> true

Case. 12.2 : not (in_state (cons (c_x, E (c_vi2)), init) )

[] Proved by rewriting (with unreduced rules).

Lennna lemmal.12.2.1 for the basis step in the proof of Lemma lenunal.12.2

in_state (cons (c-x, E (vi2)), init) -> (cons (c-x, E (vi2)) - null) -> true

[] Provedby cases
in_state (cons (c_x, E (vi2)) , init) I not (in_state (cons (c-x, E (vi2)) , init) )

The induction step in an inductive proof of Lenuna lenm_l.12.2 for the induction

step in the proof of Conjecture lemmal.12

in_state(cons(c_x, vil), init) -> (cons(c_x, vil) m null) -> true
is vacuous.

Immuual.12.2 for the induction step in the proof of Conjecture lenunal.12

in_state(cons(c_x, vil), init) m> (cons(c_x, vil) m null) -> true

[] Proved by induction over Svil: :Ev' of sort SEv'.

Conjecture lenmal. 12

in state(x, init) m> (null m x) -> true

[] Proved by induction over Sx' of sort sH'.

The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.12 into the rewrite rule:

(false <m> in state(x, init)) I (null m X) --> true

The system now contains 150 rewrite rules and 12 deduction rules.
I

Critical-pair computation _bandoned because a theorem has k_en proved.

Computed 2 new critical pairs. Added 2 of them to the system.

-> prove prefix (cons _Seq, EL->Seq (x, z), y) re>prefix (x, y) by induction x

Please enter a sort for the induction: Seq

The basis step in an inductive proof of Conjecture lemmal.13

prefix (cons (x, z), y) -> prefix(x, y) -> true

involves proving the following lemma(s) :
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lennnal.13.1: prefix(cons(null, z), y) -> prefix(null, y) -> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal. 13

prefix(cons(x, z}, y) -> prefix(x, y) -> true

uses the following equation(s) for the induction hypothesis:

Induct.24: prefix(cons(c_x, z), y) -> prefix(c_x, y) -> true

The system now contains 1 equation, 151 rewrite rules, and 12 deduction rules.

Ordered equation Induct.24 into the rewrite rule:

(false <-> prefix (cons (c_x, z) , y) ) J prefix(c_x, y) -> true

The system now contains 152 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.13.2: prefix(cons(cons(c_x, vil), z), y) -> prefix(cons(c_x, vil), y)
-> true

which reduces to the equation

(false <-> prefix(cons (cons (c_x, vil), z), y) )

J prefix (cons (c_x, vil), y)
-> true

Proof of Lama lommal.13.2 suspended.

-> resume by induction y Seq

The basis step in an inductive proof of Lemma lennnal.13.2 for the induction

step in the proof of Conjecture len_nal.13

prefix(cons(cons(c_x, vil) , z) , y) -> prefix(cons(c_x, vil) , y) -> true

involves proving the following lemma(s) :

lennnal.13.2.1: prefix(cons(cons(c_x, vil), z), null)

-> prefix(cons(c_x, vil), null)
-> true

[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.13.2 for the induction

step in the proof of Conjecture lennnal.13

prefix (cons (cons (c_x, vil), z) , y) -> prefix (cons (c_x, vil) , y} -> true

uses the following equation (s) for the induction hypothesis :

Znchact.25: prefix(cons(cons(c_x, vil) , z) , c_y) -> prefix (cons (c_x, vil), c y)
-> true

The system now contains 1 equation, 152 rewrite rules, and 12 deduction rules.

Ordered equation Induct. 25 into the rewrite rule:

(false <-> prefix (cons (cons (c_x, vil), z), c_y) )

J prefix(cons (c_x, vil), c y)
-> true o

The system now contains 153 rewrite rules and 12 deduction rules.

The induction step involves proving the following lomma(s) :

lemmal.13.2.2: prefix(cons(cons(c_x, vil}, z), cons(c_y, vi2) )

-> prefix (cons(c_x, vil}, cons (c y, vi2) )
-> true

which reduces to the equation

((false <-> prefix (cons (cons (c_x, vil) , z), c y) )

& (((c_y - cons (c_x, vil)) <-> false)

J ((vi2 - z) <-> false}))

I ((c_x - c y) & (vil - vi2))

J prefix (cons (c_x, vil), c y)
-> true
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Proof of Lemma lemmal. 13.2.2 suspended.

-> resume by case prefix (cons (cons (e_x, vil), z), c_y)

Case. 13.1

prefix (cons (cons (c_x, evil), e_z), c__) am true

involves proving Lemma lemmal. 13.2.2.1

prefix (cons (cons (e_x, e_vil) , c_z}, cons (cy, vi2) )

-> prefix(cons(c_x, evil) , oons(c__y, vi2) )
-> true

The case system now contains 1 equation.

Ordered equation Case. 13.1 into the rewrite rule :

prefix (cons (cons (c_x, c_vil) , e_z} , c y) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation Case. 13.1 into the rewrite rule:

prefix (cons (cons (e_x, e_vil), e_z), c y) -> true

The system now contains 154 rewrite rules and 12 deduction rules.

Lemma lemmal. 13.2.2.1 in the proof by cases of Lennna lemmal. 13.2.2

prefix(cons(cons(c_x, c_vil) , e_z), cons(c_y, vi2) )

-> prefix (cons (c_x, c_vil), cons (oy, vi2) )
-> true

Case.13.1: prefix(cons(cons(c_x, c_vil), c_z), c y)

is NOT provable using the current partially completed system. It reduces to

the equation

((c_vil - vi2) & (c_x - c_y}) I prefix(cons(c_x, c_vil), c_y) -> true

Proof of Lemma lennnal.13.2.2.1 suspended.

-> crit ease with induct

Critical pairs k_tween rule Case.13.1:

prefix(cons (cons (c_x, evil), e_z), c_y} -> true
and rule Induct.25:

(false <-> prefix (cons (cons (c_x, vil), z), c_y) )

I prefix(cons (c_x, vil), c_y)
-> true

are as follows:

prefix(cons (c_x, evil), c_y) --- true

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation leEmal.35 into the rewrite rule:

prefix (cons (c_x, c_vil), c y} -> true

L

The system now contains 155 rewrite rules and 12 deduction rules.

Lenena lemmal.13.2.2.1 in the proof by eases of Lemma le_nal.13.2.2

prefix (cons (sons (c_x, c_vil), e_z), cons (c_y, vi2) )

-> prefix(cons (c_x, evil), cons (c_y, vi2) )
-> true

Case.13.1: prefix(cons(cons(c_x, c_vil), c_z), c y)

[] Proved by rewriting.

Case. 13.2

not (prefix (cons (cons (e_x, evil), c_z), c_y) ) _ true

involves proving Lemma lemmal. 13.2.2.2

prefix(cons(cons(c_x, c_vil) , c_z), cons(c_y, vi2) )

-> prefix (cons (c_x, c_vil) , cons (c_y, vi2) )
-> true
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The case system now contains 1 equation.

D@du=tion rule equality. 3 :

when x <-> y m true

yield x -- y

has _men applied to equation Case.13.2:

false <-> prefix (cons (cons (c_x, c_vil), c z), c_y) --true

to yield the following equations:

Case.13.2.1: false- prefix (cons (cons (c_x, c_vil), c_z), c y}

Ordered equation Case. 13.2.1 into the rewrite rule:

prefix (cons (cons (c_x, c_vil), c_z), c y) -> false

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Deduction rule equality. 3 :

when x <-> y =-= true

yield x -- y

has been applied to equation Case.13.2:

false <-> prefix (cons (cons (c_x, c_vil), c_z), c y) _ true

to yield the following equations:

Case.13.2.2: false m prefix (cons (cons (c_x, e vil), c_z), c y)

Ordered equation Case. 13.2.2 into the rewrite rule:

prefix (cons (cons (c_x, c_vil), c_z), c y) -> false

The system now contains 154 rewrite rules and 12 deduction rules.

Lemma lenenal.13.2.2.2 in the proof hy cases of Lennua le_nal.13.2.2

prefix (cons (cons (c_x, c_vil) , c_z) , cons (c_y, vi2) )

-> prefix (cons (c_x, =_vil), cons (cy, vi2) )
-> true

Case.13.2: not (prefix(cons (cons(c_x, ¢_vil) , c_z) , c__) )

is NOT prov_le using the current partially completed system. It reduces to

the equation

((=_vil - vi2) & (c_x - c_y))

I ((c y - cons(c_x, c_vil)) <-> false)

I ((c_z - vi2) <-> false)

I prefix(cons(c_x, c_vil), c_y)
-> true

Proof of Lenw_ lemmal.13.2.2.2 suspendsd.

Critical-pair computation a_andoned k_cause a theorem has been proved.

Confuted 1 new critical pair. Added 1 of them to the system.

-> resume by case c_z_vi2: :EL

Case. 14.1

¢ vi2 - = z _ true

involv--es prov_ng Lenmm lemmal. 13.2.2.2.1

prefix(cons (cons (c_x, c_vil), c_z), cons (cy, c_vi2) }

-> prefix (cons (c_x, evil), cons (c_y, c_vi2) )
-> tEue

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x m y ._ true

yield x -- y

has _en applied to equation Case.14.1:

C vi2 -- c Z _ true
0

to yield the following equations:

Case. 14.1.I: c vi2 _ c z

Ordered equation Case. 14. i. 1 into the rewrite rule :
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c vi2 -> c z

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4:

when x g y -- true

yield x -- y

, has been applied to equation Case.14.1:

c vi2 m c z .m true

to yield the following equations:

Case.14.1.2: c vi2 m. c z

Ordered equation Case. 14. i. 2 into the rewrite rule:
c vi2 -> c z

The system now contains 155 rewrite rules and 12 deduction rules.

Lemma lemmal.13.2.2.2.1 in the proof by cases of Lemma leumaal.13.2.2.2

prefix (cons (cons(c_x, c_vil) , c_z) , cons (cy, c_vi2) )

-> prefix(cons(c_x, c_vil) , cons(cy, c_vi2) )
-> true

Case. 14.1: c vi2 - c z

is NOT provable using the current partially completed system. It reduces to

the equation

((c_vil - c_z) & (c_x - c_y))

l ((c y - cons (c_x, c_vil) ) <-> false)

{ prefix(cons(c_x, c_vil), c y)
-> true

Proof of Lemma lemmal. 13.2.2.2.1 suspended.

-> resume by case c__v_cons :Soq, EL->Soq(c_x, c_vil)

Case. 15.1

c_y " cons (c_x, c_vil) m_ true

involves proving Lemma lemmal. 13.2.2.2. I. 1

prefix(cons (cons (c_x, =_vil) , c_z) , cons (cy, c_vi2) )

-> prefix (cons (c_x, c_vil) , cons (cy, c_vi2) )
-> true

T'he case system now contains 1 equation.

Deduction rule equality. 4 :

when x - y mm true

yield x -- y

has been applied to equation Case.15.1:

c_y - cons(c_x, c_vil) ---true

to yield the following equations:

Case.15.1.1: c__ u cons(c_x, c_vil)

Ordered equation Case. 15. I. 1 into the rewrite rule :

c__ -> cons (c_x, c_vil)

The case system now contains 1 rewrite rule.

• Lemma lem_al. 13.2.2.2. I. 1 in the proof by cases of Lemma lemmal. 13.2.2.2.1

prefix(cons (cons (c_x, c_vil) , c_z) , cons (cy, c_vi2) )

-> prefix (cons (c_x, c_vil), cons (c_y, c_vi2) )
-> tz_e

Case. 15.1 : c_y - cons (c_x, c_vil)

[] Prove<i by rewriting (with unreduced rules).

Case. 15.2

not (c y - cons(c_x, c_vil)) -_ true

involves proving Lemma iommal. 13.2.2.2. I. 2

prefix (cons (cons (c_x, c_vil) , c_z) , cons (c_y, c_vi2) )

-> prefix (cons (c_x, c_vil), cons (c_y, c_vi2) )
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-> ta-uo

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y _ true

yiola x -- y

has boon applioa to equation Case.15.2:

(¢_y - ¢ons(¢_x, =_vil) ) <-> false --- true

to yield the following equations:

Case.15.2.1: ¢__- cons(=_x, c_vil) us false

Oraored equation Case. 15.2.1 into the rewrite rule:

c_y - cons(c_x, c_vil) -> false

The case system now contains 1 rewrite rule.

Lomma iommal. 13.2.2.2.1.2 in the proof by cases of Lomma ion_al.13.2.2.2.1

prefix (cons (cons (c_x, ¢_vil), c_z) , cons (c__, c_vi2) )

n> prefix (cons (c_x, c_vil), cons (c_y, c_vi2) )
-> true

Case. 15.2 : not (c_y - cons (¢_x, ¢_vil) )

[] Proved _y rewriting (with unreaucea rules}.

iommal.13.2.2.2.1 in the proof by cases of LoE_ Iommal.13.2.2.2

prefix (cons (cons (c_x, =_vil), ¢_z), =ons(¢ y, c_vi2))

8> prefix (cons (c_x, ¢_vil) , ¢ons (¢_y, c_vi2) )
-> true

Case. 14.1: = vi2 - c z

[] Proved by cases

(c y - cons(c_x, c_vil)) J not (c_y - cons(c_x, =_vil))

Case. 14.2

not (c_vi2 -, c_z) _ true

involves proving Lomma Iommal. 13.2.2.2.2

prefix (cons (cons (¢_x, =_vil}, =_z) , cons (cy, c_vi2) )

-> prefix (cons (c_x, c_vil), cons (cy, c_vi2) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y --- true

yield x -- y

has boon applied to equation Case.14.2:

(=_vi2 - =_z) <-> false -_ true

to yield the following equations:

Case.14.2.1: c vi2 - c z m false

Ordered equation Case. 14.2.1 into the rewrite rule:
c vi2 - c z -> false

The case system now contains 1 rewrite rule.

Lomma iommal. 13.2.2.2.2 in the proof by c_sos of Lomma iommal. 13.2.2.2

prefix (cons (cons (c_x, c_vil), =_z) , cons (c_y, c_vi2) )

-> prefix (cons (¢_x, ¢_vil), cons (cy, c_vi2) )
-> t_-_o

Case.14.2: not (¢_vi2 - c_z)

[] Proved by rewriting (with unroauced rules).

Lomma iommal.13.2.2.2 in the proof by cases of Lom_a iommal.13.2.2

prefix (cons (cons (c_x, c_vil) , c_z) , cons (cy, vi2) )

-> prefix (cons (c_x, ¢_vil) , cons (c__, vi2) )
-> true

Case.13.2: not _profix (cons (¢ons (=_x, =_vil), ¢_z), c y)}

[]Proved _ cases
(C_Z -- vi2) I not (c_Z -- vi2)
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Lamina lemmal.13.2.2 for the induction step in the proof of Lamina lemmal.13.2

prefix (cons (cons (c_x, vil), z) , cons (c y, vi2) )

-> prefix (cons (c_x, vil), cons (c y, vi2) )
-> true

[] Proved by cases
prefix (cons (cons (c_x, vil) , z) , c y)

{ not (prefix (cons (cons (c_x, vil), z), c__) )

, Lemma lemmal.13.2 for the induction step in the proof of Conjecture lemmal.13

prefix(cons (cons (c_x, vil), z), y) -> prefix(cons (c_x, vil), y) -> true

[] Proved by induction over 'y' of sort 'Seq'.

, Conjecture lemmal. 13

prefix (cons (x, z) , y) -> prefix(x, y) -> true

[] Proved by induction over Sx' of sort SSeq'.

The system now contains 1 equation, 151 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.13 into the rewrite rule:

(false <-> prefix (cons (x, z), y) ) { prefix(x, y) -> true

The system now contains 152 rewrite rules and 12 deduction rules.

-> prove prefix(cons:Seq, EL->Seq (x, z) ,y) ->prefix (x, y) _y induction x Seq

The basis step in an inductive proof of Conjecture lemmal.14

prefix (cons (x, z) , y) -> prefix (x, y) -> true

involves proving the following leuna(s) :

lemmal.14.1: prefix(cons(null, z), y) -> prefix(null, y) -> true

[] Proved by normalization

The induction stQp in an inductive proof of Conjecture lemmal.14

prefix (cons (x, z) , y) -> prefix (x, y) -> true

uses the following equation(s) for the induction hypothesis:

Induct.is prefix(cons(c_x, z), y) -> prefix(c_x, y) -> true

The system now contains 1 equation, 138 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l into the rewrite rule:

(false <-> prefix (cons (c_x, z), y)) { prefix(c_x, y) -> true

The system now contains 139 rewrite rules and 12 deduction rules.

The induction step involves proving the following le_na(s) :

lemmal.14.2: prefix (cons (cons (c_x, vil), z), y) -> prefix(aons(c_x, vil), y)
-> true

which reduces to the equation

(false <-> prefix(cons (cons (c_x, vil), z) , y) )

• { prefix(cons(c_x, vil), y)
-> true

Proof of Lamina is=real. 14.2 suspended.

-> resume by induction y Seq

The basis step in an inductive proof of Lamina lemmal.14.2 for the induction step

in the proof of Conjecture lemmal.14

prefix (cons (cons (c_x, vil) , z) , y) -> prefix (cons (c_x, vil) , y) -> true

involves proving the following lemma(s) :

lemmal.14.2.1: prefix(cons(cons(c_x, vil), z), null)

-> prefix(cons (c_x, vil), null)
-> true

[] Proved by normalization
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The induction step in an inductive proof of Lomma iom_al.14.2 for the induction

step in the proof of Conjecture lenenal.14

prefix(cons (cons (o_x, vil), z) , y) -> prefix(cons (c_x, vil) , y) -> true

uses the following equation(s} for the induction hypothesis:

Induct. 2 : prefix (cons (cons (c_x, vil), z), o_y) -> prefix (cons (o_x, vil), c_y}

-> true

The system now contains 1 equation, 139 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:

(false <-> prefix (cons (cons (c_x, vil), z), c y) )

I prefix(cons (c_x, vil), o y)
-> true

The system now contains 140 rewrite rules and 12 deduction rules.

The induction stop involves proving the following iomma(s) :

iommal.14.2.2: profix(oons(cons(c_x, vil), z), =ons(c__, vi2) )

n> prefix(cons(c_x, vil), cons (c y, vi2))
-> true

which reduces to the equation

( (false <-> prefix(oons(cons(c_x, vil), z), c_y) )

& (((c_y - cons (c_x, vil}) <-> false}

i ((vi2 - z) <-> false)))

[ ((c_x - c_y) & (vil - vi2))

I prefix (cons (c_x, vil), c y)
-> true

Proof of Lonnna ionnnal. 14.2.2 suspended.

-> resume by ease prefix (cons (cons (c_x, vil), z), c y)

Case. I. 1

profix(oons(oons(o_x, o_vil), o_z), c__) _n true

involves proving Lonuna iommal. 14.2.2.1

prefix (cons (cons (c_x, o_vil), c_z) , cons (c_y, vi2) )

-> prefix (cons (o_x, c_vil), cons (c_y, vi2) )
-> true

The ease system now contains 1 equation.

Ordered equation Caso.l.l into the rewrite rule:

prefix(cons (cons (o_x, e vil), o_z), c y} -> true

The ease system now contains 1 rewrite rule.

The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.

Ordered equation Case. I.i into the rewrite rule:

prefix (cons (cons (c_x, c_vil), c_z}, c_y} -> true

The system now contains 141 rewrite rules and 12 deduction rules.

f

io_naI.14.2.2.1 in the proof by oases of Lomma iommal.14.2.2

prefix (cons (cons (c_x, c_vil) , c_z) , cons (=__, vi2) )

-> prefix (cons (o_x, c_vil), cons(c y, vi2) )
-> true

Case.l.l: prefix(cons (cons (cx, c_vil) , c_z} , c__7)

is NOT provable using the current partially completed system. It reduces to

the equation

((c_vil - vi2) & (o_x - c y}} I prefix (cons (c_x, c_vil), c y} -> true

Proof of Lomma le=_al. 14.2.2.1 suspended.

-> orit ease with induct
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Critical pairs between rule Case.l.l:

prefix(cons (cons (c_x, ¢_vil), c_z) , c_y) -> true
and rule Induct. 2 :

(false <-> prefix (cons (cons (c_x, vil), z), c y) )

[ pr.fix(cons(c_x, vil), c_y}
-> true

are as follows:

prefix (cons (c_x, c_vil), c_y) ---true

The system now contain. 1 equation, 141 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.2 into the rewrite rule:

prefix (cons (c_x, c_vil), c y) -> truef

The system now contains 142 rewrite rules and 12 deduction rules.

Lemma le_mal.14.2.2.1 in the proof by cases of Lemma lemmal.14.2.2

prefix (cons (cons (c_x, c_vil), c_z), cons (cy, vi2) )

=> prefix (cons (c_x, c_vil) , cons (cy, vi2) )
-> true

Case.l.l: prefix(cons (cons (c_x, c_vil}, c_z), c_y)

[] Proved by rewriting.

Case. I. 2

not (prefix (cons (cons (c_x, c_vil), c_z), c y) ) =_ true

involves proving Lemma lemmal. 14.2.2.2

prefix (cons (cons (c_x, c_vil) , c_z), cons (c_y, vi2) )

-> prefix (cons (c_x, c_vil), cons (c_y, vi2) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y ms true

yield x == y

has been applied to equation Case.l.2:

false <=> prefix(cons(cons(c_x, c_vil), c_z), c_y) _= true

to yield the following equations:

Case.l.2.1: false as prefix(cons(cons(c_x, c_vil), c_z), c y)

Ordered equation Case. i. 2.1 into the rewrite rule:

prefix (cons (cons (c_x, c_vil) , c_z) , c.,y) -> false

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.

Deduction rule equality. 3 :

when x <-> y us true

yield x -- y

has been applied to equation Case.l.2:

. false <-> prefix(cons(cons(c_x, ¢_vil), c_z), c y) =-= true

to yield the following equations:

Case.l.2.2: false =_ prefix(cons(cons(c_x, c_vil), c_z), c_,y)

Ordered equation Case. I. 2.2 into the rewrite rule:

• prefix (cons (cons (c_x, ¢_vil), c_z) , c y) -> false

The system now contains 141 rewrite rules and 12 deduction rules.

Lemma leamal.14.2.2.2 in the proof by cases of Lends lemmal.14.2.2

prefix (cons (cons (c_x, c_vil), c_z) , cons (c_y, vi2) )

-> prefix (cons (c_x, c_vil), cons (c_,y, vi2) )
-> true

Case.l.2: not (prefix (cons (cons (c_x, c_vil), c_z}, c_y))

is NOT provable using the current partially completed system. It reduces to

the equation

((c_vil = vi2) & (c_x = c_y))
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I ( (c_y - cons (c_x, c_vil) ) <-> false)

I ( (c_z - vi2) <-> false)

I prefix (cons (c_x, c_vil), c_y)
-> true

Proof of Lomma ieii.14.2.2.2 8uipondod.

Critical-pair computation a_andonod because a theorem has _oen proved.

Computed 1 new critical pair. Added 1 of them to the system.

-> =esI by case (c_ymcons(c_x,=_vil))&(c_zmvi2: :EL)

Case. 2.1

(c_vi2 - c_z) & (c_y I cons(c_x, c_vil)) I true

involves proving Lomma leIl. 14.2.2.2.1

prefix (cons (cons (c_x, c_vil) , ¢_z) , cons (ay, c_vi2) )

-> prefix (cons (c_x, =_vil) , cons (a_y, ¢vi2) )
-> true

The case system now contains 1 equation.

Deduction rule boolean. 3 :

when x & y mm true

yield x um true

y mm truo

has boon applied to equation Case.2.1:

(¢_vi2 - c_z) & (c_y - cons(o_x, c_vil)) u true

to yield the following equations:

Case. 2.1.i: c vi2 - c z --- true

Case.2.1.2: c_y - cons(c_x, c_vil) m true

Deduction rule equality. 4 :

when x - y m_ true

yield x m. y

has boon applied to equation Case.2.1.2:

c_y - cons (c_x, c_vil) R true

to yield the following equations:

Case.2.1.2.1: c_X--- cons(c_x, c_vil)

Deduction rule equality. 4:

when x m y ms true

yield x .m y

has _>oen applied to equation Case. 2. i.I:

c vi2 m C Z mm true

to yield the following equations:
Case.2.1.1.1: c vi2 -- c z

Ordered equation Case. 2. i. i. 1 into the rewrite rule :

c vi2 -> c z

The case system now contains 1 equation and 1 rewrite rule.

Ordered equation Case. 2.1.2.1 into the rewrite rule:

c__ -> cons(c_x, = vil)

The case system now contains 2 rewrite rules.

Lomma le_mal.14.2.2.2.1 in the proof _y cases of Lomma iommal.14.2.2.2

prefix (cons (cons (c_x, c_vil) , c_z) , cons (cy, c_vi2) )

-> prefix (cons (c_x, ¢_vil) , cons (ay, c_vi2) )
-> true

Case.2.1: (c_vi2 - c_z) & (c_y - cons(c_x, c_vil))

[] Proved by rewriting (with unreduced rules).

Case. 2.2

not ((c_vi2 - c_z) & (c y - cons (c_x, c_vil) ) ) .m true

involves proving Lomma iommal. 14.2.2.2.2

prefix (cons (cons (c_x, c_vil) , c_z) , cons (ay, c_vi2) )
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-> prefix(cons(c_x, c_vil), cons(c_y, c_vi2))
-> true

The case system now contains 1 equation.

Ordered equation Case.2.2 into the rewrite rule:

((c_vi2 -c_z) <-> false) J ((c_y - cons(c_x, c_vil)) <-> false) -> true

The case system now contains 1 rewrite rule.

Lo_na lemmal. 14.2.2.2.2 in the proof by cases of Lenena lemmal. 14.2.2.2

prefix (cons (cons (c_x, =_vil) , c_z) , cons (c_y, =_vi2) )

-> prefix(cons (c_x, c_vil) , cons (c_y, c_vi2) )
-> true

Case.2.2:not((c_vi2 - c_z) & (c_y - cons(c_x, c_vil)))

[] Proved by rewriting (with unreduced rules).

Lennua lennnal. 14.2.2.2 in the proof by cases of Lemma lenenal. 14.2.2

prefix (cons (cons (c_x, c_vil), c_z) , cons (c_y, vi2) )

-> prefix (cons (c_x, c_vil) , cons (c_y, vi2) )
-> true

Case.l.2: not (prefix(cons (cons (c_x, =_vil), c_z), c__) )

[] Provod _ cases
((c__ - cons(c_x, =_vil)) & (=_z - vi2))

I not((c y - =ons(c_x, c_vil)} & (c_z - vi2))

Lemma lemmal.14.2.2 for the induction step in the proof of Lemma lenunal.14.2

prefix(cons (cons (c_x, vil), z) , cons (c y, vi2) )

-> prefix(cons (c_x, vil), cons (c_y, vi2) )
-> true

[]Provesby cases
prefix(cons (cons (c_x, vil), z) , c_y)

I not (prefix (cons (cons (c_x, vil) , z) , c__) )

Lonena lenenal.14.2 for the induction step in the proof of Conjecture lemmal.14

prefix (cons (cons(c_x, vil), z) , y) -> pz_fix(cons (c_x, vil) , y) -> true

[] Proved _y induction over _y' of sort 'Seq'.

Conjecture lemmal. 14

prefix (cons (x, z), y) -> prefix(x, y) -> true

[] Proved by induction over _x' of sort _Seq'.

The system now contains 1 equation, 138 rewrite rules, and 12 deduction rules.

Ordered equation lenenal.14 into the rewrite rule:

(false <-> prefix (cons (x, z), y) ) I prefix(x, y) -> true

The system now contains 139 rewrite rules and 12 deduction rules.

-> prove in_state (cons (xh,we : :Ev), xst)->in_state (xh, xst) by induction xh H

The basis step in an inductive proof of Conjecture lennnal.15

in state(cons(xh, we), xst) -> in state(xh, xst) -> true

involves proving the following lemma(s) :

leEmal.15.1: in_state (cons (null, we), xst) -> in_state(null, xst) -> true

[] Proved by noEmalization

The induction step in an inductive proof of Conjecture lemmal.15

in state (cons (xh, we) , xst) -> in state (xh, xst) -> truei

uses the following equation(s) for the induction hypothesis:

Induct.26: in_state(cons(=_xh, we), xst) -> in_state(c_xh, xst) -> true

The system now contains 1 equation, 152 rewrite rules, and 12 deduction rules.

Ordered equation Induct.26 into the rewrite rule:
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(false <--> in_state (cons (c_xh, we), xst) ) I in_state (c_xh, xst) -> true

The system now contains 153 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.15.2: in_stato (cons (cons (c xh, vil), we), xst)

-> instate (cons (c_xh, vil), xst)
-> true

which reduces to the equation

(false <-> in_state (cons (cons (c_xh, vil), we}, xst) )

I in_state (cons (c_xh, vil), xst)
-> true

Proof of Lemma iommal.15.2 suspended.

-> resume by induction we Ev

The basis step in an inductive proof of Lemma lemmal. 44.2 for the induction

stop in the proof of Conjecture Iommal.44

in_state (cons (cons (c_xh, vil) , we), xst) -> in state (cons (c_xh, vil) , xst)
-> true

involves proving the following iomma(s) :

le=m_l.44.2.1: in_state(cons(cons(c_xh, vil), E(vi2) ), xst)

-> in state (cons (c_xh, vil), xst)
-> true

which reduces to the equation

(false <-> in state (cons (cons (c_xh, vil) , E (vi2)), xst) )

I in_state (_ns (c_xh, vil), xst)

-> true

lemmal. 44.2.2 : in_state (cons (cons (¢_xh, vil) , D (vi2)) , xst)

-> in_state (cons (c_xh, vil), xst)
-> true

which reduces to the equation

(false <-> in_state (cons (cons (c_xh, vil) , D (vi2)), xst) )

I in_state (_ons (c_xh, vil), xst)

-> true

Proof of Lemma lemmal. 44.2.2 suspended.

-> resume by case in_state (cons (cons (c_xh, vil) , D (vi2: :deq_roc) ) ,xst)

Case. 17.1

in_state (cons (cons (c_xh, o_vil} , D (c_vi2)) , c xst) .m true

involves proving Lemma lemmal. 44.2.2.1

in_state (cons (cons (c_xh, c_vil), D (¢_vi2)), c_xst)

-> in_state (cons (¢_xh, ¢_vil) , c_xst}
-> true

The case system now contains 1 equation.

Ordered equation Case, 17.1 into the rewrite rule:

in_state (cons (cons (c_xh, c_vil) , D (c_vi2)), c_xst) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation Case. 17.1 into the rewrite rule :

in_state (cons (cons (c_xh, c_vil} , D (c_vi2)) , c_xst) -> true

The system now contains 154 rewrite rules and 12 deduction rules.

Lemma lemmal.44.2.2.1 in the proof by cases of Lemma iommal. 44.2.2

in_state (cons (cons (c_xh, c_vil), D (c_vi2)), c_xst}

-> in_state (cons (c_xh, ¢_vil) , c_xst)
-> true

Case.17.1: in_state(cons (cons(c_xh, c_vil) , D(c_vi2) ) , c_xst)
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is NOT provable using the current partially completed system. It reduces to

the equation

in_state (cons (c_xh, c_vil), c_xst} -> true

Proof of Lemma lemmal. 44.2.2.1 suspended.

-> crit c_se with Abstraction. 3

Critic AI pairs between rule Case.17.1:

• in_state (cons (cons (c_xh, c_vil), D (c_vi2)), c_xst) -> true
and rule Abstraction. 3 :

(in_sta¢k (vd, deqd (xst)) & in_state (xh, xst} )

I (false <-> in state (cons (xh, D (vd)), xst) )
-> true

are as follows:

(false <-> in_state (cons (cons (cons (o_xh, c_vil) , D (c_vi2)), D (vd)), c_xst) )

i in_stack(vd, deqd(c_xst) )
true

in_stack(c_vi2, deqd(c_xst)) _ in_state(cons(c_xh, c_vil), c_xst) ---true

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation i_I. 45 into the rewrite rule:

(false <-> in_state (cons (cons (cons (c_xh, c_vil), D (c_vi2)), D (vd)), c_xst) )

I in_stack(vd,deqd(c xst) )
-> truo

The system now contains 155 rewrite rules and 12 deduction rules.

The system now contains I e_ation, 155 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

when x & y u true

yield x -- true

y mm true

has _een applied to equation lemmal.46:

in_stack(c_vi2, deqd(c_xst)) & in_state(cons(c_xh, c_vil), c_xst) --true

to yield the following equations:

len_al.46.1: in sta=k(c_vi2, deqd(c_xst)) ---true

lemmal.46.2: in_state(cons(c_xh, c_vil), ¢_xst) mm true

Ordered equation lemmal.46.2 into the rewrite rule:

in_state (cons (c_xh, ¢_vil), c_xst) -> true

Ordered equation lemmal.46.1 into the rewrite rule:

in_stack (c_vi2, deqd (c_xst)) -> true

The system now contains 157 rewrite rules and 12 deduction rules.

Lemma le_mAl.15.2.2.1 in the proof by cases of Lemma lemmal.15.2.2

in_state (cons (cons (¢_xh, c_vil), D (c_vi2)), c_xst)

-> in_state (cons (c_xh, c_vil) , c_xst)
-> true

Case.17.1: in_state(cons(cons(c_xh, c_vil) , D(c_vi2) } , c_xst)

[] Proved by rewriting.

Case. 17.2
J

not (in_state (cons (cons (c_xh, c_vil), D (c_vi2)) , c_xst} } _ true

involves proving _ lenwml. 15.2.2.2

in_state (cons (cons (c_y,h, c_vil) , D (¢_vi2)) , =_xst)

m> in_state (cons (c_xh, ¢_vil) , c_xst)
-> t_ue

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y ms true

yield x .m y

has been applied to equation Case.17.2:



false <-> in_state (cons (cons (c_xh, c_vil) , D (¢_vi2)) , ¢_xst) n true

to yield the following equations:

Case. 17.2.1 : false -- in_state (cons (cons (c_xh, c_vil) , D (c_vi2)) , c_xst)

Ordered equation Case. 17.2.1 into the rewrite rule:

in_state (cons (cons (¢_xh, ¢_vil), D (¢_vi2)), c_xst) -> false

The case system now contains 1 rewrite rule.

Lennna lemmal.15.2.2.2 in the proof by cases of Lemma lemmal.15.2.2

in_state (cons (cons (c_xh, c_vil), D (c_vi2)) , ¢_xst)

-> in_state (cons (c_xh, c_vil) , c_xst)
-> true

Case.17.2: not (in_state (cons (cons (c_xh, c_vil), D (¢_vi2)) , c_xst) )

[] Proved by rewriting (with unreduced rules).

Lennna lemmal.15.2.2 for the basis step in the proof of Lemma lemmal.15.2

in_state (cons (cons (¢_xh, vil) , D (vi2)), xst)

-> in_state (cons (c_xh, vil), xst)
-> true

[] Proved by cases
in_state (cons (cons (¢__h, vil) , D (vi2)), xst)

I not (in_state (cons (cons (¢_xh, vil), D (vi2}), xst) )

Lennna lemmal.15.2.1 for the basis step in the proof of Lemma lemmal.15.2

in_state (cons (cons (c_xh, vil), E (vi2)), xst)

-> in_state (cons (c_xh, vil) , xst)
-> true

is NOT provable using the current partially completed system. It reduces to

the equation

(false <-> in_state (cons (cons (c_xh, vil) , E (vi2)) , xst) )

I in_state (cons (c_xh, vil) , xst)
-> true

Proof of Lemma len_al.15.2.1 suspended.

Critical-pair computation a_andoned k_cause a theorem has been proved.

Computed 2 new critical pairs. Added 2 of them to the system.

-> resunm _y case in_state (cons (cons (¢_xh, vil) , E (vi2 : :enq rec) ) ,xst)

Case. 18.1

in_state (cons (cons (¢_xh, ¢_vil), E (c_vi2) } , =_xst) -- true

involves proving Lenena lemmal. 15.2. i. 1

in_state (cons (cons (¢_xh, c_vil), E (=_vi2)), =_xst)

-> in_irate (cons (¢_xh, ¢_vil), ¢_xst)
-> true

The case system now contains 1 equation.

Ordered equation Case.18.1 into the rewrite rule:

in_state (cons (cons (¢_xh, evil), E (c_vi2)), c_xst) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation Case.18.1 into the rewrite rule:

in_state (cons (cons (c_xh, c_vil), E (c_vi2)), ¢_xst) -> true

The system now contains 154 rewrite rules and 12 deduction rules.

lenaal.15.2.1.1 in the proof by cases of Lemma lemmal.15.2.1

in_state (cons (cons (¢_xh, c_vil), E (c_vi2)), =_xst)

-> in_state (cons (c_xh, ¢_vil) , ¢_xst)
-> true

Case.18.1: in_state(cons(cons(c_xh, c_vil) , E(c_vi2) ) , c_xst)
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is NOT provable using the current partially completed system. It reduces to

the ecD_ati on

in_state (cons (c_xh, ¢_vil), ¢_xst) -> true

Proof of Lem_a lemmal. 15.2.1.I suspended.

-> ¢rit case with A_stra_ion.2

Critical pairs between rule Case.18.1:

in_state (cons (cons (=_xh, evil), E (=_vi2)), ¢_xst) -> true

and rule A_mtraction. 2 :

(in(uo, enqd(xst)) & in_state(_h, xst))

[ (false <-> in state (cons (y,h, E (us)), xst) )

-> true

are as follows:

(false <-> in state (cons (cons (cons (c_xh, ¢_vil) , E (c_vi2)) , E (us)), c_xst) )

f in(uo, enq_(c xst) )
=_ true

in(c_wi2, onqd(o xst)) & in_state(cons(c_xh, =_vil), ¢_xst) =_ true

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation lemmal. 47 into the rewrite rule:

(false <-> in state (cons (cons (cons (c_xh, ¢_vil), E (c_vi2)) , E (us)), c xst) )

I in (us, enqd (%.xst))
-> true

The system now contains 155 =owrite rules and 12 deduction rules.

The system now contains 1 equation, 155 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3 :

when x & y -- true

yield x --- true

has boon applied to equation lemmal. 48:

in(c_vi2, enqd(c_xst)) & in_stato(cons(c_xh, ¢_vil), c_xst) _= true

to yield the following equations:

Iommal.48.1: in(¢_vi2, enq_(c_xst)) --true

lemmal.4$.2: in_state(cons(c_xh, c vil), c_xst) =_ true

Ordor,d equation i_I. 48.1 into the rewrite rule:

in state (cons (c_xh, c_vil), c_xst) -> true

Ordered equation lemmal. 48.1 into the rewrite rule:

in(c_vi2, enqd(c_xst) ) -> true

The System now contains 157 rewrite ,rules and 12 dedu_ion rules.

Lenma lemmal. 15.2. I.i in the proof by cases of Lemma lemnsl. 15.2.1

in_state (cons (cons (c_xh, =_vil), E (c_vi2)), c_Xlt)

m> in_state(cons(c_xh, ¢_vil), c_xmt)
-> true

"+ Case. 18.1 : in state (cons (cons (c__h, c_vil), E (c_vi2)), c_xst)

[] Prov_ by rewriting.

Came. 18.2

. not (in_state (cons (cow (c xh, c_vil), E(c vi2) ), c xmt) ) =_ true

involves proving Lesma lemRal. 15.2. I. 2

in_state (cons (cons (cxh, c_vil) , E (c_vi2)) , c_xmt)

-> in_state (cons (c_xh, c_vil) , c_xmt)
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <m> y _ true

yield x "-- y

has k_en applied to equation Came.18.2:
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false <-> in state (cons (cons (c_xh, c_vil) , E (c_vi2)) , c_xst) -- true

to yield the f_llowing equations:

Case.18.2.1: false _- in_state(cons(cons(c_xh, c_vil) , E(c_vi2) ), c_xst)

Ordered equation Case. 18.2.1 into the rewrite rule:

in_state (cons (cons (c_xh, c_vil), E (c_vi2)), c_xst) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.15.2.1.2 in the proof by cases of Lemma lemmal.15.2.1

instate (cons (cons (c_xh, c_vil), E (c_vi2)) , c_xst)

-> in_state (cons (c_xh, c_vil) , c_xst)
-> true

Case.18.2: not (in_state (cons (cons (c_xh, c_vil) , E (c_vi2)) , c_xst) )

[] Proved by rewriting (with unreduced rules).

Lemma len_nal.15.2.1 for the basis step in the proof of Lenuna lemmal.15.2

in_state (cons (cons (c_xh, vil), E (vi2)), xst)

-> in_state (cons (c_xh, vil) , xst)
-> true

[] Proved by cases

in_state (cons (cons (c_xh, vil), E (vi2)) , xst)

J not (in_state (cons (cons (c_xh, vil), E (vi2)) , xst) )

The induction step in an inductive proof of Lemma lemmal.15.2 for the induction

step in the proof of Conjecture lemmal.15

in_state(cons(cons(c_xh, vil), we), xst) -> in_state(cons(c_xh, vil), xst)
-> true

is vacuous.

Lemma lemmal. 15.2 for the induction step in the proof of Conjecture lemmal.15

instate (cons (cons (c_xh, vil), we) , xst) -> in_state(cons (c_xh, vil) , xst)
-> true

[] Proved by induction over _we::Ev' of sort _Ev'.

Conjecture lemmal. 15

in_state(cons(xh, we), xst) -> in_state(xh, xst) -> true

[] Proved by induction over _xh: :H' of sort 'H'.

The system now contains 1 equation, 152 rewrite rules, and 12 deduction rules.

Ordered equation lenunal.15 into the rewrite rule:

(false <-> in state (cons (xh, we), xst) ) i in state (xh, xst) -> true

The system now contains 153 rewrite rules and 12 deduction rules.

Critical-pair computation a_andoned because a theorem has been proved.

Computed 2 new critical pairs. Added 2 of them to the system.

-> prove prefix (x, append (x,y)) by induction x Seq

The basis step in an inductive proof of Conjecture lemmal.16

prefix (x, append(x, y) ) -> true

involves proving the following lemma(s) :
r

lemmal.16.1: prefix(null, append(null, y) ) -> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.16

prefix(x, append(x, y) ) -> true

uses the following equation(s} for the induction hypothesis:

Induct.29: prefix(c_x, append(c_x, y)) -> true

The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation Induct.29 into the rewrite rule:
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prefix (c_x, append (c_x, y) ) -> true

The system now contains 154 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.16.2: prefix(cons(c_x, vil), append(cons(c_x, vil), y)) -> true

Proof of Lenena lemmal.16.2 suspended.

-> resume by induction y Seq

The basis step in an inductive proof of Lemma lemmal.16.2 for the induction

, step in the proof of Conjecture len_nal.16

prefix(cons(c_x, vil) , append(cons(c_x, vil) , y) ) -> true

involves proving the following len_a (s) :

1emma1.16.2.1 : prefix (cons (c_x, vil), append (cons (c_x, vil), null) ) -> true

[] Proved by normalization

The induction step in an inductive proof of _ lemmal.16.2 for the incluction

step in the proof of Conjecture lemmal.16

prefix(cons (c_x, vil), append(cons (cx, vil), y) ) -> true

uses the following equation(s) for the induction hypothesis:

Induct.30: prefix(cons(c_x, vil), append(cons(c_x, vil) , c y) ) -> true

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation Induct.30 into the rewrite rule:

prefix(cons(c_x, vil), append(cons(c_x, vil), c y) ) -> true

The system now contains 155 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal. 16.2.2 : prefix (cons (c_x, vil ), append (cons (c_x, vil), cons (c_y, vi2) ))
-> true

[] Proved by normalization

Lennua lemmal.16.2 for the induction step in the proof of Conjecture lemmal.16

prefix(cons(c_x, vil), append(cons(c_x, vil), y) ) -> true

[] Proved by induction over _y' of sort _S@q'.

Conjecture lemmal. 16

prefix(x, append(x, y)) -> true

[] Proved by induction over _x' of sort _Seq'.

The system now contain, 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.16 into the rewrite rule:

prefix (x, append (x, y) ) -> true

The system now contains 154 rewrite rules and 12 deduction rules.

-> prove (in_state (xh, xst ) &prefix (DEQ (xh), ENQ (xh}) )->prefix (DEQ (ciiscard (xt, xh) ), ENQ (ciiscard (xt, xh) ) )

by induction xh H

The basis step in an inductive proof of Conjecture lemmal.17

(in_state(xh, xst) & prefix(DEO(xh), ENQ(xh) ) )

-> prefix(DEO(discard(xt, xh) ), ENQ(ciiscard(xt, xh) ))

-> true

involves proving the following lemma(s) :

lemmal.17.1: (in_state(null, xst) & prefix(DEQ(null), ENQ(nulI) ) )

-> prefix(DEO(discard(xt, null) ), ENO(discard(xt, null) ) )
-> true

[] Proved by normalization
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The induction step in an inductive proof of Conjecture lemmal.17

(in..state(xh, xst) & prefix(DEQ(xh), ENQ(xh) ) )

-> prefix(DEQ(discard(xt, xh) ), ENQ(discard(xt, xh) ) )

-> true

uses the following equation(s) for the induction hypothesis:

Induct. 2 : (in_state (c_xh, xst) & prefix (DEQ (c_xh), ENQ (c_xh)) )

-> prefix(DEQ(discard(xt, c_xh) ), ENQ(ciiscard(xt, c_xh) ))
-> true

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:

(false <-> in_state(c_xh, xst))

I (false <-> prefix(DEQ(c_xh), ENQ(c_xh) ) )

I prefix(DEQ(discard(xt, c_xh) ) , ENQ(discard(xt, c_xh) ) )
-> true

The system now contains 155 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemmal.17.2: (in_state(cons(c_xh, vil), xst)

& prefix(DEQ (cons (c_xh, vil) ), ENQ (cons (c_xh, vil) )) )

-> prefix(DEQ(discard(xt, cons (c_xh, vil) ) ),

ENQ(discard(xt, cons (c_xh, vil) ) ) )

-> true

which reduces to the equation

(false <-> in_state (cons (c_xh, vil) , xst) )

I (false

<-> prefix (DEQ (cons (c_xh, vil) ) , ENQ(cons (c_xh, vil) ) ) )

I prefix(DEQ(discard(xt, cons (c_xh, vil) ) ),

ENQ(discard(xt, cons (c_xh, vil) ) ) )

-> true

Proof of Lemma lemmal. 17.2 suspended.

-> resume by induction vil Ev

The basis step in an inductive proof of Lemma le_aal.17.2 for the induction

step in the proof of Conjecture lemmal. 17

(in_state (cons (c_xh, vil), xst)

& prefix (DEQ (cons (c_xh, vil) ), ENQ(cons (c_xh, vil) )) )

-> prefix(DEQ(discard(xt, cons (c_xh, vil) ) ),

ENQ(ciiscard(xt, cons (c_xh, vil) ) ) )

-> true

involves proving the following lemma(s) :

lemmal.17.2.1: (in_state(aons(c_xh, E(vi2) ) , xst)

& prefix (DEQ (cons (c_xh, E (vi2)) ), ENQ (cons (c_xh, E (vi2)) ) ) )

-> prefix(DEQ(ctiscard(xt, cons (c_xh, E (vi2)) ) ) ,

ENQ(discard(xt, cons (c_xh, E (vi2)) ) ) )

-> true

which reduces to the equation

( (enqt (vi2) - xt) <-> false)

I (false <-> in_state (cons (c_xh, E (vi2)) , xst) )

I (false

<-> prefix (DEQ (c_xh) , cons (ENQ (c_xh), element (vi2)) ) )

I prefix (DEQ (c_xh), ENQ (c_xh))
-> true

lemmal.17.2.2: (in_state(cons(c_xh, D(vi2)), xst)

& prefix (DEQ (cons (c_xh, D (vi2)) ), ENQ(cons (c_xh, D (vi2)) ) ))

-> prefix(DEQ(discard(xt, cons (c_xh, D (vi2)) ) ) ,
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ENQ(discard(xt, cons (c_xh, D (vi2)) ) ) )

-> true

[] Proved by normalization

Proof of Lemma lemmal. 17.2.1 suspended.

-> resume by case in_state (cons (c_xh, E(vi2: :enq_rec) ) ,xst)

Case. 1.1

in_state (cons (c_xh, E (c_vi2)) , ¢_xst) mm true

involves proving Lemma lemmal. 17.2. i. 1

(in_state(cons (c_xh, E(c vi2) ) , c_xst)

& prefix(DEQ (cons (c_xh, E (c_vi2)) ) , ENQ(cons (c_xh, E(c_vi2) ) ) ) )

-> prefix(DEQ(discard(xt, cons (c_xh, E(c_vi2) ) ) ) ,

ENQ (discard (xt, cons (c_xh, E (c_vi2)) ) ) )

-> true

The case system now contains 1 equation.

Ordered equation Case. i. 1 into the rewrite rule:

in_state (cons(c_xh, E (¢_vi2)) , c_xst) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 155 rewrite rules, and 12 deduction rules.

Ordered equation Case. I. 1 into the rewrite rule:

in_state (cons (c_xh, E (c_vi2)) , c_xst) -> true

The system now contains 156 rewrite rules and 12 deduction rules.

Lemma lemmal.17.2.1.1 in the proof by cases of Lemma len_nal.17.2.1

(in_state (cons (c_xh, E (c_vi2)) , c xst)

& prefix (DEQ (cons (c_xh, E (c_vi2)) ) , ENQ(cons (c_xh, E(c_vi2) ) ) ) )

-> prefix(DEQ(ctiscard(xt, cons (c_xh, E (c_vi2)) )) ,

ENQ (cLiscard(xt, cons (c_xh, E (c_vi2)) )) )

-> true

Case.l.l: in_state(cons (c_xh, E(c_vi2) ), c_xst)

is NOT provable using the current partially completed system. It reduces to

the equation

( (enqt (c_vi2) - xt) <-> false)

i (false <-> prefix(DEQ(c_xh), cons (ENQ(c_xh), element (=_vi2)) ) )

I prefix(DEQ(c_xh), ENQ(c_xh) )
-> true

Proof of Lemma lemmal. 17.2. I.i suspended.

-> crit case with lemmal.15

Critical pairs _>etween rule Case.l.l:t

in_state (cons (¢.xh, E (c_vi2)) , ¢..xst) -> true
and rule lemmal. 15 :

(false <-> in_state (cons (xh, we), xst) ) _ in_state (xh, xst) -> true
are as follows:

" in_state(¢ xh, =..xst) --true

The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.20 into the rewrite rule:

in_state (c_xh, c_xst) -> true

The system now contains 157 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of

them to the system.

112



-> crit lemmal.20 with A_straction.4

Critical pairs between rule lemmal.20:

in_state(c_xh, c_xst) -> true
and rule Abstraction. 4:

( (DEQ (xh) - cons (ENQ (xh) , xe) ) <-> false) I (false <-> in state (xh, xst) )

-> true

are as follows:

(DEQ(c_xh) - cons (ENQ(c_xh) , xe)) <-> false _- true

The system now contains 1 equation, 157 rewrite rules, and 12 deduction rules.

Deduction rule equality. 3 :

when x <-> y _ true

yield x -- y

has been applied to equation lemmal.21:

(DEQ(c_xh) - cons (ENQ(c_xh) , xe) ) <-> false -- true

to yield the following equations:

lemmal.21.1: DEQ(c_xh) -cons(ENQ(c_xh), xe) --false

Ordered equation lemmal.21.1 into the rewrite rule:

DEQ (c_xh) - cons (ENQ (c_xh) , xe) -> false

The system now contains 158 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> resume by case enqt (c_vi2)-xt

Case.2.1

c_xt - enqt(c_vi2) _ true

involves proving Lemma lemmal. 17.2. I. i. 1

(in_state (cons (c_xh, E (c_vi2)) , c_xst)

& prefix (DEQ (cons (c_xh, E (c_vi2)) ) , ENQ (cons (c_xh, E (c_vi2)) ) ) )

-> prefix (DEQ (cliscard(c_xt, cons (c_xh, E(c_vi2) ) ) ),

ENQ (discard (c_xt, cons (c_xh, E (c_vi2)) ) ) )

-> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x g y _ true

yield x -_ y

has been applied to equation Case.2.1:

c xt - enqt (c_vi2) _ true

to yield the following equations:

Case.2.1.1: c_xt _ enc/t(c_vi2)

Ordered equation Case. 2. I. 1 into the rewrite rule:

c_xt -> an_t (c_vi2)

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 158 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x _ y ms true

yield x --- y

has been applied to equation Case.2.1:

c_xt - enqt(c_vi2) _ true

to yield the following equations:

Case.2.1.2: c_xt ms enqt(c_vi2)

Ordered equation Case. 2. i. 2 into the rewrite rule:

c_xt -> encft (c_vi2)

The system now contains 159 rewrite rules and 12 deduction rules.
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Lenmm lemmal.17.2.1.1.1 in the proof by cases of Lemma iommal.17.2.1.i

(in_state (cons (c_xh, E(c_vi2) ) , c_xst)

& prefix(DEQ (cons (c_xh, E (c_vi2)) ), ENQ (cons (c_xh, E (c_vi2)) ) ) )

-> prefix (DEQ (discard(c_xt, cons (c_xh, E (c_vi2)) ) ),

ENQ(d/scard(c_xt, cons(c_xh, E (c_vi2)) ) ))

-> true

Case.2.1: c_xt -- enqt(¢_vi2)

is NOT provable using the current partially completed system. It reduces to

the equation

(false <-> prefix(DEQ(c_xh}, cons (ENQ(c_xh), clement (c_vi2)) ) )

I prefix (DEQ (c_xh), ENQ (c_xh))
-> true

#

Proof of Lemma lemmal. 17.2. I. I. 1 suspended.

-> resume by case prefix (DEQ (c_xh) ,cons :Seq, EL->Seq(ENQ (c_xh) ,element (c_vi2)) )

Case. 3.1

prefix (DEQ (c_xh), cons (ENQ (c_xh), element (c_vi2)) ) m. true

involves proving Lemma lemmAl. 17.2. I. I. I. 1

(in_state (cons (c_xh, E (c_vi2)), c xst)

& profix(DEO(cons (c_xh, E(c_vi2) ) ), ENQ(cons (¢_xh, E (c_vi2)) ) ) )

-> prefix (DEQ (d/scard (c_xt, cons (c_xh, E (c_vi2)) ) ),

ENQ (¢Liscard (c_xt, cons (¢_xh, E (¢_vi2)) )) )

-> true

The case system now contains 1 equation.

Ordered equation Case. 3.1 into the rewrite rule:

profix(DEO(c_xh), cons (ENQ(c_xh), element (c_vi2)) ) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 159 rewrite rules, and 12 deduction rules.

Ordered equation Case. 3.1 into the rewrite rule:

prefix (DEQ (c_xh), cons (ENQ (c_xh), element (¢_vi2)) ) -> true

The system now contains 160 rewrite rules and 12 deduction rules.

Lemma lemmal. 17.2.1. I.I.I in the proof by cases of Lemma iommal. 17.2. I.I. 1

(in_state(cons (c_xh, E(c_vi2) ) , ¢_xst)

& profix(DEQ (cons (=_xh, E (c_vi2)) }, ENQ (cons (c_xh, E (c_vi2)) ) ) )

-> prefix (DEQ (ctiscard(c_xt, cons (¢_xh, E (¢_vi2)) )),

ENQ(discard(c_xt, cons(c xh, E(c_vi2) ) ) ))

-> true

Case.3.1: prefix(DEQ(c_xh), cons (ENQ(c xh} , element (c_vi2)) )

is NOT provable using the current partially completed system. It reduces to

the equation

. prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Proof of Lemma lemmal. 17.2. I. i. I. 1 suspended.

-> crit case with lemmal.3

Critical pairs between rule Case.3. i:

prefix (DEQ (¢_xh}, cons (ENQ (¢_xh) , element (c_vi2)) ) -> true
and rule iommal. 3 :

(false <-> prefix(x, cons(y, z))) I (cons(y, z) -x) I prefix(x, y) -> true
are as follows:

prefix (DEQ (c_xh) , ENQ (c_xh)) no true

The system now contains 1 equation, 160 rewrite rules, and 12 deduction rules.

Ordered equation lemmAi.22 into the rewrite rule:

prefix(DEQ(c_xh), ENQ(c_xh) } -> true
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Left-hand side reduced:

(false <-> in_state(c_xh, xst))

[ (false <-> prefix(DEQ(c_xh), ENQ(c_xh)))

[ prefix(DEQ(ctiscard(xt, c_xh) ), ENQ(discard(xt, c_xh) ) )
-> true

became equation Induct. 2 :

(false <-> in_state (c_xh, xst) )

I (false <-> true)

I prefix(DEQ(ctiscard(xt, c_xh) ), ENQ(discard(xt, c_xh) ) )

-> true

Ordered equation Induct.2 into the rewrite rule:

(false <-> in state(c_xh, xst)) o

[ prefix(DEQ(discard(xt, c_xh) ), ENQ(ctiscard(xt, c_xh) ) )
-> true

The system now contains 161 rewrite rules and 12 deduction rules.

Lemma lemmal.17.2.1.1.1.1 in the proof by cases of Lemma lemmal.17.2.1.1.1

(instate (cons (c_xh, E (c_vi2)), c_xst)

& prefix (DEQ (cons (c_xh, E (c_vi2}) ), ENQ (cons (c_xh, E (c_vi2)) ) ) )

-> prefix(DEQ(ctiscard(c_xt, cons (c_xh, E (c_vi2)) ) ),

ENQ(_iscard(c_xt, cons(c_xh, E(c_vi2) ) ) ) )

-> true

Case. 3.1 : prefix (DEQ (c_xh) , cons (ENQ (c_xh) , element (c_vi2)) )

[] Proved by rewriting.

Case. 3.2

not (prefix (DEQ (c_xh) , cons (ENQ (c_xh) , element (c_vi2) }) ) u true

involves proving Lemma lemmal. 17.2. i. I. I. 2

(in_state (cons (c_xh, E(c_vi2) ), c_xst)

& prefix (DEQ (cons (c_xh, E (c_vi2)) ) , ENQ (cons (c_xh, E (c_vi2)) ) ) )

-> prefix (DEQ (discard (c_xt, cons (c_xh, E (c_vi2)) ) ),

ENQ(discard(o_xt, cons(c_xh, E (c_vi2)) ) ) )

-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y _ true

yield x --- y

has been applied to equation Case.3.2:

false <-> prefix (DEQ (c_xh) , cons (ENQ (cxh), element (c_vi2)) ) ms true

to yield the following equations:

Case. 3.2.1 : false m prefix (DEQ (c_xh), cons (ENQ (c_xh}, element (c_vi2)) )

Ordered equation Case.3.2.1 into the rewrite rule:

prefix (DEQ (c_xh) , cons (ENQ (c_xh) , element (c_vi2)) ) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.17.2.1.1.1.2 in the proof by cases of Lemma lemmal.17.2.1.1.1

(in_state(cons(c_xh, E(c vi2)), o_xst)

& prefix(DEQ (cons (c_xh, E (c_vi2)) ) , ENQ (cons (c_xh, E (c_vi2)) ) ) )

-> prefix(DEQ(ctiscard(c_xt, cons (c_xh, E(c_vi2) ) ) ),

ENQ(ctiscard(c_xt, cons(c_xh, E(c_vi2) ) ) ))

-> true

Case. 3.2 : not (prefix (DEQ (c_xh} , cons (ENQ (c_xh) , element (c_vi2)) ))

[] Proved by rewriting (with unreduced rules).

Lemma lemmal.17.2.1.I.i in the proof by cases of Lemma lemmal. 17.2.1.1

(in_state (cons (c_xh, E (c_vi2)) , c xst)

& prefix (DEQ (cons (c_xh, E (c_vi2)) ) , ENQ (cons (c_xh, E (c_vi2)) ) ) )

-> prefix (DEQ (discard (c_xt, cons (c_xh, E (c_vi2)) ) ),

ENQ(discard(c_xt, cons(c_xh, E(c_vi2) ) ) ) )
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-> true

Case.2.1: c_Xt -- enqt(c_vi2)

[] Proved _ cases
prefix (DEQ (c_xh) , cons (ENQ (c_xh) , element (c_vi2)) )

I not (prefix (DEQ (c_xh), cons (ENQ (c_xh) , element (c_vi2)) ) )

Case. 2.2

not (c_xt - enqt (c_vi2)) -_ true

involves proving Lemma lemmal.17.2. I.I.2

(in_state (cons (c_xh, E(c_vi2) ) , c_xst)

& prefix (DEQ (cons (c_xh, E (c_vi2)) ) , ENQ (cons (c_xh, E (c_vi2)) ) ) )

. -> prefix (DEQ (ctiscard (cxt, cons (c_xh, E (c_vi2)) ) ),

ENQ(discard(c_xt, cons(c_xh, E(c_vi2) ) ) ) )

-> true

The case system now contains 1 equation.

Deduction rule equality. 3:

when x <-> y .m true

yield x -- y

has been applied to equation Case. 2.2:

(c_xt - enqt (¢_vi2)) <-> false m. true

to yield the following equations:

Case.2.2.1: c_xt - enqt(c_vi2) -- false

Ordered equation Case. 2.2.1 into the rewrite rule:

c_xt - enqt(c_vi2) -> false

The case system now contains 1 rewrite rule.

Lamina lemmal.17.2.1.1.2 in the proof by cases of Lamina lemmal.17.2.1.1

(in_state(cons (c_xh, E(c_vi2) ) , c_xst}

& prefix (DEQ (cons (c_xh, E (c_vi2)) ), ENQ (cons (¢_xh, E (c_vi2)) ) ) )

-> prefix(DEQ(_iscard(c_xt, cons (¢_xh, E(c_vi2) )) ),

ENQ(ctiscard(c_xt, cons(c_xh, E(c_vi2) )) ) )

-> true

Case.2.2: not (c_xt - enqt (c_vi2) }

[] Proved by rewriting (with unreduced rules).

Lamina lemmal.17.2.1.1 in the proof by cases of Lem=_ le_nal.17.2.1

(in_state (cons (¢_xh, E(c_vi2) ), ¢_xst)

& prefix (DEQ (cons (¢_xh, E (c_vi2)) ), ENQ(cons (c_xh, E (c_vi2)) ) ) )

-> prefix(DEQ(discard(xt, cons(c_xh, E(c_vi2) ) } ),

ENQ (ctiscard(xt, cons (c_xh, E (a_vi2)) ) ) )

-> true

Case.l.l: in_state(cons(c_xh, E(c_vi2) ), c_xlt}

[] Proved by cases

- (enqt (c_vi2) - xt) I not (enqt (c_vi2) - xt)

Case. I. 2

not (in_state (cons (=_xh, E (=_vi2)), c xst) ) m. true

o involves proving Leans lemmal. 17.2.1.2

(in_state (cons (c_xh, E (c_vi2)), c_xst)

& prefix(DEQ (cons (c_xh, E (c_vi2)) ), ENQ (cons (c xh, E (c_vi2)) )) )

-> prefix(DEQ(ctiscara(xt, cons (c_xh, E(c_vi2) } ) ) ,

ENQ(discard(xt, cons (c_xh, E (c_vi2)) ) ) )

-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y .m true

yield x _- y
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has k_en applied to equation Case.l.2:

false <-> in_state (cons (c_xh, E (c_vi2)), c_xst) ms true

to yield the following equations:

Case. 1.2.1 : false _ in_state (cons (c_xh, E (c_vi2)) , c_xst)

Ordered equation Case. I. 2.1 into the rewrite rule:

in_state (cons (c_xh, E (c_vi2)) , c_xst) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal. 17.2. I. 2 in the proof by cases of Lennna lemmal. 17.2.1

(in_state (cons (c_xh, E(c_vi2) ) , c_xst)

& prefix (DEQ (cons (c_xh, E (c_vi2)) ), ENQ (cons (c_xh, E (c_vi2)) ) ) )

-> prefix (DEQ(ctiscard(xt, cons (c_xh, E(c_vi2) ) ) ) ,

ENQ(discard(xt, cons (c_xh, E(c_vi2) ) ) ) )

-> true

Case.l.2: not (in_state(cons (c_xh, E (c_vi2)) , c_xst) )

[] Proved by rewriting (with unreduced rules) .

Lenuua lennnal.17.2.1 for the basis step in the proof of Lemma len-ual.17.2

(in_state (cons (c_xh, E(vi2) ) , xst)

& prefix (DEQ (cons (c_xh, E (vi2)) ) , ENQ(cons (c_xh, E (vi2)) ) ) )

-> prefix(DEQ(ctiscard(xt, cons (c_xh, E(vi2) ) ) ),

ENQ(discard(xt, cons (c_xh, E(vi2) ) ) ) )

-> true

[] Proved by cases

in_state (cons (c_xh, E (vi2)) , xst) I not (in_state (cons (c_xh, E (vi2)) , xst) )

The induction step in an inductive proof of Lemma lenunal.17.2 for the induction

step in the proof of Conjecture lemmal.17

(in_state (cons (c_xh, vil), xst)

& prefix (DEQ (cons (c_xh, vil) ) , ENQ(cons (c_xh, vil) ) ) )

-> prefix(DEQ(discard(xt, cons (c_xh, vil) ) ) ,

ENQ(discard(xt, cons (c_xh, vil) ) ) )

-> true

IS vacuous.

Lemma lemmal.17.2 for the induction step in the proof of Conjecture lenuual.17

(in_state (cons (=_xh, vil) , xst)

& prefix (DEQ (cons (c_xh, vil) ) , ENQ (cons (c_xh, vil) )) )

-> prefix(DEQ(discard(xt, cons (c_xh, vil) )),

ENQ(cliscard(xt, cons (c_xh, vil) ) ) )

-> true

[] Proved by induction over _vil: :Ev" of sort _Ev'.

Conjecture lenunal. 17

(in_state (xh, xst) & prefix (DEQ (xh), ENQ (xh)) )

-> prefix(DEQ(discard(xt, xh) ), ENQ(discard(xt, xh) ) )

-> true

[] Proved by induction over 'xh: :H' of sort 'H'.

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.17 into the rewrite rule:

(false <-> in state(y,h, xst))

l (false <-> prefix (DEQ(xh), ENQ(xh) ) )

i prefix(DEQ(discard(xt, xh) ), ENQ(discard(xt, xh) ) )

-> true

The system now contains 155 rewrite rules and 12 deduction rules.

Critical-pair computation abandoned because a theorem has been proved.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of

them to the system.

117



¢

-> q

118



5__. Helping Lemma Set 2

add

((deqd (xst)_new) &in state (xh,xst) )-> (DEQ (xh)-null :->Seq)
(xh-xhl) -> (ordered (xh)<->ordered (xhl))

((xh-append (con. :H, Ev->H (xhl, E (pair (xe,xt) )),xh2) ) & ordered (xh) &
prefix (DEQ (append (xhl,xh2 )),ENQ (append (xhl,xh2 ))) &

in (append (xhl,xh2), af (xst)) & (enqr (top (deqd (xst)) )<xt) ) ->
prefix (DEQ (xh),ENQ (xh))
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5.6. LP Proof Session of Lemma Set 2

Larch Prover (28 Jun 89) scripting on 14 July 1989 13:08:17 to

_/usr0/cgong/verifyl/lemma2. scr' .

-> thaw theoryl

System thawed from _theoryl. frz' .

-> set name lemma2

The name prefix is now _lemma2'.

- -> prove ((deqd (xst) -new) &in_state (xh, xst )) -> (DEQ (xh) -null :->Seq) by induction xh H

The basis step in an inductive proof of Conjecture lemma2.1

((deqd(xst) - new) & in state(xh, xst)) -> (DEQ(xh) - null) -> true

involves proving the following lemma(s) :

len=na2.1.1: ((deqd(xst) -new) & in_state(null, xst)) -> (DEQ(nulI) -null)
-> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemma2.1

((deqd(xst) -new) a in state(xh, xst)) -> (DEQ(xh) -null) -> true

uses the following equation(s) for the induction hypothesis:

Induct.l: ((deqd(xst) - new) & in_state(c_xh, xst)) -> (DEQ(c_xh) - null)
-> true

The system now contains 1 equation, 155 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l into the rewrite rule:

((deqd(xst) - new) <-> false)

j (false <-> in state(c_xh, xst))

J (DEQ(c_xh) - null)
-> true

The system now contains 156 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemma2.1.2: ((deqd(xst) - new) & in_state(cons(c_xh, vil), xst))

-> (DEQ (cons (c_xh, vil) ) - null)

-> true

which reduces to the equation

((deqd(xst) - new) <-> false)

I (false <-> in_state(oons(c_xh, vil), xst))

l (DEO(oons(c_xh, vil)) - null)

-> true

Proof of Lemma lemma2.1.2 suspended.
D

-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemma2.1.2 for the induction step

in the proof of Conjecture lemma2.1

((deqd(xst) - new) & in state (cons (c_xh, vil), xst) )

-> (DEQ(cons(c_xh, vil)) -null)
-> true

involves proving the following lemma (s) :

le=ma2 .1. 2.1: ((deqd(xst) -new) & in_state(cons(c_xh, E(vi2)), xst))

-> (DEQ(cons (c_xh, E (vi2)) ) - null)
-> true

which reduces to the equation

((deqd(xst) -new) <-> false)

(false <-> in_state (cons (c_xh, E (vi2)) , xst) )
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I (DEQ (c_xh) - null)
-> true

lemma2.1.2.2: ((deqd(xst) -new) & in_state(cons(c_xh, D(vi2)), xst))

-> (DEQ(cons(c_xh, D(vi2) ) ) - null)
-> true

which reduces to the equation

((deqd(xst) -new) <-> false)

J (false <-> in_state (cons (c_xh, D (vi2)) , xst) )
-> true

Proof of Lemma lemma2.1.2.2 suspended.

-> resume by case deqd(xst)-new

Case. I. 1

deqd(c_xst) - new -- true

involves proving Lem_a lemma2. I. 2.2.1

((deqd(c_xst) - new) & in state (cons (c_xh, D(vi2)), c_xst))

-> (DEQ (cons (c_xh, D (vi2T)) - null)
-> true

The case system now contains 1 equation.

Deduction rule equality. 4:

when x g y mm true

yield x -- y

has been applied to equation Case.l.l:

deqd(c_xst) - new m true

to yield the following equations:

Case.l.l.l: deqd(c_xst) ms new

Ordered equation Case. i.I.i into the rewrite rule:

deqd (c_xst) -> new

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x _ y m true

yield x _ y

has been applied to equation Case.l.l:

deqd(c_xst) - new -- true

to yield the following equations:

Case. I.I. 2 : deqd (c_xst) .m new

Ordered equation Case. i. i. 2 into the rewrite rule:

deqd (c_xst) -> new

The system now contains 157 rewrite rules and 12 deduction rules.

Lemma lemma2.1.2.2.1 in the proof by cases of Lemma lemma2.1.2.2

((deqd(c_xst) - new) & in state (cons (c_xh, D(vi2) ) , c_xst) )

--> (DEQ (cons (c_xh, D (vi2T)) - null)
-> true

Case.l.l: deqd(c_xst) -new

is NOT prove_:le using the current partially completed system. It reduces to

the equation

false <-> in_state (cons (c_xh, D (vi2)), c_xst) -> true

Proof of Lemma lemma2.1.2.2.1 suspended.

-> resume by case in_state (cons (c_xh, D (vi2 : :deq_rec) ) , c_xst )

Case. 2.1

in_state (cons (c_xh, D (c_vi2)) , c_xst) --- true

involves proving Lemma lemma2, i. 2.2. i. 1

((deqd(c_xst) - new) & in_state (cons (c_xh, D (c_vi2)), c_xst) )

-> (DEQ(cons (c_xh, D(c_vi2) ) ) - null)
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-> true

The case system now contains 1 equation.

Ordered equation Case. 2.1 into the rewrite rule:

in_state (cons (c_xh, D (c_vi2}), o_xst) -> true

The case system now contains 1 rewrite rule.

+ The system now contains 1 equation, 157 rewrite rules, and 12 deduction rules.

Ordered equation Case. 2.1 into the rewrite rule:

in_state (cons (=_xh, D (c_vi2)), o_xst) -> true

" The system now contains 158 rewrite rules and 12 deduction rules.

Lomma lemma2.1. 2. 2.1.1 in the proof by cases of Lemma len_na2.1.2.2.1

((deqd(c_xst) - new) & in state (cons (c_xh, D (c_vi2)), c_xst) )

-> (DEQ (cons (c_xh, D (c_v_2)) ) - null)
-> true

Case. 2.1 : in_state (cons (o_xh, D (c_vi2)) , c_xst)

is NOT provable using the current partially completed system. It reduces to

the equation

false -> true

Proof of Lomma iomma2, i. 2.2. i. 1 suspended.

-> crit case with A_straction.3

Critical pairs between rule Case. i. I. 2 :

deqd (c_xst) -> new
and rule Abstraction. 3 :

(in_stack(vd, deqd(xst) ) & in state(xh, xst) )

I (false <-> in state (cons (xh, D (vd)) , xst))

-> true

are as follows:

false <-> in_state (cons (xh, D (vd)) , c_xst) _n true

The system now contains 1 equation, 158 rewrite rules, and 12 deduction rules.

Deduction rule equality. 3 :

when x <m> y mm true

yield x -- y

has been applied to equation iomma2.2:

false <-> in_state (cons (y.h, D (vd)) , =_xlt) u true

to yield the following equations:

iomma2.2.1: false u in_state(cons(xh, D(vd)), c_xst)

Ordered equation lemma2.2.1 into the rewrite rule:

in_state (cons (xh, D (vd)) , c_xst) -> false

Loft-hand side reduced:

in state (cons (c_xh, D (c_vi2)) , c_xst) -> trueQ

became equation Case. 2.1 :
false -_ true

Equation Case. 2.1

° false n_ true

is inconsistent.

Lonlna Iomma2.1.2.2.1.1 in the proof by cases of Lomma Iomma2.1.2.2.1

((deqd(c_xst) -now) & in state (cons (c_xh, D(c_vi2)), c_xst))

-> (DEQ(cons (c_xh, D (c_v_2)) ) - null)
-> true

Case.2.1: in state (cons (c_xh, D (c_vi2)) , c_xst)

[] Proved by imp_ssible case.

Case. 2.2

not (in_state (cons (c_xh, D (c_vi2)) , c_xst) ) n. true
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involves proving Lemma lemma2. I. 2.2. i. 2

((deqd(c_xst) - new) & in_state (cons (c_xh, D (c_vi2)), c_xst) )

-> (DEQ(cons (c_xh, D (c_vi2))) - null)

-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y -- true

yield x --- y

has been applied to equation Case.2.2:

false <-> in_state (cons (c_xh, D (c_vi2)) , c_xst) R true

to yield the following equations:

Case. 2.2.1: false R in_state (cons (c_xh, D (c_vi2)) , c_xst) v

Ordered equation Case. 2.2.1 into the rewrite rule:

in_state (cons (c_xh, D (c_vi2)) , c_xst) -> false

The case system now contains 1 rewrite rule.

Lemma lemma2.1.2.2.1.2 in the proof by cases of Lemma lemma2.1.2.2.1

((deqd(c_xst) - new) & in_state(cons(c_xh, D(c_vi2) ), c_xst) )

-> (DEQ(cons(c_xh, D(c_vi2) ) ) - null)
-> true

Case.2.2: not (in_state(cons(c_xh, D(c_vi2) ) , c_xst) )

[] Proved by rewriting (with unreduced rules).

Lemma lemma2.1.2.2.1 in the proof by cases of Lemma lemma2.1.2.2

((deqd(c_xst) -new) & in_state(cons(c_xh, D(vi2)), c_xst))

-> (DEQ(cons (c_xh, D (vi2)) ) - null)
-> true

Case.l.l: deqd(c_xst) - new

[] Proved by cases

in_state (cons (c_xh, D (vi2)) , c_xst)

I not (in_state (cons (c_xh, D (vi2)) , c_xst) )

Case. I. 2

not (deqd(c_xst) - new) _ true

involves proving Lemma lemma2, i. 2.2.2

((deqd(c_xst) - new) & in state (cons (c_xh, D(vi2) ) , c_xst) )

-> (DEQ(cons (c_xh, D (vi2_)) - null)
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y --- true

yield x -- y

has _en applied to equation Case.l.2:

(deqd(c_xst) - new) <-> false _ true

to yield the following equations:

Case.l.2.1: deqd(c_xst) - new -- false *

Ordered equation Case. I. 2.1 into the rewrite rule:

deqd(c_xst) - new -> false

The case system now contains 1 rewrite rule.

Lemma lemma2.1.2.2.2 in the proof by cases of Lemma lemma2.1.2.2

((deqd(c_xst) - new) & in_state(cons(c_xh, D(vi2)), c_xst))

-> (DEQ(cons (c_xh, D (vi2))) - null)
-> true

Case.l.2: not (deqd(c_xst) - new)

[] Proved by rewriting (with unreduced rules).

Lemma lemma2.1.2.2 for the basis step in the proof of Lemma lemma2.1.2

((deqd(xst) -new) & in_state(cons(c_xh, D(vi2)), xst))

-> (DEQ(cons (c xh, D (vi2)) ) - null)
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-> t,-uo

[]Provo_ by cases
(deqd(xst) - now) I not(doqd(xst) - new)

Lomma iomma2.1.2.1 for the basis step in the proof of Lemma lemma2.1.2

((deqd(xst) - new) & in state (cons (c_xh, E (vi2)), xst) )

-> (DEQ(cons(c_xh, E(vi2))) -null)
-> true

is NOT provable using the current partially completed system. It reduces to

i the equation

((deqd(xst) -new) <-> false)

I (false <--> in_state (cons (c_xh, E (vi2)) , xst) )

{ (DEQ(c_xh) - null)
-> true

Proof of Lomma lemma2.1.2.1 suspended.

Critical-pair computation abandoned because a theorem has been proved.

Computed 1 now critical pair. Added 1 of them to the system.

-> resume by case doqd(xst)_now

Case. 3.1

deqd(c_xst)- new ---true
involves proving Lomma lemma2. I. 2. I. 1

((deqd(=_xst) - new) & in_state(cons(=_xh, E(vi2) ), c_xst) )

-> (DEQ (cons (c_xh, E (vi2)) ) - null)
-> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x s y s_ true

yield x -- y

has been applied to equation Case.3.1:

deqd(c_xst) - now R true

to yield the following equations:

Case.3.1.1: doqd(c_xst) us now

Ordered equation Case. 3. i. 1 into the rewrite rule:

deqd (c_xst) -> new

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x _ y u_ true

yield x u. y

has boon applied to equation Case.3.1:

deqd(c_xst) - now _ true

to yield the following equations:
e

Case.3.1.2: doqd(c_xst) --new

Ordered equation Case. 3. I. 2 into the rewrite rule:

doqd (c_xst) -> now

The system now contains 157 rewrite rules and 12 deduction rules.

Lemma iomma2.1.2.1.1 in the proof by cases of Lomma lenna2.1.2.1

((doqd(c_xst) - new) & in_stato(cons(c_xh, E(vi2) ) , c_xst) )

-> (DEQ(cons(c_xh, E(vi2) ) ) - null)

-> true

Case.3.1: doqd(c xst) -now

is NOT provable using the current partially completed system. It reduces to

the equation

(false <-> in_stato(cons(c_xh, E(vi2)), c_xst)) I (DEQ(c_xh) - null)
-> true
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Proof of Lemma lemma2. I. 2. i. 1 suspended.

-> resume by case in_state (cons (c_xh, E (vi2 ::enq_rec) ) , c_xst)

Case. 4.1

in_state (cons (c_xh, E (c_vi2)) , c_xst) u true

involves proving Lemma lenmm2. I. 2. i. I. 1

((deqd(c_xst) -new) & in_state(cons (c_xh, E(c_vi2)), c_xst))

-> (DEQ (cons (c_xh, E (c_vi2)) ) - null)
-> true

The case system now contains 1 equation.

Ordered equation Case. 4.1 into the rewrite rule:

in_state (cons (c_xh, E (c_vi2)) , c_xst) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 157 rewrite rules, and 12 deduction rules.

Ordered equation Case. 4.1 into the rewrite rule:

in_state (cons (c_xh, E (c_vi2)), c_xst) -> true

The system now contains 158 rewrite rules and 12 deduction rules.

Lemma lemma2.1.2.1.1.1 in the proof by cases of Lemma lenuua2.1.2.1.I

( (deqd(c xst) - new) & in_state(cons(c_xh, E(c_vi2) ), c_xst) )

-> (DEQ(cons(c_xh, E(c_vi2) ) ) - null)
-> true

Case.4.1: in_state(cons(c_xh, E(c_vi2)), c_xst)

is NOT provable using the current partially completed system. It reduces to

the equation

DEQ(c_xh) - null -> true

Proof of Lenena lemma2.1.2. I. I. 1 suspended.

-> crit case with lemmal.15

Critical pairs between rule Case. 4.1:

in_state (cons (c_xh, E (c_vi2)) , c_xst) -> true
and rule lennnal. 15 :

(false <-> in state (cons (xh, we), xst)) I in state(xh, xst) -> true
are as follow_:

in_state(c_xh, c_xst) _ true

The system now contains 1 equation, 158 rewrite rules, and 12 deduction rules.

Ordered equation lennua2.3 into the rewrite rule:

in_state (c_xh, c_xst) -> true

The system now contains 159 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of

them to the system.

-> crit lemma2 with induct

Critical pairs between rule lemma2.3:

in state(c_xh, c xst) -> true
and rule Induct. 1 :

((deqd(xst) -new) <-> false)

(false <-> in_state(c_xh, xst))

l (DEQ(c_xh) - null)
-> true

are as follows:

DEQ(c_xh) - null --- true

The system now contains 1 equation, 159 rewrite rules, and 12 deduction rules.
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Deduction rule equality. 4 :

when x s y _ true

yield x -- y

has been applied to equation lemma2.4:

DEQ(c_xh) - null --- true

to yield the following equations:

lemma2.4.1: DEQ(c_xh) ---null

Ordered equation lemma2.4.1 into the rewrite rule:Q

DEQ (c_xh) -> null

Left-hand side reduced:

((deqd(xst)- new) <-> false)
I (false <-> in_state (c_xh, xst) )

I (DEQ(c_xh) - null)
-> true

became equation Induct.l :

((deqd(xst)- new) <-> faise)
I (false <--> in_state(c_xh, xst))

I (null - null)

-> true

Lemma lemma2.1.2.1.1.1 in the proof by cases of Lemma lemma2.1.2.1.1

((deqd(c_xst) - new) & in_state (cons (c_xh, E (c_vi2)), c_xst) )

-> (DEQ(cons(c_xh, E(c_vi2) ) ) - null)
-> true

Case.4.1: in_state(cons(c_xh, E(c_vi2)), c_xst)

[] Proved by rewriting.

Case. 4.2

not (in_state (cons (c_xh, E (c_vi2)) , c_xst) ) -- true

involves proving Lemma lemma2, i. 2. I. i. 2

((deqd(c_xst) - new) & in state (cons (c_xh, E(c_vi2)), c xst))-- m

-> (DEQ (cons (c_xh, E (c_vi2)) ) - null)
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <_> y _- true

yield x -- y

has been applied to equation Case. 4.2 :

false <-> in_state (cons (=_xh, E (a_vi2)) , c_xst) ms true

to yield the following equations:

Case.4.2.1: false Is in_state(cons(c_xh, E(c_vi2) ) , c_xst)

Ordered equation Case. 4.2.1 into the rewrite rule:

in_state (cons (c_xh, E (c_vi2)) , c_xst) -> false

The case system now contains 1 rewrite rule.

Lemma lemma2.1.2.1.1.2 in the proof by cases of Lemma lemma2.1.2.1.1a

((deqd(c_xst) -new) & in_state(cons(c_xh, E(c_vi2)), c_xst))

-> (DEQ (cons (c_xh, E (c_vi2)) ) - null)
-> true

Case. 4.2 : not (in_state (cons (c_xh, E (c_vi2)) , c_xst) )

" [] Proved by rewriting (with unreduced rules).

Lemma lemma2.1. 2.1.1 in the proof by cases of Lemma lemma2.1.2.1

((deqd(c_xst) -new) & in state (cons (c_xh, E(vi2)), c_xst))

-> (DEQ (cons (c_xh, E (vi2[)) - null)
-> true

Case.3.1: deqd(c_xst) -new

[] Proved by cases

in_state (cons (c_xh, E (vi2)) , c_xst)

I not (in_state (cons (c_xh, E (vi2)) , c_xst) )
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Case.3.2

not(deqd(c_xst) - new) -- true
involves proving Lemma lemma2, i. 2. I. 2

((deqd(c_xst) - new) _ in_state (cons (c_xh, E (vi2)) , c_xst) )

-> (DEQ(cons (c_xh, E (vi2)) ) - null)
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y _ true

yield x -- y

has been applied to equation Case.3.2:

(deqd(c xst) - new) <-> false -- true _

to yield the following equations:

Case.3.2.1: deqd(c_xst) - new -- false

Ordered equation Case. 3.2.1 into the rewrite rule:

deqd(c_xst) - new -> false

The case system now contains 1 rewrite rule.

Lemma lennna2.1.2.1.2 in the proof by cases of Lemma lemma2.1.2.1

((deqd(c xst) -new) & in_state(cons(c_xh, E(vi2)), c_xst))

-> (DEQ(cons (c_xh, E (vi2))) - null)
-> true

Case.3.2: not (deqd(c_xst) - new)

[] Proved by rewriting (with unreduced rules).

Lennna lemma2. I. 2.1 for the basis step in the proof of Lemma lemma2.1.2

((deqd(xst) - new) & in_state (cons (c_xh, E (vi2)) , xst) )

-> (DEQ(cons(c_xh, E(vi2) ) ) - null)
-> true

[] Proved by cases

(deqd(xst) -new) I not(deqd(xst) -new)

The induction step in an inductive proof of Lemma lemma2.1.2 for the induction

step in the proof of Conjecture lemma2.1

((deqd(xst) - new) & in_state(cons(c_xh, vil) , xst) )

-> (DEQ(cons (c_xh, vil)) - null)
-> true

is vacuous.

Lenmua lennna2.1.2 for the induction step in the proof of Conjecture lemma2.1

((deqd(xst) - new) & in_state(cons(c_xh, vil), xst))

-> (DEQ (cons (c_xh, vil) ) - null)
-> true

[] Proved by induction over Ivil: :Ev' of sort _Ev'.

Conjecture lemma2.1

((deqd(xst) - new) & in_state(xh, xst) ) -> (DEQ(xh) - null) -> true

[] Proved by induction over _xh: :H' of sort _H'.

The system now contains 1 equation, 155 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.1 into the rewrite rule:

((deqd(xst) -new) <-> false)

I (false <-> in state(xh, xst))

I (DEQ(xh) - null)

-> true

The system now contains 156 rewrite rules and 12 deduction rules.

Critical-pair computation abandoned because a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the system.

-> prove (xh_xhl)->(ordered(xh)<->ordered(xhl)) by induction xh H
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The basis step in an inductive proof of Conjecture lemma2.5

(xh- xhl) -> (ordered(xh) <-> ordered(xhl)) -> true

involves proving the following lemma(s) :

lemma2.5.1: (null - xhl) -> (ordered(null) <-> ordered(xhl)) -> true

which reduces to the equation

((null -xhl) <-> false) I ordered(xhl) -> true

Proof of Le_na lemma2.5.1 suspended.

L

-> resume by induction xhl H

The basis step in an inductive proof of Lemma lemma2.5.1 for the basis step in

the proof of Conjecture lemma2.5

(null - xhl) -> (ordered(null) <-> ordered(xhl)) -> true

involves proving the following lemma(s) :

lemma2.5.1.1: (null - null) -> (ordered(null) <-> ordered(null)) -> true

[] Proved by normalization

The induction step in an inductive proof of Lemma lenuna2.5.1 for the basis step

in the proof of Conjecture lemma2.5

(null - xhl) -> (ordered(null) <-> ordered(xhl)) -> true

uses the following equation(s) for the induction hypothesis:

Induct.2: (c_xhl - null) -> (ordered(c_xhl) <-> ordered(null)) -> true

The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:

((c_xhl - null) <-> false) I ordered(c_xhl) -> true

The system now contains 157 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemma2.5.1.2: (cons(c_xhl, vil) - null)

-> (ordered(cons (c_xhl, vil) ) <-> ordered(null) )
-> true

[] Proved by normalization

Lenmm lemma2.5.1 for the basis step in the proof of Conjecture lemma2.5

(null - xhl) -> (ordered(null) <-> ordered(xhl)) -> true

[] Proved by induction over _xhl' of sort IH'.

The induction step in an inductive proof of Conjecture lemma2.5

(xh - xhl) -> (ordered(xh) <-> ordered(xhl)) -> true

uses the following equation(s) for the induction hypothesis:

Induct.3: (c_xh - xhl) -> (ordered(c_xh) <-> ordered(xhl)) -> true

The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Ordered equation Induct.3 into the rewrite rule:

((c_xh - xhl) <-> false) [ (ordered(c_xh) <-> ordered(xhl)) -> true

The system now contains 157 rewrite rules and 12 deduction rules.

The induction step involves proving the following le=ma(s) :

le.taa2.5.2: (cons(c_xh, vil) - xhl)

-> (ordered(cons (o_xh, vil) ) <-> ordered(xhl) )
-> true

which reduces to the equation

((cons(c_xh, vil) -xhl) <-> false)

l (ordered(cons (c_xh, vil) ) <-> ordered(xhl) )
-> true

Proof of Lemma lemma2.5.2 suspended.
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-> resume by induction xhl H

The basis step in an inductive proof of Lemma lemma2.5.2 for the induction step

in the proof of Conjecture lemma2.5

(cons(c_xh, vil) -xhl) -> (ordered (cons (c_xh, vil)) <-> ordered(xhl))
-> true

involves proving the following lemma(s) :

lemma2.5.2.1: (cons(c_xh, vil) - null)

-> (ordered (cons (c_xh, vil) ) <-> ordered(null) )
-> true

[] Proved by normalization

The induction step in an inductive proof of Lenm_ lemma2.5.2 for the induction

step in the proof of Conjecture lemma2.5

(cons(c_xh, vil) -xhl) -> (ordered (cons (c_xh, vil)) <-> ordered(xhl))
-> true

uses the following equation(s) for the induction hypothesis:

Induct. 4 : (c_xhl - cons (c_xh, vil) )

-> (ordered(c_xhl) <-> ordered(cons (c_xh, vil) ) )
-> true

The system now contains 1 equation, 157 rewrite rules, and 12 deduction rules.

Ordered equation Induct. 4 into the rewrite rule:

( (c_xhl - cons (c_xh, vil) ) <-> false)

I (ordered(c_xhl) <-> ordered(cons (c_xh, vil) ) )
-> true

The system now contains 158 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemma2.5.2.2: (cons(c_xh, vil) -cons(c_xhl, vi2))

-> (ordered(cons (c_xh, vil) ) <-> ordered(cons (c_xhl, vi2) ) )
-> true

which reduces to the equation

( (c_xh - c_xhl) <-> false)

[ ( (vil - vi2) <-> false)

I (ordered (cons (c_xh, vil)) <-> ordered(cons(c_xhl, vi2)))
-> true

Proof of Lemma lemma2.5.2.2 suspended.

-> resume by case (c_xh-c_xhl) & (vil_vi2: :Ev)

Case. 5.1

(c_vil - c_vi2) & (c_xh - c_xhl) _- true

involves proving Lemma lemma2.5.2.2.1

(cons (c_xh, c_vil) - cons (c_xhl, c_vi2) )

-> (ordered(cons (c_x/u, c_vil) ) <-> ordered(cons (c_xhl, c_vi2) ) )

-> true

The case system now contains 1 equation.

Deduction rule boolean.3 :

when x & y --- true

yield x .m true

y m true

has been applied to equation Case.5. i:

(c_vil - c_vi2) & (c_xh - c_xhl) --- true

to yield the following equations:
Case.5.1.1: c vil - c vi2 -- true

Case.5.1.2: c xh - c xhl -- true

Deduction rule equality. 4 :

when x = y -_ true
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yield x -- y

has been applied to equation Case.5.1.2:

c xh - c xhl -_ true

to yield the following equations:
Case.5.1.2.1: c xh --- c xhl

Deduction rule equality. 4 :

when x m y mm true

yield x m. y

• has been applied to equation Case.5.1.1:

c vil m c vi2 m. true

to yield the following equations:

Case. 5.1.i.I: cvil .m c vi2

* Ordered equation Case. 5.1.2.1 into the rewrite rule:

cxh -> cxhl

The case system now contains 1 equation and 1 rewrite rule.

Ordered equation Case. 5.1.i.I into the rewrite rule:

cvil -> c vi2

The case system now contains 2 rewrite rules.

Lemma lemma2.5.2.2.1 in the proof by cases of Lemma lemma2.5.2.2

(cons (c_xh, c_vil) - cons (c_xhl, c_vi2) )

-> (ordered(cons(c_xh, c_vil)) <-> ordered(cons(c_xhl, c_vi2)))
-> true

Case. 5.1: (c_vil - c_vi2) & (c_xh - c_xhl)

[] Proved by rewriting (with unreduced rules).

Case. 5.2

not ((c_vil - c_vi2) & (c_xh - c_xhl)) -- true

involves proving Lemma lemma2.5.2.2.2

(cons (c_xh, c_vil) - cons (c_xhl, c_vi2) )

-> (ordered(cons (c_xh, c_vil) ) <-> ordered(cons (c_xhl, c_vi2) ) )
-> true

The case system now contains 1 equation.

Ordered equation Case.5.2 into the rewrite rule:

((c_vil - c_vi2) <-> false) I ((c_xh - c_xhl) <-> false) -> true

The case system now contains 1 rewrite rule.

Lemma leE_a2.5.2.2.2 in the proof by cases of Lemma lemma2.5.2.2

(cons (c_xh, c_vil) - cons (c_xhl, c_vi2) )

-> (ordered(cons(c_xh, c_vil)) <-> ordered(¢ons(c_xhl, c_vi2)))
-> truo

Case.5.2: not((c_vil - c_vi2) & (c_xh - c_xhl))

[] Proved by rewriting (with unreduced rules).

Lemma lemma2.5.2.2 for the induction step in the proof of Lemma lem_a2.5.2

(cons (c_xh, vil) - cons (c_xhl, vi2) )

-> (ordered(cons (c_xh, vil) ) <m> ordered(cons (c_xhl, vi2) ) )
-> true

[] Proved by cases

" ((c xh - c xhl) & (vil - vi2)) I not((c xh - c xhl) & (vil - vi2))

Lemma lemma2.5.2 for the induction step in the proof of Conjecture lemma2.5

(cons(c_xh, vil) -xhl) -> (ordered (cons (c_xh, vil)) <-> ordered(xhl))
-> true

[] Proved by induction over Ixhl' of sort _H'.

Conjecture lemma2.5

(xh - xhl) -> (ordered(xh) <-> ordered(xhl)) -> true

[] Proved by induction over _xh: :H' of sort _H' .

The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.
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Ordered equation lemma2.5 into the rewrite rule:

((xh - xhl) <-> false) I (ordered(xh) <-> ordered(xhl)) -> true

The system now contains 157 rewrite rules and 12 deduction rules.

-> prove

Please enter an equation to prove, terminated with a '..' line, or '?' for help:

( (xh-append (cons :H, Ev->H (xhl, E (pair (xe, xt) ) ), xh2) ) & ordered (xh) &

prefix (DEQ (append (xhl, xh2 ) ), ENQ (append (xhl, xh2) ) ) &

in(append(xhl,xh2), af(xst) ) & (enqr(top(deqd(xst)))<xt) ) ->

prefix (DEQ (xh) ,ENQ (xh))

• .

Conjecture lemma2.3

((enqr(top(deqd(xst))) < xt)

& (append (cons (xhl, E(pair(xe, xt) )) , xh2) - xh)

& in(append(xhl, xh2) , af(xst) )

& ordered (xh)

& prefix(DEQ(append(xhl, xh2) ), ENQ(append(xhl, xh2) ) ) )

-> prefix (DEQ (xh), ENQ (xh))

-> true

is NOT provable using the current partially completed system. It reduces to

the equation

((enqr(top(deqd(xst))) < xt) <-> false)

[ ((append(cons(xhl, E(pair(xe, xt))), xh2) -xh) <-> false)

] (false <-> in (append (xhl, xh2) , af(xst) ) )

] (false <-> ordered(xh))

[ (false <-> prefix(DEQ(append(xhl, xh2) ), ENQ(append(xhl, xh2) ) ) )

] prefix (DEQ (xh), ENQ (xh))

-> true

Proof of Conjecture lemma2.3 suspended.

-> resume by case (enqr (top (deqd (xst)) ) <xt) & (append(cons (xhl,E (pair (xe,xt)) ) ,

xh2 )_xh) &in (append (xhl, xh2), af (xst)) &ordered (xh) &prefix (DEQ (append (xhl, xh2) ) ,

ENQ (append(xhl, xh2) ) )

Case• I. 1

(enqr(top(deqd(c_xst)) ) < c_xtl)

& (append(cons(c_xhl, E(pair(c_xe, c_xtl) ) ) , c_xh2) - c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

& ordered (c =Ja)
& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) )

ms true

involves proving Lemma lemma2.3.1

((enqr(top(deqd(c_xst)) ) < c_xtl)

& (append (cons (c_xhl, E(pair(c_xe, c_xtl) ) ) , c_xh2) - c_xh)

& in (append (c_xhl, c_xh2) , af(c_xst) )

& ordered (c_xh)

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) )

-> prefix (DEQ (c_xh) , ENQ (c_xh))

-> true

The case system now contains 1 equation.

Deduction rule boolean. 3 :

when x & y --- true

yield x _ true

y _ true

has been applied to equation Case.l. I:

(enqr (top (deqd (c_xst)) ) < c_xtl)

& (append(cons (c_xhl, E(pair(c_xe, c_xtl)) ) , c_xh2) - c_xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

& ordered (c_xh)

& prefix(DEQ(append(c_xhl, c_xh2) ) , ENQ(append(c_xhl, c_xh2) ) )
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u true

to yield the following equations:

Caso.l.l.l: enqr(top(deqd(c_xst))) < c_xtl n true

Case.l.l.2: append(cons(c_xhl, E(pair(c_xo, c_xtl))), c_xh2)- c_xh---true

Case.l.l.3: in (append (c_xhl, c_xh2), af(c_xst)) --true

Case. i. I. 4 : ordered (c_xh) --- true

Caso.l.l.5: prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) )
a._ true

Ordered equation Case. i. i. 5 into the rewrite rule:i

prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) -> true

Ordered equation Case. I. I. 4 into the rewrite rule :

orderod(c_xh) -> true

Ordered equation Case.l.l.3 into the rewrite rule:

in (append (c_xhl, o_xh2) , af (c_xst)) -> true

Deduction rule equality. 4 :

when x i y t,_ true

yield x -- y

has boon applied to equation Case.l.l. 2:

append(cons (c_xhl, E(pair(c_xe, c_xtl) )), c_xh2) - c_xh ms true

to yield the following equations:

Caso.l.l.2.1: append(cons(c_xhl, E(pair(c_xe, c_xtl))}, c_xh2) _-c_xh

Ordered equation Case. I. I. 1 into the rewrite rule:

enqr(top(deqd(c_xst) )) < c_xtl -> true

The case system now contains 1 equation and 4 rewrite rules.

Ordered equation Case. i.I. 2.1 into the rewrite rule:

append(cons (c_xhl, E (pair (c_xe, c_xtl) )) , c_xh2) -> c_xh

The =ase system now contains 5 rewrite rules.

The system now contains 1 equation, 159 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3 :

when x & y --- true

yield x --- true

y m.m true

has boon applied to equation Case.l.l:

(enqr(top(deqd(c_xst))) < c_xtl)

(append(cons(c_xhl, E(pair(c_xe, c_xtl) ) ), c_xh2) - c_xh)

& in(append(c_xhl, c_xh2), af(c_xst) )

& ordered (c xh)

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) )
in true

to yield the following equations:

Case.l.l.6: enqr(top(deqd(c_xst))) < c_xtl _ true

Caso.l.l.7: append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) i c_xh--true

Case.l.l.8: in (append (c_xhl, c_xh2), af(c_xst)) _ true

Case. i. I. 9 : ordered (c_xh) -- true

Case.l.l.10: prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) )
=.m true

° Ordered equation Case. I. i. I0 into the rewrite rule :

profix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) -> true

Ordered equation Case.l.l. 9 into the rewrite rule:

orderod(c_y,h) -> true

Ordered equation Case.l.l. 8 into the rewrite rule:

in(append(c_xhl, c_xh2) , af(c..xst) } -> true

Deduction rule equality. 4:

when x _ y u true

yield x --- y
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has boon applied to equation Case.l.l. 7:

append (cons (c_xhl, E(pair(c_xe, c_xtl) ) ) , c_xh2) - c_xh -_ true

to yield the following equations:

Caso.l.l.7.1: append(cons (c_xhl, E(pair(c_xo, c_xtl) ) ) , c_xh2) -- c_xh

Ordered equation Case.l.l. 7.1 into the rewrite rule:

append(cons (c_xhl, E(pair(c_xe, c_xtl) ) ) , c_xh2) -> c_xh

Ordered equation Case.l.l. 6 into the rewrite rule:

enqr(top(doqd(c_xst) )) < c_xtl -> true

The system now contains 164 rewrite rules and 12 deduction rules.

Lemma lemma2.3.1 in the proof by cases of Conjecture iomma2.3 .

((onqr(top(doqd(c_xst)) ) < c_xtl)

& (append(cons(c_xhl, E(pair(c_xe, c_xtl) ) ) , c_xh2) - c_xh)

& in (append (c_xhl, c_xh2) , af(c_xst) )

& ordered (c_xh)

& prefix(DEQ (append (c_xhl, c_xh2) ), ENQ (append(c_xhl, c_xh2) ) ) )

-> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

Case.l.l: (enqr(top(deqd(c_xst)) ) < c_xtl)

& (append(cons(c_xhl, E(pair(c_xe, c_xtl) ) ), c_xh2) - c_xh)

& in (append (c_xhl, c_xh2) , af (c_xst))

ordered (c__)
& prefix (DEQ (append (c_xhl, c_xh2) ), ENQ (append (c_xhl, c_xh2) ) )

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh) , ENQ (c_xh)) -> true

Proof of Lemma lemma2.3.1 suspended.

-> crit case.l.l.8 with Abstraction.10

Critical pairs between rule Case. i. I. 8 :

in (append (c_xhl, c_xh2), af (c_xst)) -> true
and rule Abstraction. i0 :

((enqr(top(deqd(xst))) < xt) <-> false)

I (false <-> in (append (xhl, xh2), af(xst) ) )

I (false <-> ordered (append (cons (xhl, E(pair(xe, xt))), xh2)))

I (false <-> prefix(DEQ(append(xhl, xh2) ), ENQ(append(xhl, xh2) ) ) )

I profix(DEQ(append(xhl, xh2) ), append(cons (ENQ(xhl), xe), ENQ(xh2) ) )
-> true

are as follows:

((onqr(top(deqd(c_xst)) ) < xt) <-> false)

I (false <-> ordered(append(cons(c_xhl, E(pair(xe, xt))), c_xh2)))

I prefix (DEQ (append (c_xhl, ¢_xh2) ),

append(cons (ENQ(c_xhl) , xe) , ENQ(c_xh2) ) )

m_ true

The system now contains 1 equation, 164 rewrite rules, and 12 deduction rules.

Ordered equation iomma2.4 into the rewrite rule:

((enqr(top(deqd(c_xst)) ) < xt) <-> false)

I (false <-> ordored(append(cons(c_xhl, E(pair(xe, xt))), c_xh2)))

I profix(DEQ(append(c_xhl, c_xh2) ), .

append(cons (ENQ (c_xhl) , xe) , ENQ (c_xh2)) )

-> true

The system now contains 165 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit case with lemma2.2

Critical pairs between rule Case.l.l.9:

ordered(c_xh) -> true

133



and rule lemma2.2 :

((xh - xhl) <-> false) I (ordered(xh) <-> ordered(xhl)) -> true

are as follows:

((c xh - xhl) <-> false) J ordered(xhl) -- true

((c xh - xh) <-> false) I ordered(xh) _ true

The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.5 into the rewrite rule:

i ((c_xh - xhl) <-> false) _ ordered(xhl) -> true

The system now contains 166 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of

" them to the system.

-> crit case.l.l.6 with lemma2

Critical pairs between rule Case.l.l.6:

enqr(top(deqd(c_xst) ) ) < c_xtl -> true
and rule lemma2.4 :

((enqr(top(deqd(c_xst)) ) < xt) <-> false)

l (false <-> ordered (append (cons (c_xhl, E(pair(xe, xt))), c_xh2)))

I prefix(DEQ(append(c_xhl, c_xh2) ),

append(cons (ENQ(c_xhl), xe), ENQ(c_xh2) ) )

-> true

are as follows:

(false <-> ordered(append(cons (c_xhl, E(pair(xe, c_xtl) )), c_xh2) ))

I prefix(DEQ(append(c_xhl, c_xh2) ),

append (cons (ENQ (c_xhl), xe), ENQ (c_xh2)) )

Hi true

The system now contains 1 equation, 166 rewrite rules, and 12 deduction rules.

Ordered equation lemons2.6 into the rewrite rule:

(false <-> ordered (append (cons (c_xhl, E (pair (xe, c_xtl) ) ) , c_xh2) ) )

I prefix(DEQ(append(c_xhl, c_xh2) ),

append(cons (ENQ(c_xhl), xe), ENQ(c_xh2) ) )

-> true

The system now contains 167 rewrite rules and 12 deduction rules.

Com_uted 1 new critical pair. Added 1 of them to the system.

-> crit case.l.l.7.1 with lemma2

Critical pairs _tween rule Case. I. I. 7.1 :

append(cons (c_xhl, E(pair(c_xe, c_xtl) ) ), c_xh2) -> c_xh
and rule lemma2.6:

(false <-> ordered(append(cons (c_xhl, E (pair(xe, c_xtl) ) ), c_xh2) ))

i prefix(DEQ(append(c_xhl, c_xh2) ),

append(cons (ENQ(c_xhl), xe), ENQ(c_xh2) ))

° -> true

are as follows:

prefix (DEQ (append (c_xhl, c_xh2) ),

append(cons (ENQ (c_xhl), c_xe), ENQ (c_xh2)) )
_-_ true

The system now contains 1 equation, 167 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.7 into the rewrite rule:

prefix (DEQ (append (c_xhl, c_xh2) ), append (cons (ENQ (c_xhl), c_xe), ENQ (c_xh2)) )
-> true
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The system now contains 168 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of

them to the system.

-> crit case.l.l. 7.1 with lemmal. 6

Critical pairs between rule Case. i. I. 7.1 :

append(cons (c_xhl, E (pair(c_xe, c_xtl) ) ) , c_xh2) -> c_xh
and rule lemmal. 6:

ENQ (append (cons (x, E (y)) , z) ) -> append(cons (ENQ(x), element (y)) , ENQ(z) )
are as follows:

ENQ (c_xh) -- append (cons (ENQ (c_xhl) , c_xe), ENQ (c_xh2))

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.8 into the rewrite rule:

append (cons (ENQ (c_xhl) , c_xe), ENQ (c_xh2)) -> ENQ (c_xh)

Left-hand side reduced:

prefix (DEQ (append (c_xhl, c_xh2) ),

append(cons (ENQ(c_xhl) , c_xe) , ENQ(c_xh2) ) )
-> true

became equation lemma2.7 :

prefix(DEQ(append(c_xhl, c xh2) ), ENQ(c_xh) ) --- true

Ordered equation lemma2.7 into the rewrite rule:

prefix (DEQ (append(c_xhl, c_xh2) ), ENQ (c_xh)) -> true

The system now contains 169 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit case.l.l.7.1 with lemmal.8

Critical pairs between rule Case.l.l. 7.1:

append (cons (c_xhl, E(pair(c..xe, c_xtl) ) ), c_xh2) -> c_xh
and rule lemmal. 8 :

DEQ(append(cons (x, E (y)) , z) ) -> DEQ (append (x, z) )

are as follows:

DEQ (c_xh) u DEQ (append(c_xhl, c_xh2) )

The system now contains 1 equation, 169 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.9 into the rewrite rule:

DEQ(append(c_xhl, c_xh2) ) -> DEQ(c_xh)

Following 4 left-hand sides reduced:

prefix (DEQ (append (c_xhl, c_xh2) ) , ENQ (append (c_xhl, c_xh2) ) ) -> true

became equation Case. I. 1. i0 :

prefix (DEQ (c_xh) , ENQ (append (c_xhl, c_xh2) ) ) u true

((enqr(top(deqd(c_xst))) < xt) <-> false)

{ (false <-> ordered(append(cons(c_xhl, E(pair(xe, xt))), c_xh2)))

{ prefix (DEQ (append (c_xhl, c_xh2) ) ,

append (cons (ENQ (c_xhl) , xe) , ENQ (c_xh2)) )

-> true

became equation lemma2.4 :

((enqr(top(deqd(c_xst))) < xt) <-> false)

{ (false <-> ordered(append(cons(c_xhl, E(pair(xe, xt))), c_xh2)))

{ prefix(DEQ(c_xh) , append(cons (ENQ(c_xhl) , xe) , ENQ(c_xh2) ) )
--- true

(false <-> ordered(append(cons (c_xhl, E (pair(xe, c_xtl) ) ), c_xh2) ))

prefix (DEQ (append (c_xhl, c_xh2) ) ,

append(cons (ENQ (c_xhl) , xe) , ENQ (c_xh2)) )

-> true

became equation lemma2.6:

(false <-> ordered (append (cons (c_xhl, E (pair (xe, c_xtl) )) , c_xh2) ))
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{ prefix(DEQ(c_xh) , append(cons (ENQ(c,xhl) , xe), ENQ(c_xh2) ))
m= true

prefix (DEQ (append (c_xhl, c_xh2) ), ENQ (c_xh)) -> true

became equation len_na2.7 :

prefix (DEQ (c_xh), ENQ (c_xh)) --- true

Ordered equation Case.l.l.10 into the rewrite rule:

prefix (DEQ (c_xh), ENQ (append (c_xhl, c_xh2) ) ) -> true

Ordered equation lemma2.4 into the rewrite rule:i

((enqr (top(deqd(c_xst)) ) < xt) <-> false)
J (false <-> ordered (append (cons (c_xhl, E(pair(xe, xt))), c_xh2)))

{ prefix(DEQ(c_xh) , append(cons (ENQ(c_xhl), xe) , ENQ(c_xh2) ))
-> true

Ordered equation lemma2.6 into the rewrite rule:

(false <-> ordered(append(cons (c_xhl, E (pair(xe, c_xtl) ) ) , c_xh2) ) )

J prefix(DEQ(c_xh), append(cons(ENQ(c_xhl), xe), ENQ(c_xh2) ))
-> true

Ordered equation lemma2.7 into the rewrite rule:

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

The system now contains 170 rewrite rules and 12 deduction rules.

Lemmma lemma2.3.1 in the proof by cases of Conjecture lemma2.3

((enqr(top(deqd(c_xst)) ) < c_xtl)

& (append (cons (c_xhl, E(pair(c_xe, c_xtl) ) ), c_xh2) - c_xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

& ordered (c_xh)

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) )

-> prefix (DEQ (cxh), ENQ (c_xh))
-> true

Case.l.l: (enqr(top(deqd(c_xst))) < c_xtl)

& (append(cons(c_xhl, E(pair(c_xe, c_xtl) ) ), c_xh2) - c_xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

& ordered (c_xh)

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) )

[] Proved by rewriting.

Case. I. 2

not ( (enqr (top (deqd(c_xst)) ) < c_xtl)

& (append(cons(c_xhl, E(pair(c_xe, c_xtl) ) ), c_xh2} - c_xh)

& in(append(c_xhl, c_xh2), af(c_xst) )

& ora.rsa (o..xh)

& prefix(DEO(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) )

--- true

involves proving Lemma leu_aa2.3.2

( (enqr (top(deqd(c_xst)) ) < c xtl)

& (append(cons(c_xhl, E(pair(c_xe, c_xtl) ) ), c_xh2) - c_xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

" & ordered (c_xh)

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ))

-> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

The case system now contains 1 equation.

Ordered equation Case.l.2 into the rewrite rule:

((enqr(top(deqd(c_xst)) ) < c_xtl) <-> false)

I ((append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) -c_xh) <-> false)

{ (false <-> in (append (c_xhl, c_xh2), af(c_xst)))

{ (false <-> ordered(c_xh))

i (false <-> prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) )
-> true

The case system now contains 1 rewrite rule.
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Lemma 1emma2.3.2 in the proof by cases of Conjecture len_na2.3

((enqr(top(deqd(c_xst)) ) < c_xtl)

& (append (cons (c_xhl, E (pair (c_xe, c_xtl) )) , c_xh2) - c_xh)

& in (append (c_xhl, c_xh2), af (c_xst) )

& ordered (c_xh)

& pre fix (DEQ (append (c_xhl, c_xh2 ) ), ENQ (append (c_xhl, c_xh2 ) ) ) )

-> prefix (DEQ (c_xh) , ENQ (c_xh))
-> true

Case.l.2: not((enqr(top(deqd(c_xst))) < c_xtl)

& (append(cons (c_xhl, E(pair(c_xe, c_xtl) )), c_xh2) - c_xh)

& in (append (c_xhl, c_xh2 ) , af (c_xst))

& ordered (c_xh)

& prefix (DEQ (append (c_xhl, c_xh2) ) , .

ENQ(append(c_xhl, c_xh2)) ))

[] Proved by rewriting (with unreduced rules).

Conjecture lemma2.3

((enqr(top(deqd(xst))) < xt)

& (append(cons(xhl, E(pair(xe, xt))), xh2) -xh)

& in (append (xhl, xh2), af(xst) )

& ordered (xh)

& prefix(DEQ(append(xhl, xh2) ), ENO(append(xhl, xh2) ) ))

-> prefix (DEQ (xh), ENQ (xh))

-> true

[] Proved by cases

((enqr(top(deqd(xst)) ) < xt)

& (append(cons(xhl, E(pair(xe, xt))), xh2) -xh)

& in(append(xhl, xh2) , af(xst) )

& ordered (xh)

& prefix(DEQ(append(xhl, xh2) ) , ENQ(append(xhl, xh2) ) ))

i not ((enqr(top(deqd(xst))) < xt)

& (append (cons (xhl, E(pair(xe, xt))), xh2) -xh)

& in(append(xhl, xh2), af(xst) )

& ordered (xh)

& prefix(DEQ(append(xhl, xh2) ), ENQ(append(xhl, xh2) ) ) )

The system now contains 1 equation, 159 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.3 into the rewrite rule:

((enqr(top(deqd(xst))) < xt) <-> false)

J ((append(cons(xhl, E(pair(xe, xt))), xh2) -xh) <-> false)

i (false <-> in (append (xhl, xh2), af(xst)))

l (false <-> ordered(xh))

i (false <-> prefix (DEQ (append (xhl, xh2) ), ENQ (append (xhl, xh2) ) ) )

i prefix (DEQ (xh), ENQ (y/u))

-> true

The system now contains 160 rewrite rules and 12 deduction rules.

Critical-pair computation abandoned because a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the system.

-> forget undo

Undo stack cleared.

-> freeze theory2

System frozen in _theory2.frz'.

-> q
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5.7. Helping Lemma Set 3

add

(DEQ (append (xh ,xhl) )-null :->Seq) -> ( (DEQ (xh) -null :->Seq) & (DEQ (xhl) -null :->Seq) )

( (xh-&ppend (=ons (xhl, D (trip (element (xn), enqt (xn), xt) ) ) , xh2) ) &

(DEQ(xhl)_null:->Seq) & (DEQ(xh2)-null:->Seq) & in(append(xhl,xh2) ,af(xst) ) &

in (xn, enqd (xst)) & least (xn, enqd (xst)) ) -> prefix (DEQ (xh) ,ENQ (xh))

( (xhmappend(=ons (xhl, D (trip (element (xn) , enqt (xn) , xt) ) ) , xh2) ) &

in(append(xhl,xh2),af(xst)) & in(xn, enqd(xst)) & least(xn, enqd(xst)) &@

prefix (DE@ (append (xhl, xh2) ), ENQ (append (xhl, xh2) )) & (DEQ (xh2) -null :->Seq) &

(enqr (top(deqd(xst)) ) < enqt (xn)) ) -> prefix(DEQ(xh) ,ENQ(xh) )
• •
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5.8. LP Proof Session of Lemma Set 3

-> thaw theory2

System thawed from _theory2. frz' .

-> set name lemma3

The name prefix is now _lemma3'.

-> prove (DEQ (append (xh ,xhl) ) -null :->Seq) -> ( (DEQ (xh) -null :->Seq) & (DEQ (xhl) -null :->Seq) ) by induction
xh H

The basis step in an inductive proof of Conjecture lemma3.1

(DEQ(append(xh, xhl)) -null) -> ((DEQ(xh) -null) & (DEQ(xhl) -null))

-> true

involves proving the following lemma(s) :

lemma3.1.1: (DEQ(append(null, xhl) ) - null)

-> ((DEQ(nulI) - null) & (DEQ(xhl) - null))

-> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemma3.1

(DEQ(append(xh, xhl) ) - null) -> ((DEQ(xh) - null) & (DEQ(xhl) - null) )

-> true

uses the following equation(s) for the induction hypothesis:

Induct.l: (DEQ(append(c_xh, xhl)) -null)

-> ((DEQ(c_xh) -null) & (DEQ(xhl) -null))

-> true

The system now contains 1 equation, 160 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l into the rewrite rule:

((DEQ(c_xh) -null) & (DEQ(xhl)- null))

{ ( (DEQ(append(c_xh, xhl) ) - null) <-> false)
-> true

The system now contains 161 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemma3.1.2: (DEQ(append(cons(c_xh, vil), xhl)) -null)

-> ( (DEQ(cons(c_xh, vil) ) - null) & (DEQ(xhl) - null) )
-> true

which reduces to the equation

((DEQ(cons (c_xh, vil) ) - null) & (DEQ(xhl) - null) )

{ ((DEQ(append(cons(c_xh, vil), xhl)) - null) <-> false)
-> true

Proof of Lemma lemma3.1.2 suspended.

-> resume by induction xhl

Please enter a sort for the induction: H

The basis step in an inductive proof of Lemma lemma3.1.2 for the induction step

in the proof of Conjecture lemma3.1

(DEQ(append(cons (c_xh, vil), xhl) ) - null)

-> ((DEQ(cons(c_xh, vil))- null) & (DEQ(xhl)- null))
-> true

involves proving the following lemma(s) :

lemma3.1.2.1: (DEQ(append(cons(c_xh, vil), null)) -null)

-> ((DEQ(cons(c_xh, vil)) -null) & (DEQ(nulI) -null))
-> true

[] Proved by normalization
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The induction step in an inductive proof of Lemma lemma3.1.2 for the induction

step in the proof of Conjecture lemma3.1

(DEQ(append(cons(c_xh, vil), xhl)) -null)

-> ((DEQ(cons(c_xh, vil)) - null) & (DEQ(xhl) - null))
-> true

uses the following equation(s) for the induction hypothesis:

Induct.2: (DEQ(append(cons(c_xh, vil), c xhl)) - null)

-> ((DEQ(c_xhl) - null) & (DEQ(cons(c_xh, vil)) - null))

, -> true

The system now contains 1 equation, 161 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:

((DEQ(c_xhl) - null) & (DEQ(cons(c_xh, vil) ) - null) )

{ ( (DEQ (append(cons (c_xh, vil), c_xhl) ) - null) <-> false)
-> true

The system now contains 162 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemma3.1.2.2: (DEQ(append(cons(c_xh, vil), cons(c_xhl, vi2))) -null)

-> ((DEQ(cons (c_xh, vil) ) - null)

& (DEQ(cons (c_xhl, vi2)) - null) )

-> true

which reduces to the equation

( (DEQ (cons (c_xh, vil) ) - null)

& (DEQ(cons (c_xhl, vi2)) - null))

{ ((DEQ(cons(append(cons(c_xh, vil), c_xhl), vi2)) -null)

<-> false)

-> true

Proof of Lemma lemma3.1.2.2 suspended.

-> resume by induction vi2 Ev

The basis step in an inductive proof of Lemma lemma3.1.2.2 for the induction

step in the proof of Lemma lemma3.1.2

(DEQ (append(cons (c_xh, vil) , cons (c_xhl, vi2) ) ) - null)

-> ((DEQ(cons(c_xh, vil)) - null) & (DEQ(cons(c_xhl, vi2)) - null))
-> true

involves proving the following lemma(s) :

lemma3. I. 2.2.1 : (DEQ (append (cons (c_xh, vil) , cons (c_xhl, E (vi3)) )) - null)

-> ( (DEQ(cons(c_xh, vil) ) - null)

& (DEQ(cons (c_xhl, E(vi3) ) ) - null))

-> true

[] Proved by normalization

lemma3.1.2.2.2: (DEQ (append (cons (c xh, vil) cons(c xhl, D(vi3)))) -null)% -- F --

-> ( (DEQ(cons(c_xh, vil) ) - null)

& (DEQ(cons (c_xhl, D (vi3)) ) - null) )

-> true

" [] Proved by normalization

The induction step in an inductive proof of Lemma lemma3. I. 2.2 for the

induction step in the proof of Lemma lemma3.1.2

(DEQ (append (cons (c_xh, vil) , cons (c_xhl, vi2) ) ) - null)

-> ( (DEQ(cons (c_xh, vil) ) - null) & (DEQ(cons (c_xhl, vi2) ) - null) )
-> true

iS vacuous.

Lemma lemma3 •1.2.2 for the induction step in the proof of Lemma lemma3.1.2

(DEQ (append(cons (c_xh, vil) , cons (c_xhl, vi2) ) ) - null)

-> ( (DEQ(cons(c_xh, vil) ) - null) & (DEQ(cons(c_xhl, vi2) ) - null) )
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-> true

[] Proved by induction over _vi2: :Ev' of sort _Ev'.

Lemma lemma3.1.2 for the induction step in the proof of Conjecture lemma3.1

(DEQ(append(cons(c_xh, vil), xhl)) -null)

-> ((DEQ(cons(c_xh, vil)) - null) & (DEQ(xhl) - null))
-> true

[] Proved by induction over 'xhl' of sort _H'.

Conjecture lemma3.1

(DEQ(append(xh, xhl) ) - null) -> ((DEQ(xh) - null) & (DEQ(xhl) - null) )

-> true

[] Proved by induction over _xh: :H' of sort _H'.

The system now contains 1 equation, 160 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.1 into the rewrite rule:

((DEQ(xh) - null) & (DEQ(xhl) - null))

l ((DEQ(append(xh, xhl)) - null) <-> false)

-> true

The system now contains 161 rewrite rules and 12 deduction rules.

-> prove

Please enter an equation to prove, terminated with a '..' line, or _?' for help:

( (xh-append(cons (xhl, D (trip (element (xn), enqt (xn), xt) ) ), xh2) ) &

(DEQ (xhl) -null :->Seq) & (DEQ (xh2) -null :->Seq) & in (append (xhl, xh2), af (xst)) &

in(xn, enqd(xst) ) & least (xn, enqd(xst) ) ) -> prefix(DEQ(xh) ,ENQ(xh) )

• .

Conjecture lemma3.2

( (DEQ (xhl) - null)

& (DEQ(xh2) - null)

& (append (cons (xhl, D (trip (element (xn) , enqt (xn) , xt) ) ) , xh2) - xh)

& in(append(xhl, xh2), af(xst) )

& in(xn, enqd(xst) )

& least (xn, enqd(xst) ) )

-> prefix (DEQ (xh), ENQ (xh))

-> true

is NOT provable using the current partially completed system. It reduces to

the equation

((DEQ(xhl) -null) <-> false)

i ((DEQ(xh2) - null) <-> false)

i ((append(cons(xhl, D(trip(element(xn), enqt(xn), xt))), xh2) -xh)

<-> false)

(false <-> in (append (xhl, xh2), af(xst)))

I (false <-> in(xn, enqd(xst) ))

I (false <-> least (xn, enqd(xst) ) )

I prefix(DEQ(xh), ENQ(xh) )

-> true

Proof of Conjecture lemma3.2 suspended.

-> resume by case (append(cons (xhl, D (trip (element (xn) , enqt (xn) ,xt) ) ) ,xh2)-xh)

&in (append (xhl, xh2) , af (xst) ) &in (xn, enqd (xst) ) &least (xn, enqd (xst)) &

(DEQ (xhl) -null :->Seq) & (DEQ (xh2) -null :->Seq)

Case. I. 1

(DEQ(c_xhl) - null)

& (DEQ(c_xh2) - null)

& (append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2)

- c_xh)

& in(append(c_xhl, c..xh2) , af(c_xst) )

& in(c_xn,enqd(c_xst))
& least (c_xn, enqd(c_xst) )

_-- true
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involves proving Lemma lemma3.2.1

( (DEQ (c_xhl) - null)

& (DEQ (c_xh2) - null)

& (append icons (c_xhl, D (trip (element (c_xn), enqt (c_xn), c_xtl) ) ), c_xh2)

- c_xh)

& in (append (c_xhl, c_xh2), af(c_xst))

in(c_xn,enqd(c_xst))
least(c_xn,enqd(c_xst)))

, --> prefix (DEQ (¢_xh), ENQ (c_xh))
-> true

The case system now contains 1 equation.

" Deduction rule boolean.3:

when x & y .u true

yield x -_ true

y _ true

has been applied to equation Case.l.l:

(DEQ(c_xhl) - null)

& (DEQ(c_xh2) - null)

& (append (cons (c_xhl, D (trip (element (o_xn), enqt (¢_xn), c_xtl) ) ), c_xh2)

- c_xh)

& in (append (c_xhl, c_xh2), af(c_xst))

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c..xst) )
nM true

to yield the following equations:

Case.l.l.l: DEQ(c_xhl) - null ms true

Case.l.l.2: DEQ(c_xh2) - null M true

Case. i. i. 3 : append (cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ),

c_xh 2 )
c xh

ms true

Case.l.l.4: in (append (c_xhl, c_xh2) , af(c_xst) ) _ true

Case.l.l.5: in(c_xn, enqd(c_xst)) _ true

Case.l.l.6: least(c_xn, enqd(c_xst)) _ true

Ordered equation Case.l.I. 6 into the rewrite rule:

least (c_xn, enqd(c_xst) ) -> true

Ordered equation Case. i. i. 5 into the rewrite rule:

in(c_xn, enqd(c_xst) ) -> true

Ordered equation Case. I. I. 4 into the rewrite rule:

in(append(c_xhl, c_xh2), af(c_xst) ) -> true

Deduction rule equality. 4 :

when x _ y -_ true

yield x -- y

has been applied to equation Case.l.l.3:

m append(cons (c_xhl, D (trip (element (c_xn) , enc/t (c_xn) , c_xtl) ) ) , c_xh2) - c_xh
..s true

to yield the following equations:

Case.l.l.3.1: append(cons (c_xhl, D (trip (element (c_xn), enq¢ (c_xn), c_xtl) ) ),

c__2)
• _ cxh

Deduction rule equality. 4 :

when x _ y _ true

yield x -- y

has been applied to equation Case.l.l.2:

DEQ(c_xh2) - null --- true

to yield the following equations:

Case.l.l.2.1: DEQ(c_xh2) ---null

Deduction rule equality. 4 :

when x M y us true
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yield x -- y

has been applied to equation Case.l.l.l:

DEQ(c_xhl) - null -- true

to yield the following equations:

Case.l.l.l.l: DEQ(c_xhl) JR null

The case system now contains 3 equations and 3 rewrite rules.

Ordered equation Case. I. I. 2.1 into the rewrite rule:

DEQ (c_xh2) -> null

The case system now contains 2 equations and 4 rewrite rules.

Ordered equation Case.l.l.l.l into the rewrite rule:

DEQ (c_xhl) -> null

The case system now contains 1 equation and 5 rewrite rules.

Ordered equation Case. I.I.3.1 into the rewrite rule:

append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c xh2) -> c_xh

The case system now contains 6 rewrite rules.

The system now contains 1 equation, 162 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3 :

when x & y g true

yield x _ true

y -- true

has been applied to equation Case.l.l:

(DEQ (c_xhl) - null)

& (DEQ (c_xh2) - null)

& (append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2)

- C._xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )
is true

to yield the following equations:

Case.l.l. 7: DEQ (c_xhl) - null -- true

Case.l.l.8: DEQ(c_xh2) - null mR true

Case.l.l.9: append (cons (c_xhl, D(trip(element(c_xn), enqt(c_xn), c_xtl))),

c_xh2)
g ¢ xh

mR true

Case.l.l.10: in(append(c_xhl, c_xh2), af(c_xst)) m true

Case.l.l.ll: in(c_xn, enqd(c_xst)) m true

Case.l.l.12: least (c_xn, enqd(c_xst)) _ true

Ordered equation Case.l.l.12 into the rewrite rule:

least (c_xn, enqd(c_xst) ) -> true

Ordered equation Case. i. i. Ii into the rewrite rule:

in(c_xn, enqd(c_xst) ) -> true

Ordered equation Case. I.I.I0 into the rewrite rule:

in (append (c_xhl, c_xh2) , af(c_xst) ) -> true

Deduction rule equality. 4 :

when x g y _ true

yield x --- y

has been applied to equation Case.l.l.9:

append (cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2) - c_xh
_.R true

to yield the following equations:

Case. i. I. 9.1 : append (cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ),

c_xh2)
-,,,, c xh
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Ordered equation Case.l.l. 9.1 into the rewrite rule:

append(cons (c_xhl, D (trip(element (c_xn), enqt (c_xn), c_xtl) ) ) , c_xh2) -> c_xh

Deduction rule equality. 4 :

when x m y a.m true

yield x -_ y

has been applied to equation Caso.l.l. 8:

DEQ(c_xh2) - null --- true

to yield the following equations:i

Caso.l.l.8.1: DEQ(c_xh2) us null

Ordered equation Case. I.i. 8.1 into the rewrite rule:

DEQ (c_xh2) -> null

Deduction rule equality. 4 :

when x _ y n.m true

yield x _- y

has been applied to equation Case.l.l.7:

DEQ(c_xhl) - null -- true

to yield the following equations:

Caso.l.l.7.1: DEQ(c_xhl) i null

Ordered equation Case. I. i. 7.1 into the rewrite rule:

DEQ (c_xhl) -> null

The system now contains 168 rewrite rules and 12 deduction rules.

Lemma lemma3.2.1 in the proof by cases of Conjecture lenena3.2

( (DEQ (c_xhl) - null)

& (DEQ (c_xh2) - null)

& (append (cons (c_xhl, D(trip(element(c_xn) , enqt (c_xn) , c_xtl) ) ), c_xh2)

- c_xh)

& in(append(c_xhl, c_xh2), af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd (c_xst)) )

-> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

Case.l.l: (DEQ(c_xhl) - null)

& (DEQ(c_xh2) - null)

& (append (cons (c_xhl,

D (trip (element (c_xn), enqt (c_xn), c_xtl) ) ),

c_xh2)

- c_xh)

& in(eppend(=_xhl, c xh2), af(= xst))

in(c_xn, enqd(c_xst) )
& least (c_xn, enqd(c xst) )

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Proof of Lenena lemma3.2.1 suspended.

-> crit case with lemmal.7

Critical pairs between rule Case. i. i. 9.1:

append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2) -> c_xh
and rule lenenal. 7 :

ENQ (append (cons (x, D(y)), z)) -> ENQ (append (x, z))

are as follows:

ENQ (c_xh) .m ENQ (append(c_xhl, c_xh2) )

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.



Ordered equation lemma3.3 into the rewrite rule:

ENQ (append(c_xhl, c_xh2) ) -> ENQ (c_xh)

The system now contains 169 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit case with lemmal. 9

Critical pairs between rule Case.l.l. 9.1:

append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2) -> c_xh
and rule lenuual. 9 :

DEQ(append(cons(x, D(y)), z)) -> append (cons (DEQ (x) , what(y)), DEQ(z))

are as follows:

DEQ (c_'xh) --- cons (null, element (c_xn))

The system now contains 1 equation, 169 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.4 into the rewrite rule:

DEQ (c_xh) -> cons (null, element (c_xn))

The system now contains 170 rewrite rules and 12 deduction rules.

Lemma lenmm3.2.1 in the proof by cases of Conjecture lenuna3.2

((DEQ (c_xhl) - null)

& (DEQ(c_xh2) - null)

& (append(cons(c_xhl, D(trip(element(c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2)

- c_xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) ) )

-> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

Case.l.l: (DEQ(c_xhl) - null)

& (DEQ(c_xh2) - null)

& (append(cons (c_xhl,

D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) ,

c_xh 2 )

- c_xh)

& in (append (c xhl, c xh2), af(c xst))

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (cons (null, element (c_xn)) , ENQ (c_xh)) -> true

Proof of Lemma lemma3.2.1 suspended.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit case. i. I. ii with Abstraction. ii

Critical pairs k>etween rule Case. I. I. II :

in(c_xn, enqd(c_xst) ) -> true
and rule Abstraction. Ii:

(false <-> in(xh, af (xst)) )

I (false <-> in(xn, enqd(xst) ) )

I (false <-> least (xn, enqd(xst) ))

I (false <-> prefix(DEQ (xh) , ENQ (xh)) )

I prefix(cons (DEQ(xh) , element (xn)) , ENQ (xh))

-> true

are as follows:

(false <-> in (xh, af (c_xst)) )

I (false <-> prefix(DEQ(xh), ENQ(xh)))

I prefix (cons (DEQ (xh) , element (c_xn)) , ENQ (xh))
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n true

The system now contains 1 equation, 170 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.5 into the rewrite rule:

(false <-> in(xh, af (c_xst)) )

I (false <-> prefix (DEQ (xh), ENQ (xh)) )

I prefix (cons (DEQ (xh), element (c_xn)), ENQ (xh))

-> true

The system now contains 171 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> instantiate xh by append(c_xhl,o_xh2) in lemma3.5

Equation lemma3.5 :

(false <-> in (xh, af (c_xst)) )

l (false <-> prefix (DEQ (xh), ENQ (xh)) )

I prefix (cons (DEQ (xh) , element (c_xn)) , ENQ (xh))
-> true

has k_een instantiated to equation lemma3.5.1:

(false <-> prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(c_xh) ) )

I prefix(cons (DEQ(append(c_xhl, c_xh2) ) , element (c_xn)) , ENQ(c_xh) )
_.s true

Added 1 equation to the system.

Ordered equation lemma3.5.1 into the rewrite rule:

(false <-> prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(c_xh) ))

I prefix(cons (DEQ(append(c_xhl, c_xh2) ), element (c_xn)) , ENQ(c_xh) )
-> true

The system now contains 172 rewrite rules and 12 deduction rules.

-> prove ( (DEQ (xhl) -null :->Seq) & (DEQ (xh2) _null :->Seq) )-> (DEQ (append (xhl, xh2) )-null :->Seq) by induction

xhl H

The basis step in an inductive proof of Conjecture lemma3.6

((DEQ(xhl) - null) & (DEQ(xh2) - null) ) -> (DEQ(append(xhl, xh2) ) - null)

-> true

involves proving the following lemma(s) :

lea_a3.6.1: ((DEQ(nulI) -null) & (DEQ(xh2) -null))

-> (DEQ (append (null, xh2)) -null)

-> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemma3.6

((DEQ(xhl) -null) & (DEQ(xh2) -null)) -> (DEQ(append(xhl, xh2)) -null)

-> true

uses the following equation(s) for the induction hypothesis:

Induct.l: ((DEQ(c_xh3) - null) & (DEQ(xh2) - null))

-> (DEQ(append(c_xh3, xh2) ) - null)

-> true

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l into the rewrite rule:

((DEO(c_xh3) - null) <-> false)

i ((DEQ(xh2) -null) <-> false)

I (DEO(append(c_xh3, xh2)) -null)
-> true

The system now contains 173 rewrite rules and 12 deduction rules.

The induction step involves proving the following lenuna(s) :
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lemma3.6.2: ((DEQ(cons(c_xh3, vil)) -null) & (DEQ(xh2) -null))

-> (DEQ (append (cons (c_xh3, vil), xh2) ) - null)
-> true

which reduces to the equation

( (DEQ(cons (c_xh3, vil)) - null) <-> false)

I ( (DEQ (xh2) - null) <-> false)

I (DEQ(append(cons(c_xh3, vil), xh2)) -null)
-> true

Proof of Lemma lemma3.6.2 suspended.

-> resume by induction xh2 H

The basis step in an inductive proof of Lemma lemma3.6.2 for the induction step

in the proof of Conjecture lemma3.6

( (DEQ(cons (c_xh3, vil)) - null) & (DEQ(xh2) - null) )

-> (DEQ(append(cons(c_xh3, vil), xh2)) - null)
-> true

involves proving the following lemma(s) :

lemma3.6.2.1: ((DEQ(cons(c_xh3, vil)) -null) & (DEQ(nulI) -null))

-> (DEQ (append (cons (c_xh3, vil), null) ) - null)
-> true

[] Proved by normalization

The induction step in an inductive proof of Lemma lemma3.6.2 for the induction

step in the proof of Conjecture lemma3.6

((DEQ(cons(c_xh3, vil)) - null) & (DEQ(xh2) - null) )

-> (DEQ(append(cons(c_xh3, vil), xh2)) - null)

-> true

uses the following equation(s) for the induction hypothesis:

Induct.2: ((DEQ(c_xh4) -null) & (DEQ(cons(c_xh3, vil)) m null))

-> (DEQ(append(cons(c_xh3, vil), c_xh4)) -null)
-> true

The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:

((DEQ(c_xh4) -null) <-> false)

[ ((DEQ(cons(c_xh3, vil)) -null) <-> false)

] (DEQ (append (cons (c_xh3, vil) , c_xh4) ) - null)
-> true

The system now contains 174 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemma3.6.2.2: ((DEQ(cons(c_xh3, vil)) - null) & (DEQ(cons(c_xh4, vi2)) - null))

-> (DEQ(append(cons(c_xh3, vil) , cons(c_xh4, vi2) ) ) - null)

-> true

which reduces to the equation

((DEQ(cons (c,xh3, vil) ) = null) <-> false)

I ( (DEQ(cons (c_xh4, vi2) ) - null) <-> false)

] (DEQ (cons (append (cons (c_xh3, vil), c_xh4), vi2)) -null)
-> true

Proof of Lemma lemma3.6.2.2 suspended.

-> resume by induction vi2 Ev

The basis step in an inductive proof of Lemma lemma3.6.2.2 for the induction

step in the proof of Lemma lemma3.6.2

((DEQ(cons(c_xh3, vil)) - null) & (DEQ(cons(c_xh4, vi2)) = null))

-> (DEQ(append(cons(c_xh3, vil) , cons(c_xh4, vi2) ) ) - null)
-> true

involves proving the following lemma(s) :
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lemma3.6.2.2.1: ((DEQ(cons(c xh3, vil)) - null)

& (DEQ(cons(c_xh4, E(vi3))) - null))

-> (DEQ (append (cons (c_xh3, vil), cons(c_xh4, E(vi3) ) ) ) - null)
-> true

[] Proved by normalization

lemma3.6.2.2.2: "((DEQ (cons (c_xh3, vil) ) - null)

& (DEQ(cons (c_xh4, D (vi3)) ) - null) )

-> (DEQ (append (cons (c_xh3, vil), cons (c_xh4, D (vi3)) ) ) m null)
-> true

, [] Proved by normalization

The induction step in an inductive proof of Lemma lemma3.6.2.2 for the

induction step in the proof of Lemma lemma3.6.2

( (DEQ(cons(c_xh3, vil)) - null) & (DEQ(cons(c_xh4, vi2) ) - null) )

-> (DEQ(append(cons(c_xh3, vil), cons(c_xh4, vi2))) -null)
-> true

is vacuous.

Lemma lemma3.6.2.2 for the induction step in the proof of Lemcaa lemma3.6.2

((DEQ(cons(c_xh3, vil)) - null) & (DEQ(cons(c_xh4, vi2)) - null))

-> (DEQ(append(cons(c_xh3, vil), cons(c_xh4, vi2) ) ) - null)
-> true

[] Proved by induction over 'vi2: :Ev' of sort 'Ev'.

Lemma lemma3.6.2 for the induction step in the proof of Conjecture lem_a3.6

( (DEQ(cons(c_xh3, vil)) - null) & (DEQ(xh2) - null) )

-> (DEQ (append (cons (c_xh3, vil), xh2)) - null)
-> true

[] Proved by induction over _xh2' of sort _H'.

Conjecture lemma3.6

((DEQ(xhl) - null) & (DEQ(xh2) - null) ) -> (DEQ(append(xhl, xh2) ) - null)
-> true

[] Proved by induction over _xhl' 6f sort _H'.

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.6 into the rewrite rule:

((DEQ(xhl) -null) <-> false)

l ((DEQ(xh2) - null) <-> false)

I (DEQ(append(xhl, xh2)) - null)
-> true

The system now contains 173 rewrite rules and 12 deduction rules.

Lemma lemma3.2.1 in the proof by cases of Conjecture lemma3.2

((DEQ (c_xhl) - null)

& (DEQ(c xh2) - null)

& (append(cons (c_xhl, D(trip(element(c_xn) , enqt (c_xn), c_xtl) ) ) , c_xh2)

- c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

a & in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) ) )

-> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

Case.l.l: (DEQ(c_xhl) - null)

& (DEQ (c_xh2) - null)

& (append (cons (c_xhl,

D (trip (element (c_xn), enqt (c_xn) , c_xtl) ) ) ,

c xh2)

- c_xh)

& in (append (c_xhl, c_xh2), af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

is NOT provable using the current partially completed system. It reduces to
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the equation

prefix (cons (null, element (c_xn)), ENQ (c_xh)) -> true

Proof of Lemma lemma3.2.1 suspended.

-> crit case with lemma3.6

Critical pairs between rule Case. I. I. 7.1 :

DEQ (c_xhl) -> null
and rule lemma3.6:

((DEQ(xhl) -null) <-> false)

i ((DEQ(xh2) -null) <-> false)

i (DEQ(append(xhl, xh2)) -null)

-> true

are as follows:

((DEQ(xh2) - null) <-> false) I (DEQ(append(c_xhl, xh2)) - null) -- true

((DEQ(xhl) -null) <-> false) I (DEQ(append(xhl, c xhl)) = null) --true

The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.7 into the rewrite rule:

((DEQ(xh2) - null) <-> false) i (DEQ(append(c_xhl, xh2)) - null) -> true

The system now contains 174 rewrite rules and 12 deduction rules.

The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Ordered equation lemmna3.8 into the rewrite rule:

((DEQ(xhl) - null) <-> false) i (DEQ(append(xhl, c_xhl)) - null) -> true

The system now contains 175 rewrite rules and 12 deduction rules.

Critical pairs between rule Case. I. i. 8.1 :

DEQ (c_xh2) -> null
and rule lemma3.6:

((DEQ(xhl) - null) <-> false)

i ((DEQ(xh2) - null) <-> false)

I (DEQ(append(xhl, xh2)) - null)

-> true

are as follows:

((DEQ(xh2) - null) <-> false) I (DEQ(append(c_xh2, xh2)) - null) -= true

((DEQ(xhl) - null) <-> false) i (DEQ(append(xhl, c_xh2)) - null) -- true

The system now contains 1 equation, 175 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.9 into the rewrite rule:

((DEQ(xh2) - null) <-> false) I (DEQ(append(c_xh2, xh2)) - null) -> true

The system now contains 176 rewrite rules and 12 deduction rules.

The system now contains 1 equation, 176 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.10 into the rewrite rule:

((DEQ(xhl) - null) <-> false) I (DEQ(append(xhl, c_xh2)) - null) -> true

The system now Contains 177 rewrite rules and 12 deduction rules.

Computed 5 new critical pairs, 1 of which reduced to an identity. Added 4 of

them to the system.

-> crit case.l.l. 7.1 with lemma3.10

Critical pairs between rule Case. i. I. 7.1 :

DEQ (c_xhl) -> null
and rule lemma3. I0 :

((DEQ(xhl) - null) <-> false) I (DEQ(append(xhl, c_xh2)) - null) -> true
are as follows:

DEQ(append(c_xhl, c_xh2)) - null -- true
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The system now contains 1 equation, 177 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x i y ._ true

yield x m y

has been applied to equation lemma3.11:

DEQ (append(c_xhl, c_xh2) ) - null --- true

to yield the following equations:

, lemma3.11.1: DEQ(append(c_xhl, c_xh2)) m. null

Ordered equation lemma3.11.1 into the rewrite rule:

DEQ (append (c_xhl, c_xh2) ) -> null

Left-hand side reduced:

(false <-> prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(c_xh) ) )

I prefix (cons (DEQ (append (c_xhl, c_xh2) ) , element (c_xn)) , ENQ (c_xh))
-> true

became equation lemma3.5.1 :

(fal.e <-> prefix(null, ENQ(c_xh) ) )

I prefix(cons (DEQ(append(c_xhl, c_xh2) ) , element (c_xn)) , ENQ(c_xh) )
true

Ordered equation lemma3.5.1 into the rewrite rule:

prefix (cons (null, element (c_xn)), ENQ (c_xh)) -> true

The system now contains 178 rewrite rules and 12 deduction rules.

Lemma lemma3.2.1 in the proof by cases of Conjecture lemma3.2

( (DEQ (c_xhl) - null)

& (DEQ(c_xh2) - null)

& (append (cons (c_xhl, D (trip (element (oxn) , enqt (c_xn) , c_xtl) ) ) , c_xh2)

- c__)

& in (append (c_xhl, c_xh2) , af(c_xst) )

& in (c_xn, enqd (c_xst))

least (c_xn, enqd(c._xst) ) )
-> prefix (DEQ (c_xh), ENQ (c_xh))

'> true

Case.l.l: (DEQ(c_xhl) - null)

& (DEQ(c_xh2) -null)

& (append(cons (c_xhl,

D (trip(element (c_xn) , enqt (c_xn) , c_xtl) ) ) ,

c__2)
- c...xh)

& in (append (c_xhl, c_xh2) , af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

[] Proved by rewriting.

Case. I. 2

not ( (DEQ (c_xhl) - null)

& (DEQ(c_xh2) -null)

& (append(cons (c_xhl, D(trip(element(c_xn), enqt (c_xn), c_xtl) )) ,

+ c_.xh2 )

- c..xh)

& in (append (c_xhl, c_xh2) , af (c_xst))

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) ) )

true

involves proving Lemma lemma3.2.2

( (DEQ(c xhl) - null)

& (DEQ(c_xh2) -null)

& (append(cons (c_xhl, D (trip (element (c_xn), enqt (c_xn) , c_xtl) ) ), c_xh2)
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- o_xh)

& in(append(c_xhl, ¢_xh2), af(c_xst) )

in(c_xn, enqd (c_xst))
& least (c_xn, enqd(c_.xst) ) )

--> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

The case system now contains 1 equation.

Ordered equation Case. I. 2 into the rewrite rule:

((DEQ(c_xhl) - null) <-> false)

{ ((DEQ(c_xh2) - null) <-> false)

{ ((append(cons(c_xhl, D(trip(element(c_xn), enqt(c_xn), c_xtl))), c_xh2)

- c_xh)
<-> false)

{ (false <--> in(append(c_xhl, c_xh2), af(c_xst)))

{ (false <-> in(c_xn, enqd(c_xst) ) )

{ (false <-> least (c_xn, enqd(c_xst) ) )
-> true

The case system now contains 1 rewrite rule.

Lemma lemma3.2.2 in the proof by cases of Conjecture lemma3.2

((DEQ(c_xhl) - null)

& (DEQ(c_xh2) - null)

& (append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2)

- c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) ) )

-> prefix (DEQ (c_xh), ENQ (¢_xh))
-> true

Case.l.2: not((DEQ(c_xhl) = null)

& (DEQ (c_xh2) - null)

& (append (cons (c_xhl,

D (trip (element (c_xn), enqt (c_xn), c_xtl) ) ),

c xh2)

- c_xh)

& in (append (c_xhl, c_xh2), af(c_xst) )

& in (c_xn, enqd (c_xst))

& least (c_xn, enqd(c_xst) ) )

[] Proved by rewriting (with unreduced rules).

Conjecture lemma3.2

( (DEQ (xhl) - null)

& (DEQ(xh2) - null)

& (append(cons (xhl, D (trip(element (xn) , enqt (xn) , xt) ) ) , xh2) - xh)

& in (append (xhl, xh2) , af(xst) )

in(xn, enqd(xst) )
& least (xn, enqd(xst) ) )

-> prefix (DEQ (xh), ENQ (xh))

-> true

[ ] Proved by cases
((DEQ(xhl) - null)

& (DEQ(xh2) -null)

& (append(cons (xhl, D (trip (element (xn) , enqt (xn) , xt) ) ) , xh2) - xh)

& in (append (xhl, xh2) , af(xst) )

& in(xn, enqd(xst) )

& least (xn, enqd(xst) ) )

not ( (DEQ (xhl) - null)

& (DEQ(xh2) - null)

& (append(cons(xhl, D(trip(element(xn), enqt(xn), xt))), xh2) -xh)
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& in(append(xhl, xh2), af(xst) )

& in(xn, enqd(xst))
& least (xn, enqd (xst)) )

The system now contains 1 equation, 162 rewrite rules, and 12 deduction rules.

' Ordered equation lemma3.2 into the rewrite rule:

((DEQ(xhl) -null) <-> false)

[ ((DEQ(xh2) -null) <-> false)

[ ((append(cons(xhl, D(trip(element(xn), enqt(xn), xt))), xh2) -xh)

, <-> false)

[ (false <-> in(append(xhl, xh2) , af(xst) ) )

[ (false <-> in(xn, enqd(xst) ) )

[ (false <-> least (xn, enqd(xst) ) )

[ prefix (DEQ (xh), ENQ (xh))

-> true

The system now contains 163 rewrite rules and 12 deduction rules.

Critical-pair computation abandoned because a theorem has been proved•

Computed 1 new critical pair. Added 1 of them to the system.

-> prove

Please enter an equation to prove, terminated with a _..' line, or _?' for help:

( (xh=append(cons (xhl, D (trip (element (xn) , enqt (xn) , xt) ) ), xh2) ) &

in(append_xhl,xh2),af(xst)) & in(xn, enqd(xst)) & least(xn,enqd(xst)) &

prefix (DEQ (append (xhl, xh2) ), ENQ (append (xhl, xh2) )) & (DEQ (xh2) =null :->Seq) &

(enqr(top(deqd(xst))) < enqt (xn))) -> prefix (DEQ(xh),ENQ (xh))
• •

Conjecture lemma3.12

((enqr(top(deqd(xst))) < en_ (xn))
& (DEQ(xh2) - null)

& (append(cons (xhl, D (trip (element (xn) , enqt (xn) , xt) ) ), xh2) = xh)

& in(append(xhl, xh2), af(xst))

& in(xn, enqd(xst) )

& least (xn, enqd(xst) )

& prefix(DEQ(append(xhl, xh2) ), ENQ(append(xhl, xh2) ) ) )

-> prefix (DEQ (xh), ENQ (xh))

-> true

is NOT provable using the current partially completed system. It reduces to

the equation

((enqr(top(deqd(xst)) ) < enqt (xn)) <-> false)

[ ((DEQ(xh2) -null) <-> false)

[ ((append(cons(xhl, D(trip(element(xn), enqt(xn), xt))), xh2) -xh)

<-> false)

[ (false <-> in(append(xhl, xh2) , af(xst) ) )

[ (false <-> in(xn, enqd(xst) ) )

i (false <-> least (xn, enqd(xst) ) )

. I (false <-> prefix(DEQ(append(xhl, xh2) ), ENQ(append(xhl, xh2) ) ) )

I prefix(DEQ (xh), ENQ (xh))

-> true

Proof of Conjecture lemma3.12 suspended.

-> resume by case (enqr (top (deqd (xst) ) )<enqt (xn)) & (DEQ (xh2) - null :->Seq) &

(append(cons (xhl, D (trip (element (xn) , enqt (xn) ,xt) ) ) ,xh2) -xh) &

in (append (xhl, xh2), af (xst)) &in (xn, enqd (xst)) &least (xn, enqd (xst)) &

prefix(DEQ(append(xhl, xh2) ), ENQ(append(xhl, xh2) ) )

Case.2.1

(enqr (top(deqd(c_xst)) ) < enq_ (c_xn))
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& (DEQ(c_xh2) - null)

& (append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ), c_xh2)

- c_xh)

& in (append (c_xhl, c_xh2) , af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least(c_xn, enqd(c_xst) )

& prefix(DEQ (append(c_xhl, c_xh2) ), ENQ (append(c_xhl, c_xh2} ) )
a,_ true

involves proving Lemma lemma3.12.1

((enqr(top(deqd(c_xst)) ) < enqt (c_xn))

& (DEQ(c_xh2) - null)

& (append(cons (c_xhl, D(trip(element(c_xn), enqt (c_xn) , c_xtl) ) ) , c_xh2)

- c__)

& in(append(c_xhl, c_xh2), af(c_xst))

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd (c_xst))

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) )

-> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

The case system now contains 1 equation.

Deduction rule boolean. 3 :

when x & y m true

yield x -- true

y m_ true

has been applied to equation Case.2.1:

(enqr (top(doqd(c_xst)) ) < enqt (c_xn))

& (DEQ(c xh2) - null)

& (append(cons (c_xhl, D(trip(eloment(c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2)

- c__)

& in (append (c_xhl, c_xh2) , af (c_xst))

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix (DEQ (append (c_xhl, c_xh2) ), ENQ (append (c_xhl, c_xh2) ) )
m._ true

to yield the following equations:

Case.2.1.1: enqr(top(deqd(c_xst))) < enqt(c_xn) -- true

Case.2.1.2: DEQ(c_xh2) - null In true

Case. 2.1.3: append (cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) ,

c_xh2 )
_ cxh

g-_ true

Case.2.1.4: in (append (c_xhl, c_xh2), af(c_xst)) --true

Case.2.1.5: in(c_xn, enqd(c_xst)) --true

Case.2.1.6: least (c_xn, enqd(c_xst) ) g-_ true

Case.2.1.7: prefix(DEQ(append(c_xhl, c_xh2) ) , ENQ(append(c_xhl, c_xh2) ) )
n.m true

Ordered equation Case.2. I. 7 into the rewrite rule:

prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) -> true

Ordered equation Case. 2. i. 6 into the rewrite rule:

least (c_xn, enqd(c..xst) ) -> true

Ordered equation Case. 2.1.5 into the rewrite rule:

in (c_xn, enqd(c_xst) ) -> true

Ordered equation Case.2. I. 4 into the rewrite rule:

in(append(c_xhl, c_xh2), af(c_xst) ) -> true

Deduction rule equality. 4 :

when x _ y _-_ true

yield x -- y

has been applied to equation Case.2.1.3:

append(cons (c_xhl, D (trip(element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2) = c_xh
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._m true

to yield the following equations:

Case.2.1.3.1: append(cons (c_xhl, D (trip(element (c_xn) , enqt (c_xn) , c_xtl) ) ) ,

c_xh2 )
m. cxh

Deduction rule equality. 4 :

when x m y _ true

yield x -- y

has been applied to equation Case.2.1.2:

DEQ(c_xh2) - null -- true

to yield the following equations:

Case.2.1.2.1: DEQ(c_xh2) --null

" Ordered equation Case. 2.1.i into the rewrite rule:

enqr(top(deqd(c_xst) ) ) < enqt (c_xn) -> true

The case system now contains 2 equations and 5 rewrite rules.

Ordered equation Case. 2.1.2.1 into the rewrite rule:

DEQ(c xh2) -> null

The case system now contains 1 equation and 6 rewrite rules.

Ordered equation Case.2. i. 3.1 into the rewrite rule :

append(cons (c_xhl, D (trip(element (c_xn) , enqt (c_xn), c_xtl) ) ), c_xh2) -> c_xh

The case system now contains 7 rewrite rules.

The system now contains 1 equation, 163 rewrite rules, and 12 deduction rules.

Deduction rule boolean. 3 :

when x & y IR true

yield x --- true

y I_ true

has been applied to equation Case.2.1:

(enqr (top (deqd (c_xst)) ) < enqt (c_xn))

& (DEQ(c_xh2) -null)

& (append (cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ), c_xh2)

- c_xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) )
--- true

to yield the following equations:

Case. 2. I. 8 : enqr (top (deqd (c_xst)) ) < enqt (c_xn) -- true

Case.2.1.9: DEQ(c_xh2) I null _ true

Case.2.1.10: append(cons (c_xhl, D (trip(element (c_xn) , enqt (c_xn) , c_xtl) ) ) ,

c__-,2)
_ cxh

_-_ true
J

Case.2.1.11: in(append(c_xhl, c_xh2), af(c_xst)) 11 true

Case.2.1.12: in(c_xn, enqd(c_xst)) Is true

Case.2.1.13: least(c_xn, enqd(c_xst)) -_ true

Case.2.1.14: prefix (DEQ (append (c xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) )
- --- true

Ordered equation Case. 2. i. 14 into the rewrite rule:

prefix(DEQ(append(c_xhl, c_xh2) ) , ENQ(append(c_xhl, c_xh2) ) ) -> true

Ordered equation Case.2.1.13 into the rewrite rule:

least (c_xn, enqd(c_xst) ) -> true

Ordered equation Case. 2.1.12 into the rewrite rule:

in(c_xn, enqd(c_xst) ) -> true

Ordered equation Case.2.1. ii into the rewrite rule:
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in(append(c xhl, c xh2), af(c xst)) -> true

Deduction rule equality. 4 :

when x - y --- true

yield x --- y

has been applied to equation Case.2.1.10:

append (cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2) - c_xh
--- true

to yield the following equations:

Case. 2. I. I0.1 : append (cons (c_xhl, D (trip (element (c_xn), enqt (c_xn) , c_xtl) ) ) ,

c xh2)

u cxh

Ordered equation Case. 2.1. i0.I into the rewrite rule:

append(cons (c_xhl, D (trip(element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2) -> c_xh

Deduction rule equality. 4:

when x _ y u true

yield x -- y

has been applied to equation Case.2.1.9:

DEQ(c_xh2) - null -_ true

to yield the following equations:

Case.2.1.9.1: DEQ(c_xh2) _ null

Ordered equation Case. 2. I. 9.1 into the rewrite rule :

DEQ (c_xh2) -> null

Ordered equation Case.2.1.8 into the rewrite rule:

enqr(top(deqd(c_xst) )) < enqt (c_xn) -> true

The system now contains 170 rewrite rules and 12 deduction rules.

Lemma lemma3.12.1 in the proof by cases of Conjecture lemma3.12

( (enqr (top (deqd (c_xst)) ) < enqt (c_xn))

& (DEQ (c_xh2) - null)

& (append (cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn} , c_xtl) ) ) , c_xh2)

- c__)

& in(append(c_xhl, c_xh2) , af(c xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) )

-> prefix(DEQ(c_xh), ENQ(c_xh) )
-> true

Case. 2.1 : (enqr (top (deqd (c_xst)) ) < enqt (cxn))

& (DEQ (c_xh2) - null)

& (append(cons (c_xhl,

D (trip (element (c_xn), enqt (c_xn), c_xtl) )),

c_xh2 )

- c_xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

& in(c_xn, enqd(c_xst ) )

& least (c_xn, enqd(c_xst) )

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) )

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Proof of Lemma lemma3.12.1 suspended.

-> crit case with lemmal.7

Critical pairs between rule Case. 2. I. i0.1 :

append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2) -> c_xh
and rule lemmal. 7:

ENQ (append (cons (x, D(y) ) , z} ) -> ENQ (append (x, z) )
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are as follows:

ENQ (c_xh) -- ENQ (append(c_xhl, c_xh2) )

The system now contains 1 equation, 170 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.13 into the rewrite rule:

ENQ (append (c_xhl, c_xh2) ) -> ENQ (c_xh)

Left-hand side reduced:

, prefix (DEQ (append (c_xhl, c_xh2) ), ENQ (append (c_xhl, c_xh2) )) -> true

k_came equation Case. 2. I. 14 :

prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(c_xh) ) -_ true

Ordered equation Case. 2.1.14 into the rewrite rule:l

prefix (DEQ (append(c_xhl, c_xh2) ), ENQ (c_xh)) -> true

The system now contains 171 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit case with lenlnal. 9

Critical pairs k_tween rule Case. 2. I. I0.1 :

append(cons (c_xhl, D (trip (element (c_xn), enqt (c_xn), c_xtl) ) ), c_xh2) -> c_xh
and rule lemmal. 9:

DEQ (append (cons (x, D(y) ), z) ) -> append(cons (DEQ(x), what (y)) , DEQ(z) )

are as follows:

DEQ (c_xh) -- cons (DEQ (c_xhl) , element (c_xn))

The system now contains 1 equation, 171 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.14 into the rewrite rule:

cons (DEQ (c_xhl) , element (c_xn)) -> DEQ (c_xh)

The system now contains 172 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit case. 2.1.12 with Abstraction.ll

Critical pairs between rule Case. 2. I. 12 :

in (c_xn, enqd(c_xst) ) -> true
and rule Abstraction. II:

(false <-> in(xh, af(xst)))

I (false <-> in(xn, enqd(xst) ))

i (false <-> least (xn, enqd(xst) ) )

l (false <-> prefix(DEQ(xh), ENQ(xh)) )

i prefix (cons (DEQ (xh) , element (xn)) , ENQ (xh))

-> true

are as follows:

(false <-> in(xh, af (c_xst) } )

(false <-> prefix(DEQ(xh}, ENQ(xh} ) )

. i prefix(cons (DEQ(xh) , element (c_xn)) , ENQ(xh) )
a.m true

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.15 into the rewrite rule:

(false <-> in (xh, af (c_xst)) )

(false <-> prefix (DEQ (xh}, ENQ (xh)) )

I prefix (cons (DEQ (xh) , element (c_xn)) , ENQ (xh))
-> true

The system now contains 173 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> instantiate xh by append(c_xhl,c_xh2) in lenmu_3.15
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Equation lemma3.15 :

(false <-> in(xh, af(c_xst) ) )

I (false <-> prefix(DEQ(xh), ENQ(xh) ) )

I prefix (cons (DEQ (xh) , element (c_xn)), ENQ (xh))
-> true

has been instantiated to equation lemma3.15.1:

prefix (cons (DEQ (append (=_xhl, c_xh2) ), element (c_xn)) , ENQ (c_xh)) _ true

Added 1 equation to the system.

Ordered equation lemma3.15.1 into the rewrite rule:

prefix (cons (DEQ (append (c_xhl, c_xh2) ) , element (c_xn)) , ENQ (c_xh)) -> true

The system now contains 174 rewrite rules and 12 deduction rules.

-> prove (DEQ (xh2) -null :->Seq) -> (DEQ (append (xhl, xh2) )-DEQ (xhl)) by induction xh2 H

The basis step in an inductive proof of Conjecture lemma3.16

(DEQ(xh2) - null) -> (DEQ(append(xhl, xh2)) - DEQ(xhl)) -> true

involves proving the following lemma(s) :

1emma3.16.1: (DEQ(nulI) -null) -> (DEQ(append(xhl, null)) -DEQ(xhl)) -> true

[] Proved by normalization

The induction step in an inductive proof of Conjecture lemma3.16

(DEQ(xh2) - null) -> (DEQ(append(xhl, xh2)) - DEQ(xhl)) -> true

uses the following equation(s) for the induction hypothesis:

Induct.3: (DEQ(c_xh3) -null) -> (DEQ(append(xhl, c_xh3)) -DEQ(xhl)) -> true

The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Ordered equation Ind'uct.3 into the rewrite rule:

((DEQ(c_xh3) - null) <-> false) i (DEQ(append(xhl, c_xh3) ) - DEQ(xhl) )
-> true

The system now contains 175 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s) :

lemma3.16.2: (DEQ(cons(c_xh3, vil)) -null)

-> (DEQ (append(xhl, cons (o_xh3, vil) ) ) - DEQ (xhl))
-> true

which reduces to the equation

( (DEQ(cons (c_xh3, vil) ) - null) <-> false)

I (DEQ (cons (append (xhl, c_xh3), vil) ) - DEQ (xhl))
-> true

Proof of Lemma len_na3.16.2 suspended.

-> resume hy induction vil Ev

The basis step in an inductive proof of Lemm_ lenuna3.16.2 for the induction

step in the proof of Conjecture lemma3.16

(DEQ(cons(c_xh3, vil) ) - null)

-> (DEQ(append(xhl, cons (c_xh3, vil) )) - DEQ(xhl) )
-> true

involves proving the following lemma(s) :

lemma3.16.2.1: (DEQ(cons(c_xh3, E(vi2))) -null)

-> (DEQ (append(xhl, cons (c_xh3, E (vi2)) ) ) - DEQ (xhl))
-> true

[] Proved by normalization

lemma3.16.2.2: (DEQ(cons(c_xh3, D(vi2))) - null)

-> (DEQ (append (xhl, cons (c_xh3, D (vi2)) ) ) - DEQ (xhl))
-> true

[] Proved by normalization
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The induction step in an inductive proof of Lemma lemma3.16.2 for the induction

step in the proof of Conjecture lezmua3.16

(DEQ(cons (c_xh3, vil) ) - null)

-> (DEQ(append(xhl, cons(c_xh3, vil) )) - DEQ(xhl) )
-> true

IS vacuous.

Lemm_a lemma3.16.2 for the induction step in the proof of Conjecture lemma3.16

(DEQ(cons(c_xh3, vil)) -null)

, -> (DEQ(append(xhl, cons(c_xh3, vil) ) i - DEQ(xhl) )
-> true

[] Proved by induction over 'vil: :Ev' of sort 'Ev'.

Conjecture lemma3.16w

(DEQ(xh2) - null) -> (DEQ(append(xhl, xh2)) - DEQ(xhl)) -> true

[] Proved by induction over _xh2' of sort _H'.

The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.16 into the rewrite rule:

((DEQ(xh2) - null) <-> false) { (DEQ(append(xhl, xh2) ) - DEQ(xhl) ) -> true

The system now contains 175 rewrite rules and 12 deduction rules.

Lemma lemma3.12.1 in the proof by cases of Conjecture lemma3.12

((enqr (top (deqd(c_xst)) ) < enqt (c_xn))

& (DEQ(c_xh2) -null)

& (append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2)

- c_xh)

& in (append (c_xhl, c_xh2), af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) ) )

-> prefix (DEQ (c_xh) , ENQ (c_xh))

-> true

Case.2.1: (enqr(top(deqd(c_xst))) < enqt(c_xn))

& (DEQ(c_xh2) - null)

& (append (cons (c_xhl,

D (trip (element (c_xn), enqt (c_xn) , c_xtl) ) ),

c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) ) )

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

e

Proof of Lemma lemma3.12.1 suspended.

-> instantiate xhl by c_xhl, xh2 by c_xh2 in lemma3.16

e

Equation lemma3.16 :

((DEQ(xh2) - null) <-> false) { (DEQ(append(xhl, xh2)) - DEQ(xhl)) -> true

has been instantiated to equation lemma3.16.3:

DEQ (append(c_xhl, c_xh2) ) - DEQ (c_xhl) -> true

Added 1 equation to the system.

Deduction rule equality. 4:

when x _ y =-= true

yield x --- y

has been applied to equation lenuna3.16.3:
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DEQ (append(c_xhl, c_xh2) ) - DEQ (c xhl) -> true

to yield the following equations:

lemma3.16.3.1: DEQ(append(c_xhl, c_xh2) ) -- DEQ(c_xhl)

Ordered equation lemma3.16.3.1 into the rewrite rule:

DEQ (append (c_xhl, c_xh2) ) -> DEQ (c_xhl)

Following 2 left-hand sides reduced:

prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(c_xh) ) -> true

became equation Case. 2. I. 14 :

prefix(DEQ(c_xhl), ENQ(c_xh) ) -- true

prefix(cons (DEQ(append(c_xhl, c_xh2) ), element (c_xn)) , ENQ(c_xh) ) -> true

became equation lemma3.15.1 :

prefix (cons (DEQ (c_xhl) , element (c_xn)) , ENQ (c_xh)) -- true

Ordered equation Case.2.1.14 into the rewrite rule:

prefix (DEQ (c_xhl), ENQ (c_xh)) -> true

Ordered equation lemma3.15.1 into the rewrite rule:

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

The system now =ontains 176 rewrite rules and 12 deduction rules.

Lemma lemma3.12.1 in the proof by cases of Conjecture lemma3.12

( (enqr(top (deqd(c_xst)) ) < enqt (c_xn))

& (DEQ(c_xh2) - null)

& (append(cons (c_xhl, D(trip(element(c_xn), enqt (c_xn), c_xtl) ) ), c_xh2)

- c_xh)

& in (append (c_xhl, c_xh2), af (c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix(DEQ(append(c_xhl, c_xh2) ) , ENQ(append(c_xhl, c_xh2) ) ) )

-> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

Case.2.1: (enqr(top(deqd(c_xst)) ) < enqt (c_xn))

& (DEQ(c_xh2) - null)

& (append(cons (c_xhl,

D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) ,

c_xh2 )

- c_xh)

& in (append (c_xhl, c_xh2), af (c_xst))

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix(DEQ (append (c_xhl, c_xh2) ), ENQ (append (c_xhl, c_xh2) ) )

[] Proved by rewriting.

Case.2.2

not ( (enqr (top(deqd(c_xst)) ) < enqt (c_xn))

& (DEQ (c_xh2) - null)

& (append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) ,

c xh2)

- c...xh)

& in(append(c..xhl, c...xh2), af(c..xst) )

in (c_xn, enqd (c...xst))

least (c_x_, enqd(c..xst) )

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) )) )

ss true

involves proving Lenuna lemma3.12.2

( (enqr (top (deqd (c_xst)) ) < enqt (c_xn)) ,

& (DEQ(c xh2) -null)

& (append(cons (c_xhl, D (trip (element (c_xn) , enqt (c_xn) , c_xtl) ) ) , c_xh2)

- c_xh)
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& in(append(c_xhl, c_xh2) , af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix(DEQ(append(c_xhl, c_xh2) ), ENQ(append(c_xhl, c_xh2) )) )

-> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

The case system now contains 1 equation.

Ordered equation Case. 2.2 into the rewrite rule:

( (enqr (top (deqd (c_xst)) ) < enqt (cxn)) <-> false)

I ((DEO(c_xh2) - null) <-> false)

l ((append(cons(c_xhl, D(trip(element(c_xn), enqt(c_xn), c_xtl))), c_xh2)

= c__)
- <-> false)

I (false <-> in (append (c_xhl, c_xh2) , af(c_xst) ) )

l (false <-> in(c_xn, enqd(c_xst) ) )

I (false <-> least (c_xn, enqd(c_xst) ) )

I (false <-> prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))))
-> true

The case system now contains 1 rewrite rule.

Lemma lemma3.12.2 in the proof by cases of Conjecture lemma3.12

( (enqr (top(deqd(c_xst)) ) < enqt (c_xn))

& (DEQ(c_xh2) - null)

& (append(cons(c_xhl, D(trip(element(c_xn) , enqt(c_xn) , c_xtl) ) ) , c_xh2)

= c_xh)

& in(append(c_xhl, c_xh2) , af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix (DEQ (append (c_xhl, c_xh2) ) , ENQ (append(c_xhl, c_xh2) ) ) )

-> prefix (DEQ (c_xh), ENQ (c_xh))
-> true

Case. 2.2 : not ( (enqr (top (deqd (c_xst)) ) < enqt (c_xn))

& (DEQ(c_xh2) -null)

& (append (cons (c_xhl,

D (trip (element (c_xn), enqt (c_xn), c_xtl) ) ) ,

c xh2)

- c_xh)

& in(append(c_xhl, c_xh2), af(c_xst) )

& in(c_xn, enqd(c_xst) )

& least (c_xn, enqd(c_xst) )

& prefix (DEQ (append (c_xhl, c_xh2) ),

ENQ (append (c_xhl, c_xh2) ) ))

[] Proved by rewriting (with unreduced rules).

Conjecture lemma3.12

( (enqr (top(deqd(xst)) ) < enqt (xn))

& (DE0(xh2) - null)

, & (append (cons (xhl, D (trip (element (xn) , enqt (xn) , xt) ) ) , xh2) - xh)

& in (append (xhl, xh2), af(xst))

& in(xn, enqd(xst))

least(xn,enqa(xst))
& prefix(DEQ(append(xhl, xh2) ), ENQ(append(xhl, xh2) ) ) )

-> prefix (DEQ (xh), ENQ (xh))

-> true

[] Proved by cases

((enqr (top(deqd(xst)) ) < enqt (xn))

& (DEQ(xh2) -null)

& (append(cons(xhl, D(trip(element(xn) , enqt(xn) , xt) ) ) , xh2) - xh)

& in (append (xhl, xh2), af(xst))
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& in(xn, enqd(xst))

least (xn, enqd (xst))

& prefix(DEQ(append(xhl, xh2) ) , ENQ(append(xhl, xh2) ) ) )

I not ((enqr(top(deqd(xst)) ) < enqt (xn))

& (DEQ (xh2) - null)

& (append(cons (xhl, D (trip (element (xn) , enqt (xn) , xt) ) ) , xh2) - xh)

& in (append (xhl, xh2), af(xst) )

& in (xn, enqd(xst) )

& least (xn, enqd (xst))

& prefix(DEQ(append(xhl, xh2) ) , ENQ(append(xhl, xh2) ) ) )

The system now contains 1 equation, 163 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.12 into the rewrite rule:

((enqr(top(deqd(xst)) ) < enc/c (xn)) <-> false)

J ((DEQ(xh2) - null) <-> false)

J ((append(cons(xhl, D(trip(element(xn), enqt(xn), xt))), xh2) -xh)

<-> false)

i (false <-> in (append (xhl, xh2) , af(xst) ) )

J (false <-> in(xn, enqd(xst)))

J (false <-> least (xn, enqd(xst) ))

J (false <-> prefix (DEQ (append (xhl, xh2) ) , ENQ (append(xhl, xh2) ) ) )

i prefix (DEQ (xh), ENQ (xh))

-> true

The system now contains 164 rewrite rules and 12 deduction rules.

-> qed

All conjectures have been proved.

-> freeze theory3
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6. LP Proof of Correctness Condition

The prefix property is stated in the fourth line below.

-> thaw theory3

System thawed from _theory3. frz'

-> set name sync

v The name prefix is now _sync'.

-> prove in(xh, af(xst) )->prefix(DEQ(xh) ,ENQ(xh) ) by induction xst St

The basis step in an inductive proof of Conjecture sync.l

in(xh, af(xst)) -> prefix(DEQ(xh), ENQ(xh)) -> true

involves proving the following lemma(s) :

sync.l.l: in(xh, af(init)) -> prefix(DEQ(xh), ENQ(xh)) -> true

which reduces to the equation

(false <-> in(xh, af(init))) I prefix(DEQ(xh), ENQ(xh)) -> true

Proof of Lemma sync. I. 1 suspended.

-> resume by case in (xh, af (init))

Case. i. 1

in (c_xh, af (init)) -- true

involves proving Lemma sync. I. I. 1

in (c_xh, af (init)) -> prefix (DEQ (c_xh) , ENQ (c_xh)) -> true

The case system now contains 1 equation.

Ordered equation Case.l.l into the rewrite rule:

in(c_xh, af(init) ) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 164 rewrite rules, and 12 deduction rules.

Ordered equation Case.l. 1 into the rewrite rule:

in (c_xh, af (init)) -> true

The system now contains 165 rewrite rules and 12 deduction rules.

Lemma sync.l.l.l in the proof by cases of Lemma sync.l.l

in(c_xh, af(init) ) -> prefix(DEQ(c_xh), ENQ(c_xh) ) -> true

Case.l.l: in(c_xh, af(init))

is NOT provable using the current partially completed system. It reduces to

i the equation

prefix (DEQ (c_xh) , ENQ (c_xh)) -> true

Proof of Lenlna sync. I.I.i suspended.

-> crit case with A_straction

Critical pairs k_tween rule Case.l.l:

in(c_xh, af(init) ) -> true
and rule Abstraction. 5 :

(in_state(xh, xst) & ordered(xh)) I (false <-> in(xh, af(xst))) -> true
are as follows:

in_state(c_xh, init) & ordered(c_xh) _ true

The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Deduction rule boolean. 3 :
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when x & y _ true

yield x -_ true

y -_ true

has been applied to equation sync.2:

in_state(c_xh, init) & ordered(c_xh) _= true

to yield the following equations:

sync.2.1: in_state(c_xh, init) mR true

sync. 2.2: ordered(c_xh) -- true

Ordered equation sync.2.2 into the rewrite rule:

ordered(c_xh) -> true

Ordered equation sync.2.1 into the rewrite rule:

in_state (c_xh, init) -> true

The system now contains 167 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of

them to the system.

-> crit sync with lemmal.12

Critical pairs h_tween rule sync. 2.1 :

in_state (c_xh, init) -> true
and rule lemmal. 12 :

(false <-> in state(x, init)) { (null - x) -> true

are as follows:

c xh - null -- true

The system now contains 1 equation, 167 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x i y _= true

yield x u y

has been applied to equation sync.3:

c xh m null m_ true

to yield the following equations:

sync.3.1: c xh --- null

Ordered equation sync.3.1 into the rewrite rule:

c xh -> null

Following 3 left-hand sides reduced:

in (c_xh, af (init)) -> true

became equation Case. I. 1 :

in(null, af(init)) =_ true

ordered(c xh) -> true

k_came equation sync. 2.2 :

ordered(null) In true

in_state (c_xh, init) -> true

became equation sync. 2.1 :

in_state(null, init) =-= true

The system now contains 3 equations, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case. i.I into the rewrite rule:

in (null, af (init)) -> true

The system now contains 166 rewrite rules and 12 deduction rules.

Lemma sync.l.l.l in the proof by cases of Le_na sync.l.l

in(c_xh, af (init)) -> prefix(DEQ (c_xh) , ENQ(c_xh) ) -> true

Case.l.l: in(c_xh, af(init))

[] Proved by rewriting.

Case. 1.2

not (in (c_xh, af (init)) ) ms true

involves proving Lemma sync. I. i. 2

in (c_xh, af (init)) -> prefix (DEQ(c_xh) , ENQ (c_xh)) -> true
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The case system now contains 1 equation.

Doduction rule equality. 3 :

when x <-> y E true

yield x -- y

has boon applied to equation Caso.l.2:

false <-> in (c_xh, af (init)) _ true

to yield the following equations:

Caso.l.2.1: false _ in(c_xh, af(init))

Ordorod equation Case. I. 2.1 into tho rewrite rule:

in(c_xh, af (init)) -> false

The case system now contains 1 rewrite rule.

Lemma sync. I.I.2 in the proof by cases of Lonuna sync. i. 1

in(c_xh, af(init) ) -> prefix(DEQ(c_xh), ENQ(c_xh) ) -> true

Case. 1.2 : not (in (c_xh, af (init)) )

[] Proved by rewriting (with unreduced rules).

Lemma sync.l. 1 for tho basis step in tho proof of Conjecture sync.l

in (xh, af (init)) -> prefix(DEQ(xh}, ENQ(xh) ) -> true

[]Provedby cases
in(xh, af(init) ) _ not (in(xh, af(init)))

The induction step in an inductive proof of Conjecture sync.l

in(xh, af(xst)) -> profix(DEQ(xh), ENQ(xh)) -> true

uses the following equation(s) for the induction hypothesis:

Induct.l: in(xh, af(c_xst) ) -> prefix(DEQ(xh), ENQ(xh)) -> true

The system now contains 1 equation, 164 rewrite rules, and 12 deduction rules.

Ordered equation Znduct.l into the rewrite rule:

(false <-> in (xh, af (c_xst)) ) I prefix (DEQ(xh) , ENQ (xh)) -> true

The system now contains 165 rewrite rules and 12 deduction rules.

Tho induction step involves proving the following lemma(s) :

sync.l.2: in(xh, af(deq(c_xst, vil, vi2) )) -> prefix(DEQ(xh), ENQ(xh) ) -> true

which reduces to the equation

(false <-> in(xh, af(doq(c_xst, vil, vi2) ) ) )

{ prefix(DEQ (xh), ENQ (xh))

-> true

sync.l.3: in(xh, af(enq(c_xst, vil, vi2) ) ) -> profix(DEQ(xh) , ENQ(xh) ) -> true

which reduces to the equation

(false <-> in(xh, af(enq(c_xst, vil, vi2) ) ) )

{ prefix (DEQ (xh), ENQ (xh))

-> true

sync.l.4: in (xh, af (commit (c_xst, vil) ) ) -> prefix (DEQ (xh) , ENQ (xh)) -> true

which reduces to the equation

(false <-> in(xh, af(commit (c_xst, vil) ) ) )

prefix (DEQ (xh), ENQ (xh))

-> true

, sync.l.5: in(xh, af(abort (c_xst, vil)) ) -> profix(DEQ(xh), ENQ(xh) ) -> true

which reduces to the equation

(false <-> in(xh, af(abort (c_xst, vil) ) ) )

{ prefix (DEQ (xh), ENQ (xh))

-> true

Proof of Len_na sync.l.5 suspended.

Critical-pair computation a_andoned because a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the system.

-> resume by case in(xh, af(a_ort(c_xst,vil) ))



Case. 2.1

in(c_xh, af(abort (c_xst, c_vil) ) ) -- true

involves proving Lemma sync. i. 5.1

in (c_xh, af (abort (c_xst, c_vil) ) ) -> prefix (DEQ (c_xh), ENQ (c_xh)) -> true

The case system now contains 1 equation.

Ordered equation Case.2.1 into the rewrite rule:

in(c_xh, af(abort (c_xst, c_vil) ) ) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case. 2.1 into the rewrite rule:

in (c_xh, af (abort (c_xst, cvil) ) ) -> true

The system now contains 166 rewrite rules and 12 deduction rules.

Lemma sync.l.5.1 in the proof by cases of Lenm_ sync.l.5

in (c_xh, af (abort (c_xst, c_vil) ) ) -> prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Case.2.1: in(c_xh, af(abort (c_xst, c_vil) ) )

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Proof of Lemma sync.l.5.1 suspended.

-> crit case with Abstraction

Critical pairs between rule Case. 2.1 :

in (c_xh, af (abort (c_xst, c_vil) ) ) -> true
and rule Abstraction. 5 :

(in._state(xh, xst) & ordered(xh)) I (false <-> in(xh, af(xst))) -> true

are as follows:

in_state(c_xh, abort (c_xst, c_vil) ) & ordered(c_xh) -- true

The system now contains 1 equation, 166 rewrite rules, and 12 deduction rules.

Deduction rule boolean. 3 :

when x & y --- true

yield x _= true

y m true

has been applied to equation sync. 4:

in_state(c_xh, abort(c_xst, c_vil)) & ordered(c_xh) --true

to yield the following equations:

sync. 4.1: in_state(c_xh, abort(c_xst, c_vil)) =-= true

sync. 4.2 : ordered (c_xh) _ true

Ordered equation sync. 4.2 into the rewrite rule:

ordered(c_xh) -> true
5,

Ordered equation sync. 4.1 into the rewrite rule:

in_state (c_xh, abort (c_xst, c_vil) ) -> true

The system now contains 168 rewrite rules and 12 deduction rules.

Critical pairs between rule Case.2.1:

in (c_xh, af (abort (c_xst, c_vil) ) ) -> true
and rule Abstraction. 9 :

( (discard(xt, c hl) - xh) & in(c_hl, af(xst) ) )0-

(false <--> _n (xh, af (abort (xst, xt) ) ))

-> true

are as follows:

(c_xh - discard(c_vil, c_hl)) & in(c_hl, af(c_xst)) -- true

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.
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Deduction rule boolean.3 :

when x & y -_ true

yield x -- true

y _-_ true

has been applied to equation sync. 5:

(c_xh- discard(c_vil, c_hl)) & in(c_hl, af(c_xst)) st true

to yield the following equations:

sync.5.1: c xh - discard(c_vil, c_hl) -- true
.--

sync.5.2: In(c_hl, af(c_xst)) in true

Ordered equation sync.5.2 into the rewrite rule:

in (c_hl, af (c_xst)) -> true

Deduction rule equality. 4 :

w when x i y _i true

yield x _ y

has been applied to equation sync.5.1:

c_xh - discard(c_vil, c_hl) _ true

to yield the following equations:

sync.5.1.1: c_xh -- discard(c_vil, c_hl)

The system now contains 1 equation, 169 rewrite rules, and 12 deduction rules.

Ordered equation sync. 5. I. 1 into the rewrite rule:

c_xh -> discard(c_vil, c_hl)

Following 3 left-hand sides reduced:

in (c_xh, af (abort (c_xst, c_vil) ) ) -> true

became equation Case. 2.1 :

in (discard (c_vil, c_hl) , af(abort (c_xst, c_vil) ) ) --_ true

ordered(c_xh) -> true

became equation sync. 4.2 :

ordered(discard(c_vil, c_hl)) --true

in state (c_xh, abort (c_xst, c_vil) ) -> true

became equation sync. 4.1 :

in_state(discard(c_vil, c_hl), abort(c_xst, c_vil)) _ true

The system now contains 3 equations, 167 rewrite rules, and 12 deduction rules.

Ordered equation Case.2.1 into the rewrite rule:

in (discard (c_vil, c_hl) , af(abort (c_xst, c_vil) ) ) -> true

Ordered equation sync.4.2 into the rewrite rule:

ordered(discard (c_vil, c_hl) ) -> true

Ordered equation sync.4.1 into the rewrite rule:

in_state(discard(c_vil, c_hl), abort(c_xst, c_vil)) -> true

The system now contains 170 rewrite rules and 12 deduction rules.

Lemma sync.l.5.1 in the proof by cases of Lemma sync.l.5

in (c_xh, af (abort (c_xst, c_vil) ) ) -> prefix (DEQ (c_xh) , ENQ (c_xh)) -> true

Case.2.1: in(c_xh, af(abort(c_xst, c_vil)))

' is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (discard (c_vil, c_hl) ) , ENQ (discard(c_vil, c_hl) ) ) -> true

Proof of Lemma sync. 1.5.1 suspended.

Critical pairs between rule Case.2.1:

in (c_xh, af (abort (c_xst, c_vil) ) ) -> true
and rule Abstraction. II :

(false <-> in (xh, af (xst)) )

I (false <-> in(xn, enqd(xst) ) )

I (false <-> least (xn, enqd(xst) ) )

I (false <-> prefix(DEQ(xh) , ENQ(xh) ) )

I prefix(cons (DEQ(xh) , element (xn)) , ENQ(xh) )

-> true

are as follows:
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(false <-> in(xn, enqd(abort (c_xst, c_vil) ) ) )

i (false <-> least (xn, enqd(abort (c_xst, c_vil) ) ) )

I (false <-> profix(DEQ(discard(c vil, c_hl)), ENQ(discard(c_vil, c_hl))))

i prefix(cons (DEQ(discard(c_vil, c_hl) ) , element (xn)) ,

ENQ(discard(c_vil, c_hl) ) )

m.m true

The system now contains 1 equation, 170 rewrite rules, and 12 deduction rules.

Ordered equation sync. 6 into the rewrite rule:

(false <-> in(xn, enqd(abort (c_xst, c_vil) ) ))

I (false <-> least (xn, onqd(abort (c_xst, c_vil) ) ))

I (false <-> profix(DEQ(discard(c_vil, c_hl)), ENQ(discard(c_vil, c_hl))})

I prefix (cons (DEQ (discard (c_vil, c_hl) ) , element (xn)) ,

ENQ(discard(c_vil, c_hl) ) )

-> true

The system now contains 171 rewrite rules and 12 deduction rules.

Computed 3 new critical pairs. Added 3 of them to the system.

-> =tit induct with sync

Critical pairs h_tween rule Induct.l:

(false <-> in(xh, af(c_xst))) I prefix(DEQ(xh), ENQ(xh)) -> true

and rule sync. 5.2:

in (c_hl, af (c_xst)) -> true
are as follows:

prefix (DEQ (c_hl), ENQ (c_hl)) --- true

The system now contains 1 equation, 171 rewrite rules, and 12 deduction rules.

Ordered equation sync.7 into the rewrite rule:

prefix(DEQ(c_hl), ENQ(c_hl) ) -> true

The system now contains 172 rewrite rules and 12 deduction rules.

Computed 3 new critical pairs, 2 of which reduced to an identity. Added 1 of

them to the system.

-> crit sync with ionm_l.17

Critical pairs k_twoon rule sync. 7:

prefix(DEQ(c_hl), ENQ(c_hl) ) -> true
and rule ionunal. 17 :

(false <-> in state(xh, xst))

I (false <-> profix(DEQ(xh), ENQ(xh) ))

I prefix(DEQ(d/scard(xt, xh) ) , ENQ(discard(xt, xh) ))
-> true

are as follows:

(false <-> in_state (c_hl, xst) )

I prefix(DEQ(discard(xt, c_hl) ) , ENQ(ctiscard(xt, c_hl) ) )
_-_ true

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.

Ordered equation sync.8 into the rewrite rule:

(false <-> in_state (c_hl, xst)}

I prefix(DEQ(ctiscard(xt, c hl) ) , ENQ(discard(xt, c hl) ) )
-> true

The system now contains 173 rewrite rules and 12 deduction rules.

Critical pairs between rule sync. 4.1 :

in_state (discard(c_vil, c_hl) , abort (c_xst, c_vil) ) -> true
and rule lemmal. 17 :

(false <-> in state(xh, xst))
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i (false <-> prefix (DEQ (xh) , ENQ (xh)) )

I prefix(DEQ(discard(xt, xh) ) , ENQ(cliscard(xt, xh) ))
-> true

are as follows:

(false <-> prefix(DEQ(discard(c_vil, c_hl) ), ENQ(discard(c_vil, c_hl) ) ) )

prefix(DEQ(discard(xt, cliscard(c_vil, c_hl) ) ) ,

ENQ (cliscard(xt, discard(c_vil, c_hl) ) ) )

s8 true

The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation sync. 9 into the rewrite rule:

(false <-> prefix(DEQ(discard(c_vil, c_hl) ), ENQ(discard(c_vil, c_hl) ) ) )

i prefix(DEQ(discard(xt, discard(c_vil, c_hl) ) ) ,

ENQ(discard(xt, discard(c_vil, c_hl) ) ) )

-> true

The system now contains 174 rewrite rules and 12 deduction rules.

Computed 6 new critical pairs, 4 of which reduced to an identity. Added 2 of

them to the system.

-> crit sync. 5.2 with Abstraction.5

Critical pairs between rule sync. 5.2 :

in (c_hl, af (c_xst)) -> true
and rule Abstraction. 5 :

(in_state(xh, xst) & ordered(xh)) I (false <=> in(xh, af(xst))) -> true

are as follows:

in_state(c_hl, c_xst) & ordered(c_hl) -- true

The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3 :

when x & y ms true

yield x =_ true

y =-= true

has been applied to equation sync.10:

in_state(c_hl, c_xst) & ordered(c_hl) _= true

to yield the following equations:

sync.10.1: in state(c_hl, c_xst) =-= true

sync. i0.2 : ordered (c_hl) -- true

Ordered equation sync.10.2 into the rewrite rule:

ordered(c_hl) -> true

Ordered equation sync.10.1 into the rewrite rule:

in state (c_hl, c_xst) -> true

The system now contains 176 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit sync with sync

, Critical pairs between rule sync. i0.1 :

in_state(c_hl, c_xst) -> true

and rule sync. 8:

(false <-> in_state(c_hl, xst))

i prefix(DEQ(ctiscard(xt, c_hl) ) , ENQ(ctiscard(xt, c_hl) ) )
-> true

are as follows:

prefix(DEQ(discard(xt, c_hl) ), ENQ(discard(xt, c_hl) )) -- true

The system now contains 1 equation, 176 rewrite rules, and 12 deduction rules.

Ordered equation sync.ll into the rewrite rule:
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prefix(DEQ(discard(xt, c_hl) ) , ENQ(cliscard(xt, c_hl) ) ) -> true

Following 3 left-hand sides reduced:

(false <-> in(xn, enqd(abort(c_xst, c_vil) ) ) )

l (false <-> least (xn, enqd(a_ort (c_xst, c_vil) ) ) )

i (false <-> prefix(DEQ(discard(c_vil, c_hl) ), ENQ(discard(c_vil, c_hl) )) )

I prefix(cons (DEQ(discard(c_vil, c_hl) ) , element (xn)) ,

ENQ (discard(c_vil, c_hl) ) )

-> true *

became equation sync. 6:

(false <-> in(xn, enqd(abort(c_xst, c_vil) ) ) )

I (false <-> least(xn, enqd(a_ort(c_xst, c_vil))))

I (false <-> true)

J prefix(cons (DEQ(discard(c_vil, c_hl) ) , element (xn)) ,

ENQ (discard (c_vil, c_hl) ) )

ms true

(false <-> in_state(c_hl, xst))

i prefix(DEQ(discard(xt, c_hl) ) , ENQ(discard(xt, c_hl) ) )
-> true

became equation sync. 8 :

(false <-> in_state(c_hl, xst)) _ true B true

(false <-> prefix(DEQ(discard(c_vil, c_hl) ), ENQ(discard(c_vil, c_hl) ) ) )

I prefix(DEQ(discard(xt, discard(c_vil, c_hl) ) ),

ENQ (discard(xt, ciiscard(c_vil, c_hl)) ) )

-> true

became equation sync. 9 :

(false <-> true)

i prefix(DEQ(discard(xt, cliscard(c_vil, c_hl) ) ),

ENQ(discard(xt, discard(c_vil, c_hl) ) ) )

ms true

Ordered equation sync. 6 into the rewrite rule:

(false <-> in(xn, enqd(abort (c_xst, c_vil) ) ) )

l (false <-> least (xn, enqd(abort (c_xst, c_vil)) ) )

I prefix(cons (DEQ(discard(c_vil, c_hl) ) , element (xn)) ,

ENQ (discard(c_vil, c_hl) ))

-> true

Ordered equation sync. 9 into the rewrite rule:

prefix (DEQ (discard (xt, discard (c_vil, c_hl) )),

ENQ(discard(xt, discard(c_vil, c_hl)) ) )
-> true

The system now contains 176 rewrite rules and 12 deduction rules.

Lem_a syn¢.l.5.1 in the proof by ¢ases of Lemma sync.l.5

in(c_xh, af(abort (c_xst, c_vil) )) -> prefix(DEQ(c_xh) , ENQ(c_xh) ) -> true

Case.2.1: in(c_xh, af(abort(c_xst, c_vil)))

[] Proved by rewriting.

Case. 2.2

not (in (c_xh, af (abort (c_xst, c_vil) ) ) ) _ true

involves proving Lemma sync. I. 5.2

in(c_xh, af(abort (c_xst, e vil) )) -> prefix(DEQ(c_xh), ENQ(c_xh) ) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y -_ true

yield x -- y

has been applied to equation Case.2.2:

false <-> in(c_xh, af(abort(c_xst, c_vil) ) ) .. true

to yield the following equations:

Case.2.2.1: false ms in(c_xh, af(abort(c_xst, c_vil)) )
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Ordered equation Case. 2.2.1 into the rewrite rule: *

in(c_xh, af(abort(c_xst, c_vil))) -> false

The case system now contains 1 rewrite rule.

Lenuna sync.l.5.2 in the proof by cases of Lenlna sync.l.5

in(c_xh, dr(abort (c_xst, c_vil) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) ) -> true

Case.2.2: not (in (c_xh, af(a_ort(c_xst, c_vil))))

[] Proved by rewriting (with unreduced rules).

Lemma sync.l.5 for the induction step in the proof of Conjecture sync.l

in(xh, af(abort(c_xst, vil) ) ) -> prefix(DEQ(xh) , ENQ(xh) ) -> true

[] Proved by cases

in(xh, af(abort (c_xst, vil) ) ) { not (in(xh, af(a_ort (c_xst, vil) ) ) )

Lemma sync. I. 4 for the induction step in the proof of Conjecture sync. 1

in(xh, af(commit(c_xst, vil) ) ) -> prefix(DEQ(xh), ENQ(xh) ) -> true

is NOT provable using the current partially completed system. It reduces to

the equation

(false <-> in(xh, af(commit(c_xst, vil) ) ) ) _ prefix(DEQ(xh) , ENQ(xh) )

-> true

Proof of Lemma sync.1.4 suspended.

Critical-pair computation abandoned because a theorem has been proved.

Computed 4 new critical pairs, 3 of which reduced to an identity. Added 1 of

them to the system.

-> resume by case in(xh, af(commit (c_xst,vil)) )

Case. 3.1

in(c_xh, af(commit(c_xst, c_vil)))--true

involves proving Lemma sync. i. 4.1

in (c_xh, af (conmmit (c_xst, c_vil) ) ) -> prefix (DEQ (c_xh), ENQ (c_xh)) -> true

The case system now contains 1 equation.

Ordered equation Case.3.1 into the rewrite rule:

in (c_xh, af (commit (c_xst, c_vil) )) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case.3.1 into the rewrite rule:

in (c_xh, af (commit (c_xst, c_vil) ) ) -> true

The system now contains 166 rewrite rules and 12 deduction rules.

Lemma sync.l. 4.1 in the proof by cases of Lemma sync.l. 4

in(c_xh, af(commit (c_xst, c_vil) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) ) -> true

Case.3.1: in(c_xh, af(commit(c_xst, c_vil) ) )

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (=_xh), ENQ (c_xh)) -> true
t

Proof of Lemma sync. i. 4.1 suspended.

-> crit case with Abstraction

Critical pairs between rule Case.3.1:

in (c_xh, af (commit (c_xst, c_vil) ) ) -> true
and rule Abstraction. 5 :

(in_state(xh, xst) & ordered(xh)) { (false <-> in(xh, af(xst))) -> true
are as follows:

in_state(c_xh, commit(c_.xst, c_vil)) & ordered(c_xh) --true
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The system now contains 1 equation, 166 rewrite rules, and 12 deduction rules.

Deduction rule boolean. 3 :

when x & y n true

yield x _ true

y _ true

has been applied to equation sync.12:

in state (c_xh, commit (c_xst, c_vil) ) & ordered(c_xh) -- true

to y_eld the following equations:

sync.12.1: in_state(c_xh, co_nit(c_xst, c_vil)) _ true

sync.12.2: ordered(c_xh) ---true

Ordered equation sync.12.2 into the rewrite rule:

ordered(c_xh) -> true

Ordered equation sync.12.1 into the rewrite rule:

instate (c_xh, commit (c_xst, c vil) ) -> true

The system now contains 168 rewrite rules and 12 deduction rules.

Critical pairs between rule Case. 3.1 :

in (c_xh, af (commit (c_xst, c_vil) ) ) -> true
and rule A_straction. 8 :

(false <-> in(xh, af(commit(xst, xt)))) { (DEQ(xh) - null) -> true

are as follows:

DEQ(c_xh) - null -- true

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x i y _ true

yield x -- y

has been applied to equation sync.13:

DEQ(c_xh) - null n true

to yield the following equations:

sync. 13.1 : DEQ (c_xh) n null

Ordered equation sync.13.1 into the rewrite rule:

DEQ (c_xh) -> null

The system now contains 169 rewrite rules and 12 deduction rules.

Lemma sync.l. 4.1 in the proof by cases of Lemma sync.l. 4

in (c_xh, af (commit (c_xst, c_vil) ) ) -> prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Case.3.1: in(c_xh, af(commit(c_xst, c_vil)))

[] Proved by rewriting.

Case. 3.2

not (in (c_xh, af (commit (c_xst, c_vil) ) ) ) _ true

involves proving Lemma sync. i. 4.2

in(c_xh, af(commit (c_xst, c_vil) ) ) -> prefix(DEQ(c_xh), ENQ(c_xh) ) -> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y ms true

yield x n y

has been applied to equation Case.3.2:

false <-> in (c_xh, af (commit (c_xst, c_vil) ) ) -- true

to yield the following equations:

Case.3.2.1: false _ in(c_xh, af(commit(c_xst, c_vil)))

Ordered equation Case. 3.2.1 into the rewrite rule:

in (c_xh, af (commit (c_xst, c_vil) ) ) -> false

The case system now contains 1 rewrite rule.

Lemma sync.l. 4.2 in the proof by cases of Lemma sync.l. 4

in(c_xh, af(commit (c_xst, c_vil) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) ) -> true
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Case.3.2: not (in(c_xh, af(commit (c_xst, c_vil) )) )

[] Proved by rewriting (with unreduced rules).

Lemma sync.l. 4 for the induction step in the proof of Conjecture sync.l

in (xh, af (commit (c_xst, vil) ) ) -> prefix (DEQ (xh), ENQ (xh)) -> true

[] Proved by cases

in(xh, af(commit(c_xst, vil))) I not(in(xh, af(commit(c_xst, vil))))

Lemma sync.l.3 for the induction step in the proof of Conjecture sync.l

, in(xh, af(enq(c_xst, vil, vi2) ) ) -> prefix(DEQ(xh) , ENQ(xh) ) -> true

is NOT provable using the current partially completed system. It reduces to

the equation

(false <-> in(xh, af(enq(c_xst, vil, vi2)))) I prefix(DEQ(xh), ENQ(xh))
-> true

ee

Proof of Lemma sync. i. 3 suspended.

Critical-pair computation abandoned because a theorem has been proved.

Computed 2 new critical pairs. Added 2 of them to the system.

-> resume by case in(xh, af(enq(c_xst,vil,vi2::EL)))

Case. 4.1

in(c_xh, af(enq(c_xst, c_vil, c_vi2))) u true

involves proving Lemma sync. I. 3.1

in(c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh), ENQ(c_xh) )
-> true

The case system now contains 1 equation.

Ordered equation Case. 4.1 into the rewrite rule:

in(c_xh, af(enq(c_xst, c_vil, c_vi2))) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case. 4.1 into the rewrite rule:

in(c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) -> true

The system now contains 166 rewrite rules and 12 deduction rules.

Lemma sync.l.3.1 in the proof by cases of Lemma sync.l. 3

in(c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh), ENQ(c_xh) )
-> true

Case.4.1: in(c_xh, af(enq(c_xst, c_vil, c_vi2)))

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh) , ENQ (c_xh)) -> true

Proof of Lemma sync. I. 3 .I suspended.

-> add when_enq(c_xst, z,w, c_vil, c_vi2)

Added 1 equation to the system.

" Deduction rule boolean.3:

when x & y Is true

yield x _ true

y m. true

has been applied to equation sync.14:

((enqr(top(deqd(c_xst)) ) < c_vil) I (deqd(c_xst) - new) )

& (((c_vi2 - element(z)) <-> false) i (false <-> in(z, enqd(c_xst))))

& (((c_vi2 - what(w)) <-> false) I (false <-> in_stack(w, deqd(c_xst))))
-> true

to yield the following equations:

sync.14.1: (enqr(top(deqd(c_xst))) < c_vil) I (deqd(c_xst) - new) u true

sync.14.2: ((c_vi2 - element(z)) <-> false) l (false <-> in(z, enqd(c_xst)))
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m true

sync.14.3: ((c vi2 - what(w)) <-> false)i

i (false <-> in_stack(w, deqd(c_xst)))
mm true

Ordered equation sync.14.3 into the rewrite rule:

((c_vi2 - what(w)) <-> false) [ (false <-> in_stack(w, deqd(c_xst))) -> true

Ordered equation sync. 14.2 into the rewrite rule:

((c_vi2 - element(z)) <-> false) I (false <-> in(z, enqd(c_xst))) -> true

Ordered equation sync.14.1 into the rewrite rule:

(enqr(top(deqd(c_xst))) < c_vil) I (deqd(c_xst) - new) -> true

The system now contains 169 rewrite rules and 12 deduction rules.

-> crit case with Abstraction

Critical pairs between rule Case.4.1:

in(c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) -> true
and rule Abstraction. 5 :

(in_state(xh, xst) & ordered(xh)) I (false <-> in(xh, af(xst))) -> true

are as follows:

in..state(c..xh, enq(c_xst, c_vil, c_vi2)) & ordered(c_xh) --true

The system now contains 1 equation, 169 rewrite rules, and 12 deduction rules.

Deduction rule boolean. 3 :

when x & y --= true

yield x -- true

y =-= true

has been applied to equation sync.15:

in_state(c_xh, enq(c_xst, c_vil, c_vi2) ) & ordered(c_xh) -- true

to yield the following equations:

sync.15.1: in_state(c_xh, enq(c_xst, c_vil, c_vi2)) --true

sync.15.2: ordered(c_xh) --true

Ordered equation sync. 15.2 into the rewrite rule:

ordered(c_xh) -> true

Ordered equation sync.15.1 into the rewrite rule:

in_state(c_xh, enq(c_xst, c_vil, c_vi2)) -> true

The system now contains 171 rewrite rules and 12 deduction rules.

Critical pairs between rule Case. 4.1:

in(c_xh, af(enq(c_xst, c_vil, c_vi2) )) -> true
and rule Abstraction. 6 :

((append(cons(c_hl, E(pair(xe, xt))), c_h2) -xh)

& in(append(c_hl, c_h2), af(xst) ) )

l (false <-> in(xh, af(enq(xst, xt, xe))))

-> true

are as follows:

(append(cons (c_hl, E (pair(c_vi2, c_vil) ) ) , c_h2) - c_xh)

& in(append(c_hl, c_h2), af(c_xst) )
mm true

The system now contains 1 equation, 171 rewrite rules, and 12 deduction rules.

Deduction rule boolean. 3 :

when x & y --- true

yield x =-= true

y _ true

has been applied to equation sync.16:

(append(cons (c_hl, E (pair(c_vi2, c_vil) ) ) , c_h2) - c_xh)

& in (append (c_hl, c_h2) , af(c_xst) )
ms true

to yield the following equations:

sync.16.1: append(cons(c_hl, E(pair(c_vi2, c_vil))), c_h2) -c_xh--true
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sync.16.2: in (append (c_hl, c_h2), af(c_xst)) --true

Ordered equation sync.16.2 into the rewrite rule:

in (append (c_hl, c_h2) , af(c_xst) ) -> true

Deduction rule equality. 4 :

when x m y m.m true

yield x .m y

has been applied to equation sync.16.1:

appond(cons(c_hl, E(pair(c_vi2, c_vil))), c_h2) - c_xh m true

to yield the following equations:

sync.16.1.1: append(cons (c_hl, E(pair(c_vi2, c_vil) ) ) , c_h2) a.m c__xh

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.

Ordered equation sync.16.1.1 into the rewrite rule:

append(cons (c_hl, E (pair (c_vi2, c_vil) ) ) , c_h2) -> c_xh

The system now contains 173 rewrite rules and 12 deduction rules.

Critical pairs between rule Case. 4.1:

in(c_xh, af(enq(c_xst, c_vil, c_vi2))) -> true
and rule Abstraction. ii:

(false <-> in (xh, af (xst)) )

I (false <-> in(xn, enqd(xst)))

I (false <-> least (xn, enqd(xst) ) )

I (false <-> prefix(DEQ(xh), ENQ(xh) ) )

I prefix(cons (DEQ(xh) , element (xn)) , ENQ(xh) )

-> true

are as follows:

(((pair(c_vi2, c_vil) -xn) <-> false) & (false <=> in(xn, enqd(c_xst))))

l ((enqt(xn) < cvil) <-> false)

I (false <-> least (xn, enqd(c_xst) ) )

l (false <-> prefix(DEQ(c_xh) , ENQ(c_xh) ))

prefix(cons (DEQ (c_xh) , element (xn)) , ENQ (c_xh))
mm true

The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation sync.17 into the rewrite rule:

(((pair(c_vi2, c_vil) -xn) <-> false) & (false <-> in(xn, enqd(c_xst))))

l ((enqt(xn) < c_vil) <-> false)

I (false <-> least (xn, enqd(c_xst) ))

I (false <-> profix(DEQ(c_xh), ENQ(c_xh) ) )

I prefix(cons (DEQ(c_xh) , element (xn)) , ENQ(c_xh) )
-> true

The system now contains 174 rewrite rules and 12 deduction rules.

Computed 3 new critical pairs. Added 3 of them to the system.

, -> resume by case deqd(c_xst)-new

Case. 5.1

deqd(c_xst) m new m._ true

involves proving Lennua sync. I. 3. I. 1

" in(c_xh, af(enq(c_xst, c_vil, c_vi2) )) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 4 :

when x m y _ true

yield x n y

has been applied to equation Case.5.1:

deqd(c_xst) - now m.m true

to yield the following equations:

Case.5.1.1: deqd(c_xst) --new

174



Ordered equation Case.5.1.1 into the rewrite rule:

deqd(c_xst) -> new

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x - y ms true

yield x _- y

has been applied to equation Case.5.1:

deqd(c xst) - new --- true

to yield the following equations:

Case.5.1.2: deqd(c_xst) --new

Ordered equation Case. 5.1.2 into the rewrite rule:

deqd (c_xst) -> new

Following 2 left-hand sides reduced:

((c_vi2 - what(w)) <-> false) I (false <-> in_stack(w, deqd(c_xst)))
-> true

became equation sync. 14.3 :

( (c_vi2 - what (w)) <-> false) [ (false <-> in_stack (w, new) ) -= true

(enqr(top(deqd(c_xst))) < c_vil) i (deqd(c_xst) - new) -> true

became equation sync. 14.1 :

(enqr (top (new)) < c_vil) ] (deqd(c_xst) - new) -- true

The system now contains 173 rewrite rules and 12 deduction rules.

Lemma sync.l.3.1.1 in the proof by cases of Lemma sync.l.3.1

in(c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

Case.5.1: deqd(c_xst) -new

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh) , ENQ (c_xh)) -> true

Proof of Lemma sync.l.3.1.1 suspended.

-> crit case with lemma2.1

Critical pairs between rule Case. 5.1.2:

deqd (c_xst) -> new
and rule lemma2.1 :

((deqd(xst) -new) <-> false)

I (false <-> in state(xh, xst))

i (DEQ(xh) - null)

-> true

are as follows:

(false <-> in_state(xh, c_xst)) I (DEQ(xh) - null) --- true

The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation sync.18 into the rewrite rule:

(false <-> in_state(xh, c_xst)) i (DEQ(xh) - null) -> true

The system now contains 174 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit sync with lemmal.8

Critical pairs between rule sync.16.1.1:

append(cons (c_hl, E(pair(c_vi2, c_vil) ) ) , c_h2) -> c_xh
and rule lemmal. 8:

DEQ(append(cons (x, E(y) ) , z) ) -> DEQ (append (x, z) )

are as follows:

DEQ (c_xh) --- DEQ (append (c_hl, c_h2) )
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The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Ordered equation sync.19 into the rewrite rule:

DEQ (append(c_hl, c_h2) ) -> DEQ (c_xh)

The system now contains 175 rewrite rules and 12 deduction rules.

Critical pairs between rule sync.18:

(false <-> in state(xh, c xst)) j (DEQ(xh) - null) -> true

and rule lemmal. 8 :

DEQ (append (cons (x, E (y)) , z) ) -> DEQ (append (x, z) )

are as follows:

,/ (false <-> in_state(append(cons(x, E(y)), z), c_xst))

J (DEQ (append (x, z)) -null)

m._ true

The system now contains 1 equation, 175 rewrite rules, and 12 deduction rules.

Ordered equation sync.20 into the rewrite rule:

(false <-> in state(append(cons(x, E(y)), z), c_xst))

J (DEQ(append(x, z) ) - null)

-> true

The system now contains 176 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs. Added 2 of them to the system.

-> crit sync.16.2 with Abstraction.5

Critical pairs between rule sync.16.2:

in(append(c_hl, c_h2) , af(c_xst) ) -> true

and rule Abstraction. 5 :

(in_state(xh, xst) & ordered(xh)) J (false <-> in(xh, af(xst))) -> true
are as follows:

in_state(append(c_hl, c_h2), c_xst) & ordered(append(c_hl, c_h2)) ---true

The system now contains 1 equation, 176 rewrite rules, and 12 deduction rules.

Deduction rule boolean. 3 :

when x & y B true

yield x _- true

y B true

has been applied to equation sync.21:

in_state(append(c_hl, c_h2), c_xst) & ordered (append (c_hl, c_h2)) _-true

to yield the following equations:

sync.21.1: in_state(append(c_hl, c_h2), c_xst) --true

sync.21.2: ordered(append(c_hl, c_h2) ) --- true

Ordered equation sync.21.2 into the rewrite rule:

ordered(append(c_hl, c_h2) ) -> true

Ordered equation sync.21.1 into the rewrite rule:

in state (append(c_hl, c_h2) , c_xst) -> true

The system now contains 178 rewrite rules and 12 deduction rules.

t

Computed 1 new critical pair. Added 1 of them to the system.

-> crit sync with sync

Critical pairs between rule sync.19:

DEQ (append(c_hl, c_h2) ) -> DEQ (c_xh}

and rule sync.18:

(false <-> in state(xh, c_xst)) _ (DEQ(xh) - null) -> true
are as follows:

DEQ(c_xh) - null -- true

The system now contains 1 equation, 178 rewrite rules, and 12 deduction rules.
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Deduction rule equality. 4 :

when x _ y m_ true

yield x -_ y

has been applied to equation syn=.22:

DEQ(c_xh) - null -- true

to yield the following equations:

sync.22.1: DEQ(c_xh) ---null

Ordered equation sync.22.1 into the rewrite rule: °

DEQ (c_xh) -> null

Left-hand side reduced:

(((pair(c_vi2, o_vil) - xn) <-> false) & (false <-> in(xn, enqd(c_xst))))

I ((enqt(xn) < c_vil) <-> false)

I (false <-> least (xn, enqd(c_xst) ) )

l (false <-> prefix(DEQ(o_xh) , ENQ(c_xh) ))

prefix (cons (DEQ (c_xh) , element (xn)) , ENQ (c_xh))
-> true

became equation syno. 17:

( ( (pair(c_vi2, c_vil) - xn) <-> false) & (false <-> in(xn, enqd(c_xst))) )

{ ((enqt (xn) < c vil) <-> false)

I (false <-> least (xn, enqd(c_xst) ) )

[ (false <-> prefix (null, ENQ(o_xh) ) )

I prefix (cons (DEQ (c_xh) , element (xn)) , ENQ (c_xh))
--- true

Ordered equation sync.17 into the rewrite rule:

(((pair(c_vi2, c_vil) -xn) <-> false) & (false <-> in(xn, enqd(c_xst))))

((enqt(xn) < o_vil) <-> false)

I (false <-> least (xn, enqd(c_xst) ) )

] prefix(cons (null, element (xn)) , ENQ(c_xh) )
-> true

The system now contains 179 rewrite rules and 12 deduction rules.

Lemma sync.l.3.1.1 in the proof by cases of Lemma sync.l.3.1

in(c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh), ENQ(c_xh) )
-> true

Case.5.1: deqd(c_xst) -new

[] Proved by rewriting.

Case. 5.2

not(deqd(c_xst) - new) -- true

involves proving Lemma sync. i. 3. I. 2

in(c_xh, af(enq(c xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y ms true

yield x m y

has been applied to equation Case.5.2:

(deqd(c_xst) - new) <-> false -_ true

to yield the following equations:

Case.5.2.1: deqd(c_xst) - new _ false

Ordered equation Case.5.2.1 into the rewrite rule:

deqd(c_xst) - new -> false

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Deduction rule equality. 3 :

when x <_> y _ true

yield x =- y

has been applied to equation Case.5.2:
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(deqd(c_xst) - new) <-> false a true

to yield the following equations:

Case. 5.2.2: deqd(c_xst) - new a false

Ordered equation Case. 5.2.2 into the rewrite rule:

deqd(c_xst) - new -> false

Left-hand side reduced:

(enqr(top(deqd(c_xst))) < c_vil) l (deqe(c_xst) - new) -> true

, became equation sync. 14.1 :

(enqr(top(deqd(c_xst))) < c_vil) I false _ true

Ordered equation sync.14.1 into the rewrite rule:

enqr(top(deqd(c_xst) )) < c_vil -> true

The system now contains 175 rewrite rules and 12 deduction rules.

Lemma sync.l.3.1.2 in the proof by cases of Lemma sync.l.3.1

in(c_xh, af(enq(c_xst, c_vil, c_vi2) )) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

Case.5.2: not(deqd(c_xst) -new)

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Proof of Lemma sync.l.3.1.2 suspended.

Critical-pair computation abandoned because a theorem has been proved.

Computed 3 new critical pairs, 2 of which reduced to an identity. Added 1 of

them to the system.

-> crit induct with sync.16.2

Critical pairs between rule Induct.l:

(false <-> in(xh, af(c_xst))) _ prefix(DEQ(xh), ENQ(xh)) -> true

and rule sync.16.2:

in(append(c_hl, c_h2) , af(c_xst) ) -> true

are as follows:

prefix (DEQ (append(c_hl, c_h2) ), ENQ (append(c hl, c_h2) ) ) -- true

The system now contains 1 equation, 175 rewrite rules, and 12 deduction rules.

Ordered equation sync.23 into the rewrite rule:

prefix(DEQ(append(c_hl, c_h2) ), ENQ(append(c_hl, c_h2) )) -> true

The system now contains 176 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> instantiate xhl by c_hl,xh2 by c_h2,xh by c_xh,xe by c_vi2,xt by c_vil,xst by c_xst in lemma2.3

Equation lemma2.3 :

((enqr(top(deqd(xst))) < xt) <-> false)

i ((append(cons(xhl, E(pair(xe, xt))), xh2) -xh) <-> false)

i (false <-> in (append (xhl, xh2), af(xst) ) )

I (false <-> ordered(xh))
I (false <-> prefix(DEQ(append(xhl, xh2) ), ENQ(append(xhl, xh2) ) ) )

I prefix(DEQ (xh), ENQ (xh))

-> true

has been instantiated to equation lemma2.3.1:

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Added 1 equation to the system.

Ordered equation lemma2.3.1 into the rewrite rule:

prefix (DEQ (c_xh), ENQ (c_xh)) -> true
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Left-hand side reduced:

( ( (pair(c_vi2, c_vil) - xn) <-> false) & (false <-> in(xn, enqd(c_xst) ) ) )

I ((enqt(xn) < cvil) <-> false)

I (false <-> least (xn, enqd(c_xst) ))

I (false <-> prefix(DEQ(c_xh), ENQ(c_xh) ) )

I prefix(cons (DEQ (c_xh) , element (xn)) , ENQ (c_xh))
-> true

became equation sync. 17 :

(((pair(c_vi2, c_vil) - xn) <-> false) & (false <-> in(xn, enqd(c_xst) )) )

I ((enqt(xn) < c_vil) <-> false) "

I (false <-> least (xn, enqd(c_xst) ) )

I (false <-> true)

I prefix(cons (DEQ (c_xh) , element (xn)) , ENQ (c_xh))
i_ true

Ordered equation sync.17 into the rewrite rule:

(((pair(c_vi2, c_vil) -xn) <=> false) & (false <-> in(xn, enqd(c_xst))))

I ( (enqt (xn) < o vil) <-> false)

I (false <-> least (xn, enqd(c_xst) ) )

I prefix (cons (DEQ (c_xh) , element (xn)) , ENQ (c_xh))
-> true

The system now contains 177 rewrite rules and 12 deduction rules.

Lemma sync.l.3.1.2 in the proof by cases of Lemma sync.l.3.1

in(c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

Case.5.2: not (deqd(c_xst) - new)

[] Proved by rewriting.

Lenuna sync. I. 3.1 in the proof by cases of Lemma sync.l. 3

in(c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

Case.4.1: in(c_xh, af(enq(c_xst, c_vil, c_vi2)))

[] Provedby cases
(deqd(c_xst) -new) I not(deqd(c_xst) -new)

Case. 4.2

not (in (c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) ) -- true

involves proving Lemma sync. i. 3.2

in(c_xh, af(enq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh), ENQ(c_xh) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <_> y _ true

yield x -- y

has been applied to equation Case. 4.2:

false <-> in(c_xh, af(enq(c_xst, c_vil, c_vi2))) _-true

to yield the following equations:

Case.4.2.1: false M in(c_xh, af(enq(c_xst, c_vil, c_vi2)))

Ordered equation Case. 4.2.1 into the rewrite rule:

in(c_xh, af (enq(c_xst, c_vil, c_vi2) )) -> false

The case system now contains 1 rewrite rule.

Lemma sync.l.3.2 in the proof by cases of Lemma sync.l.3

in(c_xh, af(enq(c_xst, c_vil, c_vi2) )) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

Case. 4.2: not (in(c_xh, af(enq(c_xst, c_vil, c_vi2)) ) )

[] Proved by rewriting (with unreduced rules).

Lemma sync.l.3 for the induction step in the proof of Conjecture sync.l

in(xh, af(enq(c_xst, vil, vi2) ) ) -> prefix(DEQ(xh) , ENQ(xh) ) -> true

[] Proved by cases

in(xh, af(enq(c_xst, vil, vi2))) I not(in(xh, af(enq(c_xst, vil, vi2))))
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Lemma sync.l.2 for the induction step in the proof of Conjecture sync.l

in(xh, af(deq(c_xst, vil, vi2) ) ) -> prefix(DEQ(xh), ENQ(xh) ) -> true

is NOT provable using the current partially completed system. It reduces to

the equation

(false <-> in(xh, af(deq(c_xst, vil, vi2)))) I prefix(DEQ(xh), ENQ(xh))
-> true

Proof of Lemma sync. I. 2 suspended.

, -> resume by case in(xh, af(deq(c_xst,vil,vi2: :enq_rec) ) )

Case. 6.1

in(c_xh, af(deq(c_xst, c_vil, c_vi2))) --true

involves proving Lemma sync. I. 2.1

in(c_xh, af(deq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

The case system now contains 1 equation.

Ordered equation Case. 6.1 into the rewrite rule:

in(c_xh, af(deq(c_xst, c_vil, c_vi2) )) -> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case. 6.1 into the rewrite rule:

in(c_xh, af(deq(c_xst, c_vil, c_vi2))) -> true

The system now contains 166 rewrite rules and 12 deduction rules.

Len_na sync. 1.2.1 in the proof by cases of Lenuna sync. 1.2

in(c_xh, af(deq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

Case.6.1: in(c_xh, af(deq(c_xst, c_vil, c_vi2)))

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Proof of Lemma sync.l.2.1 suspended.

-> crit case with Abstraction

Critical pairs between rule Case. 6.1:

in(c_xh, af(deq(c_xst, c_vil, c_vi2) )) -> true
and rule Abstraction. 5 :

(in_state(xh, xst) & ordered(xh)) I (false <-> in(xh, af(xst))) -> true
are as follows:

in_state(c_xh, deq(c_xst, c_vil, c_vi2)) & ordered(c_xh) --true

The system now contains 1 equation, 166 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

when x & y m.s true

yield x --- true

y g-_ true

has been applied to equation sync.24:

" in_state(c_xh, deq(c_xst, c_vil, c_vi2)) & ordered(c_xh) ms true

to yield the following equations:

sync.24.1: in_state(c_xh, deq(c_xst, c_vil, c_vi2))--true

sync. 24.2 : ordered (c_xh) mR true

Ordered equation sync.24.2 into the rewrite rule:

ordered(c_xh) -> true

Ordered equation sync.24.1 into the rewrite rule:

in_state (c_xh, deq(c_xst, c_vil, c_vi2) ) -> true

The system now contains 168 rewrite rules and 12 deduction rules.
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Critical pairs between rule Case. 6.1:

in(c_xh, af(deq(c_xst, c_vil, c_vi2))) -> true
and rule Abstraction. 7 :

((DEQ(c_h2) - null)

& (append(cons (c_hl, D (trip (element (xn) , enqt (xn), xt) ) ) , c_h2) - xh)

& in(append(c_hl, c_h2), af(xst) ) )

I (false <-> in(xh, af(deq(xst, xt, xn))))

-> true

are as follows: o

(DEQ (c_h2) - null)

& (append (cons (c_hl, D (trip (element (c_vi2) , enqt (c_vi2) , c_vil) ) ), c_h2)

- c_xh)

& in(append(c_hl, c_h2) , af(c_xst) )
_m true

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.

Deduction rule boolean. 3 :

when x & y --- true

yield x -- true

y B true

has been applied to equation sync.25:

(DEQ (c_h2) - null)

& (append(cons (c_hl, D (trip(element (c_vi2) , enqt (c_vi2) , c_vil) ) ), c_h2)

- c_xh)

& in(append(c_hl, c_h2) , af(c_xst) )
_ true

to yield the following equations:

sync.25.1: DEQ (c_h2) - null -- true

sync.25.2: append(cons (c_hl, D (trip (element (c_vi2) , enqt (c vi2) , cvil) ) ) ,

c..h2)
C xh

true

sync.25.3: in (append (c_hl, c_h2), af(c_xst)) _ true

Ordered equation sync.25.3 into the rewrite rule:

in(append(c_hl, c_h2) , af(c_xst) ) -> true

Deduction rule equality. 4 :

when x _ y _ true

yield x _- y

has been applied to equation sync.25.2:

append (cons (c_hl, D (trip (element (c_vi2) , enqt (c_vi2) , c_vil) ) ) , c_h2) - c_xh
true

to yield the following equations:

sync. 25.2.1 : append (cons (c_hl, D (trip (element (c_vi2) , enqt (c_vi2) , c_vil) } ) ,

c_h2)
--- cxh

Deduction rule equality. 4 :

when x s y _ true

yield x -- y

has been applied to equation sync.25.1 :

DEQ(c_h2) - null B true

to yield the following equations:

sync.25.1.1: DEQ(c_h2) --null

The system now contains 2 equations, 169 rewrite rules, and 12 deduction rules.

Ordered equation sync. 25. I. 1 into the rewrite rule :

DEQ (c_h2) -> null

Left-hand side reduced:

((DEQ(c h2) - null)

& (append(cons (c_hl, D (trip(element (xn) , enqt (xn) , xt) ) ) , c_h2) - xh)

& in (append (c_hl, c_h2) , af(xst) ) )
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I (false <-> in(xh, af(deq(xst, xt, xn))))

-> true

became equation Abstraction. 7 :

( (append(cons (c_hl, D (trip (element (xn) , enqt (xn) , xt) ) ) , c_h2) - xh)

& (null - null)

& in(append(c_hl, c_h2) , af(xst) ) )

I (false <-> in(xh, af(deq(xst, xt, xn))))
-> true

Ordered equation Abstraction. 7 into the rewrite rule:

( (append (cons (c hl, D(trip(element(xn), enqt(xn), xt) ) ), c_h2) - xh)

& in(append(c_hl, c_h2), af(xst) ) )

I (false <-> in(xh, af(deq(xst, xt, xn))))

, -> true
L

The system now contains 1 equation, 170 rewrite rules, and 12 deduction rules.

Ordered equation sync. 25.2.1 into the rewrite rule:

append(cons (c_hl, D (trip(element (c_vi2) , enqt (c_vi2) , c_vil) ) ), c_h2) -> c_xh

The system now contains 171 rewrite rules and 12 deduction rules.

Critical pairs between rule Case. 6.1:

in(c_xh, af(deq(c_xst, c_vil, c_vi2))) -> true
and rule Abstraction. Ii :

(false <-> in(xh, af(xst)))

I (false <-> in(xn, enqd(xst) ) )

I (false <-> least (xn, enqd(xst) ))

i (false <-> prefix (DEQ(xh), ENQ(xh) ) )

I prefix(cons (DEQ(xh) , element (xn)) , ENQ(xh) )

-> true

are as follows:

(false <-> in(xn, enqd(c_xst) ) )

I (false <-> least(xn, delete(enqd(c_xst), c_vi2)))

I (false <-> prefix (DEQ (c_xh), ENQ(c_xh) ) )

I (c_vi2 - xn)

I prefix(cons (DEQ(c_xh) , element (xn)) , ENQ(c_xh) )
Ig true

The system now contains 1 equation, 171 rewrite rules, and 12 deduction rules.

Ordered equation sync. 26 into the rewrite rule:

"(false <-> in(xn, enqd(c_xst) ) )

I (false <-> least(xn, delete(enqd(c_xst), c_vi2)))

I (false <-> prefix(DEQ(c_xh), ENQ(c_xh) ) )

I (c_vi2 - xn)

I prefix(cons (DEQ(c_xh) , element (xn)), ENQ(c_xh) )
-> true

The system now contains 172 rewrite rules and 12 deduction rules.

Computed 3 new critical pairs. Added 3 of them to the system.

-> add when_deq(c_xst,x, c_vil, c_vi2)

Added 1 equation to the system.

° Deduction rule boolean.3 :

when x & y -- true

yield x -_ true

y _-- true

has been applied to equation sync.27:

(enqt (c_vi2) < c_vil)

& in(c_vi2, enqd(c_xst))

& least (c_vi2, enqd (c_xst))

& ( ((deqr(top(deqd(c_xst)) ) < c_vil)

& (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

I (deqd(c_xst) - new) )
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& ( ( (element (c_vi2) -- what (x)) <-> false)

] (false <-> in_stack(x, deqd(c_xst))))

-> true

to yield the following equations:

sync.27.1: enqt(c_vi2) < c_vil _ true

sync.27.2: in(c_vi2, enqd(c_xst)) --true

sync. 27.3 : least (c_vi2, enqd (c_xst)) is true

sync.27.4: ((deqr(top(deqd(c_xst))) < c_vil) °

& (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

I (deqd(c xst) - new)
ml true

sync.27.5: ( (element (c_vi2) - what (x)) <-> false)

I (false <-> in_stack(x, deqd(c_xst) ) )
--- true

Ordered equation sync.27.5 into the rewrite rule:

((element(c_vi2) -what(x)) <-> false) I (false <-> in_stack(x, deqd(c_xst)))
-> true

Ordered equation sync.27.4 into the rewrite rule:

((deqr(top(deqd(c_xst)) ) < c_vil) & (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

I (deqd(c_.xst) - newt
-> true

Ordered equation sync.27.3 into the rewrite rule:

least (c_vi2, enqd(c_xst) ) -> true

Ordered equation sync.27.2 into the rewrite rule:

in(c_vi2, enqd(c_xst) ) -> true

Ordered equation sync.27.1 into the rewrite rule:

enqt(c_vi2) < c_vil -> true

The system now contains 177 rewrite rules and 12 deduction rules.

-> crit induct with sync

Critical pairs between rule Induct.l:

(false <-> in (xh, af (c_xst)) ) I prefix (DEQ (xh) , ENQ (xh)) -> true

and rule sync.25.3:

in(append(c_hl, c_h2) , af(c_xst) ) -> true
are as follows:

prefix (DEQ (append(c_hl, c_h2) ), ENQ (append (c_hl, c_h2) ) ) -- true

The system now contains 1 equation, 177 rewrite rules, and 12 deduction rules.

Ordered equation sync.28 into the rewrite rule:

prefix (DEQ (append (c_hl, c_h2) ), ENQ (append (c_hl, c_h2) ) ) -> true

The system now contains 178 rewrite rules and 12 deduction rules.

Computed 8 new critical pairs, 7 of which reduced to an identity. Added 1 of

them to the system.

-> resume by case deqd(c_xst)_new

Case. 7.1

deqd(c_xst) - new ms true

involves proving Lemma sync. i. 2. i. 1

in(c_xh, af(deq(c_xst, c_vil, c_vi2) )) -> prefix(DEQ(c_xh), ENQ(c_xh) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 4:

when x - y -- true

yield x -- y

has been applied to equation Case. 7.1:
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deqd(c_xst) - new -- true

to yield the following equations:

Case.7.1.1: deqd(c_xst) --new

Ordered equation Case. 7.1.i into the rewrite rule:

deqd(c_xst) -> new

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 178 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x i y It true

yield x -- y

" has been applied to equation Case. 7.1:

deqd(c_xst) - new -- true

to yield the following equations:

Case.7.1.2: deqd(c_xst) -- new

Ordered equation Case. 7.1.2 into the rewrite rule:

deqd (c_xst) -> new

Following 2 left-hand sides reduced:

( (element (c_vi2) - what (x)) <-> false)

(false <-> in_stack(x, deqd(c xst) ))
-> true

became equation sync. 27.5 :

( (element (c_vi2) - what (x)) <-> false) I (false <=> in_stack (x, new) )
--_ true

((deqr(top(deqd(c_xst)) ) < c_vil) & (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

i (deqd(c_xst) - new)
-> true

became equation sync. 27.4 :

((deqr(top(new)) < c_vil) & (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

I (deqd(c_xst) - new)
g-_ true

The system now contains 177 rewrite rules and 12 deduction rules.

Lemma sync.l. 2. I. 1 in the proof by cases of Lemma sync. 1.2.1

in(c_xh, af(deq(c_xst, c_vil, c_vi2) )) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

Case. 7.1: deqd(c_xst) _ new

is NOT provable using the current par_ially completed system. It reduces to

the equation

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Proof of Lemzna sync. I. 2.1.1 suspended.

-> crit case with lemma2.1

Critical pairs between rule Case.7.1.2:

deqd (c_xst) -> new

and rule lemma2.1:

((deqd(xst) -new) <R> false)

I (false <-> in state(xh, xst))

i (DEQ(xh) - nu_l)

-> true

are as follows:

(false <-> in_state(xh, c_xst)) i (DEQ(xh) - null) --- true

The system now contains 1 equation, 177 rewrite rules, and 12 deduction rules.

Ordered equation sync.29 into the rewrite rule:

(false <-> in state(y/u, c xst)) I (DEQ(xh) - null) -> true

The system now contains 178 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.
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-> crit sync.25.3 with Abstraction. 5

Critical pairs k_tween rule sync. 25.3 :

in(append(c_hl, c_h2) , af(c_xst) ) -> true

and rule Abstraction. 5 :

(in_state(xh, xst) & ordered(xh)) { (false <-> in(xh, af(xst))) -> true
are as follows:

in_state(append(c_hl, ¢_h2), o_xst) & ordered(append(c_hl, c_h2)) m true

The system now contains 1 equation, 178 rewrite rules, and 12 deduction rules.

Deduction rule boolean. 3 :

when x & y -_ true

yield x --- true

y .R true

has been applied to equation sync.30:

in state(append(c_hl, c_h2), c_xst) & ordered (append (c_hl, c_h2)) -= true

to yield the following equations:

sync.30.1: in state (append (c_hl, c_h2), c_xst) -_ true

sync.30.2: ordered (append (c_hl, c_h2)) --true

Ordered equation sync.30.2 into the rewrite rule:

ordered(append(c_hl, c_h2) ) -> true

Ordered equation sync.30.1 into the rewrite rule:

instate (append(c_hl, c_h2) , c_xst) -> true

The system now contains 180 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit sync. 30.1 with sync.29

Critical pairs between rule sync. 30. I:

in state (append(c_hl, c_h2) , c_xst) -> true

and rule sync.29:

(false <-> in_state(xh, c_xst)) { (DEQ(xh) - null) -> true
are as follows:

DEQ(append(c_hl, c_h2)) - null -= true

The system now contains 1 equation, 180 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x R y .m true

yield x -_ y

has been applied to equation sync.31:

DEQ(append(c_hl, c_h2)) - null -- true

to yield the following equations:

sync.31.1: DEQ(append(c_hl, c_h2)) --null

Ordered equation sync.31.1 into the rewrite rule:

DEQ(append(c_hl, c_h2) ) -> null "

Left-hand side reduced:

prefix(DEQ(append(c_hl, c_h2) ), ENQ(append(c_hl, c_h2) ) ) -> true

became equation sync. 28 :

prefix(null, ENQ(append(c_hl, c_h2) )) -- true

The system now contains 180 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit sync.31.1 with lemm_3.1

Critical pairs between rule sync. 31.1 :

DEQ(append(c_hl, c_h2) ) -> null
and rule lemma3.1 :

((DEQ(xh) -null) & (DEQ(xhl) -null))
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J ( (DEQ(append(xh, xhl) ) - null) <=> false)
-> true

are as follows:

( (DEQ(append(c_hl, append(c_h2, xhl) )) - null) <-> false)

I (DEQ(xhl) - null)

_= true

((DEQ(append(xh, append(c_hl, c_h2))) -null) <-> false) I (DEQ(xh) -null)
_ true

DEQ(c_hl) - null -- true

The system now contains 1 equation, 180 rewrite rules, and 12 deduction rules.

Ordered equation sync.32 into the rewrite rule:

((DEQ(append(c_hl, append(c_h2, xhl))) - null) <=> false) l (DEQ(xhl) - null)
-> true

The system now contains 181 rewrite rules and 12 deduction rules.

The system now contains 1 equation, 181 rewrite rules, and 12 deduction rules.

Ordered equation sync.33 into the rewrite rule:

((DEQ(append(xh, append(c_hl, c_h2))) -null) <-> false) i (DEQ(xh) -null)
-> true

The system now contains 182 rewrite rules and 12 deduction rules.

The system now contains 1 equation, 182 rewrite rules, and 12 deduction rules.

Deduction rule equality. 4 :

when x = y _ true

yield x -- y

has been applied to equation sync.34:

DEQ(c_hl) - null -= true

to yield the following equations:

sync.34.1: DEQ(c_hl) _ null

Ordered equation sync.34.1 into the rewrite rule:

DEQ(c hl) -> null

The system now contains 183 rewrite rules and 12 deduction rules.

Computed 3 new critical pairs. Added 3 of them tq the system.

-> instantiate xhl by c_hl,xh2 by c_h2,xn by c_vi2,xt by c_vil,xh by c_xh, xst by c_xst in lemma3.2

Equation lemma3.2 :

( (DEQ (xhl) - null) <-> false)

I ((DEO(xh2) -null) <-> false)

i ((append(cons(xhl, D(trip(element(xn), enqt(xn), xt))), xh2) -xh)

<-> false)

i (false <-> in (append (xhl, xh2), af(xst)))

I (false <-> in(xn, enqd(xst)))

I (false <-> least (xn, enqd(xst) ) )

- I prefix (DEQ (xh), ENQ (xh))

-> true

has been instantiated to equation lemma3.2.1:

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Added 1 equation to the system.

Ordered equation lemma3.2.1 into the rewrite rule:

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Left-hand side reduced:

(false <-> in(xn, enqd(c xst) ))

l (false <-> least (xn, delete (enqd(c_xst) , c_vi2) ) )
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I (false <-> prefix(DEQ(c_xh), ENQ(c_xh) ) )

l (c_vi2 - xn)

I prefix(cons (DEQ(c_xh) , element (xn)) , ENQ(c_xh) )
-> true

became equation sync.26:

(false <-> in(xn, enqd(c_xst) ) )

I (false <-> least(xn, delete(enqd(c_xst), c_vi2)))

l (false <-> true)

I (c_vi2 - xn)

I prefix(cons (DEQ(c_xh) , element (xn)) , ENQ(c_xh) )
..R true

Ordered equation sync.26 into the rewrite rule:

(false <-> in(xn, enqd(c_xst) ) )

I (false <-> least(xn, delete(enqd(c_xst), c_vi2)))

I (c_vi2 - xn)

I prefix (cons (DEQ (c_xh) , element (xn)) , ENQ (c_xh))
-> true

The system now contains 184 rewrite rules and 12 deduction rules.

LenRna sync. 1.2.1.I in the proof by cases of Lenuna sync.l.2.1

in(c_xh, af(deq(c_xst, c_vil, c_vi2) )) -> prefix(DEQ(c_xh), ENQ(c_xh) )
-> true

Case.7.1: deqd(c_xst) - new

[] Proved by rewriting.

Case. 7.2

not(deqd(c_xst) - new) _ true

involves proving Lemma sync. I. 2. I. 2

in(c_xh, af(deq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <m> y _ true

yield x _ y

has been applied to equation Case. 7.2:

(deqd(c_xst) - new) <-> false _ true

to yield the following equations:

Case. 7.2.1: deqd(c_xst) - new _ false

Ordered equation Case. 7.2.1 into the rewrite rule:

deqd(c_xst) - new -> false

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 178 rewrite rules, and 12 deduction rules.

Deduction rule equality. 3 :

when x <-> y is true

yield x -_ y

has been applied to equation Case. 7.2:

(deqd(c_xst) - new) <-> false _ true

to yield the following equations:

Case.7.2.2: deqd(c_xst) - new _- false

Ordered equation Case. 7.2.2 into the rewrite rule:

deqd(c_xst) - new -> false

Left-hand side reduced:

((deqr(top(deqd(c_xst)) ) < =_vil) & (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

I (deqd(c_xst)- new)
-> true

became equation sync. 27.4 :

( (deqr (top(deqd(c_xst)) ) < c_vil)

& (enqr(top(deqd(c_xst)) ) < enqt (c_vi2)) )

I false
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mn true

Deduction rule boolean. 3 :

when x & y -- true

yield x --- true

y n_ true

has been applied to equation sync.27.4 :

(deqr(top(deqd(c_xst)) ) < c_vil) & (enqr(top(deqd(c_xst)) ) < enqt (c_vi2))
true

, to yield the following equations:

sync.27.4.1: deqr(top(deqd(c_xst))) < c_vil -_ true

sync. 27.4.2 : enqr (top (deqd(c_xst))) < enqt (c_vi2) -_ true

Ordered equation sync. 27.4.2 into the rewrite rule:
Q

enqr (top (deqd (c_xst)) ) < enqt (c_vi2) -> true

Ordered equation sync. 27. 4.1 into the rewrite rule:

deqr(top(deqd(c_xst) ) ) < c_vil -> true

The system now contains 180 rewrite rules and 12 deduction rules.

Lomma sync.l.2.1.2 in the proof by cases of Lemma sync.l.2.1

in(c_xh, af(deq(c_xst, c_vil, c_vi2) )) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

Case. 7.2: not (deqd(c_xst) - new)

is NOT provable using the current partially completed system. It reduces to

the equation

prefix (DEQ (c_xh) , ENQ (c_xh)) -> true

Proof of Lemma sync.l.2.1.2 suspended.

-> instantiate xst by c_xst, xh by c_xh, xhl by c_hl,xh2 by c_h2,xn by c_vi2,xt by c_vil in lemma3.3

Equation lemma3.3 :

((enqr(top(deqd(xst)) ) < enqt (xn)) <-> false)

{ ((DEQ(xh2) -null) <-> false)

i ((append(cons(xhl, D(trip(elemont(xn), enqt(xn), xt))), xh2) -xh)

<-> false)

{ (false <-> in(appond(xhl, xh2), af(xst)))

I (false <-> in(xn, enqd(xst) ) )

{ (false <-> least(xn, enqd(xst)))

{ (false <-> prefix(DEQ(append(xhl, xh2)), ENQ(append(xhl, xh2))))

] prefix (DEQ (xh), ENQ (xh))

-> true

has been instantiated to equation lemma3.3.1:

prefix (DEQ (c_xh), ENQ (c_xh)) -> true

Added 1 equation to the system.

Ordered equation iomma3.3.1 into the rewrite rule:

prefix (DEQ (c_xh) , ENQ (c_xh)) -> true

Left-hand side reduced:

(false <-> in(xn, onqd(c_xst) ) )

l (false <-> least(xn, deloto(onqd(c_xst), c_vi2)))

{ (false <-> prefix (DEQ (c_xh), ENQ (c_xh)) )

i (c_vi2 - xn)

I prefix(cons (DEQ (c_xh) , element (xn)) , ENQ(c_xh) )
-> true

became equation sync. 26:

(false <-> in(xn, enqd(c_xst) ) )

l (false <-> ioast(xn, delote(enqd(c_xst), c_vi2)))

I (false <-> true)

l (c_vi2 u xn)

{ prefix (cons (DEQ (c_xh) , element (xn)) , ENQ (c_xh))
mm true
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Ordered equation sync.26 into the rewrite rule:

(false <-> in(xn, enqd(c_xst) ) )

i (false <-> least(xn, delete(enqd(c_xst), c_vi2)))

[ (c_vi2 - xn)

I prefix(cons (DEQ(c_xh) , element (xn)) , ENQ(c_xh) )

-> true

The system now contains 181 rewrite rules and 12 deduction rules.

Lemma sync.l.2.1.2 in the proof by cases of Lemma sync.l.2.1

in(c_xh, af(deq(c_xst, c_vil, c_vi2))) -> prefix(DEQ(c_xh), ENQ(c_xh))
-> true

Case. 7.2: not (deqd(c_xst) = new)

[] Proved by rewriting.

Lezmua sync. i. 2.1 in the proof by cases of Lemma sync.l.2

in(c_xh, af(deq(c_xst, c_vil, c_vi2))) -> prefix(DEQ(c_xh), ENQ(c_xh))

-> true

Case.6.1: in(c_xh, af(deq(c_xst, c_vil, c_vi2)))

[] Proved by cases

(deqd(c_xst) - new) I not(deqd(c_xst) - new)

Case. 6.2

not (in (c_xh, af(deq(c_xst, c_vil, c_vi2)))) == true

involves proving Lemma sync. i. 2.2

in(c_xh, af(deq(c_xst, c_vil, c_vi2) ) ) -> prefix(DEQ(c_xh) , ENQ(c_xh) )
-> true

The case system now contains 1 equation.

Deduction rule equality. 3 :

when x <-> y -- true

yield x =-= y

has been applied to equation Case. 6.2:

false <-> in(c_xh, af(deq(c_xst, c_vil, c_vi2))) -- true

to yield the following equations:

Case.6.2.1: false--in(c_xh, af(deq(c_xst, c_vil, c_vi2)))

Ordered equation Case. 6.2.1 into the rewrite rule:

in(c_xh, af(deq(c_xst, c_vil, c_vi2))) -> false

The case system now contains 1 rewrite rule.

Lemma sync.l.2.2 in the proof by cases of Lemma sync.l.2

in(c_xh, af(deq(c_xst, c_vil, c_vi2))) -> prefix(DEQ(c_xh), ENQ(c_xh))
-> true

Case. 6.2: not (in(c_xh, af(deq(c_xst, c_vil, c_vi2) ) ) )

[] Proved by rewriting (with unreduced rules).

Lemma sync.l.2 for the induction step in the proof of Conjecture sync.l

in(xh, af(deq(c_xst, vil, vi2) ) ) -> prefix(DEQ(xh) , ENQ(xh) ) -> true

[] Proved by cases

in(xh, af(deq(c_xst, vil, vi2))) I not(in(xh, af(deq(c_xst, vil, vi2)))) *

Conjecture sync. 1

in(xh, af(xst) ) -> prefix(DEQ(xh), ENQ(xh} ) -> true

[] Proved by induction over 'xst: :St' of sort 'St'.

The system now contains 1 equation, 164 rewrite rules, and 12 deduction rules.

Ordered equation sync.l into the rewrite rule:

(false <-> in(xh, af(xst))) [ prefix(DEQ(xh), ENQ(xh)) -> true

The system now contains 165 rewrite rules and 12 deduction rules.

-> q
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