Raw Code, Specification, and Proof
of the Avalon Queue Example

Chun Gong and Jeannette M. Wing
11 August 1989
CMU-CS-89-172

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This technical report contains the unedited code, specification, and proofs of properties of the
Avalon/C++ queue example. The code compiles and runs. We used the Larch Checker to
process the specifications and then used these specifications as input to the Larch Prover. We
then proved the representation invariants and key correctness condition for the queue example,
proving various sets of helping lemmas in the process. The companion technical report [5] gives
a high-level description of this specification and verification exercise, including a performance
analysis.

© 1989 C. Gong and M. Wing

This research was sponsored by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 4976, monitored by the Air Force Avionics Laboratory Under Contract No.
F33615-87-C-1499. Additional support was provided in part by the National Science
Foundation under grant CCR-8620027.

The views and conclusions contained in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed or implied, of the Defense
Advanced Research Projects Agency, the National Science Foundation or the U.S. Government.

Contents

1. Introduction

2. The Avalon Code

3. Larch Specifications

3.1, Some BASICS i e e e e e e e e e e e e e
32. Queue Representation e
3.3. LP Input of Basics and Queue Representation e e e

4. Proof of Representation Invariants

..................................

4.1. Statement of Representation Invariants,

42. LP Proof Session of Invariant 1 . .
4.3. LP Proof Session of Invariant 2 . .

4.4. LP Proof Session of Invariant 3 . .

5. Four Sets of Helping Lemmas

5.1. Helping Lemma Set0

5.2. LP Proof Session of Lemma Set O

5.3. Helping Lemma Set1

5.4. LP Proof Session of Lemma Set 1

55. Helping Lemma Set2

5.6. LP Proof Session of Lemma Set 2

5.7. Helping Lemma Set3

5.8. LP Proof Session of Lemma Set 3

6. LP Proof of Correctness Condition

13

15

18
18
19
41

55

61
65
66
120
121
139

140

163

Raw Code, Specification, and Proof of the Avalon Queue Example

Chun Gong and Jeannette M. Wing

August 10, 1989

1. Introduction

This document contains the code, specification, and proof of the well-womn Avalon/C++ queue example [1, 2]. The
code compiles and runs. We successfully ran the Larch Shared Language (LSL) [3] specifications through the Larch
Checker (L.C) which checked for syntactic, type, and static semantic errors. Some minor edits were made to these
specifications (e.g., adding some signature information to disambiguate some operators) to make them acceptable
input to the Larch Prover (LP) [4]. We give the LP input versions of the specifications here too. Finally, we
proved the representation invariants and the type-specific correctness condition (the so-called “prefix” property [2])
from these specifications using LP. The companion paper [5] gives a high-level description of this specification
and verification exercise, including detailed statistics on the time and space usage of LP. Hence, what follows is
unedited text that represents the raw code, specification, and proof transcripts.

2. The Avalon Code

2.1. The Representation

struct eng_rec {
int item; // Item enqueued.
trans_id engr; // Who enqueued it.
enq _rec(int i, trans_id:é en) // Constructor.
{item = i; enqgr = en;}

}:

struct deq_rec {

int item; // Item dequeued.
trans_id enqr; // Who enqueued it.
trans_id deqr; // Who dequeued it.

deq_rec(int i, trans_idé en, trm-_idi de); // Constructor.
{item = i; engr = en; degr = de; }
}:

class atomic_queue : public subatemic {

deq_stack deqd; // stack of dequeued items.
eng_heap enqgd; // Heap of enqueued items.
public:

atomic_queue () {}; // Create empty queue.

void eng(int item); // Engqueue an item.

int deq(); // Dequeue an item.

void commit (trans_ids t); // Called on commit.

void abort (trans_id& t); // Called on abort.

}:

2.2. The Operations

void atomic_gqueue::eng(int item) {
trans_id tid = trans_id();
when (degd.is_empty() || (degd.top()=->engr < tid))
enqgd.insert (item, tid); // Record enqueue.
}

int atomic_queue::deq() {
trans_id tid = trans_id();
when ((deqd.is_empty() || deqd.top()->deqr < tid)
&& enqd.min_exists() && (engd.get_min()->enqr < tid)) (
enq_rec* min_er = enqgd.delete_min();
deq_rec dr(*min_exr, tid); // Move from enqueued heap...
deqgd.push (dr) ; // to dequeued stack.
return min er~>item;
}
}

void atomic_queue::commit (trans_idé committer) {

when (TRUE) // Always ok to commit.
if (!deqd.is_empty() && descendant (deqd.top()->deqr, committer)) {
degd.clear(): // Discard all dequeue records.

}
}

void atomic_queue::abort (trans_idé aborter) {
when (TRUE) { // Always ok to abort.

while (!deqd.is_empty () // Undo aborted dequeue by...
&& descendant (deqd.top() ->deqr, aborter)) { // aborting transaction.
deq_rec* d = deqd.pop(}); // Undo aborted dequeue.
engd.insert (d->item, d->engr); // Put it back.

}

engd.discard (aborter); // Undo aborted engqueues.

3. Larch Specifications

3.1. Some Basics

Set (EL, C): trait
introduces
emptyset: -> C
insert: C, EL => C
in: EL, C-> Bool
notin: EL, C =-> Bool
U: C, C=->¢C
insect: C, C -> C
-:1¢ c-=>c
delete: C, EL -> C
subseteq: C, C => Bool
isEmpty: C => Bool
asserts C generated by (emptyset, insert)
C partitioned by (in)
for all (y, yl: C, x, x1: EL)
~({(in(x, emptyset)),
in(x, insert(y, x1)) == (x = x1) | in(x, y),
notin(x, y) == ~(in(x, y)),
in(x, U(y, y1)) == in(x, y) | in(x, y1),
in(x, insect(y, yl)) == in(x, y) & in(x, yl),
in{x, (y - yl)) == in(x, y) & notin(x, yl),
in(x, delete(y, x1)) == (x \= x1) & in(x, y),
subseteq(emptyset, yl),
subseteq(insert (y, x), yl) == subseteg(y, yl) & in(x, yl),
isEmpty (emptyset),
~isEmpty (insert (y, x))
end

Stack (EL, C): trait
introduces
new: => C
push: C, EL -> C
top: C -> EL
pop: C =>C
iaNew: C -> Bool
asserts
C generated by (new, push)
for all (x: C, y: EL)
top(push(x, y)) ==y,
pop(push(x, y)) == x,
isNew (new) ,
~ isNew(push(x, y))
end

Pair (T1, T2, T): trait
introduces
pair: Tl, T2 -> T
first: T => T1
second: T -> T2
asserts
T generated by (pair)
T partitioned by (first, second)
for all (x: T1, y: T2)
first (pair(x,y)) == x,
second (pair(x,y)) == y
end

Triple (T1, T2, T3, T): trait
introduces
trip: T1, T2, T3 -> T
first: T -> T1
second: T =-> T2
third: T -> T3

asserts
T generated by (trip)
T partitioned by (first, second, third)
for all (x: T1, y: T2, z: T3)
first (tzip(x,y,z)) == x,
second (trip(x,y,z)) ==y,
third(trip(x,y,z)) == z
end

3.2. Queue Representation

TransID(Tid): trait
introduces
_<__: Tid, Tid -> Bool
c xt: -> Tid
asserts for all(xt, xtl, xt2: Tid)
((xt < xtl) & (xtl < xt2)) => (xt < xt2),
{((xt < xtl) & (xtl < xt)) => (xt = xtl)
end

Enq_Rec(EL, eng_rec): trait
includes TransID, Pair(BL, Tid, enq_rec, element for firast, engt for second)
introduces
e_before: eng_rec, eng_rec -> Bool
asserts eng rec partitioned by (element)
for all(x, xl: enq_rec)
e_before(x, x1) == engt(x) < engt(xl)
end

Deq_Rec(EL, deq_rec): trait
includes TransID, Eng_Rec,
Triple (EL, Tid, Tid, deq_rec, what for first,
engr for second, deqr for third)
introduces
d before: deq_rec, deq rec -> Bool
convert: deg_rec -> enq_rec
asserts for all (x, x1: deg_rec)
d before(x, x1) == deqr(x) < degr(xl),
convert (x) == pair(what(x), enqgr(x))
end

Enq_Heap (enq_heap) : trait

includes Enq _Rec, Set (enq_rec, enq_heap)

introduces
in_heap: enq_rec, eng_heap -> Bool
e_in heap: EL, enqg_heap -> Bool
least: eng_rec, enq_heap -> Bool
:'.-__top: eng_rec, onq_holp => Bool

asserts for all (xp: eng_heap, y, yl: enqg rec, xt: Tid, xe: EL)
in_heap(y, xp) == in(y, xp),
e_in heap(xe, emptyset) == false,
e_in heap(xe, insert(xp, y)) == (element (y)=xe) | e_in heap(xe, xp),
least (y, emptyset) == true,
least (y, insert(xp, yl)) == (engt (y)<enqgt(yl)) & least(y, xp),

is_top(y, xp) == in_heap(y,xp) & least(y, xp)
end

Deq_Stack (deq_stack): trait

includes Deq Rec, Stack(deq _rec, deq stack)

introduces
deq_before: deq_rec, deq_rec, deq_stack -> Bool
in_stack: deq_rec, deq_ stack -> Bool
e_in_stack: EL, deq_stack -> Bool

asserts for all (xk: deq_stack, y, yl, y2: deq_rec, xt: Tid, xe: EL)
deq_before(y, yl, new) == false,
deq_before(y, yl, push(xk, y2)) == ((yl=y2) & (in_stack(y, xk))) |

6

deq_before(y, yl, xk),

in_stack(y, new) == false,
in_stack(y, push(xk, yl)) == if y = yl

then true

else in stack(y, xk),
e_in stack(xe, new) == false,
e_in_stack(xe, push(xk, y)) == (what(y)=xe) | e_in_stack(xe, xk)

end

3.3. LP Input of Basics and Queue Representation

% Last modified on Fri May 19 11:37:29 PDT 1989 by horning
% modified on Mon Jun 27 15:10:41 1988 by saxe

set name bool
declare
true:~>bool
false:=->bool
&:bool,bool~>bool
| :bool,boocl=->bool
<=>:bool,boocl=->bool
=>:bool,bool->bool
not :bool=>bool
b: :bool
bl::bool
b2: :bool

op ac <=> & |
Op prec <=> &
op prec <m> |

add
true &§ b => b
false & b -> false
b&b->Db
not (b) => false <=> b
true <=> b -> b
not(b) & b -> false
true | b => true
false | b -> b
| b->b
not(b) | b => true
b => bl -> not(b) | bl
(b | Bl) & b => b
% not(b) & not(bl) => not(b | bl)
not(b | bl) -> not(b) & not(bl)
% not(b) | not(bl) => not(b & bl)
not(b & bl) => not(b) | not(bl)
b & (not(b) | bl) -> b & bl
(b | bl) & not(b) & not(bl) -> false
(b | 1) & (b | not(bl)) -> b
(b & bl) | not(bl) => b | not(bl)
(b & bl) | (b & not(bl)) -> b
b | (not(b) & bl) => b | bl
bJ|] (b &bl) ->b
% Jorgen’s additions
% b| (b1 €6b2) => (b | bl) & (b | b2)
(b <=> bl) | (bl <=> b2) | (b <=> b2) => true

add~-ded

when (b <=> false) == false
yield b => true
when b <=> bl == b <=> b2
yield bl == b2
when if(b, bl, b2) == true
yield b => bl

b | b2
vwhen if(b, bl, b2) == false
yield bl => not (b)

b2 => b

set name TransID
declare

xt,xtl,xt2::Tid

add
((xt < xtl) & (xtl < xt2)) => (xt < xt2)
((xt < xtl) & (xtl < xt)) => (xt = xtl)

set name Pair
declare
xn,xnl: :eng_rec
xe: :EL
add-generators
pair : EL, Tid -> enq_rec

add~-deduction-rules
when
element (xn) == element (xnl)
engt (xn) == engt (xnl)
yield xn == xnl
add
element (pair(xe, xt)) == xe
engt (pair(xe, xt)) == xt

set name Enq_Rec
add-deduction-rules
when
element (xn) == element (xnl)
yvield xn == xnl
add
e_before(x, x1) == (engt(x) < engt(xl))

set name Triple
add-generators
trip : EL, Tid, Tid -> deq_rec

add-deduction-rules
when
what (y) == what (z)
engr(y) == enqr(z)
deqr(y) == deqr(z)
vield y == z
add
what (trip(x, y, z)) == x
engr(trip(x, y, z)) ==y
deqr(trip(x, y, z)) == 2z

set name Degq Rec

add
d_before(x, x1) == (deqr(x) < deqr(xl))
convert (x) == pair(what(x), enqgr(x))

set name Stack
add-generators

new : -> deq_stack

push : deq_stack, deq_rec -> deq_stack
add

top(push(x, y)) ==y

pop(push(x, y)) == x

isNew (new)

not (isNew (push(x, y)))

set name Deq_Stack

declare xk::deq stack

add
deq_before(y, yl, new) == false
deq_before(y, yl, push(xk, y2)) == ((yl = y2) & in_stack(y, xk)) |

deq_before(y, vl, xk)

in_stack(y, new) == false
in_stack(y, push(xk, yl)) == if(y = yl, true, in_stack(y, xk))
e_in_stack(xe, new) == false
e_in stack(xe, push(xk, y)) == (what(y) = xe) | e_in_stack(xe, xk)

set name Set
add~-generators
emptyset : -> eng_heap
insert : enq_heap, enqg_rec ~> enq_heap

add~-deduction-rules

when
in(x_1 1, y) == in(x_1_1, z)

yield y == z

add
not (in(x, emptyset)) ,
in(x, insert(y, x1)) == (x = x1) | in(x, y)
notin(x, y) == not(in(x, y))
in(x, U(y, yl)) == in(x, y) | in(x, yl)
in(x, insect(y, yl)) == in(x, y) & in(x, yl)
in(x, (y - yl)) == in(x, y) & notin(x, yl)
in(x, delete(y, x1)) == not(x = xl) & in(x, y)
subseteq(emptyset, yl)
subseteq(insert (y, x), yl) == subseteq(y, yl) & in(x, yl)
isEmpty (emptyset)
not (isEmpty (insert (y, x)))

set name Eng Heap

declare xp::eng_heap

add)
in_heap(y, xp) == in(y, xp)
e_in heap(xe, emptyset) =m= false
e_in_heap(xe, insert(xp, y)) == (element(y) = xe) | e_in heap(xe, xp)
least (y, emptyset) == true
least (y, insert (xp, yl)) == (engt(y) < engt(yl)) & least(y, xp)
is_top(y, xp) == in_heap(y, xp) & least(y, xp)

set name State
declare
xst::St

add-generators
init : =-> St
deq : St, Tid, enq_rec ~> St
enq : St, Tid, EL -> St
commit : St, Tid -> St
abort : St, Tid -> St

add-deduction-rules
when

deqd (y) == deqd(z)
enqd(y) == enqd(z)
yield vy == 2
add
deqgd (init) w= new

10

engd (init) == emptyset
when_enq(xst, z, w, xt, xe) ==(((deqgd(xst)=new) | (engr(top(deqd(xst)))<xt)) &
not (in_hoap(z, engd(xst)) & (element(z) = xe))) &
not (in_stack(w, deqd(xst)) & (what(w) = xe))
deqd (eng(xst, xt, xe)) == degd(xst)
enqgd (eng(xst, xt, xe)) == insert (engd(xst), pair(xe, xt))
when deq(xst, x, xt, xn) == ((((deqgd(xst)=new)| ((deqr(top(deqd(xst)))<xt) &
(engr (top (degd(xst))) < engt(xn)))) &
is_top(xn, engd(xst))) & (engt(xn) < xt)) &
not (in_stack (x, degd(xst)) & (what(x) = element (xn)))
deqd (deq(xst, xt, xn)) == push(deqd(xst), trip(element (xn), engt(xn), xt))
engd (deq (xst, xt, xn)) == delete (engd(xst), xn)
deqd (commit (xst, xt)) == if(not (deqgd(xast) = new)& (deqr (top(degd (xst)))<xt),
new, deqgd(xst))
engd (commit (xst, xt)) == engd(xst)
in_stack(x, degd(abort(xst, xt))) == in_stack (x, deqd(xst))é¬ (deqr(x) = xt)
deg_before(x, y, deqgd(abort (xst, xt))) => deq _before(x, y, deqgd(xst))
in_heap(xl, engd(abort(xst, xt))) => (not (engt(xl) = xt) &
(in_bonp(xl, enqgd (xst)) |
(in_stack (trip (slement (x1),enqt (x1), xt),deqd(xst))s&
not (in_stack (x, deqd (abort (xst,xt))) &
(what (x) =element (x1))))))

11

3.4. Histories and Abstraction Function

Sequence (EL, Seq): trait

introduces
null: => Seq
cons: Seq, EL -> Seq
append: Seq, Seq -> Seq
prefix: Seq, Seq -> Bool
sub: Seq, Seq -> Seq

asserts Seq generated by (null, cons)

for all (xs, xsl: Seq, xe, xel: EL)
cons (xs, xe) mcons (xs8l,xel) == (xswxsl) & (xewmxel),
append (xa, null) == xs,
append (null, xs) == xs,
append (xs, cons(xsl, xe)) == cons (append(xs, xsl), xe),
prefix (null, xsl) == true,
prefix (cons(xs, xe), null) == false,
prefix(cons(xs, xe), cons(xsl, xel)) wm ((xe=xel) & (xs=xsl)) | prefix(cons(xs, xe), xsl),
sub (null, xs) == null,
sub (xs, null) == xs,
sub (cons (xs, xe), cons(xsl, xel)) == if ((xs=xsl) & (xe=xel))

" then null
else cons(sub(xs, cons(xsl,xel)), xe),

~(null = cons(xs,xe))

end

Event (Ev): trait
includes Eng_Rec, Deq_Rec,
introduces
E: enq_rec -> Ev
D: deq_rec ~> Ev
asserts Ev generated by (E, D)
eng_rec partitioned by (E)
deq_rec partitioned by (D)
for all (x,x1: enq_rec, y,yl: deq_rec)
(x=x1)=>(E (x)=E(x1)),
(y=yl)=>(D(y)=D(yl)),
~(E(x)=D(y))
end

History (H): trait
includes Event, Sequence, Sequence (Ev, H)

introduces
c hl: ->H
c h2: ->H

DEQ: H => Seq
ENQ: H -> Seq
max: Tid, H =-> Bool
min: Tid, H -> Bool
ordered: H => Bool
discard: Tid, H -> H

asserts for all (xh: H, u:eng_rec, v:deq rec, xt:Tid)
ENQ(null) == null,
ENQ(cons(xh, E(u))) == cons (ENQ(xh),element (u)),
ENQ(cons (xh, D(v))) == ENQ(xh),
DEQ(null) == null,
DEQ(cons (xh, E(u))) == DEQ(xh),
DEQ(cons (xh, D(v))) == cons(DEQ(xh), what(v)),
max (xt,null),
max (xt,cons (xh,E(u))) == max(xt,xh) & (~(engt(u)<xt)),
max (xt,cons(xh,D(v))) == max(xt,xh) & (~(deqgr(v)<xt)),
min (xt,null),
min(xt,cons(xh,E(u))) == min(xt,xh) & (~(xt<engt(u))),
min (xt,cons(xh,D(v))) == min(xt,xh) & (~(xt<deqr(v))),
ordered(null),
ordered(cons (xh,E(u))) == ordered(xh) & min (enqgt (u), xh),
ordered(cons (xh,D(v))) == ordered(xh) & min(deqr(v), xh),
discard(xt, null) == null,

12

discard(xt, cons(xh,E(u))) == if enqgt (u)=xt
then discard(xt,xh)
else cons (discard(xt,xh),E(u)),
discard(xt, cons(xh,D(v))) == if deqr (v)=xt
then discard(xt,xh)
else cons(discard(xt,xh),D(v))
end

13

35. LP Input of Histories and Abstraction Function

set name Event

add-generators

- enq_rec -> Ev
D : deq_rec ~> Ev

add-deduction-rules
when E (xu: :onq_:oc) == B (xv: :ouq_roc)
yield xu::eng_rec == xv::eng_rec

add-deduction-rules
when D (yu::deq_rec) == D(yv::deq_rec)
yield yu::deq_rec == yv::deq rec

add
(xwxl)=> (B (x) =E (x1))

(yu: :deg_recwyul: :deq_rec)=>(D(yu::deq_rec)=D (yul::deqg_rec))
not (E (x) =D (yu: :deq_rxec))

set name Sequence
declare xs,xsl::Seq
declare xe,xel::EL
add-generators

null : -> Seq

cons : Seq, EL -> Segq
add

cons (xs,xe) =cons (x8l,xel) == (xs=xsl) & (xe=xel)

append (xs, null) == xs

append (null, xs) == xs

append (xs, cons(xsl, xe)) == cons(append(xs, xsl), xe)

prefix (null, xsl) == true

prefix (cons(xs, xe), null) == false

prefix(cons(xs, xe), cons(xsl, xel)) == ((xe = xel) & (xs = xal)) |
. prefix (cons (xs, xe), xsl)
sub (null, xs) == null
sub (xa, null) == xs
sub (cons (xs, xe), cons(xsl, xel)) == if((xs = xsl) & (xe = xel), null,

cons (sub (xs, cons(xsl, xel)), xe))
not (null = cons(xa,xe)) '

set name Sequence
declare xh::H
declare xev,xevl::Ev
add~-generators
null : -> H
cons : H, Bv => H
add
cons:H,Ev->H (xh, xev)=cons:H,Ev->H (xhl, xevl) == (xh=xhl) & (xev=xevl)
append (xh, null:=>H) == xh
append (null:->H, xh) == xh
append (xh, cons(xhl, xev)) == cons(append(xh, xhl), xev)
prefix (null:->H, xhl) == true
prefix (cons(xh, xev), null:->H) == false
prefix (cons(xh, xev), cons(xhl, xevl)) == ((xev = xevl) & (xh = xhl)) |
prefix (cons(xh, xev), xhl)
sub(null:->H, xh) == null:->H
sub (xh, null:->H) == xh
sub (cons (xh, xev), cons(xhl, xevl)) == if((xh = xhl)&(xev = xevl), null:->H,
cons (sub (xh, cons(xhl, xevl)), xev))
not (null:~>H = cons (xh,xev))

set name History
declare ue::enq_rec

14

declare
declare
declare
declare
add
ENQ(null:->H) == null:->Seq

vd: :deq_rec
xt::Tid

c_hl,c h2:->H
€_ue:->eng rec

ENQ(cons (xh, E(ue))) == cons:Seq,EL->Seq(ENQ(xh), element (ue))

ENQ (cons (xh, D(vd))) == ENQ(xh)
DEQ(null:->H) == null:->Seq
DEQ(cons (xh, E(ue))) == DEQ(xh)

DEQ(cons (xh, D(vd))) == cons:Seq,EL->Seq(DEQ(xh), what (vd))

max (xt,
max (xt,
max (xt,
min (xt,

null:->H)
cons (xh, E(ue))) == max(xt, xh)
cons(xh, D(vd))) == max(xt, xh)
null:=->H)
min(xt, cons(xh, E(ue))) == min(xt, xh)
min(xt, cons(xh, D(vd))) == min(xt, xh)
ordered(null: ->H)

& not (engt (ue)<xt)
& not (degr (vd)<xt)

& not (xt<engt (ue))
& not (xt<degr (vd))

ordered(cons (xh,E(ue))) == ordered(xh) & min(engt (ue), xh)
ordered(cons (xh,D(vd))) == ordered(xh) & min (deqr (vd), xh)

discard(xt, null:=->H) == null:->H

discard(xt, cons(xh, E(ue))) == if(enqt(ue) = xt, xh,
cons (xh, E(ue)))

discard(xt, cons(xh, D(vd))) == if(degr(vd) = xt, xh,
cons (xh, D(vd)))

set name Set

declare ya,yal,za::A

add-generators
emptyset : -> A
insert : A, H => A

add~deduction-rules
when in(xh, ya) == in(xh, za)
yield ya == za

add

not (in(xh, emptyset:->iA))

in(xh, insert(ya, xhl)) == (xh = xhl) | in(xh, ya)
notin(xh, ya) == not(in(xh, ya))

in(xh, U(ya, yal)) == in(xh, ya) | in(xh, yal)

in(xh, insect(ya, yal)) == in(xh, ya) & in(xh, yal)
in(xh, (ya - yal)) == in(xh, ya) & notin(xh, yal)
in(xh, delete(ya, xhl)) == not(xh = xhl) & in(xh, ya)

subseteq (emptyset:->A, yal)

subseteq(insert (ya, xh), yal) == gubseteq(ya, yal) & in(xh, yal)

isEmpty (emptyset:->A)
not (isEmpty (insext (ya, xh)))

set name Abstraction
declare xst::St
declare c_xt:->Tid
add
in_-tnto (null:->H, xst)

in_state (cons(xh, E(ue)), xst) => (in_state(xh,xst)é& (in_heap (ue,engd (xst)) |
in_-tm:k (trip (element (ue) , engt (ue), c_xt) ,deqd (xst))))
in_state(cons (xh, D(vd)), xst) => (in_state(xh,xst)&in_stack(vd,degd(xst)))

in_state (xh,xst) => not (DEQ(xh)
in(xh, af(xst)) => (ordered(xh)
in(xh, af(eng(xst, xt, xe))) =>

in(xh, af(deq(xst, xt, xn))) =>

= cons:Seq, EL->Seq(ENQ(xh), xe))

& in_state(xh, xat))

(in(append(c_hl, c_h2), af(xst)) &

(xh=append (cons (¢_hl, E(pair(xe,xt))),c_h2)))
(in (append (c_hl, c_h2), af(xst)) &

(xh = append(cons(c_hl,

D(trip(element (xn), enqgt (xn),xt))) ,c_h2)) &
(DEQ (c_h2)=null:->Seq))

in(xh, af(commit (xst, xt))) => (DBQ(xh) = null:->Seq)

15

in(xh, af(abort(xst, xt))) => (in(c_hl, af(xst)) & (xh = discard(xt, <¢_hl)))
(prefix (DEQ (append (xhl,xh2)) ,ENQ(append (xhl, xh2))) &in (append (xhl, xh2) ,af (xst)) &
not (prefix (DEQ (append (xhl,xh2)) ,ENQ (append (cona (xhl,E (pair(xe,xt))),xh2))))&
ordered (append (cons (xhl,E (pair(xe,xt))),xh2))) =>
not (engr (top (deqd (xst))) <xt)
(in(xh, af (xst)) &prefix (DEQ(xh) ,ENQ(xh)) &in (xn, enqgd (xst)) &least (xn, engd (xst)))
=> prefix (cons:Seq,EL->Seq(DEQ(xh),element (xn)),ENQ(xh))

16

4. Proof of Representation Invariants

4.1, Statement of Representation Invariants

set name Invariant
add
Invl(xst, x, y) == (in_stack(x,deqd(xst))&in_heap(y, enqd(xst)))=>
not (what (x) selement (y))
Inv2 (xst, x, x1) == deq_before(x,xl,deqd(xat))=>
(engr (x) <enqgr (x1)) & (deqr (x) <degr (x1))
Inv3(xst, x) == in stack(x, deqd(xst))=>(enqr (x)<deqgr (x))

17

4.2. LP Proof Session of Invariant 1

=> thaw Inv

System thawed from ‘Inv.frz’.

-> set name thml

The name prefix is now ‘thml’.

=-> prove Invl(xst,x,y) by induction xst St

The basis step in an inductive proof of Conjecture thml.l
Invl(xst, x, y) => true
involves proving the following lemma(s):

thml.1l.1l: Invl(init, x, y) => true
[] Proved by normalization

The induction step in an inductive proof of Conjecture thml.l
Invl(xst, x, y) => true
uses the following equation(s) for the induction hypothesis:

Induct.2: Invl(c_xst, x, y) => true
The system now contains 1 oquation‘, 78 rewrite rules, and 9 deduction rules.

Ordered equation Induct.2 into the rewrite rule:
((element (y) = what(x)) <=> false)
| (false <=> in(y, enqgd(c_xst)))
| (false <=> in_ stack(x, deqd(c_xst)))
-> true

The system now contains 79 rewrite rules and 9 deduction rules.
The induction step involves proving the following lemma(s):

thml.1.2: Invl(deqg(c_xst, vil, vi2), x, y) => true
which reduces to the equation
(((trip(element (vi2), engt (vi2), vil) = x) <=> false)
& (false <=> in stack(x, degd(c_xst))))
| ((element (y) = what(x)) <=> false)
| (false <=> in(y, enqd(c_xst)))
| (vi2 = y)
-> true
thml.1l.3: Invl (eng(c_xst, vil, vi2), x, y) =-> true
which reduces to the equation ‘
(((pair(vi2, vil) = y) <=> false)
& (false <=> in(y, enqd(c_xst))))
| ((element (y) = what(x)) <=> false)
| (false <=> in stack(x, deqgd(c_xst)))
-> true
thml.1.4: Invl (commit(c_xst, vil), x, y) => true
[] Proved by normalization
thml.1.5: Invl(abort(c xst, vil), x, y) => true
which reduces to the equation
((element (y) = what (x)) <=> false)
| (false <=> in(y, enqgd(abort(c_xat, vil}))))
| (false <=> in_stack(x, deqd(c_xst)))
| (degr(x) = vil)
=-> true

Proof of Lemma thml.l.5 suspended.
=> resume by case in_stack(x,deqd(c_xst))

Case.4.1
in_stack(c_x, deqd(c_xst)) == true

18

involves proving Lemma thml.1.5.1
Invl (abort (c_xst, vil), c_x, y) -> true

The case system now contains 1 equation.

Ordered equation Case.4.l into the rewrite rule:
in_stack(c_x, degd(c_xst)) -> true

The case system now contains 1 rewrite rule. .
The system now contains 1 equation, 79 rewrite rules, and 9 deduction rules.

Ordered equation Case.4.l into the rewrite rule:
in_stack(c_x, degd(c_xst)) -> true

The system now contains 80 rewrite rules and 9 deduction rules.

Lemma thml.1.5.1 in the proof by cases of Lemma thml.l.5
Invl (abort (c_xst, vil), c_x, y) -> true
Case.4.1: in_stack(c_x, deqd(c_xst))
is NOT provable using the current partially completed system. It reduces to
the equation
((element (y) = what(c_x)) <=> false)
| (false <=> in(y, enqgd(abort(c_xst, vil))))
| (degr(c_x) = wvil)

-> true ©
Proof of Lemma thml.l.5.1 suspended.
-> resume by case in(y,cnqd(aboft(c_x-t,vil)))

Case.5.1

in(c_y, enqgd(abort (c_xst, c_vil))) == true
involves proving Lemma thml.1.5.1.1

Invl (abort (c_xst, c_vil), c_x, c_y) =-> true

The case system now contains 1 equation.

Ordered equation Case.5.1 into the rewrite rule:
in(c_y, engd(abort(c_xst, c_vil))) =-> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 80 rewrite rules, and 9 deduction rules.

Ordered equation Case.5.1 into the rewrite rule:
in(c_y, enqd(abort (c_xst, c_vil))) -> true

The system now contains 81 rewrite rules and 9 deduction rules.

Lemma thml.1.5.1.1 in the proof by cases of Lemma thml.l.5.1

Invl (abort (c_xst, c_vil), c_x, c_y) => true

Case.5.1: in(c_y, engd(abort(c_xst, c_vil)))
is NOT provable using the current partially completed system. It reduces to
the equation

((element (c_y) = what(c_x)}) <=> false) | (c_vil = deqr(c_x)) => true

Proof of Lemma thml.1l.5.1.1 suspended.
=> crit case with State.14

Critical pairs between rule Case.4.1l:
in_stack (c_x, deqd(c_xst)) -> true
and rule State.l4:
(((engt (x1) = xt) <=> false)
& ((in_stack(trip(element (x1), enqgt(xl), xt), deqd(xst))
& (((element (x1l) = what (x)) <=> false)
| (false <=> in_ stack(x, degd(xst)))
| (degr(x) = xt)))

19

| in(x1, engd(xst))))

| (false <=> in(xl, enqgd(abort (xst, xt))))
-> true
are as follows:
({(engt (x1) = xt) <=> false)
& ((in_stack(trip(element (x1), engt(x1), xt), deqd(c_xst))
& (((element (x1) = what(c_x)) <=> false) | (deqr(c_x) = xt)))
| in(x1l, engd(c_xst))))

| (false <=> in(xl, engd(abort(c_xst, xt))))
== true

The system now contains 1 equation, 81 rewrite rules, and 9 deduction rules.

Ordered equation thml.2 into the rewrite rule:
({((engt (x1) = xt) <=> false)
& ((in_stack(trip(element (x1), engt(xl), xt), degd(c_xat))
& (((element (x1) = what(c_x)) <=> false) | (degr(c_x) = xt)))
| in(x1l, engd(c_xst))))
i
| (false <=> in(xl, enqgd(abort(c_xst, xt))))
=> true

The system now contains 82 rewrite rules and 9 deduction rules.

Critical pairs between rule Case.5.1l:
in(c_y, engd(abort (c_xst, c_vil))) => true
and rule State.l4:
(((engt (x1) = xt) <=> false)
& ((in_stack(trip(element (x1), engt(xl), xt), deqd(xst))
& (((element (x1) = what(x)) <=> false)
| (false <=> in stack(x, degqd(xst)))
| (degr(x) = xt)))

| in(x1l, engd(xst))))

| (false <=> in(xl, enqgd(abort (xst, xt))))
-> true
are as follows:
((engt (c_y) = xt) <=> false)
| (false <=> in(c_y, engd(abort (abort(c_xst, c_vil), xt))))
== true
((c_vil = ant(c_y))' <=> false)
& ((in_stack(trip(element(c_y), engt(c_y), c_vil), deqd(c_xst))
& (((element (c_y) = what(x)) <=> false)
| (false <=> in stack(x, degd(c_xst)))
| (e_vil = degr(x))))

| in(c_y, engd(c_xst)))
== true
The system now contains 1 equation, 82 rewrite rules, and 9 deduction rules.
Ordered equation thml.3 into the rewrite rule:
((engt (c_y) = xt) <=> false)
| (false <=> in(c_y, engd(abort (abort (c_xst, c_vil), xt))))
-> true
The system now contains 83 rewrite rules and 9 deduction rules.
The system now contains 1 equation, 83 rewrite rules, and 9 deduction rules.
Deduction rule boolean.3:
when x & y == true

yield x == true
y == true

20

has been applied to equation thml.4:
((c_vil = engt(c_y)) <=> false)
& ((in_stack(trip(element(c_y), engt(c_y), c_vil), degd(c_xst))
& (((element (c_y) = what(x)) <=> false)
| (false <=> in stack(x, deqd(c_xst)))
| (e_vil = deqr(x))))

| in(c_y, engd(c_xst)))

== true
to yield the following equations:
thml.4.1: (c_vil = engt(c_y)) <=> false == true
thml.4.2: (in_stack(trip(element(c_y), engt (c_y), ¢ v:.l) , degd(c_xst))
& (((element (c_y) = what(x)) <=> false)
| (false <=> in stack(x, deqd(c_xst)))
| (e_vil = degr(x))))

| in(e_y, enqd(c_xst))
== true

Ordered equation thml.4.2 into the rewrite rule:
(in_stack (trip (element (c_y), engt(c_y), c_vil), degd(c_xst))
& (((element (c_y) = what(x)) <=> false)
| (false <=> in_stack(x, deqd(c_xst)))
| (c_vil = deqgr(x))))

| in(c_y, engd(c_xst))

-> true

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation thml.4.1:
(c_vil = engt(c_y)) <=> false == true
to yield the following equations:
thml.4.1.1: c__vil - enqt(c_y) == false

Ordered equation thml.4.1.1 into the rewrite rule:
c_vil = engt(c_y) =-> false

The system now contains 85 rewrite rules and 9 deduction rules.
Computed 3 new critical paira. Added 3 of them to the system.
-> resumes by case in(c_y,enqd(c_xst))
Case.6.1

in(c_y, engd(c_xst)) == true
involves proving Lemma thml.1l.5.1.1.1

Invl (abort (c_xst, c_vil), c_x, c_y) -> true

The case system now contains 1 equation.

Ordered equation Case.6.1 into the rewrite rule:
in(c_y, onqd(c_xst)) => true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 85 rewrite rules, and 9 deduction rules.

Ordered equation Case.6.1 into the rewrite rule:
in(c_y, onqd(c_xlt)) => true

Left-hand side reduced:
(in_stack (trip (element (c_y), engt(c_y), c_vil), deqgd (c_xst))
& (((element (c_y) = what(x)) <=> false)
| (false <m=> in_stack(x, deqd(c_xst)))
| (e _vil = deqr(x))))

21

| in(c_y, enqgd(c_xst))
-> true
became equation thml.4.2:
(in_stack (trip (element (c_y), engt(c_y), c_vil), degd (c_xst))
& (((element(c_y) = what(x)) <=> false)
| (false <=> in_stack(x, deqgd(c_xst)))
| (c_vil = deqr(x))))

| true
== true

The system now contains 85 rewrite rules and 9 deduction rules.

Lemma thml.1.5.1.1.1 in the proof by cases of Lemma thml.1.5.1.1

Invl (abort (c_xst, c_vil), c_x, c_y) -> true

Case.6.1: in(c_y, engd(c_xst))
is NOT provable using the current partially completed system. It reduces to
the equation

((element (c_y) = what(c_x)) <=> false) | (c_vil = degr(c_x)) => true

Proof of Lemma thml.1.5.1.1.1 suspended.
-> crit case with induct

Critical pairs between rule Case.4.1l:
in_stack (c_x, degd(c_xst)) =-> true
and rule Induct.2:
((element (y) = what (x)) <=> false)
| (false <=> in(y, enqgd(c_xst)))
| (false <=> in stack(x, degd(c_xst)))
=-> true
are as follows:
((element (y) = what(c_x)) <=> false) | (false <=> in(y, enqd(c_xst)))
== true

The system now contains 1 equation, 85 rewrite rules, and 9 deduction rules.

Ordered equation thml.5 into the rewrite rule:
((element (y) = what(c_x)) <=> false) | (false <=> in(y, engd (c_xst))) => true

The system now contains 86 rewrite rules and 9 deduction rules.

Critical pairs between rule Case.6.l:
in(c_y, engd(c_xst)) =-> true
and rule Induct.2:
({(element (y) = what(x)) <=> false)
| (false <=> in(y, engd(c_xst)))
| (false <=> in_stack(x, deqd(c_xst)))
=> true
are as follows:
((element (c_y) = what(x)) <=> false) | (false <=> in_stack(x, degd (c_xst)))
== true

The system now contains 1 equation, 86 rewrite rules, and 9 deduction rules.
Ordered equation thml.6 into the rewrite rule:
((element (c_y) = what(x)) <=> false) | (false <=> in_stack(x, degd(c_xst)))
-> true
The system now contains 87 rewrite rules and 9 deduction rules.
Computed 2 new critical pairs. Added 2 of them to the system.
-> crit case with thml
Critical pairs between rule Case.4.l:
in_stack(c_x, deqgd(c_xst)) =-> true

and rule thml.é6:
({element (c_y) = what(x)) <=> false) | (false <=> in stack(x, deqd(c_xst)))

22

=-> true
are as follows:
(element (c_y) = wlut(c___x)) <=> false == true

The system now contains 1 equation, 87 rewrite rules, and 9 deduction rules.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation thml.7: :
(element (c_y) = what(c_x)) <=> false == true
to yield the following equations:
thml.7.1: element (c_y) = what(c_x) == false

Ordered equation thml.7.1 into the rewrite rule:
element (c_y) = what (c_x) =-> false

The system now contains 88 rewrite rules and 9 deduction rules.

Lemma thml.1.5.1.1.1 in the proof by cases of Lemma thml.1.5.1.1
Invl (abort (c_xst, c_vil), c x, c_y) -> true
Case.6.1: in(c_y, engd(c_xst))

[] Proved by rewriting.

Case.6.2
not (in(c_y, engd(c_xst))) == true

involves proving Lemma thml.1.5.1.1.2
Invl(abo:t(c_xlt, c _vil), c_x, c_y) => true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.6.2:
false <=> in(c_y, engd(c_xast)) == true
to yield the following equations:
Case.6.2.1: false == in(c_y, enqgd(c_xst))

Ordered equation Case.6.2.1 into the rewrite rule:
in(c_y, engd(c_xst)) -> false

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 85 rewrite rules, and 9 deduction rules.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.6.2:
false <=> in(c_y, engd(c xst)) == true
to yield the following equations:
Case.6.2.2: false == in(c y, engd(c_xst))

Ordered equation Case.6.2.2 into the rewrite rule:
in(c_y, engd(c_xst)) -> false

Left-hand side reduced:)
(in_stack (trip (element (c_y), engt(c y), c_vil), deqd(c_xat))
& (((element (c_y) = what(x)) <=> false)
| (false <=> in stack(x, degd(c_xst)))
| (c_vil = deqr(x))))

| in(c_y, engd(c_xst))
=-> true
became equation thml.4.2:
(in_ltaek(trip(elmnt (c_y), engt(c_y), c_vil), deqgd (c_xst))
& (((olamont(c_y) = what (x)) <=> false)
| (false <=> in stack(x, deqd(c_xat)))

23

| (c_vil = deqgr(x))))

| false
== true

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation thml.4.2:
in_stack(trip(element(c_y), engt(c_y), c_vil), deqd(c_xst))
& (((element (c_y) = what(x)) <=> false)
| (false <=> in_stack(x, degd(c_xst)))
| (c_vil = deqgr(x)))

== true
to yield the following equations:
thml.4.2.1: in_stack(trip(element (c_y), engt(c_y), c_vil), deqd(c_xst))
== true
thml.4.2.2: ((element (c_y) = what(x)) <=> false)
| (false <=> in_ stack(x, deqgd(c_xst)))
| (c_vil = deqgr(x))
== true

Ordered equation thml.4.2.2 inte the rewrite rulas:
((element (c_y) = what (x)) <=> false)
| (false <=> in_stack(x, degd(c_xst)))
| (c_vil = degr(x))
=> true

Ordered equation thml.4.2.1 into the rewrite rule:
in_stack (trip (element (c_y), engt(c_y), c _vil), deqd(c_xst)) -> true

The system now contains 87 rewrite rules and 9 deduction rules.

Lemma thml.1.5.1.1.2 in the proof by cases of Lemma thml.1.5.1.1

Invl (abort (c_xst, c_vil), c_x, c_y) =-> true

Case.6.2: not(in(c_y, engd(c_xst)))
is NOT provable using the current partially completed system. It reduces to
the equation

({(element (c_y) = what(c_x)) <=> false) | (c_vil = deqr(c_x)) =-> true
Proof of Lemma thml.1.5.1.1.2 suspended.
Critical-pair computation abandoned because a theorem has been proved.
Computed 1 new critical pair. Added 1 of them to the system.
=-> resums by case in__ltnck (x, d.qd(c_xlt))
Case.7.1

in_stack(c_x1, deqgd(c_xst)) == true
invelves proving Lemma thml.1.5.1.1.2.1

Invl (abort (c_xst, c_vil), c_x, c_y) =-> true

The case system now contains 1 equation.

Ordered equation Case.7.l into the rewrite rule:
in_stack(c_xl1, degd(c_xst)) -> true

The case system now contains 1 rewrite rule.

Lemma thml.1.5.1.1.2.1 in the proof by cases of Lemma thml.1.5.1.1.2
Invl (abort (c_xst, c_vil), c_x, c_y) -> true
Case.7.1: in_stack(c_xl1, degd(c_xst))

[] Proved by rewriting (with unreduced rules).

Case.7.2 .
~not (in_stack(c_x1, degd(c_xst))) == true

invelves proving Lemma thml.1.5.1.1.2.2
Invl (abort (c_xst, c_vil), c_x, c_y) => true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.7.2:

false <=> in_stack(c_xl, degd(c_xst)) == true
to yield the following equations:

Case.7.2.1: false == in stack(c xl, deqd(c_xst))

Ordered equation Case.7.2.1 into the rewrite rule:
in_stack(c_xl1, degd(c_xst)) -> false

The case system now contains 1 rewrite rule.

Lemma thml.1.5.1.1.2.2 in the proof by cases of Lemma thml.1.5.1.1.2
Invl (abort (c_xst, c_vil), c x, c y) => true
Case.7.2: not(in_stack(c_xl, degd(c_xst)))

[} Proved by rewriting (with unreduced rules).

Lemma thml.1.5.1.1.2 in the proof by cases of Lemma thml.1.5.1.1
Invl (abort (c_xst, c_vil), c_x, c_y) =-> true
Case.6.2: not(in(c_y, engd(c_xst)))

[] Proved by cases
in_stack(x, degd(c_xst)) | not(in_stack(x, deqd(c_xst)))

Lemma thml.l1l.5.1.1 in the proof by cases of Lemma thmi.l.5.1
Invl (abort (c_xst, c_vil), c x, c_y) => true
Case.5.1: in(c_y, engd(abort(c_xst, c_vil)))

[} Proved by cases
in(c_y, engd(c_xst)) | not(in(c_y, enqgd(c_xst)))

Case.5.2

not (in(c_y, engd(abort(c_xst, c_vil)))) == true
involves proving Lemma thml.1.5.1.2

Invl (abort (c_xst, c_vil), e_x, c_y) => true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x am y
has been applied to equation Case.5.2:

false <=> in(c_y, engd(abort(c_xst, c_vil))) == true
to yield the following equations:

Case.5.2.1: false == in(c_y, enqgd(abort(c_xst, c_vil)))

Ordered equation Case.5.2.1 into the rewrite rule:
in(e_y, enqgd(abort(c_xst, c_vil))) -> false

The case system now contains 1 rewrite rule.

Lemma thml.1.5.1.2 in the proof by cases of Lemma thml.1.5.1
Invl (abort (c_xst, c_vil), e_x, c_y) -> true
Case.5.2: not(in(c_y, engd(abort (c_xst, c_vil))))

[] Proved by rewriting (with unreduced rules).

Lemma thml.l1.5.1 in the proof by cases of Lemma thml.1.5
Invl (abort (c_xst, vil), c_x, y) => true
Case.4.1: in_stack(c_x, deqd(c_xst))
[] Proved by cases
in(y, enqgd(abort(c_xst, vil))) | not(in(y, engd(abort(c_xat, vil))))

Case.4.2

not (in_stack(c_x, degd(c_xst))) == true
involves proving Lemma thml.1.5.2

25

Invl(aboz;t(c_xst, vil), e x, y) => true
The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.4.2:

false <=> in stack(c_x, deqd(c_xst)) == true
to yield the following equations:

Case.4.2.1: false == in stack(c_x, deqd (c_xst))

Ordered equation Case.4.2.1 into the rewrite rule:
in_stack(c_x, degd(c_xsat)) -> false

The case system now contains 1 rewrite rule.

Lemma thml.1.5.2 in the proef by cases of Lemma thml.1.5
Invl (abort (c_xst, vil), c_x, y) => true
Case.4.2: not (in_stack(c_x, degd(c _xst)))

[] Proved by rewriting (with unreduced rules).

Lemma thml.l.5 for the induction step in the proof of Conjecture thml.l
Invl (abort (c_xst, vil), x, y) -> true

[] Proved by cases
in_stack(x, deqd(c_xst)) | not(in_stack(x, degd(c_xst)))

Lemma thml.l.3 for the induction step in the proof of Conjecture thml.l
Invl (eng(c_xst, vil, vi2), x, y) =-> true
is NOT provable using the current partially completed system. It reduces to
the equation :
(((pair(vi2, vil) = y) <=> false) & (false <=> in(y, engd(c_xst))))
| ((element (y) = what (x)) <=> false)
| (false <=> in stack(x, degd(c_xst)))
-> true

Proof of Lemma thml.l.3 suspended.
=> resumes by case in(y,enqd(c_xst))
Case.8.1
in(c_y, engd(c_xst)) == true
involves proving Lemma thml.l.3.1
Invl (eng(c_xst, vil, vi2), x, c_y) -> true

The case system now contains 1 equation.

Ordered equation Case.8.1 into the rewrite rule:
in(e_y, engd (c_xst)) => true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 79 rewrite rules, and 9 deduction rules.

Ordered equation Case.8.l1 into the rewrite rule:
in(c_y, engd(c_xst)) -> true

The system now contains 80 rewrite rules and 9 deduction rules.

Lemma thml.1.3.1 in the proof by cases of Lemma thml.1l.3
Invl (onq(c_x-t, vil, vi2), x, c_y) -> true
Case.8.1: in(c_y, enqgd(c_xst))
is NOT provable using the current partially completed system. It reduces to
the equation
((element (c_y) = what (x)) <=> false) | (false <=> in_stack(x, degd(c_xst)))
=> true

Proof of Lemma thml.1.3.1 suspended.

26

=> resume by case in_stack (x,deqd(c_xst))

Case.9.1
in_stack (c_x, deqd(c_xst)) == true
involves proving Lemma thml.1.3.1.1
Invl (onq(c_x-t, vil, vi2), e _x, c_y) => true

The case system now contains 1 equation.

Ordered equation Case.9.1 intc the rewrite rule:
in_stack (c_x, degd(c_xst)) => true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 80 rewrite rules, and 9 deduction rules.

Ordered equation Case.9.1 into the rewrite rule:
in_stack(c_x, degd(c_xst)) => true

The system now contains 8l rewrite rules and 9 deduction rules.

Lemma thml.l1.3.1.1 in the proof by cases of Lemma thml.1l.3.1

Invl (enq(c_xst, vil, vi2), ¢ x, c y) -> true

Case.9.1: in stack(c_x, degd(c_xst))
is NOT provable using the current partially completed system. It reduces to
the equation

(element (c_y) = what(c_x)) <=> false -> true

Proof of Lemma thml.1.3.1.1 suspended.
=> crit case with induct

Critical pairs between rule Case.8.1:
in(c_y, engd(c_xst)) => true
and rule Induct.2:
((element (y) = what(x)) <=> false)
| (false <=> in(y, engd(c_xst)))
| (false <=> in_stack(x, degd(c_xst)))
=-> true
are as follows:
((element (c_y) = what(x)) <=> false) | (false <=> in_stack(x, degd(c_xst)))
== true

The system now contains 1 equation, 81 rewrite rules, and 9 deduction rules.

Ordered equation thml.8 into the rewrite rule:
((element (c_y) = what(x)) <=> false) | (false <=> in stack(x, degqd(c_xst)))
=> true

The system now contains 82 rewrite rules and 9 deduction rules.

Critical pairs between rule Case.9.1:
in_ltack(c_x, degd(c_xst)) =-> true
and rule Induct.2:
((element (y) = what(x)) <=> false)
| (false <=> in(y, engd(c_xst)))
| (false <=> in stack(x, degd(c_xst)))
=-> true
are as follows:
((element (y) = what(c_x)) <=> false) | (false <=> in(y, engd(c_xat)))
== true

The system now contains 1 equation, 82 rewrite rules, and 9 deduction rules.

Ordered equation thml.9 into the rewrite rule:
((element (y) = what(c_x)) <=> false) | (false <=> in(y, engd(c_xst))) => true

The system now contains 83 rewrite rules and 9 deduction rules.

27

Computed 2 new critical pairs. Added 2 of them to the system.
-> crit case with thml

Critical pairs between rule Case.8.1l:
in(c_y, engd(c_xst)) =-> true
and rule thml.9:
((element (y) = what(c_x)) <=> false) | (false <=> in(y, engd(c_xst))) -> true
are as follows:
(element (c_y) = what (c_x)) <=> false == true

The system now contains 1 oqﬁation, 83 rewrite rules, and 9 deduction rules.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation thml.10:

(element (c_y) = what(c_x)) <=> false == true
to yield the following equations:

thml.10.1: element(c_y) = what(c_x) == false

Ordered equation thml.1l0.l into the rewrite rule:
element (c_y) = what(c_x) -> false

The system now contains 84 rewrite rules and 9 deduction rules.

Lemma thml.1.3.1.1 in the proof by cases of Lemma thml.1.3.1
Invl (enq(c_xst, vil, vi2), ¢ _x, c_y) => true
Case.9.1: in_stack(c_x, degd(c_xst))

[] Proved by rewriting.

Case.9.2

not (in_stack(c_x, degd(c_xst))) == true
involves proving Lemma thml.1.3.1.2

Invl (eng(c_xst, vil, vi2), c_x, c_y) => true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.9.2:

false <=> in stack(c_x, deqd(c_xst)) == true
to yield the following equations:

Case.9.2.1: false == in stack(c_x, degd(c_xst))

Ordered equation Case.9.2.1 into the rewrite rule:
in_stack(c_x, degd(c_xst)) -> false

The case system now contains 1 rewrite rule.

Lemma thml.1.3.1.2 in the proof by cases of Lemma thml.1.3.1
Invl (eng(c_xst, vil, vi2), ¢ x, c_y) ~> true
Case.9.2: not(in stack(c_x, deqd(c_xst)))

[] Proved by rewriting (with unreduced rules).

Lemma thml.1.3.1 in the proof by cases of Lemma thml.1.3
Invl(eng(c_xst, vil, vi2), x, c_y) => true
Case.8.1: in(c_y, enqgd(c_xst))
[] Proved by cases
in_stack (x, deqd(c_xst)) | not (in_stack(x, degd(c_xst)))
Case.8.2
not (in(c_y, engd(c_xst))) == true
involves proving Lemma thml.1.3.2
Invl (enq(c_xst, vil, vi2), x, c_y) => true

The case system now contains 1 equation.

28

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.8.2:
false <=> in(c_y, engd(c_xst)) == true
to yield the following equations:
Case.8.2.1: false == in(c_y, enqgd(c_xst))

Ordered equation Case.8.2.1 into the rewrite rule:
in(c_y, enqgd(c_xst)) =-> false

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 79 rewrite rules, and 9 deduction rules.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.8.2:
false <=> in(c_y, engd(c_xst)) == true
to yield the following equations:
Case.8.2.2: false == in(c_y, enqgd(c_xst))

Ordered equation Case.8.2.2 into the rewrite rule:
in(c_y, engd(c_xst)) =-> false

The system now contains 80 rewrite rules and 9 deduction rules.

Lemma thml.l.3.2 in the proof by cases of Lemma thmi.l.3
Invl (eng(c_xst, vil, vi2), %, c_y) => true
Case.8.2: not(in(c_y, engd(c_xst)))
is NOT provable using the current partially completed system. It reduces to
the equation
((c_y = pairx(vi2, vil)) <=> false)
| ((element (c_y) = what (x)) <=> false)
| (false <=> in stack(x, degd(c_xst)))
-> true

Proof of Lemma thml.l.3.2 suspended.

Critical-pair computation abandoned because a theorem has been proved.
Computed 1 new critical pair. Added 1 of them to the system.

=> add when_eng(c_xst, z,w,vil,vi2::EL)

Added 1 equation to the system.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation thml.ll:
((engr(top(deqd(c_xst))) < vil) | (degd(c_xst) = new))
& (((element (z) = vi2) <=> false) | (false <=> in(z, engd(c_xst))))
& (((what(w) = vi2) <=> false) | (false <=> in_stack(w, degd(c_xst))))
=-> true
to yield the following equations:
thml.1ll.1: (enqgr(top(deqd(c_xst))) < vil) | (degd (c_xst) = new) == true
thml.11.2: ((element (z) = vi2) <=> false) | (false <=> in(z, engd (c_xst)))
== true
thml.11.3: ((what(w) = vi2) <=> false) | (false <=> in_stack(w, deqgd(c_xst)))
== true

Ordered equation thml.1l1l.3 into the rewrite rule:
((what (w) = vi2) <=> false) | (false <=> in_stack(w, deqd(c_xst))) -> true

Left-hand side reduced:
((element (y) = what (x)) <=> false)

29

| (false <=> in(y, engd(c_xst)))
| (false <=> in_stack(x, deqgd(c_xst)))
-> true
became equation Induct.2:
(false <=> in(y, engd(c_xst))) | true -> true

Ordered equation thml.l1ll.2 into the rewrite rule:
((element (z) = vi2) <=> false) | (false <=> in(z, engd(c _xst))) =-> true

Ordered squation thml.1ll.l into the rewrite rule:
(engr (top(deqd(c_xst))) < vil) | (degd(c_xst) = new) =-> true

The system now contains 82 rewrite rules and 9 deduction rules.

Lemma thml.1.3.2 in the proof by cases of Lemma thml.1l.3
Invl(eng(c_xst, vil, vi2), %, c_y) => true
Case.8.2: not(in(c_y, engd(c_xst)))

[] Proved by rewriting.

Lemma thml.l.3 for the induction step in the proof of Conjecture thml.l
Invl (eng(c_xst, vil, vi2), x, y) => true

[] Proved by cases
in(y, engd(c_xst)) | not(in(y, engd(c_xst)))

Lemma thml.1l.2 for the induction step in the proof of Conjecture thml.l
Invl (deq(c_xst, vil, vi2), x, y) -> true
is NOT provable using the current partially completed system. It reduces to
the equation
{{((trip(element (vi2), engt (vi2), vil) = x) <=> false)
& (false <=> in stack(x, deqd(c_xst))))
| ({(element (y) = what(x)) <=> false)
| (false <=> in(y, enqgd(c_xst)))
| (vi2 = y)
-> true

Proof of Lemma thml.l.2 suspended.
=> resumes by case in stack(x,degd(c_xst))

Case.l1l6.1

in_stack(c_x, degd(c_xst)) == true
involves proving Lemma thml.l.2.3

Invl (deq(c_xst, vil, vi2), c_x, y) => true

The case system now contains 1 equation.

Ordered equation Case.l6.1 into the rewrite rule:
in_stack(c_x, deqd(c_xst)) => true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 79 rewrite rules, and 9 deduction rules.

Ordered equation Case.l6.1l into the rewrite rule:
in_stack(c_x, degd(c_xst)) -> true

The system now contains 80 rewrite rules and 9 deduction rules.

Lemma thml.1.2.3 in the procf by cases of Lemma thml.l.2
Invl (deq(c_xst, vil, vi2), c_x, y) => true
Case.l6.1: in stack(c_x, degd(c_xst))
is NOT provable using the current partially completed system. It reduces to
the equation
((element (y) = what (c_x)) <=> false)
| (false <=> in(y, engd(c_xst)))
| (vi2 = y)
=> true

Proof of Lemma thml.1.2.3 suspended.

30

=-> crit case with induct

Critical pairs between rule Case.l16.1:
in_stack(c_x, deqd(c_xst)) -> true
and rule Induct.2:
((element (y) = what (x)) <=> false)
| (false <=> in(y, enqd(c_xst)))
| (false <=> in_ stack(x, degd(c_xst)))
-> true
are as follows:
((element (y) = what(c_x)) <=> false) | (false <=> in(y, engd(c_xst)))
= true

The system now contains 1 equation, 80 rewrite rules, and 9 deduction rules.

Ordered equation thml.l8 into the rewrite rule:
((element (y) = what (c_x)) <=> false) | (false <=> in(y, engd (c_xst))) -> true

The system now contains 8l rewrite rules and 9 deduction rules.

Lemma thml.1.2.3 in the proof by cases of Lemma thml.1.2
Invl (deq(c_xst, vil, vi2), e _x, y) =-> true
Case.16.1: in_stack(c_x, deqd(c_xst))

[] Proved by rewriting.

Case.16.2

not (in_stack(c_x, deqd(c_xst))) == true
involves proving Lemma thml.1l.2.4

Invl (deq(c_xst, vil, vi2), c_x, y) =-> true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.16.2:
false <=> in_stack(c_x, degd(c_xst)) == true
to yield the following equations:
Case.16.2.1: false == in stack(c_x, degd (c_xst))

Ordered equation Case.l16.2.1 into the rewrite rule:
in_stack(c_x, degd(c_xst)) =-> false

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 79 rewrite rules, and 9 deduction rules.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.l16.2:
false <=> in_ stack(c_x, degd(c_xst)) == true
to yield the following equations:
Case.16.2.2: false == in stack(c_x, deqd(c_xst))

Ordered equation Case.l16.2.2 into the rewrite rule:
in_stack (c_x, degd(c_xst)) =-> false

The system now contains 80 rewrite rules and 9 deduction rules.

Lemma thml.1.2.4 in the proof by cases of Lemma thml.l.2
Invl (deq(c_xst, vil, vi2), c_x, y) -> true
Case.16.2: not(in_stack(c_x, degd(c_xst)))
is NOT provable using the current partially completed system. It reduces to
the equation
((e_x = trip(element (vi2), enqt(vi2), vil)) <=> false)
| ((element (y) = what(c_x)) <=> false)
| (false <=> in(y, engd(c _xst)))
| (vi2 = y)

31

=> true
Proof of Lemma thml.l1l.2.4 suspended.
Critical-pair computation abandoned because a theorem has been proved.
Computed 1 new critical pair. Added 1 of them to the system.
-> resume by case c_x=trip(element (vi2::enq_rec),enqt (vi2::enq_rec),vil)

Case.l17.1

c x = trip (olomcnt(c_viZ) , engt(c_vi2), c vil) == true
involves proving Lemma thml.l1.2.4.1

Invl (deg(c_xst, c_vil, c_vi2), c x, y) -> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation Case.l17.1:
c_x = trip(element(c_vi2), engt(c_vi2), c_vil) == true
to yield the following equations:
Case.17.1.1: c_x == trip(element (c_vi2), engt(c_vi2), c_vil)

Ordered equation Case.l7.l1.1 into the rewrite rule:
c x => trip(element (c_vi2), engt(c_vi2), c_vil)

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 80 rewrite rules, and 9 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation Case.l7.1l:
c_x = trip(element (c_vi2), engt(c vi2), c_vil) == true
to yxold the following equations:
Case.17.1.2: c_x == trip(element (c_vi2), engt(c_vi2), c_vil)

Ordered equation Case.l7.l1.2 into the rewrite rule:
c_x => trip(element (c_vi2), engt(c_vi2), c_vil)

Left-hand side reduced:
in_stack(c_x, degd(c _xst)) -> false
became equation Case.l6.2.2:
in_stack (trip(element (c_vi2), engt(c_vi2), c_vil), deqd(c_xst)) == false

Ordered equation Case.l16.2.2 into the rewrite rule:
in_stack (trip(element (c_vi2), enqgt(c_vi2), c vil), degd(c_xst)) -> false

The system now contains 8l rewrite rules and 9 deduction rules.

Lemma thml.1l.2.4.1 in the proocf by cases of Lemma thml.1.2.4
Invl (deq(c_xst, c_vil, c_vi2), ¢ x, y) ~> true
Case.17.1: c x = tx::.p(olemont (e_vi2), enqgt(c_vi2), c¢_vil)
is NOT provable using the current partially completed system. It reduces to
the equation
({element (c_vi2) = elemsnt(y)) <=> false)
| (false <=> in(y, enqgd(c_xst)))
| (e_vi2 = y)
=-> true

Proof of Lemma thml.l1.2.4.1 suspended.
~> resume by case in(y,enqgd(c_xst))
Case.18.1

in(c_y, engd(c_xst)) == true

32

inveolves proving Lemma thml.1.2.4.1.1
Invl (deq(c_xst, c_vil, c_vi2), ¢ x, c y) ~> true

The case system now contains 1 equation.

Ordered equation Case.l18.1 into the rewrite rule:
in(c_y, engd(c_xst)) -> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 81 rewrite rules, and 9 deduction rules.

Ordered equation Case.l8.1 into the rewrite rule:
in(c_y, engd(c_xst)) -> true

The system now contains 82 rewrite rules and 9 deduction rules.

Lemma thml.1.2.4.1.1 in the proof by cases of Lemma thml.l1.2.4.1
Invl(deg(c_xst, c _vil, c_vi2), c x, c_y) -> true
Case.18.1: in(c_y, engd(c_xst))
is NOT provable using the current partially completed system. It reduces to
the equation
((element (c_vi2) = element (c_y)) <=> false) | (c_vi2 = c_y) -> true

Proof of Lemma thml.l.2.4.1.1 suspended.
=> crit case with Induct

Critical pairs between rule Case.l8.1:
in(c_y, engd(c_xst)) -> true
and rule Induct.2:
((element (y) = what (x)) <=> false)
| (false <=> in(y, engd(c_xst)))
| (false <=> in stack(x, deqd(c_xst)))
=-> true
are as follows:
((element (c_y) = what (x)) <=> false) | (false <=> in stack(x, deqd(c_xst)))
= true

The system now contains 1 equation, 82 rewrite rules, and 9 deduction rules.

Ordered equation thml.l9 into the rewrite rule:
((element (c_y) = what (x)) .<=> false) | (false <=> in stack(x, deqgd (c_xst)))
-> true

The system now contains 83 rewrite rules and 9 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of
them to the system.

=> add when_deq(c_xst,c_x,c _vil,c_vi2::enq_rec)
Added 1 equation to the system.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation thml.20:
(engt (c_vi2) < c_vil)
& in(c_vi2, enqgd(c_xsat))
& least(c_vi2, engd(c_xst))
& (((doqr(top(doqd(c_xlt))) < e _vil)
& (engr(top (doqd(c_xst) })) < engt(c_vi2)))
| (deqd(c_xst) = new))

-> true

to yield the following equations:
thml.20.1: engt(c_vi2) < c_vil == true

33

thml.20.2: in(c_vi2, engd(c_xst)) == true
thml.20.3: least(c_vi2, engd(c_xst)) == true
thml.20.4: ((deqgr(top(degd(c xst))) < c_vil)
& (engr(top(deqd(c_xst))) < engt(c_vi2)))
| (degd(c_xst) = new)
== true

Ordered equation thml.20.4 into the rewrite rule:
((degr (top(deqgd(c_xst))) < c_vil) & (engr(top(degd(c_xst))) < engt(c_vi2)))
| (degd(c_xst) = new)
-> true

Ordered ecquation thml.20.3 into the rewrite rule:
least (c_vi2, engd(c_xst)) => true

Ordered equation thml.20.2 into the rewrite rule:
in(c_vi2, engd(c_xst)) => true

Ordered equation thml.20.1 into the rewrite rule:
engt (c_vi2) < c_vil -> true

The system now contains 87 rewrite rules and 9 deduction rules.
-> erit case with thml

Computed 1 new critical pair, which reduced to an identity. Added 0 of them to
the system.

=> resume by case c_vil2=c y

Case.19.1
c vi2 = c y == true

inveolves proving Lemma thml.1.2.4.1.1.1
Invl(deg(c_xst, c_vil, c _vi2), c_x, c_y) =-> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.l19.1:
c vi2 = c y == true

to yield the following equations:
Case.19.1.1: c_vi2 == c y

Ordered equation Case.l19.1.1 into the rewrite rule:
c vi2 -> c y

The case system now contains 1 rewrite rule.

Lemma thml.1.2.4.1.1.1 in the proof by cases of Lemma thml.1.2.4.1.1
Invl (deq(c_xst, c_vil, c _vi2), c x, c_y) =-> true
Case.19.1l: c_vi2 = c y

[] Proved by rewriting (with unreduced rules).

Case.19.2
not(c_yiz = c_y) == true
involves proving Lemma thml.1.2.4.1.1.2
Invl (deg(c_xst, c_vil, ¢ vi2), c_x, c_y) -> true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y

has been applied to equation Case.l19.2:
(c_vi2 = ¢ y) <=> false == true

to yield the following equations:
Case.19.2.1: ¢ _vi2 = c_y == false

34

Ordered equation Case.l9.2.1 into the rewrite rule:
c_vi2 = c y -> false

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 87 rewrite rules, and 9 deduction rules.

Deduction rule equality.3:
when x <=> y == true
yield x == y

has been applied to equation Case.l19.2:
(c_vi2 = c_y) <=> false == true

to yield the following equations:
Case.19.2.2: c_vi2 = c_y == false

Ordered equation Case.19.2.2 into the rewrite rule:
c_vi2 = c y -> false

The system now contains 88 rewrite rules and 9 deduction rules.

Lemma thml.1.2.4.1.1.2 in the proof by cases of Lemma thml.l1.2.4.1.1

Invl (deg(c_xst, c _vil, ¢ _vi2), ¢ x, c_y) -> true

Case.19.2: not(c_vi2 = c y)
is NOT provable using the current partially completed system. It reduces to
the equation

(element (c_vi2) = element (c_y)) <=> false -> true

Proof of Lemma thml.1.2.4.1.1.2 suspended.
-> prove not (element (x)=element (y)) =>not (x=y)

Conjecture thml.2l

not (element (x) = element (y)) => not(x = y) ~-> true
is NOT provable using the current partially completed system. It reduces to
the equation

((x = y) <=> false) | (element(x) = element(y)) => true

Proof of Conjecture thml.21 suspended.
=-> resume by case x=y

Case.20.1
c x1 = c_yl == true
involves proving Lemma thml.21.1
not (element (c_x1) = element(c_yl)) => not(c_x1 = c_yl) =-> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y .
has been applied to equation Case.20.1:
¢ xl = c_yl == true
to yield the following equations:
Case.20.1.1: c_x1 == c_yl

Ordered equation Case.20.1.1 into the rewrite rule:
e xl -> c yl

The case system now contains 1 rewrite rule.

Lemma thml.21.1 in the proof by cases of Conjecture thml.2l
not (element (¢_x1) = element (c_yl)) => not(c_xl1 = c_yl) -> txue
Case.20.1: c_x1 = c_yl .

[] Proved by rewriting (with unreduced rules).

Case.20.2
not (c_x1 = c_yl) == true

35

involves proving Lemma thml.21.2
not (element (c_x1) = element (c_yl)) => not(c_xl1 = c_yl) => true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y

has been applied to equation Case.20.2:
(c_x1 = c_yl) <=> false == true

to yield the following equations:
Case.20.2.1: c_x1 = c_yl == false

Ordered equation Case.20.2.1 into the rewrite rule:
c x1 = c_yl -> false

The case system now contains 1 rewrite rule.

Lemma thml.21.2 in the proof by cases of Conjecture thml.21
not (element (c_x1) = olmnt(c_yl)) => not (c_xl1 = c_yl) => true
Case.20.2: not (c_x1 = c_yl)

[] Proved by rewriting (with unreduced rules).

Conjecture thml.21

not (element (x) = element (y)) => not(x = y) =-> true
[] Proved by cases

(x = y) | not(x = y)

The system now contains 1 equation, 88 rewrite rules, and 9 deduction rules.

Ordered equation thml.2l1 into the rewrite rule:
((x = y) <=> false) | (element(x) = element(y)) => true

The system now contains 89 rewrite rules and 9 deduction rules.

Lemma thml.1.2.4.1.1.2 in the proof by cases of Lemma thml.1l.2.4.1.1

Invl (deg(c_xst, c _vil, c_vi2), c_x, c_y) => true

Case.19.2: not(c_vi2 = c_y)
is NOT provable using the current partially completed system. It reduces to
the equation

(element (c_vi2) = element(c_y)) <=> false -> true

Proof of Lemma thml.l.2.4.1.1.2 suspended.
-> resume by case element(c_vi2)=element (c_y)
Case.21.1
element (c_vi2) = element (c_y) == true
involves proving Lemma thml.1.2.4.1.1.2.1
Invl (deq(c_xst, c_vil, c_viZ), c_x, ¢ y) => true
The case system now contains 1 equation.
Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation Case.2l.1l:
element (c_vi2) = element(c_y) == true

to yield the following equations:
Case.21.1.1: element(c_vi2) == element (c_y)

Ordered equation Case.21.1.l1 into the rewrite rule:
element (c_vi2) -> element (c_y)

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 89 rewrite rules, and 9 deduction rules.

Deduction rule equality.4:

36

when x = y == true
yield x == y

has been applied to equation Case.21.1:
element (c_vi2) = element (c_y) == true

to yield the following equations:
Case.21.1.2: element(c_vi2) == element (c_y)

Deduction rule Eng_Rec.l:
when element (xn) == element (xnl)
yield xn == xnl
has been applied to equation Case.21.1.2:
element (c_vi2) == element (c_y)
to yield the following equations, which imply the original equation:
Case.21.1.2.1: c _vi2 == c_y

Ordered equation Case.21.1.2 into the rewrite rule:
element (c_vi2) -> element (c_y)

Left-hand side reduced:

in_stack (trip(element (c_vi2), engt(c_vi2), c_vil), deqgd(c_xst)) -> false
became equation Case.l1l6.2.2:
in_stack (trip (element (c_y), engt(c_vi2), c_vil), deqd(c_xst)) == false

Ordered equation Case.21.1.2.1 into the rewrite rule:
e vi2 => c ¥y

Following 6 left-hand sides reduced:
((deqgr (top (degd (c_xst))) < c_vil) & (engr(top(degd(c_xst))) < enqgt(c_vi2)))
| (degd(c_xst) = new)
=> true
became equation thml.20.4:)
({deqr (top(deqd(c_xst))) < c_vil) & (engr(top(degd(c_xst))) < engt (c_y)))
| (degd(c_xst) = new)
== true
least (c_vi2, engd(c_xst)) =-> true
became equation thml.20.3:
least (c_y, onqd(cqx-t)) == true
in(ec_vi2, enqgd(c_xst)) =-> true
became aquation thml.20.2:
in(c_y, engd (c_xst)) == true
engt (c_vi2) < c_vil => true
became equation thml.20.1:
engt (c_y) < c_vil == true
c vi2 = ¢ y -> false
became equation Case.l19.2.2:
cy = c y == false
element (c_vi2) -> element (c_y)
became identity Case.21.1.2:
element (c_y) == element (c_y)

Ordered equation Case.l6.2.2 into the rewrite rule:
in_stack (trip (element (c_y), engt(c_y), c vil), deqd(c_xst)) ~> false

Ordered equation thml.20.4 into the rewrite rule:
((degr (top(degd(c_xst))) < c_vil) & (engxr(top (degd (c_xst))) < engt(c_y)))
| (degd(c_xst) = new)
=-> true

Ordered equation thml.20.3 into the rewrite rule:
least (c_y, enqd(c_xst)) =-> true

Ordered equation thml.20.1 into the rewrite rule:
engt (¢_y) < c_vil => true

Equation Case.19.2.2
true == false

is inconsistent.

Lemma thml.1.2.4.1.1.2.1 in the proof by cases of Lemma thml.1.2.4.1.1.2

37

Invl (deq(c_xst, c_vil, ¢ vi2), ¢ _x, c_y) => true
Case.21.1: element (c_vi2) = element (c_y)
[] Proved by impossible case.

Case.21.2

not (element (c_vi2) = element (c_y)) == true
involves proving Lemma thml.l.2.4.1.1.2.2

Invl (deg(c_xst, c_vil, c_vi2), c x, e_y) => true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.2l1.2:

(element (c_vi2) = element (c_y)) <=> false == true
to yield the following equations:

Case.21.2.1: element(c_vi2) = element(c_y) == false

Ordered equation Case.21.2.1 into the rewrite rule:
elomnt(e_viZ) - olomm:(c_y) => false

The case system now contains 1 rewrite rule.

Lemma thml.1.2.4.1.1.2.2 in the proof by cases of Lemma thml.1.2.4.1.1.2
Invl (deg(c_xst, c_vil, c_vi2), c_x, c_y) -> true
Case.21.2: not (element(c_vi2) = element (c_y))

[] Proved by rewriting (with unreduced rules).

Lemma thml.1.2.4.1.1.2 in the procf by cases of Lemma thml.1.2.4.1.1
Invl (deq(c_xst, c_vil, c_vi2), c_x, c_y) -> true
Case.19.2: not(c_vi2 = c_y)

[] Broved by cases
(element (c_vi2) = element(c_y)) | not (element (c_vi2) = element(c_y))

Lemma thml:1.2.4.1.1 in the proof by cases of Lemma thml.l1l.2.4.1
Invl (deq(c_xst, c vil, c_vi2), c_x, c_y) => true
Case.18.1: in(c_y, engd(c_xst))

[] Proved by cases
(c_vi2 = c y) | not(c_vi2 = c_y)

Case.18.2
not (in(c_y, enqgd(c_xst))) == true
involves proving Lemma thml.1.2.4.1.2
Invl (deqg(c_xst, c_vil, c _vi2), c_x, c_y) =-> true

The case system now contains i equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y

has been applied to equation Case.l18.2:
false <=> in(c_y, enqgd(c_xst)) == true

to yield the following equations:
Case.18.2.1: false == in(c_y, enqgd(c_xst))

Ordered equation Case.18.2.1 into the rewrite rule:
in(c_y, engd(c_xst)) -> false

The case system now contains 1 rewrite rule.

Lemma thml.1.2.4.1.2 in the proof by cases of Lemma thml.1.2.4.1
Invl (deq(c_xst, c_vil, c_vi2), c_x, c y) =-> true
Case.18.2: not(in(c_y, engd(c_xst)))

[] Proved by rewriting (with unreduced rules).

Lemma thml.1.2.4.1 in the proof by cases of Lemma thml.1l.2.4

Invl (deg(c_xsat, e_vil, c_vi2), c_x, y) => true
Case.17.1: c_x = trip(element (c_vi2), engt(c_vi2), ¢ _vil)

38

[] Proved by cases
in(y, engd (c_xst)) | not(in(y, engd (c_xst)))

Case.17.2

not (c_x = trip(element (c_vi2), engt(c_vi2), c_vil)) == true
involves proving Lemma thml.1.2.4.2

Invl (deq(c_xst, c vil, c_vi2), c_x, y) => true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.l7.2:

(c_x = trip(element (c_vi2), engt(c_vi2), c_vil)) <=> false == true
to yield the following equations:

Case.17.2.1: c_x = trip (element (c_vi2), engt(c_vi2), c _vil) == false

Ordered equation Case.l7.2.1 into the rewrite rule:
c_x = trip(element (c_vi2), enqgt(c_vi2), c_vil) -> falase

The case system now contains 1 rewrite rule.

Lemma thml.1.2.4.2 in the proof by cases of Lemma thml.1.2.4

Invl (deq(c_xst, c_vil, c_vi2), c_x, y) =-> true

Case.17.2: not(c_x = trip(element(c_vi2), engt (e_vi2), c_vil))
[] Proved by rewriting (with unreduced rules).

Lemma thml.1.2.4 in the proof by cases of Lemma thml.1.2
Invl (deg{c_xst, vil, vi2), c_x, y) -> true
Case.16.2: not(in_stack(c_x, deqgd(c_xst)))

[] Proved by cases
(c_x = trip(element (vi2), enqgt(vi2), vil))

| not(c_x = trip(element(vi2), engt(vi2), vil))

Lemma thml.l.2 for the induction step in the proof of Conjecture thml.l
Invl (deq(c_xst, vil, vi2), x, y) => true '

[] Proved by cases
in_stack (x, deqd(c_xst)) | not(in_stack(x, degd(c_xst)))

Conjecture thml.l
Invl (xst, x, y) =-> true
[] Proved by induction over ‘xst::St’ of sort ‘St’.
The system now contains 1 equation, 78 rewrite rules, and 9 deduction rules.
Ordered equation thml.l into the rewrite rule:
((element (y) = what (x)) <=> false)
| (false <=> in(y, engd(xst)))
| (false <=> in stack(x, degd(xst)))’
=-> true

The system now contains 79 rewrite rules and 9 deduction rules.

->q

39

4.3. LP Proof Session of Invariant 2

=-> set axiom o

The axiom use is now ‘order-equations-into-rules’.
=> thaw Inv

System thawed from ‘Inv.frz’.

-> set name thm2

The name prefix is now ‘thm2’.

-> prove Inv2(xst,x,y) by induction xat St

The basis step in an inductive proof of Conjecture thm2.1l
Inv2 (xst, x, y) => true
involves proving the following lemma(s):

thm2.1.1: Inv2(init, x, y) => true
[] Proved by normalization

The induction step in an inductive proof of Conjecture thm2.1
Inv2(xst, x, y) -> true
uses the following equation(s) for the induction hypothesis:

Induct.2: Inv2(c_xst, x, y) =-> true
The system now contains 1 equation, 67 rewrite rules, and 5 deduction rules.

Ordered equation Induct.2 into the rewrite rule:
({(deqr(x) < deqr(y)) & (engr(x) < enqgr(y)))
| not (deq_before(x, y, degd(c _xst)))
=> true

The system now contains 68 rewrite rules and 5 deduction rules.
The induction step involves proving the following lemma(s):

thm2.1.2: Inv2(deq(c_xst, wvil, vi2), x, y) -> true
which reduces to the equation
((degr(x) < deqr(y)) & (engr(x) < enqr(y)))
| not(((trip (element (vi2), engt(vi2), vil) = y)
& in_stack(x, degd(c_xst)))
| deq before(x, y, degd(c_xst)))

=-> true
thm2.1.3: Inv2(eng(c _xst, vil, vi2), x, y) => true
[] Proved by normalization
thm2.1.4: Inv2(commit (c_xst, vil), x, y) => true
[] Proved by normalization
thm2.1.5: Inv2(abort(c_xst, vil), x, y) =-> true
which reduces to the equation
((degr(x) < degr(y)) & (engr(x) < engr(y)))
| not (deq_before(x, y, deqd(abort(c_xst, vil))))
~> true

Proof of Lemma thm2.1.5 suspended.
=-> resums by case deq_boforo (x,y,deqd (abort (c_xat,vil)))
Case.3.1

deq before(c_x, c_y, deqd(abort(c_xst, c_vil))) == true

involves proving Lemma thm2.1.5.1
Inv2 (abort (c_xst, c_vil), c x, c_y) => true

The case system now contains 1 equation.

Ordered equation Case.3.l1 into the rewrite rule:
deq_before(c_x, c_y, deqd(abort (e_xst, c _vil))) -> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 68 rewrite rules, and 5 deduction rules.

Ordered equation Case.3.1 into the rewrite rule:
doLbofor.(c_x, c_y, degd(abort (c_xst, c_vil))) -> true

The system now contains 69 rewrite rules and 5 deduction rules.

Lemma thm2.1.5.1 in the proof by cases of Lemma thm2.1.5

Inv2 (abort (c_xst, c_vil), c_x, c_y) => true

Case.3.1: deq_before(c_x, c_y, deqd (abort (c_xst, c_vil)))
is NOT provable using the current partially completed system. It reduces to
the equation

(deqgr(c_x) < degr(c_y)) & (engr (c_x) < engr(c_y)) =-> true

Proof of Lemma thm2.1.5.1 suspended.
=> crit case with State

Critical pairs between rule Case.3.1l:
deq_befecre(c x, c_y, deqd (abort (c_xst, c_vil))) => true
and rule State.13:
deq_before (x, y, deqd(xst)) | not (deq_before(x, y, deqd(abort (xst, xt))))
-> true
are as follows:
doLbcforo(c_x, c vy, deqd(c_xst)) == true

The system now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Ordered equation thm2.2 into the rewrite rule:
deq_before(c_x, c_y, degd(c_xst)) => true

The system now contains 70 rewrite rules and 5 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of
them to the system.

=> crit thm2 with Induct

Critical pairs between rule thm2.2:
deq_before(c_x, c_y, degd (c_xst)) -> true
and rule Induct.2:
((degr(x) < deqr(y)) & (engr(x) < engr(y)))
| not (deq before(x, y, deqd(c_xst)))
-> true
are as follows:
(degr(c_x) < degr(c_y)) & (engr (c_x) < engr(c_y)) == true

The system now contains 1 equation, 70 rewrite rules, and 5 deduction rules.

Deduction rule boolean.3:

when X & y == true

yield x == true

y == true

has been applied to equation thm2.3:

(degr(c_x) < degr(c_y)) & (engr (c_x) < engr(c_y)) == true
to yield the following equations:

thm2.3.1: deqr(ec_x) < degr(c_y) == true

thm2.3.2: enqgr(c_x) < engr(c_y) == true

Ordered equation thm2.3.2 into the rewrite rule:
engr (c_x) < engr (c_y) => true

41

Ordered equation thm2.3.1 into the rewrite rule:
degr (c_x) < degr(c_y) => true

The system now contains 72 rewrite rules and 5 deduction rules.

Lemma thm2.1.5.1 in the proof by cases of Lemma thm2.1.5
Inv2 (abort (c_xst, c_vil), c_x, c_y) -> true
Case.3.1: deq before(c _x, c_y, deqgd(abort(c xst, c _vil)))
[] Proved by rewriting.

Case.3.2

not (deq_before(c_x, c_y, deqd(abort(c_xst, c_vil)))) == true
involves proving Lemma thm2.1.5.2

Inv2(abgr:t(c_xat, e_vil), e x, c_y) => true

The case system now contains 1 ecquation.

Deduction rule booclean.l:
when not(x) == true
yield x == false
has been applied to equation Case.3.2:
not (deq_before(c_x, c_y, degd(abort(c_xst, c_vil)))) == true
to yield the following equations:
Case.3.2.1: deq _before(c_x, c_y, degd(abort(c_xst, c_vil))) == false

Ordered equation Case.3.2 into the rewrite rule:
not (deq_before(c_x, c y, deqd(abort(c_xst, c_vil)))) => true

Ordered equation Case.3.2.1 into the rewrite rule:
deg_before(c_x, c_y, degd(abort(c _xst, c_vil))) -> false

Left-hand side reduced:

not (deq_before(c_x, c_y, degd(abort(c_xst, c_vil)))) -> true
became equation Case.3.2:) .
not (false) == tn;e

Ordered equation Case.3.2 into the rewrite rule:
not (false) -> true

The case system now contains 2 rewrite rules.

Lemma thm2.1.5.2 in the proof by cases of Lemma thm2.1.5

Inv2 (abort (c_xst, c_vil), c_x, c_y) => true

Case.3.2: not(deq before(c_x, c_y, deqd(abort(c_xst, c_vil))))
[] Proved by rewriting (with unreduced rules).

Lemma thm2.1.5 for the induction step in the proof of Conjecture thm2.1
Inv2 (abort (c_xst, vil), x, y) => true ’

[] Proved by cases
deq before(x, y, deqgd(abort(c_xst, vil)))
| not (deq_before(x, y, deqgd(abort(c_xst, vil))))

Lemma thm2.1.2 for the induction step in the proof of Conjecture thm2.1
Inv2(deg(c_xst, vil, vi2), x, y) => true
is NOT provable using the current partially completed system. It reduces to
the equation
((deqr(x) < degr(y)) & (engr(x) < enqgr(y)))
| not(((trip(element (vi2), enqgt(vi2), vil) = y)
& in_stack(x, deqgd(c_xst)))
| deq before(x, y, degd(c_xst)))

-> true
Proof of Lemma thm2.1.2 suspended.

Critical-pair compﬁta.tion abandoned because a theorem has been proved.

42

Computed 1 new critical pair. Added 1 of them to the system.
-> resume by case deq_before(x,y,deqd(c_xst))

Case.4.1
deq_before(c_x, c_y, degd(c_xst)) == true
involves proving Lemma thm2.1.2.1
Inv2(deq(c_xst, vil, vi2), c_x, c_y) -> true

The case system now contains 1 equation.

Ordered equation Case.4.l into the rewrite rule:
deq_before(c_x, c_y, degd(c_xst)) =-> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 68 rewrite rules, and 5 deduction rules.

Ordered equation Case.4.l into the rewrite rule:
deq_before(c_x, c_y, degd(c_xst)) =-> true

The system now contains 69 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.1 in the proof by cases of Lemma thm2.1.2

Inv2 (deg(c_xst, vil, vi2), ¢ _x, c_y) -> true

Case.4.1l: deg before(c x, c_y, degd(c_xst))
is NOT provable using the current partially completed system. It reduces to
the equation

(degr(c_x) < degr(c_y)) & (engr(c_x) < engr(c_y)) =-> true

Proof of Lemma thm2.1.2.1 suspended.
=> crit case with Induct

Critical pairs between rule Case.4{.l:

deq_before(c_x, c_y, degd(c_xst)) -> true
and rule Induct.2:

((degr(x) < degr(y)) & (engr(x) < enqgr(y}))

| not (deq_before(x, y, deqd(c_xst)))
-> true
are as follows:
(degr (c_x) < degr(c_y)) & (engr(c_x) < enqgr(c_y)) == true

The system now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Deduction rule boolean.3:

when x & y == true

yield x == true

y == true

has been applied to equation thm2.4:

(degr(c_x) < degr(c_y)) & (engr(c_x) < engr(c_y)) == true
to yield the following equations:

thm2.4.1: degr(c_x) < degr(c_y) == true

thm2.4.2: engr(c_x) < engr(c_y) == true

Ordered equation thm2.4.2 into the rewrite rule:
engr (c_x) < engr(c_y) => true

Ordered equation thm2.4.1 into the rewrite rule:
doqr(c;x) < degr(c_y) => true

The system now contains 71 rewrite rules and 5 deduction rules.
Lemma thm2.1.2.1 in the procf by cases of Lemma thm2.1.2

Inv2 (deq(c_xst, vil, vi2), c X, ¢ y) => true

Case.4.1: deq before(c x, c_y, degd(c_xst))
[] Proved by rewriting.

Case.4.2

43

not (deq _before(c_x, c_y, deqd(c_xst))) == true
involves proving Lemma thm2.1.2.2
Inv2 (deq(c_xst, vil, vi2), ¢ _x, c_y) => true

The case system now contains 1 equation.

Deduction rule boolean.l:
when not(x) == true
yield x == false
has been applied to equation Case.4.2:
not (deq_before (c_x, c_y, deqd(c_xst))) == true
to yield the following equations:
Case.4.2.1: deq before(c x, c_y, degd(c_xst)) == false

Ordered equation Case.4.2 into the rewrite rule:
not (deq_before (c_x, c y, degd(c_xst))) -> true

Ordered equation Case.4.2.1 into the rewrite rule:
deq_before(c_x, c_y, degd(c_xst)) -> false

Left-hand side reduced:

not (deq_before(c_x, c_y, deqd(c_xst))) ~> true
became equation Case.4.2:
not (false) == true

Ordered equation Case.4.2 into the rewrite rule:
not (false) -> true

The case system now contains 2 rewrite rules.
The system now contains 1 equation, 68 rewrite rules, and 5 deduction rules.

Deduction rule boolean.l:
when not(x) == true
yield x == false
has been applied to equation Case.4.2:
not (deq_before(c x, ¢ y, deqd(c_xst))) == true
to yield the following equations:
Case.4.2.3: deq before(c_x, c_y, deqd(c_xst)) == false

Ordered equation Case.4.2 into the rewrite rule:
not (deq_before(c_x, c y, degd(c_xst))) -> true

Ordered equation Case.4.2.3 into the rewrite rule:
deq_before(c_x, c_y, degd(c_xst)) =-> false

Left-hand side reduced:

not (deq_before(c_x, c_y, degd(c_xst))) =-> true
became equation Case.4.2:
not (false) == true

The system now contains 69 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.2 in the proof by cases of Lemma thm2.1.2
Inv2(deq(c_xst, vil, vi2), c_x, c_y) -> true
Case.4.2: not(deq before(c_x, c_y, deqd(c_xst)))
is NOT provable using the current partially completed system. It reduces to
the equation
((degr(c_x) < degr(c_y)) & (engr(c_x) < engr(c_y)))
| not(c_y = trip(element(vi2), enqgt(vi2), wvil))
| not (in_stack(c_x, deqd(c_xst)))
-> true

Proof of Lemma thm2.1.2.2 suspended.
Critical-pair computation abandoned because a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the system.

=> resume by case c_y=trip (element (vi2: :enq_rec),engt (vi2::enq_rec),vil)

Case.5.1

c_y = trip(element(c_vi2), engt(c_vi2), c_vil) == true
involves proving Lemma thm2.1.2.2.1

Inv2(deq(c_xst, c_vil, c_vi2), c_x, c_y) ~> true

The case system now contains 1 equation.

Deduction rule equality.4:
when X = y == true
yield x == y
has been applied to egquation Case.5.1:
c_y = trip(element(c_vi2), engt(c_vi2), c_vil) == true
to yield the following equations:
Case.5.1.1: c_y == trip(eloment(c_viZ), engt (c_vi2), c _vil)

Ordered equation Case.5.1.1 into the rewrite rule:
€y -> trip(element (c_vi2), engt(c_vi2), c_vil)

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Deduction rule equality.4:
when x = y == true
vield x == y
has been applied to equation Case.5.1:
c_y = trip(element (c_vi2), enqgt(c_vi2), c_vil) == true
to yield the following equations:
Case.5.1.2: c_y == trip(element (c_vi2), enqgt(c_vi2), e_vil)

Ordered equation Case.5.1.2 into the rewrite rule:
c_y -> trip(element (c_vi2), engt(c_vi2), c_vil)

Left-hand side reduced:

deq_before(c_x, c_y, degd(c_xst)) -> false
became equation Case.4.2.3:
deq_before(c_x, trip(element(c_vi2), engt(c_vi2), c _vil), degd(c_xst))
== false

Ordered equation Case.4.2.3 into the rewrite rule:
deq_before(c_x, trip(element(c_vi2), enqgt(c_vi2), c_vil), degd(c xst))
-> false

The system now contains 70 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.2.1 in the proof by cases of Lemma thm2.1.2.2

Inv2 (deg(c_xst, c_vil, c_vi2), e_x, c_y) => true

Case.5.1: c_y = trip(element(c_vi2), enqgt(c_vi2), c_vil)
is NOT provable using the current partially completed system. It reduces to
the equation

((degr(c_x) < c_vil) & (enqgr(c_x) < engt (e_vi2)))

| not(in_stack(c_x, deqd(c_xst)))
-> true

Proof of Lemma thm2.1.2.2.1 suspended.
=> add when_deq(c_xst,c_x, c_vil,ec_vi2)
Added 1 equation to the system.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation thm2.5:
(engt (c_vi2) < e_vil)
& in(c_vi2, engd(c_xst))

45

& least (c_vi2, engd(c_xst))
& (((degr(top(degd(c_xst))) < c_vil)
& (engr(top(deqgd(c_xst))) < engt(c_vi2)))
| (degd(c_xst) = new))

& (not (element (c_vi2) = what(c_x)) | not(in_stack(c_x, deqgd(c_xst))))
-> true

to yield the following equations:
thm2.5.1: engt(c_vi2) < c_vil == true

thm2.5.2: in(c_vi2, enqd(c_xst)) == true
thm2.5.3: least(c_vi2, engd(c_xat)) == true
thm2.5.4: ((daqr(top(deqd(c_xst))) < c_vil)
& (engr(top(deqgd(c_xst))) < engt{c_vi2)))
| (degd(c_xst) = new)
== true
thm2.5.5: not (element (c_vi2) = what(c_x)) | not(in_stack(c_x, degd(c_xst)))
== true

Ordered equation thm2.5.5 into the rewrite rule:
not (element (c_vi2) = what(c__x)) | not(in_stack(c_x, degd(c_xst))) -> true

Ordered ecuation thm2.5.4 into the rewrite rule:
((degr (top(degqd(c_xst))) < c_vil) & (enqgr(top(degd(c_xst))) < engt(c_vi2)))
| (degd(c_xst) = new) ’
-> true

Ordered equation thm2.5.3 into the rewrite rule:
least (c_vi2, engd(c_xst)) => true

Ordered equation thm2.5.2 into the rewrite rule:
in(c_vi2, enqgd(c_xst)) =-> true

Ordered equation thm2.5.1 into the rewrite rule:
engt (c_vi2) < c_vil => true

The system now contains 75 rewrite rules and 5 deduction rules.
=> resumes by case deqd(c_xst)=new

Case.6.1
deqd(c_xst) = new == true
involves proving Lemma thm2.1.2.2.1.1
Inv2 (deq(c_xst, c_vil, c vi2), c_x, c_y) =-> true

The case system now contains 1 equatien.

Deduction rule equality.4:
when x = y == true
yield x wm y

has been applied to equation Case.6.l:
deqd (c_xst) = new == true

to yield the following equations:
Case.6.1.1: degd(c_xst) == new

Ordered equation Case.6.1.1 into the rewrite rule:
deqd (c_xlt) =-> new

The case system now contains 1 rewrite rule.

Lemma thm2.1.2.2.1.1 in the proof by cases of Lemma thm2.1.2.2.1
Inv2 (deq(c_xst, c _vil, c_vi2), c_x, c_y) =-> true
Case.6.1: deqgd(c_xst) = new

{] Proved by rewriting (with unreduced rules).

Case.6.2
not (deqd (c_xst) = new) == true
involves proving Lemma thm2.1.2.2.1.2
Inv2 (deq(c_xst, c_vil, c_vi2), c_x, c_y) => true

46

The case system now contains 1 egquation.

Deduction rule boolean.l:
when not(x) == true
yield x == false

has been applied to equation Case.6.2:
not (deqd (c_xst) = new) == true

to yield the following equations:
Case.6.2.1: deqd(c_xst) = new == false

Ordered equation Case.6.2 into the rewrite rule:
not (deqd (c_xst) = new) <> true

Ordered equation Case.6.2.1 into the rewrite rule:
deqgd(c_xst) = new -> false

Left-hand side reduced:

not (doqd(c_x-t) = new) -> true
became equation Case.6.2:
not (false) == true

Ordered equation Case.6.2 into the rewrite rule:
not (false) =-> true

The case system now contains 2 rewrite rules.
The system now contains 1 equation, 75 rewrite rules, and 5 deduction rules.

Deduction rule boclean.l:
when not(x) == true
yield x == false

has been applied to equation Case.6.2:
not (deqd (c_xst) = new) == true

to yield the following equations:
Case.6.2.3: deqd(c_xst) = new == false

Ordered equation Case.6.2 into the rewrite rule:
not (deqd (c_xst) = new) -> true

Ordered equation Case.6.2.3 into the rewrite rule:
degd (c_xst) = new ~> false

Following 2 left-hand sides reduced:
((deqr(top(deqd(c_xst))) < c_vil) & (engr(top(deqgd(c_xst))) < engt (e_viZ2)))
| (degd(c_xst) = new)
-> true
became equation thm2.5.4:
((deqr (top (deqgd(c_xst))) < c_vil)
& (engr(top(degd(c_xst))) < engt(ec_vi2)))
| false R
- true
not (deqd (c_xst) = new) -> true
became equation Case.6.2:
not (false) == true

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation thm2.5.4:
(deqr (top (deqd(c_xst))) < c_vil) & (engr (top (deqd (c_xst))) < engt(c_vi2))
== true
to yield the following equations:
thm2.5.4.1: deqr(top(deqd(c_xst))) < c_vil == true
. thm2.5.4.2: engr(top(degd(c_xst))) < engt (¢_vi2) == true

Ordered equation thm2.5.4.2 into the rewrite rule:
engr (top (deqd (c_xst))) < enqgt(c_vi2) -> true

47

Ordered equation thm2.5.4.1 into the rewrite rule:
degr (top(deqgd(c_xst))) < c_vil => true

The system now contains 77 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.2.1.2 in the proof by cases of Lemma thm2.1.2.2.1

Inv2 (deq(c_xst, ¢_vil, c_vi2), c_x, c_y) =-> true

Case.6.2: not (deqd(c_xst) = new)
is NOT provable using the current partially completed system. It reduces to
the equation :

((degr(c_x) < c_vil) & (engr(c_x) < engt(c_vi2)))

| not (in_stack(c_x, deqd(c_xst)))
=> true

Proof of Lemma thm2.1.2.2.1.2 suspended.
-> resume by case in_stack(c_x,deqgd(c_xst))

Case.7.1
in_stack(c_x, deqd(c_xst)) == true
involves proving Lemma thm2.1.2.2.1.2.1
Inv2 (deq(c_xst, c_vil, ¢ _vi2), c x, c_y) => true

The case system now contains 1 equation.

Ordered equation Case.7.l into the rewrite rule:
in_stack(c_x, degd(c_xst)) => true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 77 rewrite rules, and 5 deduction rules.

Ordered equation Case.7.1l into the rewrite rule:
in_stack (c_x, degd(c_xst)) =-> true

Left~-hand side reduced:

not (element (c¢_vi2) = what(c_x)) | not(in_stack(c_x, degd(c_xst))) =~> true
became equation thm2.5.5:
not (element (c_vi2) = what(c_x)) | not (true) == true

Deduction rule boolean.l:
when not(x) == true
yield x == false
has been applied to equation thm2.5.5:
not (element (c_vi2) = what(c_x)) == true
to yield the following equations:
thm2.5.5.1: element (c_vi2) = what(c_x) == false

Ordered equation thm2.5.5 into the rewrite rule:
not (element (c_vi2) = what(c_x)) =-> true

Ordered equation thm2.5.5.1 into the rewrite rule:
element (c_vi2) = what (c_x) -> false

Left~hand side reduced:

not (element (c_vi2) = what(c_x)) -> true
became equation thm2.5.5:
not (false) == true

The system now contains 78 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.2.1.2.1 in the proof by cases of Lemma thm2.1.2.2.1.2
Inv2(deq(c_xst, c_vil, c_vi2), c_x, c_y) =-> true
Case.7.1: in_stack(c_x, degd(c_xst))
is NOT provable using the current partially completed asystem. It reduces to
the equation
(deqr(c_x) < c_vil) & (engr(c_x) < engt(c_vi2)) =-> true

Proof of Lemma thm2.1.2.2.1.2.1 suspended.

48

=> erit case with Induct

Computed 1 new critical pair, which reduced to an identity.

the system.
-> resume by case c_x=top(degd(c_xst))

Case.8.1
¢_x = top(degd(c _xst)) == true

involves proving Lemma thm2.1.2.2.1.2.1.1
Inv2(deq(c_xst, c_vil, c vi2), c x, c_y) => true

The case system now contains 1 equation.

Deduction rule equality.4:
when X = y == true
yield x == y

has been applied to equation Case.8.1:
c_x = top(degd(c_xst)) == true

to yield the following equations:
Case.8.1.1: c x == top (degd (c_xsat))

Ordered oqhation Case.8.1.1 into the rewrite rule:
c x => top(degd(c_xst)) .

The case system now contains 1 rewrite rule.

Added 0 of them to

Lemma thm2.1.2.2.1.2.1.1 in the proof by cases of Lemma thm2.1.2.2.1.2.1

Inv2(deq(c_xst, c_vil, c_vi2), e_x, c_y) => true
Case.8.1: ¢ x = top (degd(c_xst))
[] Proved by rewriting (with unreduced rules).

Case.8.2
not (c_x = top(deqd(c_xst))) == true
involves proving Lemma thm2.1.2.2.1.2.1.2
Inv2 (deq(c_xst, c_vil, c_vi2), ec_x, e y) ~> true

The case system now contains 1 equation.

Deduction rule boolean.l:
when not(x) == true
yield x == false
has been applied to equation Case.8.2:
not (c_x = top(degd(c_xst))) == true
to yield the following equations:
Case.8.2.1: c_x = top(degd(c_xst)) == false

Ordered equation Case.8.2 into the rewrite rule:
not (c_x = top(deqd(c_xst))) =-> true

Ordered equation Case.8.2.1 into the rewrite rule:
c_x = top(degd(c_xst)) -> false

Left-hand side reduced:

not (c_x = top(degd(c_xst))) -> true
became equation Case.8.2:
not (false) == true

Ordered equation Case.8.2 into the rewrite rule:
not (false) =-> true

The case system now contains 2 rewrite rules.

The system now contains 1 equation, 78 rewrite rules, and 5 deduction rules.

Deduction rule boolean.l:
when not(x) == true
yield x == false

49

has been applied to equation Case.8.2:
not (c_x = top(deqd(c_xst))) == true
to yield the following equations:
Case.8.2.3: ¢ _x = top(degqd(c_xst)) == false

Ordered equation Case.8.2 into the rewrite rule:
not (c_x = top(deqgd(c_xst))) =-> true

Ordered equation Case.8.2.3 into the rewrite rule:
c_x = top(degd(c_xst)) -> false

Left~hand side reduced:

not (c_x = top(degd(c_xst))) =-> true
became equation Case.8.2:
not (false) == true

The asystem now contains 79 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.2.1.2.1.2 in the proof by cases of Lemma thm2.1.2.2.1.2.1
Inv2(deq(c_xst, c_vil, c_vi2), c_x, c_y) => true
Case.8.2: not(c_x = top(degd(c_xst)))
is NOT provable using the current partially completed system. It reduces to
the equatien
(degr(c_x) < c_vil) & (engr(c_x) < enqgt(c_vi2)) => true

Proof of Lemma thm2.1.2.2.1.2.1.2 suspended.
-> crit case with lemma

Critical pairs between rule Case.7.1l:
in_stack(c_x, deqgd(c_xst)) =-> true
and rule lemma.3:
(top(y) = x) | deq before(x, top(y), y) | not(in_stack(x, y)) -> true
are as follows:
deq_before(c_x, top(deqd(c_xst)), degd(c_xst)) == true

The system now contains 1 equation, 79 rewrite rules, and 5 deduction rules.

Ordered equation thm2.6 into the rewrite rule:
deg_before (c_x, top(deqd(c_xst)), degd(c_xst)) -> true

The system now contains 80 rewrite rules and 5 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of
them to the system.

-> prove (deqr(c_x)<degr(top(degd(c_xst)))) & (engr(c_x)<enqr (top(deqd(c_xst))))

Conjecture thm2.7
(degr (c_x) < deqr(top(degd(c_xst)))) & (engr(c_x) < engr(top(deqd(c xat})))
=> true

is NOT provable using the current partially completed system.

Proof of Conjecture thm2.7 suspended.
=-> ecrit thm2 with Induct

Critical pairs between rule thm2.6: .
deq_before(c_x, top(deqgd(c_xst)), degd(c_xst)) -> true
and rule Induct.2:
((degr(x) < deqr(y)) & (engr(x) < enqgr(y)))
| not(deq before(x, y, degd(c_xst)))
-> true
are as follows:
(deqgr(c_x) < deqr(top(deqd(c_xast)))) & (enqgr(c_x) < enqgr(top(deqgd(c xst))))
== true

The system now contains 1 equation, 80 rewrite rules, and 5 deduction rules.

50

Deduction rule booclean.3:
when x & y == true
yield x == true
y == true
has been applied to equation thm2.8:
(deqr(c_x) < deqr(top(deqd(c_xat)))) & (engr(c_x) < engr(top(degd(c_xst))))
== true
to yield the following equations:
thm2.8.1: deqgr(c_x) < deqr(top(deqd(c_xst))) == true
thm2.8.2: engr(c_x) < engr(top(deqd(c_xst))) == true

Ordered equation thm2.8.2 into the rewrite rule:
engr(c_x) < onqr(top(doqd(c_xst))) => true

Ordered equation thm2.8.1 into the rewrite rule:
degr(c_x) < deqr(top(deqd(c_xst))) =-> true

The system now contains 82 rewrite rules and 5 deduction rules.

Conjecture thm2.7
(deqr (c_x) < deqr(top(degd(c_xst)))) & (engr(c_x) < engr(top(degd(c_xst))))
=> true

[] Proved by rewriting.

Lemma thm2.1.2.2.1.2.1.2 in the proof by cases of Lemma thm2.1.2.2.1.2.1
Inv2(deq(c_xst, c_vil, c_vi2), ¢ x, c_y) => true
Case.8.2: not (c_x = top (doqd(c__xlt)))
is NOT provable using the current partially completed system. It reduces to
the equation
(degr(c_x) < c_vil) & (engr(c_x) < engt(c_vi2)) => true

Proof of Lemma thm2.1.2.2.1.2.1.2 suspended.
Critical-pair computation abandoned because a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the asystem.
=> instantiate xt by deqr(c_x),xtl by degr(top(deqd(c_xst))),xt2 by c vil in TransID.1l

Equation TransID.l:
(xt < xt2) | not(xt < xtl) | not(xtl < xt2) => true
has been instantiated to equation TransID.1l.1:
degr(c_x) < c_vil => true

Added 1 equation to the system.

Ordered equation TransID.l.l1l into the rewrite rule:
degr(c_x) < c_vil =-> true

The system now contains 83 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.2.1.2.1.2 in the proof by cases of Lemma thm2.1.2.2.1.2.1
Inv2 (degq(c_xst, c_vil, c_vi2), c_x, c_y) -> true
Case.8.2: not(c_x = top(degd(c_xst)))
is NOT provable using the current partially completed system. It reduces to
the equation
onqr(c_x) < onqt(c_viZ) => true

Proof of Lemma thm2.1.2.2.1.2.1.2 suspended.
=> instantiate xt by engr(c_x),xtl by enqgr(top(deqd(c_xst))),xt2 by enqgt (c_vi2) in TransID.l
Equation TransID.l:

(xt < xt2) | not(xt < xtl) | not(xtl < xt2) => true
has been instantiated to equation TransID.1.2:

51

engr(c_x) < engt(c_vi2) -> true
Added 1 equation to the system.

Ordered egquation TransID.l.2 into the rewrite rule:
engr(c_x) < engt(c_vi2) -> true

The system now contains 84 rewrite rules and 5 deduction rules.

Lemma thm2.1.2.2.1.2.1.2 in the proof by cases of Lemma thm2.1.2.2.1.2.1
Inv2 (deq(c_xst, c_vil, c vi2), c_x, c_y) => true
Case.8.2: not(c_x = top(degd(c_xst)))

[] Proved by rewriting.

Lemma thm2.1.2.2.1.2.1 in the proof by cases of Lemma thm2.1.2.2.1.2
Inv2 (deg(c_xst, c_vil, c_vi2), c_x, c_y) =-> true
Case.7.1: in_stack(c_x, degd(c_xst))

[] Proved by cases
(c_x = top(degd(c_xst))) | not(c_x = top (doqd(c__xlt)))

Case.7.2
not (in_stack (c_x, degd(c_xst))) == true
involves proving Lemma thm2.1.2.2.1.2.2
Inv2 (degq(c_xst, c_vil, ¢ _vi2), c x, ¢ y) => true

The case system now contains 1 equation.

Deduction rule booclean.l:
when not(x) == true
yield x == false
has been applied to equation Case.7.2:
not (in_stack(c_x, deqd(c_xst))) == true
to yield the following equations:
Case.7.2.1: in_stack(c_x, deqgd(c_xst)) == false

Ordered equation Case.7.2 into the rewrite rule:
not (in_stack(c_x, deqd(c_xst))) =-> true

Ordered equation Case.7.2.1 into the rewrite rule:
in_stack(c_x, degd{(c_xst)) -> false

Left~hand side reduced:

not (in_stack(c_x, degd(c_xst))) -> true
became equation Case.7.2:
not (false) == true

Ordered equation Case.7.2 into the rewrite rule:
not (false) =-> true

The case system now contains 2 rewrite rules.

Lemma thm2.1.2.2.1.2.2 in the proof by cases of Lemma thm2.1.2.2.1.2
Inv2 (deg(c_xst, c_vil, c_vi2), e _x, c_y) => true
Case.7.2: not(in_stack(c_x, degd(c_xst)))

[] Proved by rewriting (with unreduced rules).

Lemma thm2.1.2.2.1.2 in the proof by cases of Lemma thm2.1.2.2.1
Inv2(deg(c_xst, c_vil, ¢ vi2), c_x, c_y) =-> true
Case.6.2: not (degd(c_xst) = new)

[] Proved by cases
in_stack(c_x, .deqd(c_xst)) | not(in_stack(c_x, degd(c_xst)))

Lemma thm2.1.2.2.1 in the proof by cases of Lemma thm2.1.2.2
Inv2(degq(c_xst, c vil, c_vi2), c x, c_y) -> true
Case.5.1: c_y = trip(element (c_vi2), engt(c_vi2), c_vil)

[] Proved by cases
(deqd (c_xst) = new) | not(deqgd(c_xast) = new)

Case.5.2

52

not(c_y = trip(element (c_vi2), engt(c_vi2), c_vil)) == true
involves proving Lemma thm2.1.2.2.2
Inv2(deq(c_xast, c_vil, ¢ _vi2), ¢ x, c y) -> true

The case system now contains 1 equation.

Deduction rule boolean.l:
when not(x) == true
yield x == false
has been applied to equation Case.5.2:
not (c_y = trip(element (c_vi2), engt(c vi2), c¢_vil)) == true
to yield the following equations:
Case.5.2.1: c_y = trip(element (¢ vi2), enqt(c_vi2), c_vil) == false

Ordered equation Case.5.2 into the rewrite rule:
not (c_y = trip(element (c_vi2), engt(c _vi2), c_vil)) => true

Ordered equation Case.5.2.1 into the rewrite rule:
c_y = trip(element (c_vi2), engt(c_vi2), c_vil) -> false

Left~hand side reduced:

not(c_y = trip(element (c_vi2), engt(c_vi2), c_vil)) -> true
became equation Case.5.2:
not (false) == true

Ordered equation Case.5.2 into the rewrite rule:
not (false) =-> true

The case system now contains 2 rewrite rules.

Lemma thm2.1.2.2.2 in the proof by cases of Lemma thm2.1.2.2
Inv2(deq(c_xst, c_vil, c_vi2), c_x, c_y) -> true
Case.5.2: not(c_y = trip(element (c_vi2), engt(c_vi2), ¢ _vil))
[] Proved by rewriting (with unreduced rules).

Lemma thm2.1.2.2 in the proof by cases of Lemma thm2.1.2
Inv2 (deq(c_xst, vil, vi2), ¢ x, c_y) -> true
Case.4.2: not (deq_before(c_x, c_y, deqd(c_xat)))

[] Proved by cases
(c_y = trip(element (vi2), enqgt(vi2), vil))

| not(c_y = trip(element(vi2), engt(vi2), vil))

Lemma thm2.1.2 for the induction step in the proof of Conjecture thm2.1
Inv2(deq(c_xst, vil, vi2), x, y) =-> true
[] Proved by cases
deg_before(x, y, deqd(c_xst)) | not (deq_before(x, y, deqd(c_xst)))
Conjecture thm2.1
Inv2(xst, x, y) => true
[] Proved by induction over ‘xst::St’ of sort ‘sSt’.
The system now contains 1 equation, 67 rewrite rules, and 5 deduction rules.
Ordered equation thm2.1 into the rewrite rule:
((degr(x) < deqr(y)) & (engr(x) < engr(y)))
| not (deq_before(x, y, deqgd(xst)))
-> true
The system now contains 68 rewrite rules and 5 deduction rules.
=> qed

All conjectures have been proved.

->q

53

4.4. LP Proof Session of Invariant 3

=-> set axiom o

The axiom use is now ‘order-equations-into-rules’.

=> thaw Inv

System thawed from ‘Inv.f:z’..

-> set name thm3

The name prefix is now ‘thm3’.

-> prove Inv3(xst,x) by induction xst St

The basis step in an inductive proof of Conjecture thm3.1
Inv3 (xst, x) -> true

involves proving the following lemma(s):

thm3.1.1: Inv3(init, x) => true
{] Proved by normalization

The induction step in an inductive proof of Conjecture thm3.1l
Inv3 (xst, x) =-> true
uses the following equation(s) for the induction hypothesis:

Induct.2: Inv3(c_xst, x) => true
The system now contains 1 equation, 67 rewrite rules, and 5 deduction rules.

Ordered equation Induct.2 into the rewrite rule:
(engr (x) < degxr(x)) | not(in_stack(x, degd(c_xst))) -> true

The system now contains 68 rewrite rules and 5 deduction rules.
The induction step inveolves proving the following lemma(s):

thm3.1.2: Inv3(deq(c_xst, vil, vi2), x) =-> true
which reduces to the equation
{(engr (x) < degr(x))
| not((trip(element (vi2), engt (vi2), vil) = x)
| in_stack(x, deqd(c_xst)))

=-> true
thm3.1.3: Inv3(eng(c_xst, vil, vi2), x) => true
[] Proved by normalization
thm3.1.4: Inv3(commit (c_xst, vil), x) <> true
[] Proved by normalization
thm3.1.5: Inv3(abort(c_xst, vil), x) => true
[] Proved by normalization

Proof of Lemma thm3.1l.2 suspended.
-> resume by case in_stack(x,deqd(c_xst))
Case.3.1

in_stack(c_x, deqgd(c_xst)) == true
involves proving Lemma thm3.1.2.1

Inv3 (deq(c_xst, vil, vi2), c_x) =-> true

The case system now contains 1 equation.

Ordered equation Case.3.1 into the rewrite rule:
in_stack(c_x, degd(c_xst)) =-> true

The case system now contains 1 rewrite rule.

54

The system now contains 1 equation, 68 rewrite rules, and 5 deduction rules.

Ordered equation Case.3.1 into the rewrite rule:
in_stack(c_x, deqgd(c_xst)) -> true

The system now contains 69 rewrite rules and 5 deduction rules.

Lemma thm3.1.2.1 in the proof by cases of Lemma thm3.1.2

Inv3(deq(c_xst, vil, vi2), c_x) =-> true

Case.3.1l: in_stack(c_x, deqd (c_xst))
is NOT provable using the current partially completed system. It reduces to
the equation

engr (c_x) < degr(c_x) -> true

Proof of Lemma thm3.1.2.1 suspended.
-> crit case with Induct

Critical pairs between rule Case.3.1:
in_stack(c_x, degd(c_xst)) =-> true
and rule Induct.2:
(engr (x) < deqgr(x)) | not(in_stack(x, degd(c_xst))) =-> true
are as follows:
enqgr (c_x) < deqr(c_x) == true

The .fltm now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Ordered equation thm3.2 into the rewrite rule:
engr(c_x) < degr(c_x) -> true

The system now contains 70 rewrite rules and 5 deduction rules.

Lemma thm3.1.2.1 in the proof by cases of Lemma thm3.1.2
Inv3 (deg(c. xst, vil, vi2), c_x) => true
Case.3.1: in_stack(c_x, deqd(c_xst))

[] Proved by rewriting.

Case.3.2
not (in_stack(c_x, degd(c_xst))) == true
invelves proving Lemma thm3.1.2.2
Inv3(deq(c_xst, vil, vi2), c_x) => true

The case system now contains 1 equation.

Deduction rule booclean.l:
when not(x) == true
yield x == false
has been applied to equation Case.3.2:
not (in_stack (c_x, degd(c_xst))) == true
to yield the following equations:
Case.3.2.1: in_stack(c_x, deqd(c_xst)) == false

Ordered equation Case.3.2 into the rewrite rule:
not (in_stack(c_x, deqd(c_xst))) ~> true

Ordered equation Case.3.2.1 into the rewrite rule:
in_stack(c_x, deqgd(c_xst)) =-> false
Left~-hand side reduced:
not (in_stack(c_x, degd{(c_xst))) => true
became equation Case.3.2:
not (false) == true

Ordered equation Case.3.2 into the rewrite rule:
not (false) => true

The case system now contains 2 rewrite rules.

55

The system now contains 1 equation, 68 rewrite rules, and 5 deduction rules.

Deduction rule boclean.l:
when not(x) == true
yield x == false
has been applied to equation Case.3.2:
not (in_stack (c_x, deqd(c_xst))) == true
to yield the following equations:
Case.3.2.3: in_stack(c_x, degd(c_xst)) == false

Ordered equation Case.3.2 into the rewrite rule:
not (in_stack (c_x, deqgd(c_xst))) -> true

Ordered equation Case.3.2.3 into the rewrite rule:
in_stack(c_x, degd(c_xst)) =-> false

Left-hand side reduced:

not (in_stack (c_x, degd(c_xst))) -> true
became equation Case.3.2:
not (false) == true

The system now contains 69 rewrite rules and 5 deduction rules.

Lemma thm3.1.2.2 in the proof by cases of Lemma thm3.1.2
Inv3(deq(c_xst, vil, vi2), c_x) =~> true
Case.3.2: not(in_stack(c_x, deqd(c_xst)))
is NOT provable using the current partially completed system. It reduces to
the equation
(engr(c_x) < degr(c_x)) | not(c_x = trip(element(vi2), enqgt(vi2), wvil))
-> true

Proof of Lemma thm3.1.2.2 suspended.

Critical~-pair computation abandoned because a theorem has been proved.
Computed 1 new critical pair. Added 1 of them to the system.

~> resume by case c_x=trip (element (vi2::eng_rec),engt (vi2::enq_rec),vil)

Case.§.1

c_x = trip(element (c_vi2), enqt(c_vi2), c_vil) == true
involves proving Lemma thm3.1.2.2.1

Inv3 (deq(c_xst, c_vil, c_vi2), c_x) => true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
vield x == y
has been applied to equation Case.4.1l:
¢ x = trip(element (c_vi2), engt(c_vi2), c_vil) == true
to yield the following squations:
Case.4.1.1: c_x == trip(element (c_vi2), engt(c_vi2), c_vil)

Ordered ecquation Case.4.1.l1 into the rewrite rule:
c_x => trip(element (c_vi2), enqgt(c_vi2), c_vil)

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 69 rewrite rules, and 5 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation Case.4.l:
c_x = trip(element (c_vi2), engt(c_vi2), c_vil) == true
to yield the following equations:
Case.4.1.2: c_x == trip(element (c_vi2), engt(c_vi2), c_vil)

56

Ordered equation Case.4.1.2 into the rewrite rule:
e x => trip (element(c_viZ), engt (c_vi2), c_vil)

Left-hand side reduced:
in_stack(c_x, deqd(c_xst)) -> false
became equation Case.3.2.3:
in_ltlck(trip(olmnt(c_vi2), enqgt (¢_vi2), c_vil), doqd(c_xst)) == false

Ordered equation Case.3.2.3 into the rewrite rule:
in_stack (trip(element (c_vi2), engt(c_vi2), c_vil), deqd(c_xst)) -> false

The system now contains 70 rewrite rules and 5 deduction rules.

Lemma thm3.1.2.2.1 in the proof by cases of Lemma thm3.1.2.2

Inv3(deq{c_xst, c_vil, c_vi2), c_x) =-> true

Case.4.1: c_x = trip(element (c_vi2), engt(c_vi2), c_vil)
is NOT provable using the current partially completed system. It reduces to
the equation

engt (c_vi2) < c_vil -> true

Proof of Lemma thm3.1.2.2.1 suspended.
~=> add when_deg(c_xsat,c_x, c__vikl e _vi2)
Added 1 equation to the system.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation thm3.3:
(engt (c_vi2) < c_vil)
& in(c_vi2, engd(c_xst))
& least(c_vi2, enqgd(c_xst))
& (((degr(top(degd(c_xst))) < c_vil)
& (engr(top(deqd(c_xst))) < engt(c_vi2)))
| (degd(c_xst) = new))

=> true
to yield the following equations:
thm3.3.1: engt(c_vi2) < c_vil == true
thm3.3.2: in(c_vi2, engd(c_xst)) == true
thm3.3.3: least(c_vi2, engd(c_xst)) == true
thm3.3.4: ((degr(top(deqd(c_xst))) < c_vil)
& (engr(top(deqgd(c_xst))) < enqgt(c_vi2)))
| (degd(c_xst) = new)
== true

Ordered equation thm3.3.4 into the rewrite rule:
((deqgr(top(deqd(c_xst))) < c_vil) & (engr(top(deqd(c_xst))) < engt(c_vi2)))
| (degd(c_xst) = new)
=> true

Ordered equation thm3.3.3 into the rewrite rule:
loaqt(c_viz, engd(c_xst)) -> true

Ordered equation thm3.3.2 into the rewrite rule:
in(c_vi2, engd(c_xst)) =-> true

Ordered equation thm3.3.1 into the rewrite rule:
engt (¢_vi2) < c_vil => true

The system now contains 74 rewrite rules and 5 deduction rules.
Lemma thm3.1.2.2.1 in the proof by cases of Lemma thm3.1.2.2
Inv3(deq(c_xat, c_vil, c_vi2), c_x) => true

Case.4.1: c_x = trip(element (c_vi2), engt(c_vi2), c_vil)
[] Proved by rewriting.

57

Case.4.2

not (c_x = trip(element (c_vi2), engt(c_vi2), c_vil)) == true
involves proving Lemma thm3.1.2.2.2

Inv3 (deq(c_xst, c_vil, c_vi2), c_x) =-> true

The case system now contains 1 equation.

Deduction rule boolean.l:
when not(x) == true
- yield x == false
has been applied to equation Case.4.2:
not (c_x = trip(element (c_vi2), engt(c_vi2), c_vil)) == true
to yield the following equations:
Case.4.2.1: c_x = trip(element (c_vi2), engt(c_vi2), c_vil) == false

Ordered equation Case.4.2 into the rewrite rule:
not (c_x = trip(element (c_vi2), engt(c_vi2), c_vil)) => true

Ordered equation Case.4.2.1 into the rewrite rule:
c_x = trip(element (c_vi2), onqt(c_vi2), e_vil) -> false

Left-hand side reduced:

not (c_x = trip(element (c_vi2), engt(c vi2), c_vil)) => true
became equation Case.4.2:
not (false) == true

Ordered equation Case.4.2 into the rewrite rule:
not (false) =-> true

The case system now contains 2 rewrite rules.

Lemma thm3.1.2.2.2 in the proof by cases of Lemma thm3.1.2.2
Inv3 (deq(c_xst, c _vil, c_vi2), c_x) -> true
Case.4.2: not(c_x = trip(element (c_vi2), engt(c_vi2), c_vil))
[] Proved by rewriting (with unreduced rules).

Lemma thm3.1.2.2 in the proof by cases of Lemma thm3.1.2
Inv3 (deq(c_xst, vil, vi2), c_x) => true
Case.3.2: not(in_stack(c_x, degd(c_xst)))
[] Proved by cases
(c_x = trip(element (vi2), engt(vi2), vil))
| not(c_x = trip(element (vi2), engt(vi2), vil))

Lemma thm3.1.2 for the induction step in the proof of Conjecture thm3.1
Inv3 (deq{c_xst, vil, vi2), x) ~> true

[] Proved by cases
in_stack(x, deqd(c_xst)) | not(in_stack(x, degd(c_xst)))

Conjecture thm3.1l
Inv3 (xst, x) => true

[] Proved by induction over ‘xst::8t’ of sort ‘St’.

The system now contains 1 equation, 67 rewrite rules, and 5 deduction rules.

Ordered equation thm3.l into the rewrite rule:
(engr(x) < deqgr(x)) | not(in_stack(x, degqd(xst))) =-> true

The system now contains 68 rewrite rules and 5 deduction rules.
-> ged
All conjectures have been proved.

->q

58

5. Four Sets of Helping Lemmas

5.1. Helping Lemma Set 0

add

(x=pair(y,z))=>((element (x)=y) & (engt (x)=z))
(x=trip(u,v,w))=>((what (x)=u) & (enqr (x) =v) & (degr (x) =w))
in_stack (x,y)=>(deq_before(x,top(y),y) | (x=top(y)))

59

5.2. LP Proof Session of Lemma Set 0

=> thaw ab

System thawed from ‘ab.frz’.

=> set name lemma

The name prefix is now ‘lemma’.

=> set axiom o

The axiom use is now ‘order-equations-into-rules’.

-> prove (x=pair(y,z))=>((element (x)=y)é& (engt (x)=z)) by case x=pair(y,z)

Case.l.1l
c x = pair(c_y, ¢_z) == true

involves proving Lemma lemma.l.l
(c_x = pair(c_y, c_2z)) => ((c_y = element(c x)) & (c_z = o'nqt(c_x)))
=> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x m= y

has been applied to equation Case.l.l:
c_x = pair(c_y, c_z) == true

to yield the following equations:
Case.l.1.1l: c_x == pair(c_y, c_z)

‘Ordered equation Case.l.l.l into the rewrite rule:
c x => pair(c_y, c_z)

The case system now contains 1 rewrite rule.

Lemma lemma.l.l in the proof by cases of Conjecture lemma.l
(c_x = pair(c_y, c_z)) => ((c_y = element(c_x)) & (c_z = engt(c_x)))
-> true
Case.l.l: c_x = pair(c_y, c_z)

[] Proved by rewriting (with unreduced rules).

Case.l.2
not (c_x = pair(c_y, c_z)) == true

involves proving Lemma lemma.l.2
(c_x = pair(c_ y, ¢ _z)) => ((c_y = element(c_x)) & (c_z = enqt(c_x)))
=> true

The case system now contains 1 equatien.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.l.2:
(e_x = pair(c_y, c_z)) <=> false == true
to yield the following equations:
Case.l.2.1: c_x = pair(c y, c_z) == false

Ordered equation Case.l.2.1 into the rewrite rule:
c x = pair(c_y, c_z) => false

The case system now contains 1 rewrite rule.

Lemma lemma.l.2 in the proof by cases of Conjecture lemma.l
(c_x = pair(c_y, c_z)) => ((c_y = element(c_x)) & (c_z = engt(c_x)))
-> true
Case.l.2: not(c_x = pair(c_y, c_z))

[] Proved by rewriting (with unreduced rules).

Conjecture lemma.l

(pair(y, z) = x) => ((element(x) = y) & (engt(x) = z)) -> true
[] Proved by cases

(pair(y, z) = x) | not(pair(y, z) = x)

The system now contains 1 equation, 135 rewrite rules, and 12 deduction rules.

Ordered equation lemma.l into the rewrite rule:
((element (x) = y) & (engt(x) = z)) | ((pair(y, z) = x) <=> false) -> true

The system now contains 136 rewrite rules and 12 deduction rules.
=> prove (x=trip(u,v,w))=>((what (x)=u)& (engr (x)=v) & (deqgr(x)=w)) by case x=trip(u,v,w)

Case.2.1
c_x = trip(c_u, c¢_v, c_w) == true
involves proving Lemma lemma.2.1
(c_x = trip(c_u, c_v, c_w))
=> ((c_u = what(c_x)) & (c_v = engr(c_x)) & (c_ w = degr (c_x)))
-> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.2.1:
c_x = trip(c_u, c_v, c_w) == true

to yield the following equations:
Case.2.1.1: c_x == trip(c_u, c_v, c_w)

Ordered equation Case.2.1.1 into the rewrite rule:
c x => trip(c_u, c v, c_w)

The case system now contains 1 rewrite rule.

Lemma lemma.2.l1 in the proof by cases of Conjecture lemma.2
(e_x = trip(c_u, c_ v, c_w))
=> ((c_u = what(c_x)) & (c_v = engr(c_x)) & (c_w = degr(c_x)))
=> true
Case.2.1: c x = trip(c_u, ¢ v, c_w)
[] Proved by rewriting (with unreduced rules).

Case.2.2
not(c_x = trip(c_u, ¢ v, c_w)) == true
involves proving Lemma lemma.2.2
(c_x = trip(c_u, c_v, c_w))
=> ((c_u = what(c_x)) & (c_v = engr(c_x)) & (c_w = degr(c_x)))
=-> true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.2.2:

(e_x = trip(c_u, c_v, c_w)) <=> false == true
to yield the following equations:

Case.2.2.1: c_x = trip(c_u, e Vv, c_w) == false

Ordered equation Case.2.2.l1 into the rewrite rule:
c_x = trip(c_u, c_v, c_w) -> false

The case system now contains 1 rewrite rule.

Lemma lemma.2.2 in the proof by cases of Conjecture lemma.2
(c_x = trip(c_u, c_v, c_w))

61

=> ((c_u = what(c_x)) & (c_v = engr(c_x)) & (c_w = deqr(c_x)))
=> true
Case.2.2: not(c_x = trip(ec u, c v, c_w))

[] Proved by rewriting (with unreduced rules).

Conjecture lemma.2
(trip(u, v, w) = x) => ((degr(x) = w) & (engr(x) = v) & (what(x) = u))
=> true
[] Proved by cases
(trip(u, v, w) = x) | not(trip(u, v, w) = x)
The system now contains 1 equation, 136 rewrite rules, and 12 deduction rules.
Ordered equation lemma.2 into the rewrite rule:
({degzr(x) = w) & (engr(x) = v) & (what(x) = u))
| ((txip(u, v, W) = x) <=> false)

-> true

The system now contains 137 rewrite rules and 12 deduction rules.

-> prove in_stack(x,y)=>(deq _before(x,top(y),y) | (x=top(y))) by induction y deq_stack
The basis step in an inductive proof of Conjecture lemma.3
in_stack(x, y) => ((top(y) = x) | deq before(x, top(y), y)) => true
involves proving the following lemma(s):
lemma.3.1: in_stack(x, new) => ((top(new) = x) | deq_before(x, top(new), new))
=> true
[] Proved by normalization
The induction step in an inductive proof of Conjecture lemma.3
in_stack(x, y) => ((top(y) = x) | deq_before(x, top(y), y)) => true
uses the following equation(s) for the induction hypothesis:

Induct.l: in_stack(x, c y) => ((top(c_y) = x) | doq_beforo(x, top(c_y), c_y))
-> trxue

The aystem now contains 1 equation, 137 rewrite rules, and 12 deduction rules.
Ordered equation Induct.l into the rewrite rule:

(false <=> in stack(x, ¢ y)) | (top(c_y) = x) | deq before(x, top(c_y), c_y)

=> true -
The system now contains 138 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):
lemma.3.2: in_stack(x, push(c_y, vil))

=> ((top(push(c_y, vil)) = x)
| deq_before(x, top(push(c_y, vil)), push(c_y, vil)))

-> true
[] Proved by normalization

Conjecture lemma.3
in_stack(x, y) => ((top(y) = x) | deq_before(x, top(y), y)) -> true
[] Proved by induction over ‘y’ of sort ‘deq_stack’.

The system now contains 1 equation, 137 rewrite rules, and 12 deduction rules.

Ordered equation lemma.3 into the rewrite rule:
(false <=> in_stack(x, y)) | (top(y) = x) | deq before(x, top(y), y) =-> true

The system now containa 138 rewrite rules and 12 deduction rules.
-> forget undo

Undo stack cleared.

62

-> freeze theory
System frozen in ‘theory.frz’.

-)q

63

5.3. Helping Lemma Set 1

add

append (append (x, y), z) => append(x, append(y, z))
(append (x, sub(y, x)) = y) | not(prefix(x, y)) => true
(cons:Seq,EL~>Seq(y, z) = x) | not (prefix(x, cons:Seq,EL->Seq(y, z))) |

prefix(x, y) -> true
append (ENQ(x), ENQ(y)) -> ENQ(append(x, y))
append (DEQ(x), DEQ(y)) =-> DEQ(append(x, y))
ENQ (append (cons(x, E(y)), z)) ->

append (cons:Seq, EL->Seq(ENQ(x), element (y)), ENQ(z))
ENQ (append(cons({x, D(y)), z)) =-> ENQ(append(x, z))
DEQ (append (cons(x, E(y)), z)) => DEQ(append(x, z))
DEQ (append (cons (x, D(y)), z)) ->
append (cons: Seq, EL->Seq(DEQ(x), what(y)), DEQ(z))
(DEQ(x) = DEQ(y)) | not(x = y) => true
(ENQ(x) = ENQ(y)) | not(x = y) -> true
(x=null:~>H) | not(in_state(x, init)) -> true
not (prefix(x,y)) | prefix(x, cons:Seq,EL->Seq(y, z)) => true
not (prefix (cons:Seq,EL->Seq(x, z), y)) | prefix(x, y) =-> true
in_state(xh, xst) | not(in_state(cons(xh, we::Ev), xst)) ~> true
prefix(x, append(x, y)) =-> true
(in_state (xh, xst) & prefix (DEQ(xh),ENQ(xh)))=>
prefix (DEQ (discard (xt,xh)),ENQ(discard(xt,xh)))

5.4. LP Proof Session of Lemma Set 1

~> thaw theory
System thawed from ‘theory.frz’.
=-> set axiom o
The axiom use is now ‘order-equations-into-~rules’.
=> set name lemmal
The name prefix is now ‘lemmal’.
-> prove append(x,append(y,z)) = append(append(x,y),z) by induction z Seq
The basis step in an inductive proof of Conjecture lemmal.l
append (append (x, y), z) == append(x, append(y, z))

involves proving the following lemma(s):

lemmal.l.l: append(append(x, y), null) == append(x, append(y, null))
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.l
append (append (x, y), z) == append(x, append(y, z))

uses the following equation(s) for the induction hypothesis:

Induct.2: append(append(x, y), ¢_z) == append(x, append(y, c_z))

The system now contains 1 equation, 138 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:
append (append(x, y), c_z) =-> append(x, append(y, c_z))

The system now contains 139 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):
lemmal.l.2: append(append(x, y), cons(c_z, vil))
== append (x, append(y, cons (e_z, vil)))
[] Proved by normalization
Conjecture lemmal.l
append (append (x, y), z) == append(x, append(y, z))
[] Proved by induction over ‘z’ of sort ‘Seq’.

The system now contains 1 equation, 138 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.l into the rewrite rule:
append (append (x, y), z) =-> append(x, append(y, z))

The system now contains 139 rewrite rules and 12 deduction rules.

~> prove prefix(x,y)=>(append(x,sub(y,x))=y) by induction y Segq

The basis step in an inductive proof of Conjecture lemmal.2

prefix(x, y) => (append(x, sub(y, x)) = y) => true

involves proving the following lemma(s):

lemmal.2.1l: prefix(x, null) => (append(x, sub(null, x)) = null) -> true
which reduces to the equation
(false <=> prefix(x, null)) | (null = x) => true

Proof of Lemma lemmal.2.l suspended.

=> resume by induction x Seq

The basis step in an inductive proof of Lemma lemmal.2.l for the basis step in

65

the proof of Conjecture lemmal.2
prefix (x, null) => (append(x, sub(null, x)) = null) -> true
involves proving the following lemma(s):

lemmal.2.1.1: prefix(null, null) => (append(null, sub(null, null)) = null)
=-> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.2.l for the basis step
in the proof of Conjecture lemmal.2

prefix (x, null) => (append(x, sub(null, x)) = null) =-> true
uses the following equation(s) for the induction hypothesis:

Induct.3: profix(c__:k, null) => (append(c_x, sub(null, c_x)) = null) -> true
The system now contains 1 equation, 139 rewrite rules, and 12 deduction rules.

Ordered equation Induct.3 into the rewrite rule:
(false <=> prefix(c_x, null)) | (c_x = null) -> true

The system now contains 140 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemmal.2.1.2: prefix(cons(c_x, vil), null)
=> (append(cons(c_x, vil), sub(null, cons(c_x, vil))) = null)
-> true
[] Proved by normalization

Lemma lemmal.2.1l for the basis step in the proof of Conjecture lemmal.2
prefix (x, null) => (append(x, sub(null, x)) = null) ~> true
[] Proved by induction over ‘x’ of sort ‘Seq’.

The induction step in an inductive proof of Conjecture lemmal.2
prefix(x, y) => (append(x, sub(y, x)) = y) -> true
uses the following equation(s) for the induction hypothesis:

Induct.4: prefix(x, c_y) => (append(x, sub(c_y, x)) = c_y) =-> true
The system now contains 1 equation, 139 rewrite rules, and 12 deduction rules.

Ordered equation Induct.4 into the rewrite rule:
(false <=> prefix(x, c_ y)) | (append(x, sub(c_y, x)) = c_y) => true

The system now contains 140 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemmal.2.2: prefix(x, cons(c_y, vil))
=> (append(x, sub(cons(c_y, vil), x)) = cons(c_y, vil))
=-> true
which reduces to the equation
(false <=> prefix(x, cons(c_y, vil)))
| (append(x, sub(cons(c_y, vil), x)) = cons(c_y, vil))
-> true

Proof of Lemma lemmal.2.2 suspended.
-> resums by induction x Seq

The basis step in an inductive proof of Lemma lemmal.2.2 for the induction step
in the proof of Conjecture lemmal.2

prefix(x, cons(c_y, vil))

=> (append(x, sub(cons(c_y, vil), x)) = cons(c_y, vil))

=-> true
involves proving the following lemma (s):

lemmal.2.2.1: prefix(null, conl(c_}, vil))
=> (append(null, sub(cons(c_y, vil), null)) = cons(c_y, vil))

66

=-> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.2.2 for the induction
step in the proof of Conjecture lemmal.2

prefix(x, cons(c_y, vil))

=> (append(x, sub(cons(c_y, vil), x)) = cons (c_y, vil))

=> true
uses the following equation(s) for the induction hypothesis:

Induct.5: prefix(c_x, cons(c_y, vil))
=> (append(c_x, sub(cons (c_y, vil), e x)) = cons (c_y, vil))
-> true
The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.
Ordered equation Induct.5 into the rewrite rule:
(false <=> prefix(c_x, cons(c_y, vil)))
| (append(c_x, sub(cons(c_y, vil), ¢ _%x)) = cons(c_y, vil))
-> true

The system now contains 141 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s):

‘lemmal.2.2.2: prefix(cons(c_x, vi2), cons (c_y, vil))

-> (appcnd(con.(c__x, vi2), sub (cons (c_y, vil), con'(c_x, vi2)))
= cons(c y, vil))

=> true
which reduces to the equation
((false <=> prefix(cons(ec_x, vi2), c y))
& (((c_x = c_y) <=> false) | ((vil = vi2) <=> false)))
| ((c_x = c_y) & (vil = vi2))
| (append (cons (c_x, vi2), sub(c_y, cons (c_x, vi2))) = c_y)
=-> true

Proof of Lemma lemmal.2.2.2 suspended.
=> resume by case (c_x=c_y)&(vil=vi2)

Case.3.1
(c_vil = c vi2) & (¢ x = c y) == true
involves proving Lemma lemmal.2.2.2.1
prefix(cons(c x, ¢ _vi2), cons(c_y, ¢ vil))
=> (append (cons(c_x, c_vi2), sub (cons(c_y, c_vil), comns(c_x, c_vi2)))
= cons (c_y, c_vil))

=> true
The case system now contains 1 equation.

Deduction rule booclean.3:
when x & y == true
yield x == true
y == true
has been applied to equation Case.3.1:
(c_vil = c vi2) & (c_x = c y) == true
to yield the following equations:
Case.3.1.1: c_vil = c vi2 == true
Case.3.1.2: c x = c_y == true

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.3.1.2:
C_X = c_y == true

to yield the following equations:
Case.3.1.2.1: c_x == c_y

67

Deduction rule equality.4:
when x = y == true
vield x == y

has been applied to equation Case.3.1.1:
c_vil = c vi2 == true

to yield the following equationa:
Case.3.1.1.1: c_vil == c vi2

Ordered equation Case.3.1.2.1 into the rewrite rule:
ex ->cy

The case system now contains 1 equation and 1 rewrite rule.

Ordered equation Case.3.1.1.1 into the rewrite rule:
c_vil => c_vi2

The case system now contains 2 rewrite rules.

Lemma lemmal.2.2.2.1 in the proof by cases of Lemma lemmal.2.2.2
prefix(cons(c_x, c_vi2), cons(c_y, c_vil))
=> (append(cons(c_x, c_vi2), sub(cons(c_y, c_vil), cons (c_x, c_vi2)))
= cons(c_y, c_vil))

=-> true
Case.3.1: (c_vil = c vi2) & (c_x = c_y)
[] Proved by rewriting (with unreduced rules).

Case.3.2
not ((c_vil = c_vi2) & (c_x = c_y)) == true
involves proving Lemma lemmal.2.2.2.2
prefix(cons(c_x, ¢_vi2), coms(c_y, c_vil))
=> (append(cons(c_x, c_vi2), sub(cons(c_y, c_vil), cons(c_x, c_vi2)))
= cons(c_y, c_vil))

-> true
The case system now contains 1 equation.

Ordered equation Case.3.2 into the rewrite rule:
((c_vil = c_vi2) <=> false) | ((c_x = c_y) <=> false) =-> true

The case system now cofitains 1 rewrite rule.

Lemma lemmal.2.2.2.2 in the proof by cases of Lemma lemmal.2.2.2
prefix(cons(c_x, c_vi2), cons(c_y, c_vil))
=> (append(cons(c_x, c_vi2), sub(cons(c_y, c_vil), cons(c_x, c_vi2)))
= cons(c_ y, c _vil))

=-> true
Case.3.2: not((c_vil = c_vi2) & (c x = c y))
{] Proved by rewriting (with unreduced rules).

Lemma lemmal.2.2.2 for the induction step in the proof of Lemma lemmal.2.2
prefix(cons(c_x, vi2), cons(c_y, vil))
=> (append(cons(c_x, vi2), sub(cons(c_y, vil), cons (c_x, vi2)))
= cons(c_y, vil))

=-> true
[] Proved by cases
((c_x=cy) & (vil = vi2)) | not((c x = c y) & (vil = vi2))

Lemma lemmal.2.2 for the induction step in the proof of Conjecture lemmal.2
prefix(x, cons(c_y, vil))
=> (append(x, sub(cons(c_y, vil), x)) = cons(c_y, vil))
-> true

[] Proved by induction over ‘x’ of sort ‘Seq’.

Conjecture lemmal.2

68

prefix(x, y) => (append(x, sub(y, x)) = y) => true
[] Proved by induction over ‘y’ of sort ‘Seq’.

The system now contains 1 equation, 139 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.2 into the rewrite rule:
(false <=> prefix(x, y)) | (append(x, sub(y, x)) = y) => true

The system now contains 140 rewrite rules and 12 deduction rules.
=-> prove prefix(x,cons:Seq,EL->Seq(y,z))=>(prefix(x,y) | x=cons:Seq,EL->Seq(y,z)) by induction x Seq
The basis step in an inductive proof of Conjecture lemmal.3
prefix(x, cons(y, z)) => ((cons(y, z) = x) | prefix(x, y)) -> true
involves proving the following lemma(s):
lemmal.3.1: prefix(null, cons(y, z)) => ((cons(y, z) = null) | prefix(null, y))
=-> true
[] Proved by normalization
The induction step in an inductive proof of Conjecture lemmal.3
prefix(x, cons(y, z)) => ((cons(y, z) = x) | prefix(x, y)) =-> true

uses the following equation(s) for the induction hypothesis:

Induct.6: prefix(c_x, cons(y, z)) => ((c_x = cons(y, z)) | prefix(c x, y))
-> true

The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.
Ordered equation Induct.6 into the rewrite rule:
(false <=> prefix(c_x, cons(y, z))) | (c_x = cons(y, z)) | prefix(c_x, y)
=-> true
The system now contains 141 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):
lemmal.3.2: prefix(cons(c_x, vil), cons(y, z))
-> ((conl(c_x, vil) = cons(y, z)) | prefix(cons(c_x, vil), y))
=-> true '
[] Proved by normalizatien
Conjecture lemmal.3
prefix(x, cons(y, z)) => ((cons(y, z) = x) | prefix(x, y)) =-> true
[] Proved by induction over ‘x’ of sort ‘Seq’.

The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.

O:dor;d equation lemmal.3 into the rewrite rule:
(false <=> prefix(x, cons(y, z))) | (cons(y, z) = x) | prefix(x, y) =~> true

The system now contains 141 rewrite rules and 12 deduction rules.

=> prove ENQ(append (x,y))=append (ENQ(x) ,ENQ(y)) by induction y H

The basis step in an inductive proof of Conjecture lemmal.4
ENQ(append(x, y)) == append(ENQ(x), ENQ(y))

involves proving the following lemma(s):

lemmal.4.1l: ENQ(append(x, null)) == append(ENQ(x), ENQ(null))
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.4
ENQ(append (x, y)) == append(ENQ(x), ENQ(y))
uses the following equation(s) for the induction hypothesis:

Induct.7: ENQ(append(x, c_y)) == append(ENQ(x), ENQ(c_y))

The system now contains 1 equation, 141 rewrite rules, and 12 deduction rules.

69

Ordered equation Induct.7 into the rewrite rule:
append (ENQ(x), ENQ(c y)) =-> ENQ(append(x, c_y))

The system now contains 142 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemmal.4.2: ENQ(append(x, cons(c_y, vil)))
== append (ENQ(x), ENQ(cons(c_y, vil)))
which reduces to the egquation
ENQ (cons (append (x, ¢ y), vil))
== append (ENQ(x), ENQ(cons(c_y, vil)))

Proof of Lemma lemmal.4.2 suspended.

=> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.4.2 for the induction step
in the proof of Conjecture lemmal.4

ENQ (append (x, cons(c_y, vil))) == append(ENQ(x), ENQ(cons(c_y, vil)))
involves proving the following lemma(s):

lemmal.4.2.1: ENQ(append(x, cons(c_y, E(vi2))))
== append (ENQ(x), ENQ(cons(c_y, E(vi2))))
[] Proved by normalization

lemmal.4.2.2: ENQ(append(x, cons(c y, D(vi2))))
== append (ENQ(x), ENQ(cons(c_y, D(vi2))))
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.4.2 for the induction
step in the proof of Conjecture lemmal.4

ENQ (append (x, cons(c_y, vil))) == append (ENQ(x), ENQ(cons(c_y, vil)))
is vacuous.

Lemma lemmal.4.2 for the induction step in the proof of Conjecture lemmal.4
ENQ (append (x, cons (c_y, vil))) == append(ENQ(x), ENQ(cons (c_y, vil)))

[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.

Conjecture lemmal.4
ENQ(append(x, y)) == append(ENQ(x), ENQ(y))

[] Proved by induction over ‘y’ of sort ‘H’.

The system now contains 1 equation, 141 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.4 into the rewrite rule:
append (ENQ(x), ENQ(y)) =-> ENQ(append(x, y))

The system now contains 142 rewrite rules and 12 deduction rules.

=> prove DEQ(append(x,y))=append(DEQ(x),DEQ(y)) by induction y H

The basis step in an inductive proof of Conjecture lemmal.5
DEQ(append(x, y)) == append(DEQ(x), DEQ(y))

involves proving the following lemma(s):

lemmal.5.1: DEQ(append(x, null)) == append(DEQ(x), DEQ(null))
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.5
DEQ (append (x, y)) == append(DEQ(x), DEQ(y))
uses the following equation(s) for the induction hypothesis:
Induct.8: DEQ(append(x, c_y)) == append (DEQ(x), DEQ(c_y))
The system now contains 1l equation, 142 rewrite rules, and 12 deduction rules.
Ordered equation Induct.8 into the rewrite rule:

append (DEQ(x), DEQ(c_y)) -> DEQ(append(x, c_y))

70

The system now contains 143 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.5.2: DEQ(append(x, cons(c_y, vil)))
== append (DEQ(x), DEQ(cons(c_y, vil}))
which reduces to the equation
DEQ(cons (append (x, c_y), vil))
== append (DEQ(x), DEQ(cons(c_y, vil)))

Proof of Lemma lemmal.5.2 suspended.
=-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.5.2 for the induction step
in the proof of Conjecture lemmal.5

DEQ(append (x, cons(c_y, vil))) == append(DEQ(x), DEQ(cons(c_y, vil)))
involves proving the following lemma(s):

lemmal.5.2.1: DEQ(append(x, cons(c_ y, E(vi2))))
== append (DEQ(x), DEQ(cons(c_y, E(vi2))))
[] Proved by normalization

lemmal.5.2.2: DEQ(append(x, cons(c_y, D(vi2))))
== append (DEQ(x), DEQ(cons(c_y, D(vi2))))
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.5.2 for the induction
step in the proof of Conjecture lemmal.5

DEQ(append (x, cons(c_y, vil))) == append(DEQ(x), DEQ(cons(c_y, vil)))
is vacuous.

Lemma lemmal.5.2 for the induction step in the proof of Conjecture lemmal.5
DEQ(append (x, cons(c_y, vil))) == append(DEQ(x), DEQ(cons(c_y, vil)))
[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.

Conjecture lemmal.5
DEQ(append (x, y)) == append(DEQ(x), DEQ(y))
[] Proved by induction over ‘y’ of sort ‘H’.

The system now contains 1 equation, 142 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.5 into the rewrite rule:
append (DEQ(x), DEQ(y)) -> DEQ(append(x, y))

The system now contains 143 rewrite rules and 12 deduction rules.

-> prove ENQ(append (cons(x,E(y)),z))=append(cons:Seq,EL~>Seq (ENQ(x) ,element (y)) ,ENQ(z)) by induction
z H

The basis step in an inductive proof of Conjecture lemmal.é6
ENQ (append (cons(x, E(y)), z)) == append(cons (ENQ(x), element(y)), ENQ(z))
involves proving the following lemma(s):

lemmal.6.1: ENQ(append(cons(x, E(y)), null))
== append (cons (ENQ(x), element(y)), ENQ(null))
{] Proved by normalization
The induction step in an inductive proof of Conjecture lemmal.é
ENQ(append(cons(x, E(y)), z)) == append(cons (ENQ(x), element(y)), ENQ(z))
uses the following equation(s) for the induction hypothesis:

Induct.9: ENQ(append(cons(x, E(y)), <_z))
== append(cons (ENQ(x), element(y)), ENQ(c_z))

The system now contains 1 equation, 143 rewrite rules, and 12 deduction rules.

Ordered equation Induct.9 into the rewrite rule:
ENQ (append (cons(x, E(y)), c_z)) -> append(cons(ENQ(x), element(y)), ENQ(c_z))

71

The system now contains 144 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.6.2: ENQ(append(cons(x, E(y)), cons(c_z, vil)))
== append (cons (ENQ(x), element (y)), ENQ(cons (c_z, vil)))
which reduces to the equation
ENQ(cons (append (cons (x, E(y)), c_z), vil))
== append (cons (ENQ(x), element(y)), ENQ(cons(c_z, vil)))

Proof of Lemma lemmal.6.2 suspended.
=> resums by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.6.2 for the induction step
in the proof of Conjecture lemmal.é

ENQ(append (cons(x, E(y)), cons(c_z, vil)))

== append (cons (ENQ(x), element (y)), ENQ(cons (c_z, vil)))
involves proving the following lemma(s):

lemmal.6.2.1: ENQ{append(cons(x, E(y)), cons (c_z, E(vi2))))
== append (cons (ENQ(x), element(y)), ENQ (cons(c_z, E(vi2))))
[] Proved by normalization

lemmal.6.2.2: ENQ(append(cons(x, E(y)), cons(c_z, D(vi2))))
== append (cons (ENQ(x), element(y)), ENQ(cons (c_z, D(vi2))))
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.6.2 for the induction
step in the proof of Conjecture lemmal.é6

ENQ(append(cons (x, E(y)), cons(c_z, vil)))

== append (cons (ENQ(x), element (y)), ENQ(cons (e_z, vil)))
is vacuous.

Lemma lemmal.6.2 for the induction step in the proof of Conjecture lemmal.é
ENQ (append (cons (x, E(y)), cons(c_z, vil)))
== append (cons (ENQ(x), element (y)), ENQ(cons (e_z, vil)))

[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.

Conjecture lemmal.é6

ENQ(append (cons (x, E(y)), z)) == append(cons(ENQ(x), element(y)), ENQ(z))
[] Proved by induction over ‘z’ of sort ‘H’.

The system now contains 1 equation, 143 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.é into the rewrite rule:
ENQ(append(cons (x, E(y)), z)) =-> append(cons (ENQ(x), element(y)), ENQ(z))

The system now contains 144 rewrite rules and 12 deduction rules.
=> prove ENQ(append(cons(x,D(y)), z))=append (ENQ(x),ENQ(z)) by induction z H
The basis step in an inductive proof of Conjecture lemmal.?

ENQ (append (cons(x, D(y)), z)) == append(ENQ(x), ENQ(z))

involves proving the following lemma(s):

lemmal.7.1: ENQ(append(cons(x, D(y)), null)) == append(ENQ(x), ENQ(null))
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.?
ENQ (append (cons(x, D(y)), z)) == append(ENQ(x), ENQ(z))
uses the following equation(s) for the induction hypothesis:
Induct.10: ENQ(append(cons(x, D(y)), c_z)) == append(ENQ(x), ENQ(c_z))
The system now contains 1 equation, 144 rewrite rules, and 12 deduction rules.
Ordered equation Induct.l0 into the rewrite rule:

ENQ (append (cons (x, D(y)), c_z)) ~-> ENQ(append (%, c_z))

72

The system now contains 145 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.7.2: ENQ(append(cons(x, D(y)), cons(c_z, vil)))
== append(ENQ(x), ENQ(cons(c_z, vil)))
which reduces to the equation
ENQ (cons (append (cons(x, D(y)), c_z), vil))
== ENQ{(cons (append(x, c_z), vil))

Proof of Lemma lemmal.?7.2 suspended.
-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.7.2 for the induction step
in the proof of Conjecture lemmal.?

ENQ (append (cons(x, D(y)), cons(c_z, vil)))

== append (ENQ(x), ENQ(cons(c_z, vil)}))
involves proving the following lemma (s):

lemmal.7.2.1: ENQ(append(cona(x, D(y)), cons(c_z, E(vi2))))
== append (ENQ(x), ENQ(cons(c.z, E(vi2))))
[] Proved by normalization

lemmal.7.2.2: ENQ(append(cons(x, D(y)), cons(c_z, D(vi2))))
== append (ENQ(x), ENQ(cons(c_z, D(vi2))))
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.7.2 for the induction
step in the proof of Conjecture lemmal.?7

ENQ (append (cons (x, D(y)), cons (e_z, vil)))

== append (ENQ(x), ENQ(cons(c_z, vil)))
is vacuous.

Lemma lemmal.7.2 for the induction step in the proof of Conjecture lemmal.?7
ENQ(append (cons(x, D(y)), cons(c_z, vil)))
== append (ENQ(x), ENQ(cons(c_z, vil)))

[] Proved by induction over ‘vil::Bv’ of sort ‘Ev’.

Conjecture lemmal.?7
ENQ (append (cons(x, D(y)), z)) == append(ENQ(x), ENQ(z))

[] Proved by induction over ‘z’ of sort ‘RH’.

The system now contains 1 equation, 144 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.7 into the rewrite rule:
ENQ (append (cons(x, D(y)), z)) => ENQ(append(x, z))

The system now contains 145 rewrite rules and 12 deduction rules.

-> prove DEQ(append(cons(x,E(y)),z))=append (DEQ(x),DEQ(z)) by induction z H

The basis step in an inductive proof of Conjecture lemmal.8
DEQ(append(cons(x, E(y)), z)) == append(DEQ(x), DEQ(z))

involves proving the following lemma(s):

lemmal.8.1: DEQ(append(cons(x, E(y)), null)) == append(DEQ(x), DEQ(null))
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.8
DEQ (append (cons (x, E(y)), z)) == append(DEQ(x), DEQ(z))
uses the following equation(s) for the induction hypothesis:
Induct.ll: DEQ(append(cons(x, E(y)), c¢_z)) == append(DEQ(x), DEQ(c_z))
The system now contains 1 equation, 145 rewrite rules, and 12 deduction rules.
Ordered equation Induct.ll into the rewrite rule:

DEQ (append (cona(x, E(y)), c_z)) -> DEQ(append(x, c_z))

73

The system now contains 146 rewrite rules and 12 deduction rules.
The induction step inveolves proving the fellowing lemma (s):

lemmal.8.2: DEQ(append(cons(x, E(y)), cons(c_z, vil)))
== append (DEQ(x), DEQ(cons(c_z, vil)))
which reduces to the equation
DEQ(cons (append (cons (x, E(y)), c_z), vil))
== DEQ(cons (append(x, c_z), vil))

Proof of Lemma lemmal.8.2 suspended.
-> resums by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.8.2 for the induction step
in the proof of Conjecture lemmal.S8

DEQ (append (cons (x, E(y)), cona(c_z, vil)))

== append (DEQ(x), DEQ(cons(c_z, vil)))
involves proving the following lemma(s):

lemmal.8.2.1: DEQ(append{cons(x, E(y)), cons (c_z, E(vi2))))
== append (DEQ(x), DEQ(cons(c_z, E(vi2))))
[] Proved by normalizatien

lemmal.8.2.2: DEQ(append(cons(x, E(y)), cons(c_z, D(vi2))))
== append (DEQ(x), DEQ(cons(c_z, D(vi2))))
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.8.2 for the induction
step in the proof of Conjecture lemmal.$8

DEQ(append (cons (x, E(y)), cons(c_z, vil)))

== append(DEQ(x), DEQ(cons(c_z, vil)))
is vacuous.

Lemma lemmal.8.2 for the induction step in the proof of Conjecture lemmal.$8
DEQ (append (cons (x, E(y)), cons(c_z, vil)))
== append (DEQ(x), DEQ(cons(c_z, vil)))

[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.

Conjecture lemmal.S8
. DEQ(append(cons(x, E(y)), z)) == append(DEQ(x), DEQ(z))
[{] Proved by induction over ‘z’ of sort ‘H’.)

The system now contains 1 equation, 145 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.8 into the rewrite rule:
DEQ (append (cons(x, E(y)), z)) =-> DEQ(append(x, z))

The system now contains 146 rewrite rules and 12 deduction rules.

-> prove DEQ (append(cons(x,D(y)),z))=append(cons:Seq, EL~>Seq(DEQ (x),what (y)),DEQ(z)) by induction z
H

The basis step in an inductive proof of Conjecture lemmal.9
DEQ (append (cons(x, D(y)), z)) == append{cons(DEQ(x), what(y)), DEQ(z))
involves proving the following lemma(s):

lemmal.9.1: DEQ(append(cons(x, D(y)), null))
== append (cons (DEQ(x), what(y)), DEQ(null))
[] Proved by normalization
The induction step in an inductive proof of Conjecture lemmal.9
DEQ (append (cons(x, D(y)), z)) == append(cons(DEQ(x), what(y)), DEQ(z))
uses the following equation(s) for the induction hypothesis:

Induct.12: DEQ(append(cons(x, D(y)), c_z))
== append (cons (DEQ(x), what(y)), DEQ(c_z))

The system now contains 1 equation, 146 rewrite rules, and 12 deduction rules.

74

Ordered equation Induct.l2 into the rewrite rule:
DEQ (append (cons (x, D(y)), c_z)) ~> append(cons(DEQ(x), what(y)), DEQ(c_z))

The system now contains 147 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemmal.9.2: DEQ(append(cons(x, D(y)), cons(c_z, vil)))
== append (cons (DEQ(x), what(y)), DEQ(cons(c_z, vil)))
which reduces to the equation
DEQ (cons (append (cons (x, D(y)), c_z), vil))
== append (cons (DEQ(x), what(y)), DEQ(cons(c_z, vil)))

Proof of Lemma lemmal.$.2 suspended.
=-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.9.2 for the induction step
in the proof of Conjecture lemmal.9

DEQ(append (cons(x, D(y)), cons(c_z, vil)))

== append (cons (DEQ(x), what(y)), DEQ(cons(c_z, vil)))
involves proving the following lemma(s):

lemmal.9.2.1: DEQ(append(cons(x, D(y)), cons(c_z, E(vi2))))
== append (cons (DEQ(x), what(y)), DEQ(cons(c_z, E(vi2))))
[] Proved by normalization

lemmal.9.2.2: DEQ(append(cons(x, D(y)), cons(c_z, D(vi2))))
== append{cons (DEQ(x), what(y)), DEQ(cons(c_z, D(vi2))))
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.9.2 for the induction
step in the proof of Conjecture lemmal.$

DEQ (append (cons(x, D(y))., cona(c__z, vil)))

== append (cons (DEQ(x), what(y)), DEQ(cons(c_z, vil)))
is vacuous.

Lemma lemmal.9.2 for the induction step in the proof of Conjecture lemmal.9
DEQ(append (cons (x, D(y)), cons(c_z, vil)))
== append(cons (DEQ(x), what(y)), DEQ(cons(c_z, vil)))
[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.
Conjecture lemmal.9
DEQ (append (cons (x, D(y)), z)) == append(cons(DEQ(x), what(y)), DEQ(z))
[] Proved by induction over ‘z’ of soxt ‘H’.

The system now contains 1 equation, 146 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.9 into the rewrite rule:
DEQ (append (cons(x, D(y)), z)) =-> append(cons(DEQ(x), what(y)), DEQ(z))

The system now contains 147 rewrite rules and 12 deduction rules.

-> prove (x=y)=>(DEQ(x)=DEQ(y)) by induction x H
The basis step in an inductive proof of Conjecture lemmal.lO
(x = y) => (DEQ(x) = DEQ(y)) ~-> true
involves proving the following lemma(s):
lemmal.1l0.1: (null = y) => (DEQ(null) = DEQ(y)) =-> true
which reduces to the ecuation
((null = y) <=> false) | (DEQ(y) = null) => true
Proof of Lemma lemmal.l0.l suspended.

-> resums by induction y B

The basis step in an inductive proof of Lemma lemmal.l10.1 for the basis step in

15

the proof of Conjecture lemmal.l0
(null = y) => (DEQ(null) = DEQ(y)) -> true
invelves proving the following lemma(s):

lemmal.1l0.1.1: (null = null) => (DEQ(null) = DEQ(null)) => true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.l0.l1 for the basis
step in the proof of Conjecture lemmal.l0

(null = y) => (DEQ(null) = DEQ(y)) =-> true
uses the following equation(s) for the induction hypotheais:

Induct.13: (c_y = null) => (DEQ(c_y) = DEQ(null)) => true
The system now contains 1 equation, 147 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l3 into the rewrite rule:
((c_y = null) <=> false) | (DEQ(c_y) = null) =-> true

The system now contains 148 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemmal.1l0.1.2: (cons(c_y, vil) = null) => (DEQ (cons (c_y, vil)) = DEQ(null))
=> true
[] Proved by normalization

Lemma lemmal.l0.l for the basis step in the proof of Conjecture lemmal.l0
(null = y) => (DEQ(null) = DEQ(y)) -> true
[] Proved by induction over ‘y’ of sort ‘H’.

The induction step in an inductive proof of Conjecture lemmal.10
(x = y) => (DEQ(x) = DEQ(y)) =-> true
uses the following equation(s) for the induction hypothesis:

Induct.14: (c_x = y) => (DEQ(c_x) = DEQ(y)) -> true
The system now contains 1 equation, 147 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l4 intc the rewrite rule:
((c_x = y) <=> false) | (DEQ(c_x) = DEQ(y)) => true

The system now contains 148 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemmal.10.2: (cons(c_x, vil) = y) => (DEQ(cons(c_x, vil)) = DEQ(y)) =-> true
which reduces to the equation
((cons(c_x, vil) = y) <=> false)
| (DEQ(cons(c_x, vil)) = DEQ(y))
-> true

Proof of Lemma lemmal.l0.2 suspended.
-> resume by induction y H

The basis step in an inductive proof of Lemma lemmal.1l0.2 for the induction
step in the proof of Conjecture lemmal.l0

(cons(c_x, vil) = y) => (DEQ(cons(c_x, vil)) = DEQ(y)) -> true
involves proving the following lemma(s):

lemmal.10.2.1: (cons(c_x, vil) = null) => (DEQ(cons(c_x, vil)) = DEQ(null))
-> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.10.2 for the induction
step in the proof of Conjecture lemmal.l0

(cons(c_x, vil) = y) => (DEQ(cons(c_x, vil)) = DEQ(y)) -> true
uses the following equation(s) for the induction hypothesis:

76

Induct.l5: (c_y = cons(c_x, vil)) => (DEQ(c_y) = DEQ(cons(c_x, vil))) => true
The system now contains 1 equation, 148 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l5 into the rewrite rule:
((c_y = cons(c_x, vil)) <=> false) | (DEQ(c y) = DEQ(cons(c_x, vil))) =-> true

The system now contains 149 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.10.2.2: (cons(c_x, vil) = cons(c_y, vi2))
=> (DEQ(coms(c_x, vil)) = DEQ(cons(c_y, vi2)))
-> true -
which reduces to the equation
((c_x = c_y) <=> false)
| ((vil = vi2) <=> false)
| (DEQ(coms(c_x, vil)) = DEQ(cona(c_y, vi2)))
-> true

Proof of Lemma lemmal.l0.2.2 suspended.
-> resume by induction vil Ev

The basis step in an inductive procf of Lemma lemmal.l0.2.2 for the induction
step in the proof of Lemma lemmal.l0.2

(cons(c_x, vil) = cons(c_y, vi2))

=> (DEQ(cons(c_x, vil)) = DEQ(cons(c_y, vi2)))

=> true
involves proving the following lemma (s):

lemmal.10.2.2.1: (cons(c_x, E(vi3)) = cons(c_y, vi2))
=> (DEQ(cona(c_x, E(vi3))) = DEQ(cons(c_y, vi2)))
=> true .
which reduces to the equation
((B(vi3) = vi2) <=> false)
| ((c_x = c_y) <=> false)
| (DEQ(c_x) = DEQ(cons(c_y, vi2)))
=-> true
lemmal.1l0.2.2.2: (cons(c_x, D(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, vi2)))
=-> true
which reduces to the equation
((D(vi3) = vi2) <=> false)
| ({e_x = c_y) <=> false)
| (DEQ(cons(c_y, vi2)) = cons(DEQ(c_x), what(vi3)))
-> true

Proof of Lemma lemmal.l0.2.2.2 suspended.

=> resumes by case c_xmc_y
Case.4.1 *
C X =cy== true
involves proving Lemma lemmal.l0.2.2.2.1
(cons(c_x, D(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons (e_y, vi2)))
-> true

The case system now contains 1 egquation.

Deduction rule equality.4:
when x = y == true
yield x w= y

has been applied to equation Case.4.1l:
C X = c y == true

to yield the following equations:
Case.4.1.1: ¢ x == c y

77

Ordered equation Case.4.l1.l1 into the rewrite rule:
e x =>cy

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.4.1l:
c x = c y == true

to yield the following equations:
Case.4.1.2: ¢ x == c_ y

Ordered equation Case.4.l1.2 into the rewrite rule:
cx =>cy

Following 2 left-hand sides reduced:
((c_x = y) <=> false) | (DEQ(c_x) = DEQ(y)) => true
became equation Induct.l4:
((c_y = y) <=> false) | (DEQ(c_x) = DEQ(y)) -> true
((c_y = conas(c_x, vil)) <=> false) | (DEQ(c_y) = DEQ(cons(c_x, vil)))
=> true
became equation Induct.l5:
((c_y = cons(c_y, vil)) <=> false) | (DEQ(c_y) = DEQ(cons(c_x, vil)))
=-> true

Ordered equation Induct.l4 into the rewrite rule:
((c_y = y) <=> false) | (DEQ(c_y) = DEQ(y)) => true

The system now contains 149 rewrite rules and 12 deduction rules.

Lerma lemmal.l0.2.2.2.1 in the proof by cases of Lemma lemmal.l0.2.2.2

(cons(c_x, D(vi3)) = cons(c_y, vi2))

=> (DEQ(cons(c_x, D(vi3))) = DEQ(cona(c_y, vi2)))

=> true

Case.4.1l: ¢ x = c_y
is NOT provable using the current partially completed system. It reduces to
the equation

((D(vi3) = vi2) <=> false)

| (DEQ(cons(c_y, vi2)) = cons (DEQ(c_y), what(vi3)))
-> true

Proof of Lemma lemmal.l0.2.2.2.1 suspended.
-> resume by induction vi2 Bv

The basis step in an inductive proof of Lemma lemmal.l1l0.2.2.2.1 in the proof by
cases of Lemma lemmal.l0.2.2.2

(cons (c_x, D(vi3)) = cons(c_y, vi2))

=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, vi2)))

=> true

Case.4.1: c_ x = c y
involves proving the following lemma(s):

lemmal.1l0.2.2.2.1.1
(cons(c_x, D(vi3)) = cons(c_y, E(vil)))
=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, E(vil))))
-> true
[] Proved by normalization
lemmal .10.2.2.2.1.2
(cons (c_x, D(vi3)) = cons(c_y, D(vil)))
=> (DEQ(cons(c_x, D(vi3))) = DEQ(cens(c_y, D(vil))))
-> true
which reduces to the equation
((D(vil) = D(vi3)) <=> false) | (what(vil) = what(vi3)) => true

78

Proof of Lemma lemmal.l10.2.2.2.1.2 suspended.
=-> resume by case D(vil: :deq_rec)=D (vi3: :deq_rec)

Case.5.1
D(c_vil) = D(c_vi3) == true
involves proving Lemma lemmal.l10.2.2.2.1.2.1
(cons (c_x, D(c_vi3)) = cons(c_y, D(c_vil)))
=> (DEQ(cons(c_x, D(c_vi3))) = DEQ(cons(c_y, D(c_vil))))
-> true

The case system now contains 1 equation.

Deduction rule equality.4:
when Xx = y == true
yield x == y

has been applied to equation Case.5.1:
D(c_vil) = D(c_vi3) == true

to yield the following equations:
Case.5.1.1: D(c_vil) == D(c_vi3)

Ordered equation Case.5.1.1 inte the rewrite rule:
D(e_vil) => D(ec_vi3)

The case system now contains 1 rewrite rule.

Lemma lemmal.1l0.2.2.2.1.2.1 in the proof by cases of Lemma lemmal.10.2.2.2.1.2
(cons(c_x, D(c_vi3)) = cons(c_y, D(c_vil)))
=> (DEQ(cons(c_x, D(c_vi3))) = DEQ(cons(c_y, D(c_vil))))
-> true
Case.5.1: D(c_vil) = D(c_vi3)
[] Proved by rewriting (with unreduced rules).

Case.5.2
not (D(c_vil) = D(c_vi3)) == true
involves proving Lemma lemmal.l10.2.2.2.1.2.2
(cons(c_x, D(c_vi3)) = cons(c_y, D(c_vil)))
=> (DEQ(cons(c_x, D(c_vi3))) = DEQ(cons(c_y, D(c_vil))))
-> true

The case system now contains 1 equatioen.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.5.2:
(D(c_vil) = D(c_vi3)) <=> false == true
to yield the following egquations:
Case.5.2.1: D(c_vil) = D(c_vi3) == false

Ordered equation Case.5.2.1 into the rewrite rule:
D(c_vil) = D(c_vi3) => false

The case system now contains 1 rewrite rule.

Lemma lemmal.l0.2.2.2.1.2.2 in the proof by cases of Lemma lermal.1l0.2.2.2.1.2
(cons(c_x, D(c_vi3)) = cons(c_y, D(c_vil)))
=> (DEQ(cons(c_x, D(c_vi3))) = DEQ(cons(c_y, D{c_vil))))
=> true
Case.5.2: not (D(c_vil) = D(c_vi3))
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.1l0.2.2.2.1.2 for the basis astep in the proof of Lemma
lemmal.1l0.2.2.2.1

(cons(c_x, D(vi3)) = coms(c_y, D(vil)))

=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, D(vil))))

=-> true
[] Proved by cases

(D(vil) = D(vi3)) | not(D(vil) = D(vi3))

79

The induction step in an inductive proof of Lemma lemmal.l0.2.2.2.1 in the
proof by cases of Lemma lemmal.10.2.2.2

(cons(c_x, D(vi3)) = cons(c_y, vi2))

=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons (e_y, vi2)))

-> true

Case.4.1: ¢ x = c_y
is vacuous.

Lemma lemmal.l0.2.2.2.1 in the proof by cases of Lemma lemmal.10.2.2.2
(cons(c_x, D(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, vi2)))
-> true
Case.4.1l: ¢ x = c_y
[] Proved by induction over ‘vi2::Ev’ of sort ‘Ev’.

Case.4.2
not(c__x = c y) == true
involves proving Lemma lemmal.1l0.2.2.2.2
(cons (c_x, D(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, vi2)))
-> true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x w= y

has been applied to equation Case.§.2:
(c_x = c y) <=> false == true

to yield the following equations:
Case.4.2.1: c_x = c_y == false

Ordered equation Case.4.2.1 into the rewrite rule:
c x = c y -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.l0.2.2.2.2 in the proof by cases of Lemma lemmal.l0.2.2.2
(cons(c_x, D(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, vi2)))
-> true
Case.4.2: not(c_x = c_y)
[]1 Proved by rewriting (with unreduced rules).

Lemma lemmal.l0.2.2.2 for the basis step in the proof of Lemma lemmal.l0.2.2
(cons(c_x, D(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, D(vi3))) = DEQ(cons(c_y, vi2)))
=> true
[]1 Proved by cases
(e_x = c y) | not(c_x = c_y)

Lemma lemmal.l0.2.2.1 for the basis step in the proof of Lemma lemmal.10.2.2
(cons(c_x, E(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, E(vi3))) = DEQ(cons(c_y, vi2)))
=> true
is NOT provable using the current partially completed system. It reduces to
the equation
((E(vi3) = vi2) <=> false)
| ({e_x= c_y) <=> false)
| (DEQ(c_x) = DEQ(con-(c_y, vi2)))
=> true

Proof of Lemma lemmal.10.2.2.1 suspended.
=> resume by case c_x=c_y
Case.6.1

e X = c y == true

80

involves proving Lemma lemmal.l0.2.2.1.1
(cons (c_x, E(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, E(vi3))) = DEQ(cons(c_y, vi2)))
=> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.6.1:
C X = c y == true

to yield the following equations:
Case.6.1.1: ¢ x == c_y

Ordered equation Case.6.1.1 into the rewrite rule:
e x =>cy

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.6.l:
C X = c y == true

to yield the following equations:
Case.6.1.2: ¢ x == c y

Ordered equation Case.6.1.2 into the rewrite rule:
cx ->cy

Following 2 left-hand sides reduced:
((c_x = y) <=> false) | (DEQ(c_x) = DEQ(y)) =-> true
became equation Induct.l14:
((c_y = y) <=> false) | (DEQ(c_x) = DEQ(y)) => true
((c_y = cons(c_x, vil)) <=> false) | (DEQ(c_y) = DEQ(cons(c_x, vil)))
-> true
became equation Induct.l5:
({c_y = cons(c_y, vil)) <=> false) | (DEQ(c_y) = DEQ(cons(c_x, vil)))
-> true

Ordered equation Induct.l4 into the rewrite rule:
((c_y = y) <=> false) | (DEQ(c_y) = DEQ(y)) =-> true

The system now contains 149 rewrite rules and 12 deduction rules.

Lemma lemmal.l0.2.2.1.1 in the proof by cases of Lemma lemmal.10.2.2.1
(cons(c_x, E(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, E(vi3))) = DEQ(cons(c_y, vi2)))
-> true
Case.6.1: c x = c_y
is NOT provable using the current partially completed system. It reduces to
the equation
((B(vi3) = vi2) <=> false) | (DEQ(c_y) = DEQ(cons(c_y, vi2))) =-> true

Proof of Lemma lemmal.l0.2.2.1.1 suspended.
=> resums by induction vi2 Ev

The basis step in an inductive proof of Lemma lemmal.10.2.2.1.1 in the proof by
cases of Lemma lemmal.l10.2.2.1

(cons(c_x, E(vi3)) = coms(c_y, vi2))

=> (DEQ(cons(c_x, E(vi3))) = DEQ(cons(c_y, vi2)))

-> true

Case.6.1: ¢ x = c_y
invelves proving the following lemma(s):

81

lemmal.1l0.2.2.1.1.1
(cons(c_x, E(vi3)) = cons(c_y, E(vil)))
=> (DEQ(cons(c_x, E(vi3))) = DEQ(cons(c_y, E(vil))))
=> true
[] Proved by normalization
lemmal.1l0.2.2.1.1.2
(cons(c_x, E(vi3)) = cons(c_y, D(vil)))
=> (DEQ(cons(c_x, E(vi3))) = DEQ(cons(c_y, D(vil))))
-> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.l10.2.2.1.1 in the
proof by cases of Lemma lemmal.l0.2.2.1

(cons(c_x, E(vi3)) = cons(c_y, vi2))

=> (DEQ(cons(c_x, E(vi3))) = DEQ(cons(c_y, vi2)))

-> true

Case.6.1: ¢ x = c_y
is vacuous.

Lemma lemmal.l0.2.2.1.1 in the proof by cases of Lemma lemmal.l0.2.2.1
(cons(c_x, E(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, E(vi3))) = DEQ(cons(c_y, vi2)))
-> true
Case.6.1: c x = ¢
[] Proved by induction over ‘vi2::Ev’ of sort ‘Ev’.

Case.6.2
not(c_x = c_y) == true
involves proving Lemma lemmal.l10.2.2.1.2
(cons (c_x, E(vi3)) = cons(c_y, vi2))
-> (DEQ(cons(c_x;“‘k(vi3))) = DEQ(cons(c_y, vi2)})
=> true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y

has been applied to equation Case.6.2:
(c_x = c_y) <=> false == true

to yield the following equations:
Case.6.2.1: c_x = c_y == false

Ordered equation Case.6.2.1 into the rewrite rule:
c x = c y -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.10.2.2.1.2 in the preocof by cases of Lemma lemmal.1l0.2.2.1
(cons(c_x, E(vi3)) = cons(c_y, vi2))
=> (DEQ(cons(c_x, E(vi3))) = DEQ(cons(c_y, vi2)))
=> true
Case.6.2: not(c_x = c_y)
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.1l0.2.2.1 for the basis step in the proof of Lemma lemmal.10.2.2
(cons (c_x, E(vi3)) = cons(c_y, vi2))
-> (I?EQ(conl(c__x, B(vi3))) = DEQ(cons(c_y, vi2)))
=> true
[] Proved by cases
(c.x =c y) | not(c_x = c_y)

The induction step in an inductive proof of Lemma lemmal.1l0.2.2 for the
induction step in the proof of Lemma lemmal.1l0.2

(cons(c_x, vil) = cons(c_y, vi2))

-> (DEQ(ccn-(c__x, vil)) = DEQ(cons(c_y, vi2)))

-> true
is vacuous.

82

Lemma lemmal.l0.2.2 for the induction step in the proof of Lemma lemmal.l0.2
(cons (c_x, vil) = cons(c_y, vi2))
=> (DEQ(cons(c_x, vil)) = DEQ(cons(c_y, vi2)))
=-> true

[] Proved by induction over ‘vil::EBv’ of sort ‘Ev’.

Lemma lemmal.l0.2 for the induction step in the proof of Conjecture lemmal.l0
(cons(c_x, vil) = y) => (DEQ(cons(c_x, vil)) = DEQ(y)) -> true

[] Proved by induction over ‘y’ of sort ‘H’.

Conjecture lemmal.l0
(x = y) => (DEQ(x) = DEQ(y)) =-> true

[] Proved by induction over ‘x’ of sort ‘H’.

The system now contains 1 equation, 147 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.l0 into the rewrite rule:
((x = y) <=> false) | (DEQ(x) = DEQ(y)) =-> true

The system now contains 148 rewrite rules and 12 deduction rules.
=> prove (xwy)=>(ENQ(x)=ENQ(y)) by induction x H
The basis step in an inductive proof of Conjoctu:. lemmal.ll
(x = y) => (ENQ(x) = ENQ(y)) =-> true
invelves proving the following lemma(s):
lemmal.ll.l: (null = y) => (ENQ(null) = ENQ(y)) =-> true
which reduces to the equation
((null = y) <=> false) | (ENQ(y) = null) =-> true
Proof of Lemma lemmal.ll.l suspended.

~> resume by induction y H

The basis step in an inductive proof of Lemma lemmal.ll.l for the basis step in
the proof of Conjecture lemmal.ll

(null = y) => (ENQ(null) = ENQ(y)) =~> true
involves proving the following lemma(s):

lemmal.ll.1.1l: (null = null) => (ENQ(null) = ENQ(null)) =-> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.ll.l for the basis
step in the proof of Conjecture lemmal.ll
(null = y) => (ENQ(null) = ENQ(y)) => true
uses the following equation(s) for the induction hypothesis:
Induct.16: (c_y = null) => (ENQ(c_y) = ENQ(null)) -> true

The system now contains 1 equation, 148 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l6 into the rewrite rule:
((c_y = null) <=> false) | (ENQ(c_y) = null) =-> true

The system now contains 149 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma (s):

lemmal.l1.1.2: (cons(c_y, vil) = null) => (ENQ(cons(c_y, vil)) = ENQ(null))
=> true)
[] Proved by normalization

Lemma lemmal.ll.l for the basis step in the proof of Conjecture lemmal.ll

(null = y) => (ENQ(null) = ENQ(y)) =-> true
[] Proved by induction over ‘y’ of sort ‘H’‘.
The induction step in an inductive proof of Conjecture lemmal.ll

(x = y) => (ENQ(x) = ENQ(y)) =-> true

83

uses the following equation(s) for the induction hypothesis:
Induct.17: (c_x = y) => (ENQ(c_x) = ENQ(y)) =-> true
The system now contains 1 equation, 148 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l7 into the rewrite rule:
((c_x = y) <=> false) | (ENQ(c_x) = ENQ(y)) -> true

The system now contains 149 rewrite rules and 12 deduction rules.
The induction step involveas proving the following lemma(s):

lemmal.ll.2: (coms(c_x, vil) = y) => (ENQ(cons(c_x, vil)) = ENQ(y)) =-> true
which reduces to the egquation
((cons(c_x, vil) = y) <=> false)
| (ENQ(cons(c_x, vil)) = ENQ(y))
-> true

Proof of Lemma lemmal.ll.2 suspended.
=> resums by induction y B

The basis step in an inductive proof of Lemma lemmal.ll.2 for the induction
step in the proof of Conjecture lemmal.ll

(cons(c_x, vil) = y) => (ENQ(cons(c_x, vil)) = ENQ(y)) -> true
involves proving the following lemma(s):

lemmal.ll1l.2.1: (cons(c_x, vil) = null) => (ENQ(cons(c_x, vil)) = ENQ(null))
-> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.ll.2 for the induction
step in the proof of Conjecture lemmal.ll

(cons(c_x, vil) = y) => (ENQ(cons(c_x, vil)) = ENQ(y)) =-> true
uses the following equation(s) for the induction hypothesis:

Induct.18: (cy= con-(c_x, vil)) => (ENQ(c_y) = ENQ(cons (c_x, vil))) => true
The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l8 into the rewrite rule:
((c_y = cons(c_x, vil)) <=> false) | (ENQ(c_y) = ENQ(cons(c_x, vil))) -> true

The system now contains 150 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.11.2.2: (cons(c_x, vil) = cons(c_y, vi2))
=> (ENQ(cons(c_x, vil)) = ENQ(cons(c_y, vi2)))
«> true
which reduces to the equation
((c_x = c y) <=> false)
| ({(vil = vi2) <=> false)
| (ENQ(cons(c_x, vil)) = ENQ(cons(c_y, vi2)))
-> true

Proof of Lemma lemmal.ll.2.2 suspended.
-> resumes by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.l1l.2.2 for the induction
step in the proof of Lemma lemmal.ll.2

(cons (e_x, vil) = cons (e_y, vi2))

=> (ENQ(cons(c_x, vil)) = ENQ(cons(c_y, vi2)))

=-> true
inveolves proving the following lemma(s):

-lem1.11.2.2.1: (cons(c_x, E(vi3)) = cons(c_y, vi2))

84

=> (ENQ(cons(c_x, E(vi3))) = ENQ(cons(c_y, vi2)))
=-> true
which reduces to the equation
((E(vi3) = vi2) <=> false)
| ({e_x = c_y) <=> false)
| (ENQ(cons(c_y, vi2)) = cons(ENQ(c_x), element(vi3)))
=-> true
lemmal.1l1.2.2.2: (cons(c_x, D(vi3)) = cons(c_y, vi2))
=> (ENQ(cons(c_x, D(vi3))) = ENQ(cons(c_y, vi2)))
-> true
which reduces to the equation
((D(vi3) = vi2) <=> false)
| ((e_x = ¢_y) <=> false)
| (ENQ(c_x) = ENQ(cons(c_y, vi2)))
-> true

Proof of Lemma lemmal.ll.2.2.2 suspended.
=> resums by case c_x=c_ Yy

Case.7.1
c x = ¢ y == true
involves proving Lemma lemmal.l1.2.2.2.1
(cons(c_x, D(vi3)) = cons(c_ y, vi2))
=> (ENQ(cons(c_x, D(vi3))) = ENQ(cons(c_y, vi2)))
=> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation Case.7.l:
C_ X = c_y == true ’
to yield the following equations:
Case.7.1.1: ¢ x == c y

Ordered equation Case.7.1.1 into the rewrite rule:
ex =>cy

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 150 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.7.1l:
C x = c y == true

to yield the feollowing equations:
Case.7.1.2: ¢ x == c ¥y

Ordered equation Case.7.1.2 into the rewrite rule:
ex ->cy

Following 2 left-hand sides reduced:
((c_x = y) <=> false) | (ENQ(c_x) = ENQ(y)) -> true
became equation Induct.l7:
{(c_y = y) <=> false) | (ENQ(c_x) = ENQ(y)) =-> true
({c_y = conas(c_x, vil)) <=> false) | (ENQ(c_y) = ENQ(cons(c_x, vil)))
=-> true
became equation Induct.l8:
((c_y = cons(c_y, vil)) <=> false) | (ENQ(c_y) = ENQ(cons(c_x, vil))})
-> true

Ordered equation Induct.l7 into the rewrite rule:
((c_y = y) <=> false) | (ENQ(c_y) = ENQ(y)) -> true

The system now contains 150 rewrite rules and 12 deduction rules.

85

Lemma lemmal.ll.2.2.2.1 in the proof by cases of Lemma lemmal.l1.2.2.2

(cons (¢_x, D(vi3)) = cons(c_y, vi2))

=>" (ENQ(cons (c_x, D(vi3))) = ENQ(cons(c_y, vi2)))

-> true

Case.7.1: c_x = c_y
is NOT provable using the current partially completed system. It reduces to
the equation

((D(vi3) = vi2) <=> false) | (ENQ(c_y) = ENQ(cons(c_y, vi2))) => true

Proof of Lemma lemmal.l1.2.2.2.1 suspended.
-> resume by induction vi2 Ev

The basis step in an inductive proof of Lemma lemmal.ll.2.2.2.1 in the proof by
cases of Lemma lemmal.l1l.2.2.2

(cons(c_x, D(vi3)) = cons(c_y, vi2))

=> (ENQ(cons(c_x, D(vi3))) = ENQ(cons(c_y, vi2)))

=> true

Case.7.1l: ¢ _x = c_y
involves proving the following lemma(s):

lemmal.ll.2.2.2.1.1
(cons(c_x, D(vi3)) = cons(c_y, E(vil)))
=> (ENQ(cona(c_x, D(vi3))) = ENQ(cons(c_y, E(vil))))
=> true
[]1 Proved by normalization
lemmal.1l1.2.2.2.1.2
(cons(c_x, D(vi3)) = comns(c_y, D(vil)))
=> (ENQ(cons(c_x, D(vi3))) = ENQ(cons(c_y, D(vil))))
=> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.l1.2.2.2.1 in the
proof by cases of Lemma lemmal.l1.2.2.2

(cons(c_x, D(vi3)) = cons(c_y, vi2))

=> (ENQ(cons(c_x, D(vi3))) = ENQ(cons(c_y, vi2)))

-> true

Case.7.1: ¢ x = c_y
is vacuous.

Lemma lemmal.ll1.2.2.2.1 in the proof by cases of Lemma lemmal.ll.2.2.2
(cons (c_x, D(vi3)) = cons(c_y, vi2))
=> (ENQ(cons(c_x, D(vi3))) = ENQ(cons(c_y, vi2)))
=> true
Case.7.1: ¢ x = c_y
[] Proved by induction over ‘vi2::Ev’ of sort ‘Ev’.

Case.?7.2
not (c_x - c_y) == true
invelves proving Lemma lemmal.l1.2.2.2.2
(cons(c_x, D(vi3)) = cons(c_y, vi2))
=> (ENQ(cons(c_x, D(vi3))) = ENQ(cons(c_y, vi2)))
=-> true

The case system now contains 1 equation.

Deduction rule ecuality.3:
when x <=> y == true
yield x == y

has been applied to equation Case.7.2:
(c_x = c_y) <=> false == true

to yield the following equations:
Case.7.2.1: c_x = c_y == false

Ordered equation Case.7.2.l1 into the rewrite rule:
c x = c_y -> false

The case system now contains 1 rewrite rule.

86

Lemma lemmal.ll.2.2.2.2 in the proof by cases of Lemma lemmal.ll1.2.2.2
(cons(c_x, D(vi3)) = cons(c_y, vi2))
=> (ENQ(cons(c_x, D(vi3))) = ENQ(cons(c_y, vi2)))
-> true
Case.7.2: not(c_x = c_y)
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l1.2.2.2 for the basis step in the proof of Lemma lemmal.ll.2.2
(cons(c_x, D(vi3)) = cons(c_y, vi2))
=> (ENQ(cons(c_x, D(vi3))) = ENQ(cons(c_y, vi2)))
=> true
[] Proved by cases
(cx =cy) | not (¢_x = c_y)

Lemma lemmal.l1.2.2.1 for the basis step in the proof of Lemma lemmal.ll1.2.2
(cons(c_x, E(vi3)) = cons(c_y, vi2))
=> (ENQ(cons(c_x, E(vi3))) = ENQ(cens(c_y, vi2)))
=-> true
is NOT provable using the current partially completed system. It reduces to
the equation
((BE(vi3) = vi2) <=> false)
| ({(e_x = c_y) <=> false)
| (ENQ(cons(c y, vi2)) = cons(ENQ(c_x), element (vi3)))
=> true

Proocf of Lemma lemmal.ll.2.2.1 suspended.
=> resume by case c_x=c y

Case.8.1
c x = c_y == true
involves proving Lemma lemmal.ll.2.2.1.1
(cons(c_x, E(vi3)) = cons (e_y, vi2))
=> (ENQ(cons(c_x, E(vi3))) = ENQ(cona(c_y, vi2)))
-> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.8.1:
C X = c y == true

to yield the following equations:
Case.8.1.1: ¢ x == c y

Ordered equation Case.8.1.1 into the rewrite rule:
ex ->cy

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 150 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.8.1:
€ X = c y == true

to yield the following equations:
Case.8.1.2: ¢ x == c y

Ordered equation Case.8.1.2 into the rewrite rule:
e x ->cy

Following 2 left-hand sides reduced:

((c_x = y) <=> false) | (ENQ(c_x) = ENQ(y)) => true
became equation Induct.l7:
((c_y = y) <=> false) | (ENQ(c_x) = ENQ(y)) -> true

87

((c_y = cons(c_x, vil)) <=> false) | (ENQ(c_y) = ENQ(cons(c_x, vil)))
-> true
became equation Induct.18:
((c_y = cons(c_y, vil)) <=> false) | (ENQ(c;y) = ENQ(cons(c_x, vil)))
=> true

Ordered equation Induct.l7 into the rewrite rule:
((e_y = y) <=> false) | (ENQ(c_y) = ENQ(y)) =-> true

The system now contains 150 rewrite rules and 12 deduction rules.

Lemma lemmal.l1.2.2.1.1 in the proof by cases of Lemma lemmal.ll.2.2.1

(cons(c_x, E(vi3)) = cons(c_y, vi2))

=> (ENQ(cons(c_x, E(vi3))) = ENQ(cons(c_y, vi2)))

=> true

Case.8.1: ¢ x = c y
is NOT provable using the current partially completed system. It reduces to
the equation

((E(vi3) = vi2) <=> false)

| (ENQ(cons(c_y, vi2)) = cons(ENQ(c_y), element (vi3)))

=-> true

Proof of Lemma lemmal.ll.2.2.1.1 suspended.
=-> resume by induction vi2 Ev

The basis step in an inductive proof of Lemma lemmal.ll.2.2.1.1 in the proof by
cases of Lemma lemmal.l1.2.2.1

(cons(c_x, E(vi3)) = cons(c_y, vi2))

=> (ENQ(cons{c_x, E(vi3))) = ENQ(cons(c_y, vi2)))

=-> true

Case.8.1: ¢ x = c_y
involves proving the following lemma(s):

lemmal.ll1.2.2.1.1.1
(cons(c_x, E(vi3)) = cons(c_y, E(vil)))
=> (ENQ(cons(c_x, E(vi3))) = ENQ(cons(c_y, E(vil))))

-> true
which reduces to the equation
((E(vil) = E(vi3)) <=> false) | (element(vil) = element (vi3)) => true

lemmal.l1.2.2.1.1.2
(cons (c_x, E(vi3)) = cona(c_y, D(vil)))
=> (ENQ(cons(c_x, E(vi3))) = ENQ(cons(c_y, D(vil))))
-> true
[] Proved by normalization

Proof of Lemma lemmal.ll.2.2.1.l1.1 suspended.

=-> resume by case E(vil: :onLroc) =g (vi3: :anroe)

Case.9.1
E(c_vil) - E(c_vi3) == true
involves proving Lemma lemmal.ll.2.2.1.1.1.1
(cons(c_x, E(c_vi3)) = cons(c_y, E(c_vil)))
=> (ENQ(cons(c_x, E(c_vi3))) = ENQ(cons(c_y, E(c_vil))))
-> true

The case system now contains 1 equatioen.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.9.l:
E(c_vil) = E(c_vi3) == true

to yield the following equations:
Case.9.1.1: E(c_vil) - E(c_vi3)

Ordered equation Case.9.1.1 into the rewrite rule:

88

E(c_vil) => E(c_vi3)
The case system now contains 1 rewrite rule.

Lemma lemmal.l1.2.2.1.1.1.1 in the proof by cases of Lemma lemmal.1l1.2.2.1.1.1
(cons(c_x, E(c_vi3)) = cons(c_y, E(c_vil)))
=> (ENQ(cons(c_x, E(c_vi3))) = ENQ(cons(c_y, E(c_vil))}))
-> true
Case.9.1: E(c_vil) = E(c_vi3)
[] Proved by rewriting (with unreduced rules).

Case.9.2
not (E(c_vil) = E(c_vi3)) == true
involves proving Lemma lemmal.ll.2.2.1.1.1.2
(cons(c_x, E(c_vi3)) = cons(c_y, E(c_vil)))
=> (ENQ(cons(c_x, E(c_vi3))) = ENQ(cons(c_y, E(c_vil))))
-> true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.$9.2:
(BE(c_vil) = E(c_vi3)) <=> false == true
to yield the following equations:
Case.9.2.1: E(c_vil) = E(c_vi3) == false

Ordered equation Case.9.2.1 into the rewrite rule:
E(c_vil) = E(c_vi3) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.l1l.2.2.1.1.1.2 in the proof by cases of Lemma lemmal.l1.2.2.1.1.1
(cons (c_x, E(c_vi3)) = cons(c_y, E(c_vil)))
=> (ENQ(cons(c_x, E(c_vi3))) = ENQ(cons(c_y, E(c_vil))))
=> true
Case.9.2: not(E(c_vil) = E(c_vi3))
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.ll1.2.2.1.1.1 for the basis step in the proof of Lemma
lemmal.11.2.2.1.1

(cons (c_x, E(vi3)) = cona(c_y, E(vil)))

=> (ENQ(cons(c_x, E(vi3))) = ENQ(cons(c_y, E(vil))))

-> true
[] Proved by cases

(E(vil) = E(vi3)) | not(E(vil) = E(vi3))

The induction step in an inductive proof of Lemma lemmal.l1.2.2.1.1 in the
proof by cases of Lemma lemmal.ll1.2.2.1

(cons(c_x, E(vi3)) = coms(c_y, vi2))

=> (ENQ(cons(c_x, E(vi3))) = ENQ(cons(c_y, vi2)))

=> true

Case.8.1: ¢ x = c_ y
is vacuous.

Lemma lemmal.l1l.2.2.1.1 in the proof by cases of Lemma lemmal.ll1l.2.2.1
(cons (c_x, E(vi3)) = cons(c_y, vi2))
=> (ENQ(cons(c_x, E(vi3))) = ENQ(cons(c_y, vi2)))
=-> true
Case.8.1: ¢ x = c_y
[] Proved by induction over ‘vi2::Ev’ of sort ‘Ev’.

Case.8.2
not(c_x = c_y) == true
involves proving Lemma lemmal.ll.2.2.1.2
(cons(c_x, E(vi3)) = cons (c_y, vi2))
=> (ENQ(cons (c_x, E(vi3))) = ENQ(cons(c_y, vi2)))
-> true

89

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y

has been applied to equation Case.8.2:
(c_x = c_y) <=> false == true

to yield the following equations:
Case.8.2.1: c_x = c_y == false

Ordered equation Case.8.2.1 into the rewrite rule:
c x = cy -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.ll.2.2.1.2 in the proof by cases of Lemma lemmal.ll.2.2.1
(cons(c_x, E(vi3)) = coms(c_y, vi2))
=> (ENQ(cons(c_x, E(vi3))) = ENQ(cons(c_y, vi2})))
-> true
Case.8.2: not(c_x = c_y)
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l1.2.2.1 for the basis step in the proof of Lemma lemmal.ll1.2.2
(cons{c_x, E(vi3)) = cons(c_y, vi2))
=> (ENQ(cons (c_x, E(vi3))) = ENQ(cons(c_y, vi2)))
-> true
[] Proved by cases
(e x = cy) | not(c_x = c_y)

The induction step in an inductive proof of Lemma lemmal.ll1.2.2 for the
induction step in the proof of Lemma lemmal.ll.2

(cons (c_x, vil) = coms(c_y, vi2))

=> (ENQ(cons(c_x, vil)) = ENQ(coms(c_y, vi2)))

=> true
is vacuous.

Lemma lemmal.ll.2.2 for the induction step in the proof of Lemma lemmal.ll.2
(cons(c_x, vil) = cons(c_y, vi2))
=> (ENQ(cons(c_x, vil)) = ENQ(cons(c_y, vi2)))
-> true

[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.

Lemma lemmal.ll.2 for the induction step in the proof of Conjecture lemmal.ll
(cons (c_x, vil) = y) => (ENQ(cons(c_x, vil)) = ENQ(y)) =-> true

[] Proved by induction over ‘y’ of sort ‘H’.

Conjecture lemmal.ll
(x = y) => (ENQ{(x) = ENQ(y)) =~> true

[] Proved by induction over ‘x’ of sort ‘H’.

The system now contains 1 equation, 148 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.ll into the rewrite rule:
((x = y) <=> false) | (ENQ(x) = ENQ(y)) =-> true

The system now contains 149 rewrite rules and 12 deduction rules.

=> prove in_ state(x,init)=>(x=null:->H) by induction x H

The basis step in an inductive proof of Conjecture lemmal.l2
in_state(x, init) => (null = x) -> true

involves proving the following lemma (s):

lemmal.12.1: in_state(null, init) => (null = null) -> true
[} Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.l2
in_state(x, init) => (null = x) =-> true

uses the following equation(s) for the induction hypothesis:
. Induet.20: in_state(c_x, init) => (e_x = null) =-> true
The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Ordered equation Induct.20 into the rewrite rule:
(false <=> in_state(c_x, init)) | (e_x = null) =-> true

The system now contains 150 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.l2.2: in_state (cons(c_x, vil), init) => (cons(c_x, vil) = null) -> true
which reduces to the equation
false <=> in_ltato(cons(c_x, vil), init) => true

Proof of Lemma lemmal.l2.2 suspended.
-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.l2.2 for the induction
step in the proof of Conjecture lemmal.l2

in_state (cons(c_x, vil), init) => (cons (c_x, vil) = null) -> true
involves proving the following lemma (s):

lemmal.1l2.2.1: in_state(cons(c_x, E(vi2)), init) => (cons(c_x, E(vi2)) = null)
=> true
which reduces to the equation
false <=> in_state(cons(c_x, E(vi2)), init) => true
lemmal.l2.2.2: in_state(cons(c_x, D(vi2)), init) => (cons (c_x, D(vi2)) = null)
=> true
which reduces to the equation
false <=>’ in_state(cons(c_x, D(vi2)), init) => true

Proof of Lemma lemmal.l1l2.2.2 suspended.
-> resume by case in_state(cons(c_x,D(vi2: :d.q;roc)),init)
Case.1l1.1
in_state(cons(c_x, D(c_vi2)), init) == true
involves proving Lemma lemmal.l2.2.2.1
in_state (cons(c_x, D(c_vi2)), init) => (cons(c_x, D(c_vi2)) = null) =-> true

The case system now contains 1 equation.

Ordered equation Case.ll.l into the rewrite rule:
in_state (cons(c_x, D(c_vi2)), init) => true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 150 rewrite rules, and 12 deduction rules.

Ordered equation Case.ll.l into the rewrite rule:
in_state (cons(c_x, D(c_vi2)), init) -> true

The system now contains 151 rewrite rules and 12 deduction rules.

Lemma lemmal.l2.2.2.1 in the proof by cases of Lemma lemmal.l1l2.2.2
in_stato(cons(c_x, D(c_vi2)), init) => (cons (e_x, D(e_wvi2)) = null) -> true
Case.ll.1: in_state(cons(c_x, D(c_vi2)), init)

is NOT provable using the current partially completed system. It reduces to

the equation
false ~> true

Proof of Lemma lemmal.l2.2.2.1 suspended.

=> crit case with Abstraction.3

91

Critical pairs between rule Case.ll.1l:
in_state(cons(c_x, D(c_vi2)), init) => true
and rule Abstraction.3:
(in_stack (vd, deqd(xst)) & in_state(xh, xst))
| (false <=> in state(cons(xh, D(vd)), xat))
-> true
are as follows:
false <=> in_state(cons(cons(c_x, D(c_vi2)), D(vd)), init) == true
false == true

The system now contains 1 equation, 151 rewrite rules, and 12 deduction rules.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation lemmal.28:
false <=> in state(cons(cona(c_x, D(c_vi2)), D(vd)), init) == true
to yield the following equations:
lemmal.28.1: false == in state (cons(cons(c_x, D(c_vi2)), D(vd)), init)

Ordered equation lemmal.28.1 into the rewrite rule:
in_state (cons(cons(c_x, D(c_vi2)), D(vd)), init) =-> false

The system now contains 152 rewrite rules and 12 deduction rules.
The system now contains 1 egquation, 152 rewrite rulea, and 12 deduction rules.

Equation lemmal.29
false == true
is inconsistent.

Lemma lemmal.l2.2.2.1 in the proof by cases of Lemma lemmal.1l2.2.2
in_state(cons(c_x, D(c_vi2)), init) => (cons(c_x, D(c_vi2)) = null) =-> true
Case.1ll.1l: in_state(cons(c_x, D(c_vi2)), init)

[] Proved by impossible case.

Case.1l1.2
not (in_state (cons(c_x, D(c_vi2)), init)) == true
involves proving Lemma lemmal.l2.2.2.2
in_state(cons(c_x, D(c_vi2)), init) => (cons(c_x, D(c_vi2)) = null) => true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yvield x == y
has been applied to equation Case.ll.2:
false <=> in_state(cons(c_x, D(c_vi2)), init) == true
to yield the following equations:
Case.11.2.1: false == in state(cons(c_x, D(c_vi2)), init)

Ordered equation Case.ll.2.1 into the rewrite rule:
in_state(cons(c_x, D(c_vi2)), init) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.l2.2.2.2 in the proof by cases of Lemma lemmal.l1l2.2.2
in_state(cons(c_x, D(c_vi2)), init) => (cons(c_x, D(c_vi2)) = null) -> true
Case.1l1.2: not(in_state(cons(c_x, D(c_vi2)), init))

[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l2.2.2 for the basis step in the proof of Lemma lemmal.1l2.2
in_state(cons{c_x, D(vi2)), init) => (cons(c_x, D(vi2)) = null) -> true

[] Proved by cases
in_state(cons(c_x, D(vi2)), init) | not(in_state(cons(c_x, D(vi2)), init))

Lemma lemmal.l2.2.1 for the basis step in the proof of Lemma lemmal.l2.2

in_state(cona(c_x, E(vi2)), init) => (cons(c_x, E(vi2)) = null) -> true
is NOT provable using the current partially completed system. It reduces to

92

the equation
false <=> in state(cons(c_x, E(vi2)), init) => true

Proof of Lemma lemmal.l2.2.1 suspended.

Critical-pair computation abandoned because a theorem has been proved.
Computed 2 new critical pairs. Added 2 of them to the system.

=-> resume by case in_utnto(cons(c_x,E(ViZ: :onLrec)),init)

Case.12.1
in_state (cons(c_x, E(c_vi2)), init) == true
involves proving Lemma lemmal.l2.2.1.1
in_state (cons(c_x, E(c_vi2)), init) => (cons(c_x, E(c_vi2)) = null) =-> true

The case system now contains 1 equation.

Ordered equation Case.l2.l into the rewrite rule:
in_state(cons(c_x, E(c_vi2)), init) => true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 150 rewrite rules, and 12 deduction rules.

Ordered equation Case.l2.l into the rewrite rule:
in_state(cons(c_x, E(c_vi2)), init) -> true

The system now contains 151 rewrite rules and 12 deduction rules.

Lemma lemmal.l2.2.1.1 in the proof by cases of Lemma lemmal.l2.2.1
in_state(cons(c_x, E(c_vi2)), init) => (cons(c_x, E(c_vi2)) = null) =-> true
Case.12.1: in_state(cons(c_x, E(c_vi2)), init)

is NOT provable using the current partially completed system. It reduces to

the equation
false =-> true

Proof of Lemma lemmal.l12.2.1.1 suspended.
-> crit case with Abstraction.2

Critical pairs between rule Case.l12.1:
in_state (cons(c_x, E(c_vi2)), init) -> true
and rule Abstraction.2:
(in(ue, enqd(xst)) & in_state(xh, xst))
| (false <=> in state(cons(xh, E(ue)), xst))
=> true
are as follows:
false <=> in_state(cons(cons(c_x, E(c_vi2)), E(ue)), init) == true
false == true

The system now contains 1 equation, 151 rewrite rules, and 12 deduction rules.
Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation lemmal.30:
false <=> in_state(cons(cons(c_x, E(c_vi2)), E(ue)), init) == true
to yield the following equations:
lemmal.30.1: false == in state(cons(cons(c_x, E(c_vi2)), E(ue)), init)

Ordered equation lemmal.30.l1 into the rewrite rule:
in_state(cons(conas(c_x, E(c_vi2)), E(ue)), init) =-> false

The system now contains 152 rewrite rules and 12 deduction rules.
The system now contains 1 equation, 152 rewrite rules, and 12 deduction rules.

Equation lemmal.31l

93

false == true
is inconsistent.

Lemma lemmal.l2.2.1.1 in the proeof by cases of Lemma lemmal.l2.2.1
in_state(cons(c_x, E(c_vi2)), init) => (cons(c_x, E(c_vi2)) = null) -> true
Case.l2.1: in_state(cons(c_x, E(c_vi2)), init)

[] Proved by impossible case.

Case.12.2
not (in_state(cons(c_x, E(c_vi2)), init)) == true
involves proving Lemma lemmal.l2.2.1.2
in_state(cons(c_x, E(ec_vi2)), init) => (cons(c_x, E(c_vi2)) = null) -> true

The case system now contains’'l equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.l1l2.2:
false <=> in_ state(cons(c_x, E(c_vi2)), init) == true
to yield the following equations:
Case.l2.2.]1: false == in_stato(eonl(e_x, E(c_vi2)), init)

Ordered equation Case.12.2.1 into the rewrite rule:
in_state (cons(c_x, E(c_vi2)), init) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.l2.2.1.2 in the proof by cases of Lemma lemmal.l2.2.1
in_state(cons(c_x, E(c_vi2)), init) => (cons(c_x, E(c_vi2)) = null) =-> true
Case.l2.2: not (in_atate (cons(c_x, E(c_vi2)), init))

[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l2.2.1 for the basis step in the proof of Lemma lemmal.12.2
in_state(cons(c_x, E(vi2)), init) => (cons(c_x, E(vi2)) = null) -> true
[] Proved by cases
in_state(cons(c_x, E(vi2)), init) | not(in_state(cons(c_x, E(vi2)), init))

The induction step in an inductive proof of Lemma lemmal.l2.2 for the induction
step in the proof of Conjecture lemmal.l2

in_state(cons(c_x, vil), init) => (cons(c_x, vil) = null) -> true
is vacuous.

Lemma lemmal.l2.2 for the induction step in the proof of Conjecture lemmal.l2
in_state(cons(c_x, vil), init) => (cons(c_x, vil) = null) =-> true

[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.

Conjecture lemmal.l2
in_state(x, init) => (null = x) -> true

[] Proved by induction over ‘x’ of sort ‘H’.

The system now contains 1 equation, 149 rewrite rules, and 12 deduction rules.

Ordered squation lemmal.l2 into the rewrite rule:
(false <=> in state(x, init)) | (null = x) -> true

The system now contains 150 rewrite rules and 12 deduction rules.
Critical-pair computation abandoned because a theorem has been proved.
Computed 2 new critical pairs. Added 2 of them to the system.

-> prove prefix(cons:Seq,EL->Seq(x,z),y)=>prefix(x,y) by induction x
Please enter a sort for the induction: Seq

The basis step in an inductive proof of Conjecture lemmal.l3
prefix(cons(x, z), y) => prefix(x, y) =-> true
involves proving the following lemma (s):

lemmal.13.1: prefix(cons(null, z), y) => prefix(null, y) =-> true
[] Proved by normalization :

The induction step in an inductive proof of Conjecture lemmal.l3
prefix(cons(x, z), y) => prefix(x, y) =-> true
uses the following equation(s) for the induction hypothesis:

Induct.24: prefix(cons(c_x, z), y) => prefix(c_x, y) -> true
The system now contains 1 equation, 151 rewrite rules, and 12 deduction rules.

Ordered equation Induct.24 into the rewrite rule:
(false <=> prefix(cons(c_x, z), y)) | prefix(c_x, y) -> true

The system now contains 152 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.13.2: prefix(cona(cons(c x, vil), z), y) => prefix(cons(c_x, vil), y)
-> true
which reduces to the equation
(false <=> prefix(cons(cons(c_x, vil), z), y))
| prefix(cons(c_x, vil), y)
=> true

Proof of Lemma lemmal.l3.2 suspended.
-> resume by induction y Seq

The basis step in an inductive proof of Lemma lemmal.l3.2 for the induction
step in the proof of Conjecture lemmal.l3

profix(conn(cons(c_x, vil), z), y) => prefix(cons(c__x, vil), y) => true
involves proving the following lemma(s):

lemmal.13.2.1: prefix(cons(cons(c_x, vil), z), null)
=> prefix(cons(c_x, vil), null)
=-> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.l13.2 for the induction
step in the proof of Conjecture lemmal.l3

prefix(cons (cons(c_x, vil), z), y) => prefix(cons(c_x, vil), y) => true
uses the fellowing equation(s) for the induction hypothesis:

Induct.25: prefix(cons(cons(c_x, vil), z), c_y) => prefix(cons(c_x, vil), c_y)
=-> true

The system now contains 1 equation, 152 rewrite rules, and 12 deduction rules.

Ordered equation Induct.25 into the rewrite rule:
(false <=> prefix(cons(cons(c_x, vil), z), c_y))
| pr.fix(gonl(c_x, vil), c_y)
=-> true

The system now contains 153 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.1l3.2.2: ptofix(con.(conl(c_x, vil), z), cons{c_y, vi2))
=> prefix(cons(c_x, vil), conl(c__y, vi2))
=> true
which reduces to the equation
((false <=> prefix(cons(cons(c_x, vil), z), c_y))
& (((c_y = cons(c_x, vil)) <=> false)
| ((vi2 = z) <=> false)))

| ((c_x = c y) & (vil = vi2))

| prcfix(cons(c_x, vil), c_y)
-> true

95

Proof of Lemma lemmal.l3.2.2 suspended.
=> resume by case prefix(cons(cons(c_x, vil), z), c_y)

Case.13.1
prefix (cons(cons(c_x, c_vil), c_z), cy) == true
involves proving Lemma lemmal.1l3.2.2.1
prefix(cons(cons(c_x, c_vil), c_z), cons(c_y, vi2))
=> prefix(cons(c_x, c_vil), cons (c_y, vi2))
-> true

The case system now contains 1 equation.

Ordered equation Case.l3.l into the rewrite rule:
profix(ccns(cona(c__x, c_vil), c_z), c_y) =-> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation Case.l3.l1 into the rewrite rule:
prefix (cons(cons(c_x, c_vil), c z), e_y) => true

The system now contains 154 rewrite rules and 12 deduction rules.

Lemma lemmal.l3.2.2.1 in the proof by cases of Lemma lemmal.l3.2.2

prefix (cons(cons(c_x, c_vil), c_z), cons{c_y, vi2))

=> prefix(cons(c_x, c_vil), cons (c_y, vi2))

-> true

Case.13.1: prefix(cons(cons(c_x, c_vil), c_z), c_y)
is NOT provable using the current partially completed system. It reduces to
the equation

((c_vil = vi2) & (c x = c_y)) | prefix(cons(c_x, c vil), c_y) =-> true

Proof of Lemma lemmal.l3.2.2.1 suspended.
=> crit case with induct

Critical pairs between rule Case.13.1:
prefix (cons(cons(c_x, c_vil), e _z), c_y) -> true
and rule Induct.25:
(false <=> p:ofix(conl(conl(c_x, vil), z), c_y))
| prefix(cons(c_x, vil), c_y)
=> true
are as follows:
prefix(cons(c_x, c_vil), c_y) == true

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.35 into the rewrite rule:
prefix(con-(c_x, e_vil), e_y) => true

The system now contains 155 rewrite rules and 12 deduction rules.

Lemma lemmal.l3.2.2.1 in the proof by cases of Lemma lemmal.l3.2.2
prefix (cons (cons (e_x, c_vil), c_z), cons(c_y, vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, vi2))
-> true
Case.13.1: p:ofix(con-(cons(c_x, c_vil), c_z), c y)
[] Proved by rewriting.

Case.13.2
not (prefix (cons (cons(c_x, c_vil), c_z), c_y)) == true
involves proving Lemma lemmal.13.2.2.2
prefix (cons(cons(c_x, c_vil), c_z), cons(c_y, vi2))
=> prefix(cons(c_x, c_vil), cons (c_y, vi2))
-> true

96

The case system now contains 1 egquation.

Deduction rule equality.3:
when x <m> y == true
yield x == y
has been applied to equation Case.13.2:
false <=> prefix(cons(cons(c_x, c_vil), c_z), c_y) == true
to yield the following equations:
Case.13.2.1: false == prefix(cons (cons (c_x, c_vil), c_z), c_y)

Ordered equation Case.l3.2.1 into the rewrite rule:
prefix (cons (cons(c_x, c_vil), c_z), cy) =-> false

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Deduction rule equality.3:
when x <=> y == true
yield x == y '
has been applied to equation Case.l13.2:
false <=> prefix(cons(cons(c_x, c_vil), c_z), c_y) == true
to yield the following equations:
Case.13.2.2: false == prefix(cons(cons(c_x, c_vil), c_z), c_y)

Ordered equation Case.l1l3.2.2 into the rewrite rule:
prefix(cons(cons(c_x, c_vil), c_z), c_y) -> false

The system now contains 154 rewrite rules and 12 deduction rules.

Lemma lemmal.l3.2.2.2 in the proof by cases of Lemma lemmal.13.2.2
prefix(cons(cons(c_x, c_vil), c_z), cons(c_y, vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, vi2))
=> true
Case.13.2: not (prefix(cons(cons(c_x, c_vil), < z), c_y))
is NOT provable using the current partially completed system. It reduces to
the equation
({c_vil = vi2) & (¢ _x = c_y))
I ((c_y = cons(c_x, c_vil)) <=> false)
I ((c_z = vi2) <=> false)
| prefix(cons(c_x, c_vil), c_y)
=-> true

Proof of Lemma lemmal.1l3.2.2.2 suspended.

Critical-~pair computation abandoned because a theorem has been proved.
Computed 1 new critical pair. Added 1 of them to the system.

=> resume by case c_z=vi2::EL

Case.14.1
c_vi2 = ¢ z == true

involves proving Lemma lemmal.l3.2.2.2.1
prefix(cons(cons(c_x, ¢ vil), c_z), cons(c_y, c_vi2))
=> prefix(cons(c_x, ¢ _vil), cons(c_y, c_vi2))
=> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.14.1:
€ vi2 = c z == true

to yield the following equations:
Case.14.1.1: c_vi2 == ¢ z

Ordered equation Case.l4.1.1 into the rewrite rule:

97

c vi2 => ¢ z
The case system now contains 1 rewrite rule.
The system now contains 1 equation, 154 rewrite rules, and 12 deductiocn rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.l14.1:
c vi2 m ¢ z == true

to yield the following equations:
Case.14.1.2: ¢ _vi2 == c_z

Ordered equation Case.l4.1.2 into the rewrite rule:
e vi2 => c_z

The system now contains 155 rewrite rules and 12 deduction rules.

Lemma lemmal.l3.2.2.2.1 in the proof by cases of Lemma lemmal.l13.2.2.2
prefix (cons (cons(c_x, c_vil), c_z), cons(c_y, c_vi2))
=> prefix(cons(c_x, c_vil), cons (c_y, c_vi2))
-> true
Case.14.1: c vi2 m c z
is NOT provable using the current partially completed system. It reduces to
the equation
((c_vil m c z) & (c. x = c_y))
| ((c_y = cons(c_x, c_vil)) <=> false)
| prefix(cons(c_x, c_vil), c_y)
-> true

Procof of Lemma lemmal.l3.2.2.2.1 suspended.
=> resume by case c_y=cons:Seq,EL->Seq(c_x,c_vil)

Case.l1l5.1
cy= ccnl(c__x, c_vil) == true

invelves proving Lemma lemmal.l13.2.2.2.1.1
pr.fix(conl(eons(c_x, c_vil), c__z), cons (c_y, c__vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, c _vi2))
=> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
vield x == y

has been applied to equation Case.l15.1:
c_y = cons(c_x, c_vil) == true

to yield the following equations:
Case.15.1.1: c_y == cons(c_x, c_vil)

Ordered equation Case.l5.1.1 into the rewrite rule:
c_y => cons(c_x, c_vil)

The case system now contains 1 rewrite rule.

Lemma lemmal.13.2.2.2.1.1 in the proof by cases of Lemma lemmal.13.2.2.2.1
prefix(cons (cons(c_x, c_vil), c_z), cons(c_y, c_vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, ¢ _vi2))
-> true
Case.15.1: c_y = cons(c_x, c_vil)
[] Proved by rewriting (with unreduced rules).

Case.15.2
not (c_y = cons(c_x, c_vil)) == true

involves proving Lemma lemmal.13.2.2.2.1.2
profix(con.(ccnn(c_x, c_vil), <_z), cons (c_y, c_vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, c_vi2))

98

=> true
The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.l15.2:

(c_y = cons(c_x, c_vil)) <=> false == true
to yield the following equations:

Case.15.2.1: c_y = cons{c_x, c_vil) == false

Ordered equation Case.l5.2.1 into the rewrite rule:
c_ y = cons(c_x, ¢_vil) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.1l3.2.2.2.1.2 in the proof by cases of Lemma lemmal.l3.2.2.2.1
prefix(cons(cons(c_x, c_vil), c_z), cons(c_y, c_vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, c_vi2))
=> true
Case.15.2: not(c_y = cons(c_x, c_vil))
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.1l3.2.2.2.1 in the proof by cases of Lemma lemmal.13.2.2.2
prefix(cons(cons(c_x, ¢ vil), c_z), cons(c_y, c_vi2))
=> prefix(cons(c_x, c¢_vil), cons(c_y, c _vi2))
-> true
Case.l4.1: c vi2 = c_z
[] Proved by cases
(c_y = cons(c_x, c_vil)) | not(c_y = cons(c_x, c_vil))

Case.14.2 .
not (c_vi2 = c_z) == true
involves proving Lemma lemmal.l3.2.2.2.2
prefix (cons(cons(c_x, c¢_vil), c_z), cons(c_y, c_vi2))
=> prefix(cons(c_x, c_vil), comns(c_y, c_vi2))
-> true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y

has been applied to equation Case.l4.2:
(c_vi2 = c_z) <=> false == true

to yield the following equations:
Case.14.2.1: ¢ vi2 = c_z == false

Ordered equation Case.l4.2.1 into the rewrite rule:
c_vi2 = c_z -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.13.2.2.2.2 in the proof by cases of Lemma lemmal.1l3.2.2.2
prefix (cons(cons(c_x, c_vil), c_z), cons(c_y, c_vi2))
=> prefix(cons(c_x, c _vil), coms(c_y, c_vi2))
=> true
Case.1l4.2: not(c_vi2 = c_z)
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l3.2.2.2 in the proof by cases of Lemma lermmal.l1l3.2.2
prefix (cons(cons(c_x, c_vil), c_z), cons(c_y, vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, vi2))
-> true
Case.l1l3.2: not (prefix(cons(cons (e_x, c_vil), c_z), c_y))
[] Proved by cases
(c_z = vi2) | not(c_z = vi2)

Lemma lemmal.13.2.2 for the induction step in the proof of Lemma lemmal.l3.2
prefix (cons (cons (c_x, vil), z), cons(c_y, vi2))
=> prefix(cons(c_x, vil), cons(c_y, vi2))
=-> true
[] Proved by cases
prefix (cons(cons(c_x, vil), z), c_y)
| not (prefix(cons(cons(c_x, vil), z), c_y))

Lemma lemmal.l3.2 for the induction step in the proof of Conjecture lemmal.l3
prefix(cons(cons(c_x, vil), z), y) => prefix(cons(c_x, vil), y) =-> true
[] Proved by induction over ‘y’ of sort ‘Seq’.

Conjecture lemmal.l3
prefix(cons(x, z), y) => prefix(x, y) =-> true
[1 Proved by induction over ‘x’ of sort ‘Seq’.

The system now contains 1 equation, 151 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.l3 into the rewrite rule:
(false <=> prefix(cons(x, z), y)) | prefix(x, y) =-> true

The system now contains 152 rewrite rules and 12 deduction rules.
=> prove prefix(cons:Seq,EL->Seq(x,z),y)=>prefix(x,y) by induction x Seq

The basis step in an inductive proof of Conjecture lemmal.ld
prefix(cons(x, z), y) => prefix(x, y) =-> true
invelves proving the following lemma(s):

lemmal.l4.1l: prefix(cons(null, z), y) => prefix(null, y) =-> true
{] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.l4
prefix(cons(x, z), y) => prefix(x, y) -> true
uses the following equation(s) for the induction hypothesis:

Induct.l: prefix(cons(c_x, z), y) => prefix(c_x, y) -> true
The system now contains 1 equation, 138 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l into the rewrite rule:
(false <=> prefix(cons(c_x, z), y)) | prefix(c_x, y) =-> true

The system now contains 139 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.14.2: prefix(cons(cons(c_x, vil), z), y) => prefix(cons(c_x, vil), y)
=> true
which reduces to the equation
(false <=> prefix(cons(cons(c_x, vil), z), y))
| prefix(cons(c_x, vil), y)
=-> true

Proof of Lemma lemmal.l4.2 suspended.

-> resume by induction y Seq

The basis step in an inductive proof of Lemma lemmal.l4.2 for the induction step
in the proof of Conjecture lemmal.l4

prefix (cons (cons (c_x, vil), z), y) => prefix(cons(c_x, vil), y) -> true
involves proving the following lemma(s):

lemmal.14.2.1: prefix(cons(cons(c_x, vil), z), null)
=> prefix(cons(c_x, vil), null)
=> true
[] Proved by normalization

100

The induction step in an inductive procf of Lemma lemmal.l4.2 for the induction
step in the proof of Conjecture lemmal.l4

profix(conl(con-(c_x, vil), z), y) => prefix(cons(c_x, vil), y) =~> true
uses the following equation(s) for the induction hypothesis:

Induct.2: prefix(cons(cons(c_x, vil), z), c_y) => prefix(cons(c_x, vil), c_y)
=> true

The system now contains 1 equation, 139 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:
(false <=> prefix(cons(cons(c_x, vil), z), c_y))
| prefix(cons(c_x, vil), c_y)
=> true

The system now contains 140 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.1l4.2.2: prefix(cons(cons(c_x, vil), z), cons(c_y, vi2))
=> prefix(cons(c_x, vil), cons(c_y, vi2))
-> true
which reduces to the equation
({(false <=> prefix(cons(cons(c_x, vil), z), c_y))
& (((c_y = cons(c_x, vil)) <=> false)
| ((vi2 = z) <=> false))))

I ((ex = cy) & (vil = vi2))
| prefix(cons(c_x, vil), c_y)
=-> true

Proof of Lemma lemmal.l4.2.2 suspended.
-> resume by case prefix(cons(cons(c_x,vil),z),c_y)

Case.l.l
prefix (cons (cons(c_x, c_vil), c_z), c_y) == true
involves proving Lemma lemmal.l4.2.2.1
prefix (cons(cons(c_x, c_vil), c_z), cons(c_y, vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, vi2))
=> true

The case system now contains 1 equation.

Ordered equation Case.l.l into the rewrite rule:
prefix(cons(cons(c_x, c_vil), c_z), c_y) -> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.

Ordered equation Case.l.l into the rewrite rule:
prefix (cons (cons(c_x, c_vil), c_z), c y) =-> true

The system now contains 141 rewrite rules and 12 deduction rules.

Lemma lemmal.l4.2.2.1 in the proof by cases of Lerma lemmal.l4.2.2

prefix (cons (cons(c_x, c_vil), c_z), cons(c_y, vi2))

=> prefix(cons(c_x, c_vil), cons(c_y, vi2))

=-> true

Case.l.l: prefix(cons(cons (e_x, c_vil), c_z), c_y)
is NOT provable using the current partially completed system. It reduces to
the equation

((c_vil = vi2) & (c_x = c_y)) | prefix(cons(c_x, c_vil), c_y) -> true

Proof of Lemma lemmal.l4.2.2.1 suspended.

=> crit case with induct

101

Critical pairs between rule Case.l.l:
prefix(cons(cons(c_x, c_vil), c_z), c_y) -> true
and rule Induct.2:
(false <=> profix(conq(con-(c_x, vil), z), c_ v))
| prefix(cons(c_x, vil), c_y)
-> true
are as follows:
prefix(cons(c_x, ¢ vil), c_y) == true

The system now contains 1 equation, 141 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.2 into the rewrite rule:
prefix(cona(c_x, ¢ _vil), c_y) =-> true

The system now contains 142 rewrite rules and 12 deduction rules.

Lemma lemmal.l4.2.2.1 in the proof by cases of Lemma lemmal.l4.2.2
prefix (cons(cons(c_x, c_vil), c_z), cons (c_y, vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, vi2))
=> true
Case.l.1l: prefix(cons(cons(c_x, c_vil), c z), c_y)
[] Proved by rewriting.

Case.l.2
not (prefix (cons (cons(c_x, c_vil), c_z), c y)) == true
involves proving Lemma lemmal.l4.2.2.2
prefix (cons(cons(c_x, c_vil), c_z), cons(c_y, vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, vi2))
-> true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.l.2:

false <=> prefix(cons(cens(c_x, c_vil), € _z), c_y) == true
to yield the following equations:

Case.l.2.1: false == prefix(cona(cons(c_x, c_vil), c_z), c_ y)

Ordered equation Case.l.2.l1 into the rewrite rule:
prefix(cons(cons(c_x, ¢ _vil), c_z), cy) =-> false

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 140 rewrite rules, and 12 deduction rules.

Deduction rule equality.3:

when x <=> y == true

yield x m= y
has been applied to equation Case.l.2:

false <=> prefix(cons(cons(c_x, c_vil), c_z), c_y) == true
to yield the following equations:

Case.l.2.2: false == prefix(cona(conl(c;x, c_vil), c_z), c_y)

Ordered equation Case.l.2.2 into the rewrite rule:
prefix (cons(cons(c_x, c_vil), c_z), c_y) -> false

The system now contains 141 rewrite rules and 12 deduction rules.

Lemma lemmal.l4.2.2.2 in the proof by cases of Lemma lemmal.l4.2.2

prefix (cons(cons(c_x, c_vil), c_z), cons(c_y, vi2))

=> prefix(cons(c_x, e _vil), cons(c_y, vi2))

-> true

Case.l.2: nct(profix(conl(conl(c_;, c_vil), c_z), c_y))
is NOT provable using the current partially completed system. It reduces to
the equation

((c_vil = vi2) & (c_x = c_y))

102

| ((e_y = cons(c_x, c_vil)) <=> false)
| ((c_z = vi2) <=> false)
| profix(eons(c_x, e _vil), c_y)

-> true

Proof of Lemma lemmal.l4.2.2.2 suspended.

Critical-pair computation abandoned because a theorem has been proved.
Computed 1 new critical pair. Addéd 1 of them to the system.

=> resume by case (c_y=cons(c_x,c_vil))&(c_z=vi2::EL)

Case.2.1
(c_vi2 = c_z) & (c_y = cons(c_x, c _vil)) == true
involves proving Lemma lemmal.l4.2.2.2.1
prefix (cons (conas(c_x, c_vil), c_z), cons(c_y, c_vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, c_vi2))
=-> true

The case system now contains 1 equation.

Deduction rule booclean.3:

when x & y == true

yield x == true

y == true

has been applied to equation Case.2.1l:

(c_vi2 = ¢ z) & (c_y = cons(c_x, c_vil)) == true
to yield the following equations:

Case.2.1.1: c_vi2 = c_z == true

Case.2.1.2: c_y = cona(c_x, ¢ _vil) == true

Deduction rule equality.4:
when x = y == true
yield x == y)
has been applied to equation Case.2.1.2:
c_ y = cons(c_x, ¢ _vil) == true
to yield the following eguations:
Case.2.1.2.1: c_y == cons(c_x, c_vil)

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.2.1.1:
c vi2 = ¢_z == true

to yield the feollowing equations:
Case.2.1.1.1: c_vi2 m= c z

Ordered equation Case.2.1.1.1 into the rewrite rule:
c vi2 => c z

The case system now contains 1 equation and 1 rewrite rule.

Ordered equation Case.2.1.2.1 into the rewrite rule:
c_y -> cons(c_x, c_vil)

The case system now contains 2 rewrite rules.

Lemma lemmal.l4.2.2.2.1 in the proof by cases of Lemma lemmal.l4.2.2.2
prefix(cons(cons(c_x, c_vil), c_z), cons(c_y, c_vi2))
=> prefix (cons(c_x, ¢_vil), coms(c_y, c_vi2))
-> true
Case.2.1: (c_vi2 = c_z) & (c_y = cons(c_x, c_vil))
[] Proved by rewriting (with unreduced rules).

Case.2.2
not ((c_vi2 = c_z) & (c_y = cons(c_x, c_vil))) == true
involves proving Lemma lemmal.1l4.2.2.2.2
prefix(cons(cons(c_x, c_vil), c_z), cona(c_y, c_vi2))

103

-> prefix(conl(c_-x, c__vil), cons (c_y, c_vi2))
-> true

The case system now contains 1 equation.

Ordered equation Case.2.2 into the rewrite rule:
((c_vi2 = c_z) <=> false) | ((c_y = cons(c_x, c_vil)) <=> false) -> true

The case system now contains 1 rewrite rule.

Lemma lemmal.l4.2.2.2.2 in the proof by cases of Lemma lemmal.l4.2.2.2
prefix (cons (cons(c_x, c_vil), c_z), cons(c_y, c _vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, c _vi2))
-> true
Case.2.2: not((c_viz - c_z) & (c_y - cens(c_x, c_vil)))
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l4.2.2.2 in the proof by cases of Lemma lemmal.l4.2.2
prefix(cons (cons(c_x, c_vil), c_z), comns(c_y, vi2))
=> prefix(cons(c_x, c_vil), cons(c_y, vi2))
=> true
Case.l.2: not (prefix(cons(cons(c_x, c_vil), c_z), c_y))
[] Proved by cases
({c_y = cons(c_x, ¢ _vil)) & (c_z = vi2))
| not((c_y = cons(c_x, c_vil)) & (c_z = vi2))

Lemma lemmal.l4.2.2 for the induction step in the proof of Lemma lemmal.l4.2
prefix(cons(cons(c_x, vil), z), coms(c_y, vi2))
=> prefix(cons(c_x, vil), cons(c_y, vi2))
=> true
[] Proved by cases
prefix(cons (cons(c_x, vil), z), c_y)
| not (p:cfix(cenl(conl(c_x, vil), z), c_y))

Lemma lemmal.l4.2 for the induction step in the proef of Conjecture lemmal.l4
prefix(cons(cons(c_x, vil), z), y) => prefix(cons(c_x, vil), y) => true
[] Proved by induction over ‘y’ of sort ‘Seq’.
Conjecture lemmal.l4
prefix(cons(x, z), y) => prefix(x, y) -> true
[] Proved by induction over ‘x’ of sort ‘Seq’.

The system now contains 1 equation, 138 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.l4 into the rewrite rule:
(false <=> prefix(cons(x, z), y)) | prefix(x, y) =-> true

The system now contains 139 rewrite rules and 12 deduction rules.
~> prove in_state (cons(xh,we::Ev),xst)=>in state(xh,xst) by induction xh H
The basis step in an inductive preocof of Conjecture lemmal.l5

in_state (cons(xh, we), xst) => in state(xh, xst) -> true

involves proving the following lemma (s):

lemmal.15.1: in_state (cons(null, we), xst) => in_ state(null, xst) =-> true
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.l5
in_state (cons(xh, we), xst) => in state(xh, xst) =-> true

uses the following equation(s) for the induction hypothesis:

Induct.26: in_state(cons(c_xh, we), xst) => in_ state(c_xh, xst) -> true

The system now contains 1 equation, 152 rewrite rules, and 12 deduction rules.

Ordered equation Induct.26 into the rewrite rule:

104

(false <=> in state(cons(c_xh, we), xst)) | in_state(c_xh, xst) -> true
The system now contains 153 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemmal.1l5.2: in_state(cons(cons(c_xh, vil), we), xst)
=> in_state(cons(c_xh, vil), xst)
-> true
which reduces to the equation
(false <=> in_state(cons(cons(c_xh, vil), we), xst))
| in_state(cons(c_xh, vil), xsat)
-> true

Proof of Lemma lemmal.l5.2 suspended.
-> resume by induction we Ev

The basis step in an inductive proof of Lemma lemmal.44.2 for the induction
step in the proof of Conjecture lemmal. 44
in_state (cons(cons(c_xh, vil), we), xst) => in state(cons(c_xh, vil), xst)
=> true
involves proving the following lemma(s):

lemmal.44.2.1: in_state(cons(cons(c_xh, vil), E(vi2)), xst)
=> in_state(cons(c_xh, vil), xst)
-> true
which reduces to the equation
(false <=> in_ state(cons(cons(c_xh, vil), E(vi2)), =xat))
| in_state(cons(c_xh, vil), xst)
=-> true
lemmal.44.2.2: in_state(cons(cons(c_xh, vil), D(vi2)), xst)
=> in state(cons(c_xh, vil), xst)
=-> true
which reduces to the equation
(false <=> in_state (cons(cons(c_xh, vil), D(vi2)), xst))
| in_state(cons(c_xh, vil), xst)
=-> true

Proof of Lemma lemmal.44.2.2 suspended.
=> resums by case in_state(cons(cons(c_xh, vil), D(vi2::deq_rec)),xst)
Case.17.1

in_state(cons(cons(c_xh, c¢_vil), D(c_vi2)), c _xst) == true
involves proving Lemma lemmal.44.2.2.1

in_state(cons (cons(c_xh, c_vil), D(c_vi2)), c_xst)

=> in_state(cons(c_xh, c_vil), c_xst)
-> true

The case system now contains 1 equation.

Ordered equation Case.l7.l intc the rewrite rule:
in_state(cons(cons(c_xh, c_vil), D(c_vi2)), c_xst) -> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation Case.l7.1 into the rewrite rule:
in_state (cons(cons(c_xh, c_vil), D(c_vi2)), c_xst) -> true

The system now contains 154 rewrite rules and 12 deduction rules.

Lemma lemmal.44.2.2.1 in the proof by cases of Lemma lemmal.44.2.2
in_state(cons(cona(c_xh, ¢ _vil), D(ec_vi2)), c_xst)
=> in_state(cons(c_xh, ¢ _vil), c_xst)
=-> true
Case.17.1: in_ state(cons(cons(c_xh, ¢ vil), D(c_vi2)), c_xst)

105

is NOT provable using the current partially completed system. It reduces to
the equation
in_state (cons(c_xh, c_vil), c_xst) -> true

Proof of Lemma lemmal.44.2.2.1 suspended.
=> crit case with Abstraction.3

Critical pairs between rule Case.l17.1:
in_state (cons(cons (c_xh, c_vil), D(c_vi2)), c_xst) =-> true
and rule Abstraction.3:
(in_stack(vd, deqgd(xst)) & in_state(xh, xst))
| (false <=> in state(cons(xh, D(vd)), xst))
-> true
are as follows:
(false <=> in_state(cons(cons(cons(c_xh, c_vil), D(c_vi2)), D(vd)), c_xst))
| in_stack (vd, deqd(c_xst))
- true
in_'tack(c__viz, degd (c_xst)) & in_state(cons(c_xh, c_vil), c_xst) == true

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.45 into the rewrite rule:
(false <=> in_state (cons (cons (cons (c_xh, e_vil), D(e_vi2)), D(vd)), c_xsat))
| in_stack(vd, deqd(c_xst))
=> true

The system now contains 155 rewrite rules and 12 deduction rules.
The system now contains 1 oqhntion, 155 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

when x & y == true

yield x == true

y == true

has been applied to equation lemmal.46:

in_stack(c_vi2, deqd(c_xst)) & in_state(cons (c_xh, c_vil), c_xst) == true
to yield the following equations:

lemmal.46.1: in_stack(c_vi2, degd(c_xst)) == true

lemmal.46.2: in_state(cons(c_xh, c_vil), c¢_xst) == true

Ordered equation lemmal.46.2 into the rewrite rule:
in_state(cons(c_xh, c_vil), c_xst) =-> true

Ordered equation lemmal.46.1 into the rewrite rule:
in_stack(c_vi2, degd(c_xst)) -> true

The system now contains 157 rewrite rules and 12 deduction rules.

Lemma lemmal.l5.2.2.1 in the proof by cases of Lemma lemmal.l1l5.2.2
in_state(cons(cons(c_xh, c_vil), D (c_vi2)), c_xst)
=> in state(cons(c_xh, c_vil), c_xast)
-> true
Case.17.1: in state(cons(cons(c_xh, ¢ vil), D(c_vi2)), c_xst)
[] Proved by rewriting.

Case.17.2
not (in_state (cons (cons (c_xh, c_vil), D(c_vi2)), c_xst)) == true
involves proving Lemma lemmal.l1l5.2.2.2
in_state (cons(cons(c_xh, c_vil), D(ec_vi2)), c_xst)
=> in_state(cons(c_xh, c vil), c_xst)
-> true

The case system now contains 1 equation.
Deduction rule equality.3:
when x <=> y == true

vield x == y
has been applied to equation Case.17.2:

106

false <=> in state(cons(cons(c_xh, c_vil), D(c_vi2)), c_xst) == true
to yield the following equaticns:
Case.17.2.1: false == in state(cons(cons(c_xh, c_vil), D(e_vi2)), c_xst)

Ordered equation Case.l7.2.1 into the rewrite rule:
in_state(cons(cons(c_xh, ¢_vil), D(c_vi2)), c_xst) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.l5.2.2.2 in the proof by cases of Lemma lemmal.l5.2.2
in_state (cons(cons(c_xh, c_vil), D(c_vi2)), c_xst)
=> in_state(cons(c_xh, c_vil), c_xst)
=-> true
Case.l7.2: not(in_state(cons(cons(c_xh, c_vil), D(c_vi2)), c_xst))
[] Proved by rewriting (with unreduced rules).

Lerma lemmal.l5.2.2 for the basis step in the proof of Lemma lemmal.l5.2
in_state (cons(cons(c_xh, vil), D(vi2)), xst)
=> in_state(cons(c_xh, vil), =xst)
=> true
[] Proved by cases
in_state (cons(cons(c_xh, vil), D(vi2)), =xst)
| not(in_state (cons(cons(c_xh, vil), D(vi2)), xst))

Lemma lemmal.l5.2.1 for the basis step in the proof of Lemma lemmal.l5.2

in_state(cons(cons(c_xh, vil), E(vi2)), xst)

=> in state (cons(c_xh, vil), =xst)

-> true
is NOT provable using the current partially completed system. It reduces to
the equation

(false <=> in_state(cons(cons(c_xh, vil), E(vi2)), xst))

| in_state(cons(c_xh, vil), xst)

-> true

Proof of Lemma lemmal.l5.2.1 suspended.
Critical-pair computation abandoned because a theorem has been proved.
Computed 2 new critical pairs. Added 2 of them to the system.
=-> resume by case in_state(cons(cons(c_xh, vil), E(vi2::enq_rec)),xst)
Case.18.1

in_state(cons(cons(c_xh, c _vil), E(c_vi2)), c_xst) == true
inveolves proving Lemma lemmal.l5.2.1.1

in_state (cons(conas(c_xh, c_vil), E(c_vi2)), c_xst)

=> in_state(cons(c_xh, c_vil), c_xst)

=-> true

The case system now contains 1 equation.

Ordered equation Case.l8.1 into the rewrite rule:
in_state(cons(cons(c_xh, c_vil), E(c_vi2)), c_xst) =-> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation Case.l1l8.1 into the rewrite rule:
in_state (cons(cons(c_xh, c_vil), E(c_vi2)), c_xst) =-> true

The system now contains 154 rewrite rules and 12 deduction rules.

Lemma lemmal.l15.2.1.1 in the proof by cases of Lemma lemmal.1l5.2.1
in_state (cons(cons(c_xh, c_vil), E(c_vi2)), c _xst)
=> in_state(cons(c_xh, c_vil), c_xst)
=> true
Case.18.1: in state(cons(cons(c_xh, c_vil), E(ec_vi2)), c_xst)

107

ia NOT provable using the current partially completed system. It reduces to
the equation
in_state(cons(c_xh, c_vil), c_xst) => true

Proof of Lemma lemmal.l5.2.1.1 suspended.
=> crit case with Abstraction.2

Critical pairs between rule Case.18.1:
in_nt;t.(ccna(cona(c_;h, e_vil), E(e_vi2)), c_xst) -> true
and rule Abstraction.2:
(in(ue, engd(xst)) & in_state(xh, xst))
| (false <=> in_state(cona(xh, E(ue)), xst))
=-> true
are as follows:
(false <=> in_-tato(con-(con-(ccn-(c_xh, c_vil), E(ec_vi2)), E(ue)), c_xat))
| in(ue, engd(c_xst))
== true
in(e_vi2, onqd(c_xlt)) & in_ltato(conl(c_xh, c_vil), c_xst) == true

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.47 intc the rewrite rule:
(false <=> in_lcato(con-(ccn-(cons(c_xh, e_vil), E(ec_vi2)), E(ue)), c_xst))
| in(ue, engd (c_xst))
=> true

The system now contains 155 rewrite rules and 12 deduction rules.
The system now contains 1 equation, 155 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

when x & y == true

yield x == true

y == true

has been applied to equation lemmal.48:

in(e_vi2, engd (c_xst)) & in_'tato(conl(c_xh, c_vil), c_xst) == true
to yield the following equations:

lemmal.48.1: in(c_vi2, enqgd(c_xst)) == true

lemmal.48.2: in_ltato(cono(c_;h, c_vil), c_xst) == true

Ordered equation lemmal.48.Z into the rewrite rule:
in_-tnto(coal(c_;h, c_vil), c_xst) =-> true

Ordered equation lemmal.48.1 into the rewrite rule:
in(c_vi2, engd(c_xst)) =-> true

The system now contains 157 rewrite rules and 12 deduction rules.

Lemma lemmal.l5.2.1.1 in the proof by cases of Lemma lemmal.l15.2.1
in_-tnto(conl(conl(e_xh, c_vil), E(c_vi2)), c_xst)
- in_leato(conn(c_xh, c_vil), c_xst)
=> true
Case.18.1: in_ltato(con-(con-(c_;h, e_vil), E(c_vi2)), c_xst)
[] Proved by rewriting.

Case.18.2

net(in_-eato(coa.(conn(c_gh, e_vil), E(e_vi2)), c_xst)) == true
involves proving Lemma lemmal.15.2.1.2

in_-tat.(conl(cena(c_;h, c_vil), B(c_viZ)), c_xst)

- in_-tato(cono(c_;h, e _vil), c_xst)

-> true

The case system now contains 1 equation.
Deduction rule equality.3:
when x <=> y == true

yield x == y
has been applied to equation Case.18.2:

108

false <=> in_state(cons(cons(c_xh, c_vil), E(c_vi2)), c_xst) == true
to yield the following equations:
Case.18.2.1: false == in_stlto(cona(cona(c_xh, c_vil), E(c_vi2)), c_xst)

Ordered equation Case.l8.2.1 into the rewrite rule:
in_state (cons (cons(c_xh, c_vil), E(c_vi2)), c_xst) =-> false

The case system now contains 1 rewrite rule.

Lemma lemmal.l5.2.1.2 in the proof by cases of Lemma lemmal.l1l5.2.1
in_state (cons (cons (c_xh, e _vil), E(c_viz)), c_xst)
=> in_state(cons(c_xh, c_vil), c_xst)
-> true
Case.l18.2: not (in_state (cons (cons(c_xh, c_vil), E(c_vi2)), c_xst))
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l5.2.1 for the basis step in the proof of Lemma lemmal.l5.2
in_state (cons(cons(c_xh, vil), E(vi2)), xst)
=> in_stato(cons(c_xh, vil), xst)
-> true
[] Proved by cases
in_state (cons (cons (c_xh, vil), E(vi2)), =xst)
| not(in_state (cona(cons(c_xh, vil), E(vi2)), xst))

The induction step in an inductive proof of Lemma lemmal.l5.2 for the induction
step in the proof of Conjecture lemmal.lS
in_state (cons(cons(c_xh, vil), we), xst) => in_state(cons(c_xh, vil), xst)
=> true
is vacuous.

Lemma lemmal.l5.2 for the induction step in the proof of Conjecture lemmal.l5
in_state(cons(cons(c_xh, vil), we), xst) => in state(cons(c_xh, vil), xst)

-> true
[] Proved by induction over ‘we::Ev’ of sort ‘Ev’.

Conjecture lemmal.lS5
in_ltato(con'(xh, we), xst) => in_state(xh, xat) => true
[] Proved by induction over ‘xh::H’ of sort ‘H’.

The system now contains 1 equation, 152 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.l5 into the rewrite rule:
(false <=> in_state (cons(xh, we), xat)) | in_a;ate(xh, xst) ~> true

The system now contains 153 rewrite rules and 12 deduction rules.

Critical~pair computation abandoned because a theorem has been proved.

Computed 2 new critical pairs. Added 2 of them to the system.

~> prove prefix(x,append(x,y)) by induction x Seq

The basis step in an inductive proof of Conjecture lemmal.l6
prefix(x, append(x, y)) => true

involves proving the following lemma (s):

lJemmal.l6.1: prefix(null, append(null, y)) => true
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemmal.l6
prefix(x, append(x, y)) -> true

uses the following equation(s) for the induction hypothesis:

Induct.29: prefix(c_x, append(c_x, y)) -> true

The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation Induct.29 into the rewrite rule:

109

prefix(c_x, append(c_x, y)) -> true
The system now contains 154 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):
lemmal.16.2: prefix(cons(c_x, vil), append(cons(c_x, vil), y)) => true
Proof of Lemma lemmal.l6.2 suspended.
-> resumes by induction y Seq
The basis step in an inductive proof of Lemma lemmal.l16.2 for the induction
step in the proof of Conjecture lemmal.l6

prefix(cons(c_x, vil), append(cons(c_x, vil), y)) => true

involves proving the following lemma(s):

lemmal.16.2.1: prefix(cons(c_x, vil), append(cons(c_x, vil), null)) -> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemmal.l6.2 for the induction
step in the proof of Conjecture lemmal.l6

prefix (cons(c_x, vil), append(cons(c_x, vil), y)) => true
uses the following equation(s) for the induction hypothesis:

Induct.30: prefix(cons(c_x, vil), append(cons(c_x, vil), c_y))} => true
The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation Induct.30 into the rewrite rule:
prefix(cons(c_x, vil), append(cons(c_x, vil), c_ y)) => true

The system now contains 155 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemmal.16.2.2: prefix(cons(c_x, vil), append(cons(c_x, vil), cons(c_y, vi2)))
-> true
[] Proved by normalization

Lemma lemmal.l6.2 for the induction step in the proof of Conjecture lemmal.lé
prefix(cons(c_x, vil), append(cons(c x, vil), y)) => true
[] Proved by induction over ‘y’ of sort ‘Seq’.

Conjecture lemmal.l6
prefix(x, append(x, y)) -> true
[] Proved by induction over ‘x’ of sort ‘Seq’.

The system now contains 1 equation, 153 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.l6é into the rewrite rule:
prefix(x, append(x, y)) => true

The system now contains 154 rewrite rules and 12 deduction rules.

-> prove (in_state (xh,xst) &prefix (DEQ (xh),ENQ(xh)))=>prefix (DEQ(discard(xt,xh)),ENQ(discard(xt,xh)))
by induction xh H

The basis step in an inductive proof of Conjecture lemmal.l?7
(in_state(xh, xst) & prefix(DEQ(xh), ENQ(xh)))
=> prefix (DEQ(discard(xt, xh)), ENQ(discard(xt, xh)))
=> true

invelves proving the following lemma(s):

lemmal.l7.1: (in_state(null, xst) & prefix(DEQ(null), ENQ(null)))
=> prefix (DEQ(discard(xt, null)), ENQ(discard(xt, null)))
-> true
[] Proved by normalization

110

The induction step in an inductive proof of Conjecture lemmal.l7
(in_state(xh, xst) & prefix (DEQ(xh), ENQ(xh)))
=> prefix (DEQ(discard(xt, xh)), ENQ(discard(xt, xh)))
-> true

uses the following equation(s) for the induction hypothesis:

Induct.2: (in_state(c_xh, xst) & prefix(DEQ(c_xh), ENQ(c_xh)))
=> prefix (DEQ(discard(xt, c_xh)), ENQ(discard(xt, c_xh)))
=-> true

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:
(false <=> in_ state(c_xh, xst))
| (false <=> prefix(DEQ(c_xh), ENQ(c_xh)))
| prefix(DEQ(discard(xt, c_xh)), ENQ(discard(xt, c_xh)))
-> true

The system now contains 155 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemmal .17.2: (in_state(cons(c_xh, vil), xst)
& prefix (DEQ(cona(c_xh, vil)), ENQ(cons(c_xh, vil))))
=> prefix (DEQ(discard(xt, cons(c_xh, vil))),
ENQ(discard(xt, cons(c xh, vil))))

-> true
which reduces to the equation
(false <=> in state(cons(c_xh, vil), xst))
| (false
<m> prefix(DEQ(cons(c_xh, vil)), ENQ(cons(c_xh, vil))))

| prefix(DEQ(discard(xt, cons(c_xh, vil))),
ENQ (discard (xt, cons (c_xh, vil)})))

=> true
Proof of Lemma lemmal.l7.2 suspended.
-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemmal.l7.2 for the induction
step in the proof of Conjecture lemmal.l?
(in_state (cons (c_xh, vil), xst)
& prefix(DEQ(cons(c_xh, vil)), ENQ(cons(c_xh, vil))))
=> prefix (DEQ(discard(xt, cons(c_xh, vil))),
ENQ (discard (xt, cons (c_xh, vil))))

-> true
involves proving the following lemma (s):

lemmal.17.2.1: (in_state(cons(c_xh, E(vi2)), xat)
& p:ofix(DEQ(cans(c_;h, E(vi2))), ENQ(cons(c_xh, E(vi2)))))
=> prefix (DEQ(discard(xt, cons (c_xh, E(vi2)))),
ENQ(discard(xt, cons (c_xh, E(vi2)))))
-> true
which reduces to the equation
((enqt (vi2) = xt) <=> false)
| (false <=> in state(cons(c_xh, E(vi2)), xsat))
| (false
<=> prefix (DEQ(c_xh), cons(ENQ(c_xh), element (vi2))))

| prefix(DEQ(c_xh), ENQ(c_xh))
. -> true
lemmal.17.2.2: (in_state(cons(c_xh, D(vi2)), xst)
& prefix(DEQ(cons(c_xh, D(vi2))), ENQ(cons(c_xh, D(vi2)))))
=> prefix (DEQ(discard(xt, cons(c_xh, D(vi2)))),

111

ENQ(discard (xt, cons (c_xh, D(vi2)))))

=> true
[] Proved by normalization

Proof of Lemma lemmal.l7.2.1 suspended.
-> resume by case in_state(cons(c_xh,E(vi2::enq_rec)),xst)

Case.l.1l
in_state(cons(c_xh, E(c_vi2)), c_xst) == true
involves proving Lemma lemmal.l7.2.1.1
(in_state(cons (c_xh, E(c_vi2)), c_xst)
& profix(DEQ(con-(c_;h, E(c_vi2))), ENQ(cons(c_xh, E(c_vi2)})))
=> prefix (DEQ(discard(xt, cons(c_xh, E(c_vi2)))),
ENQ (discard(xt, cons(c_xh, E(c_vi2)))))

-> true
The case system now contains 1 equation.

Ordered equation Case.l.l into the rewrite rule:
in_ltato(conl(c_xh, E(ec_vi2)), c_xst) -> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 155 rewrite rules, and 12 deduction rules.

Ordered equation Case.l.l into the rewrite rule:
in_ltnto(cona(c_;h, E(c_vi2)), c_xst) -> true

The system now contains 156 rewrite rules and 12 deduction rules.

Lemma lemmal.l7.2.1.1 in the proof by cases of Lemma lemmal.l1l7.2.1
(in_state(cons (c_xh, E(c_vi2)), c_xst)
& profix(DEQ(cons(c_xh, E(c_vi2))), ENQ(cons (c_xh, E(c_vi2)))))
=> prefix (DEQ(discard(xt, cons(c_xh, E(c_vi2)))),
ENQ (discard(xt, cons(c_xh, E(e_vi2)))))

-> true
Case.l.l: in state(cons(c_xh, E(c_vi2)), c_xst)
is NOT provable using the current partially completed system. It reduces to
the equation
((engt (c_vi2) = xt) <=> false)
| (false <=> prefix (DEQ(c_xh), cons(ENQ(c_xh), element (c_vi2))))
| prefix(DEQ(c_xh), ENQ(c_xh))
-> true

Proof of Lemma lemmal.l17.2.1.1 suspended.
=> crit case with lemmal.l5
Critical pairs between rule Case.l.l:
in_state (cons(c_xh, E(c_vi2)), c_xst) -> true
and rule lemmal.l5:
(false <=> in_state(cons(xh, we), xst)) | in_state(xh, xst) =-> true
are as follows:
in_ltato(c_;h, c_xst) == true

The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Ordered equation lemmal.20 into the rewrite rule:
in_state(c_xh, c_xst) -> true

The system now contains 157 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of
them to the syatem.

112

~> crit lemmal.20 with Abstraction.4

Critical pairs between rule lemmal.20:
in_state(c_xh, c_xst) -> true
and rule Abstraction.4:
((DEQ(xh) = cons (ENQ(xh), xe)) <=> false) | (false <=> in_state(xh, xst))
=> true
are as follows:
(DEQ(c_xh) = cons(ENQ(c_xh), xe)) <=> false == true

The system now contains 1 equation, 157 rewrite rules, and 12 deduction rules.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation lemmal.2l:

(DEQ(c_xh) = cons(ENQ(c_xh), xe)) <=> false == true
to yield the following equations:

lemmal.21.1l: DEQ(c_xh) = cons(ENQ(c_xh), xe) == false

Ordered equation lemmal.2l.l into the rewrite rule:
DEQ(c_xh) = cons(ENQ(c_xh), xe) => false

The system now contains 158 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.
-> resume by case engt(c_vi2)=xt

Case.2.1
c_xt = engt(c_vi2) == true
inveolves proving Lemma lemmal.l17.2.1.1.1
(in_state (cons(c_xh, E(c_vi2)), c_xst)
& prefix(DEQ(cons(c_xh, E(c_vi2))), ENQ(cons(c_xh, E(c_vi2)))))
=> prefix (DEQ(discard(c_xt, cons(c_xh, E(c_vi2)))),
ENQ(discard(c_xt, cons(c_xh, E(c_vi2)))))

=> true
The case system now contains 1 equatioen.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.2.l:
c_xt = engt(c_vi2) == true

to yield the following equations:
Case.2.1.1: c _xt == engt(c_vi2)

Ordered equation Case.2.l1.1 into the rewrite rule:
c_xt -> engt(c_vi2)

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 158 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.2.1l:
c_xt = engt(c_vi2) == true

to yield the following equations:
Case.2.1.2: C_Xt == onqt(c_vi2)

Ordered equation Case.2.1.2 intoc the rewrite rule:
c_xt -> engt(c_vi2)

The system now containa 159 rewrite rules and 12 deduction rules.

113

Lemma lemmal.l7.2.1.1.1 in the proof by cases of Lemma lemmal.l7.2.1.1
(1n -tato(conl(c xh, E(c_vi2)), ¢ _xst)
& p:ofzx(DEQ(con-(c xh, E(c_vi2))), ENQ(cons(c_xh, E(c - vi2)))))
=> prefix (DEQ(discard(c_xt, cons(c_xh, E(c_vi2)))),
ENQ(discard(c_xt, cons(c_xh, E(c_vi2}))))

-> true
Case.2.1: c_xt = engt(c_vi2)
is NOT provable using the current partially completed system. It reduces to
the eguation .
(false <=> prefix (DEQ(c_xh), cons(ENQ(c_xh), element(c_vi2))))
| prefix(DEQ(c_xh), ENQ(c_xh))
-> true

Proof of Lemma lemmal.l17.2.1.1.1 suspended.
=> resume by case prefix(DEQ(c_;h),con-:Seq,EL—>Seq(ENQ(c_;h),olemont(c_vi2)))

Case.3.1
profix(DEQ(c_;h), cons (ENQ (c_xh), olomont(c_in))) == true
involves proving Lemma lemmal.l7.2.1.1.1.1
(in_state (cons (c_xh, E(c_vi2)), c_xst)
& prefix(DEQ(cons(c_xh, E(c_vi2))), ENQ(cons(c_xh, E(c_vi2)))))
=> prefix (DEQ(discard(c_xt, cons(c_xh, E(c_vi2)))),
ENQ (discard(c_xt, cons(c_xh, E(c_vi2)))))

-> true
The case system now containa 1 equation.

Ordered equation Case.3.l1 into the rewrite rule:
prefix (DEQ(c_xh), cons(ENQ(c_xh), element(c_vi2))) =-> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 159 rewrite rules, and 12 deduction rules.

Ordered equation Case.3.1 into the rewrite rule:
prefix (DEQ(c_xh), cons(ENQ(c_xh), element(c_vi2))) =-> true

The system now contains 160 rewrite rules and 12 deduction rules.

Lemma lemmal.l7.2.1.1.1.1 in the proof by cases of Lemma lemmal.l7.2.1.1.1
(in_state(cons(c_xh, E(c_vi2)), c_xst)
& pr.fix(DEQ(cona(c_;h, E(c_in))), ENQ(conl(c_xh, E(c_vi2)))))
=> prefix (DEQ(discard(c_xt, cons(c_xh, E(c_vi2)))),
ENQ(discard(c_xt, cons(c_xh, E(c_vi2)))))

-> true

Case.3.1: prefix(DEQ(c_xh), cons(ENQ(c_xh), element (c_vi2)))
is NOT provable using the current partially completed system. It reduces to
the equation

prefix (DEQ(c_xh), ENQ(c_xh)) -> true

Proof of Lemma lemmal.l7.2.1.1.1.1 suspended.
-> crit case with lemmal.3
Critical pairs between rule Case.3.1:
prefix (DEQ(c_xh), cons(ENQ(c_xh), element(c_vi2))) => true
and rule lemmal.3:
(false <=> prefix(x, cons(y, z))) | (cons(y, z) = x) | prefix(x, y) -> true
are as follows:
prefix (DEQ(c_xh), ENQ(c_xh)) == true
The system now contains 1 equation, 160 rewrite rules, and 12 deduction rules.
Ordered equation lemmal.22 into the rewrite rule:

prefix(DEQ(c_;h), ENQ(c_xh)) => true

114

Left-hand side reduced:
(false <=> in_state (c_xh, xst))
| (false <=> prefix (DEQ(c_xh), ENQ(c_xh)))
| prefix (DEQ(discard(xt, c_xh)), ENQ(discard(xt, c_xh)))
=-> true
became equation Induct.2:
(false <=> in state(c_xh, xst))
| (false <=> true)
| prefix (DEQ(discard(xt, c_xh)), ENQ(discard(xt, c_xh)))
-> true

Ordered equation Induct.2 into the rewrite rule:
(false <=> in state(c_xh, xst))
| prefix(DEQ(discard(xt, c_xh)), ENQ(discard(xt, c_xh)))
=> true

The system now contains 161 rewrite rules and 12 deduction rules.

Lemma lemmal.l17.2.1.1.1.1 in the proof by cases of Lemma lemmal.l7.2.1.1.1
(in_state (cons(c_xh, E(c_vi2)), c_xst)
& prefix(DEQ(cons(c_xh, E(c_vi2))), ENQ(cons(c_xh, E (c_vi2)))))
=> prefix (DEQ(discard(c_xt, cons(c_xh, E(c_vi2)))),
ENQ(discard(c_xt, cons(c_xh, E(c_vi2)))))

=-> true
Case.3.l: prefix(DEQ(c_xh), cons(ENQ(c_xh), element(c_vi2)))
f{] Proved by rewriting.

Case.3.2
not (prefix (DEQ(c_xh), cons(ENQ(c_xh), element (c_vi2)))) == true
involves proving Lemma lemmal.l7.2.1.1.1.2
(in_state(cons(c_xh, E(c_vi2)), c_xst)
& prefix (DEQ(cons(c_xh, E(c_vi2))), ENQ(cons(c_xh, E(c_vi2)))))
=> prefix (DEQ(discard(c_xt, cons(c_xh, E(c_vi2)))),
ENQ(discard(c_xt, cons(c_xh, E(c_vi2)))))

-> true
The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.3.2:

false <=> prefix(DEQ(c_xh), cons(ENQ(c_xh), element(c_vi2))) == true
to yield the following equations:

Case.3.2.1: false =m prefix(DEQ(c_xh), cons(ENQ(c_xh), element (c_vi2)))

Ordered equation Case.3.2.1 into the rewrite rule:
prefix (DEQ(c_xh), cons(ENQ(c_xh), element(c_vi2))) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.l7.2.1.1.1.2 in the proof by cases of Lemma lemmal.l7.2.1.1.1
(in_state (cons (c_xh, E(c_vi2)), c_xst)
& prefix(DEQ(cons(c_xh, E(c_vi2))), ENQ(cons(c_xh, E(c_vi2)))))
=> prefix (DEQ(discard(c_xt, cona(c_xh, E(c_vi2)))),
ENQ(discard(c_xt, cons(c_xh, E(c_vi2)))))

-> true
Case.3.2: not (prefix (DEQ (c_xh) , cons(ENQ(c_xh), element(c_vi2))))
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l7.2.1.1.1 in the proof by cases of Lemma lemmal.l7.2.1.1
(in_state (cons(c_xh, E (c_vi2)), c_xst)
& prefix(DEQ(cons(c_xh, E(c_vi2))), ENQ(cons(c_xh, E(c_vi2))})))
=> prefix (DEQ(discard(c_xt, cons(c_xh, E(c_vi2)))),
ENQ(discard(c_xt, cons(c_xh, E(c_vi2)))))

115

=-> true
Case.2.1: c_xt = engt(c_vi2)
[] Proved by cases
prefix (DEQ(c_xh), conl(ENQ(c xh), clomont(c vi2)))
| not (prefix (DEQ(c_xh), cons(ENQ(c_xh), element(c_vi2))))

Case.2.2
not (c_xt = engt(c_vi2)) == true
involves proving Lemma lemmal.1l7.2.1.1.2
(in_state (cons (c_xh, E(c_vi2)), c_xst)
& profix(DEQ(cons(c_xh, E(c_vi2))), ENQ(cons(c_xh, E(c;in)))))
=> prefix (DEQ(discard(c_xt, cons(c_xh, E(c_in)))),
ENQ(discard(c_xt, cons(c_xh, E(c_vi2)))))

-> true
The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.2.2:
(c_xt = engt(c_vi2)) <=> false == true
to yield the following equations:
Case.2.2.1: c_xt = engt(c_vi2) == false

Ordered equation Case.2.2.1 into the rewrite rule:
c_xt = engt(c_vi2) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.l7.2.1.1.2 in the proof by cases of Lemma lemmal.17.2.1.1
(in_state(cons(c_xh, E(c_vi2)), c_xst)
& prefix(DEQ(cons (c_xh, E(c_vi2)}), ENQ(conl(c_xh, E(c_vi2)))))
- profix(DEQ(di-cnrd(c_xt, cons (c_xh, E(c_vi2)))),
ENQ(discard(c_xt, cons(c_xh, E(c_vi2)))))

-> true
Case.2.2: not(c_xt = engt(c_vi2))
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l7.2.1.1 in the proof by cases of Lemma lemmal.l7.2.1
(in_state(cons(c_xh, E(c_vi2)), c_xst)
& prefix (DEQ(cons(c_xh, E(c_vi2))), ENQ(cons(c . xh, E(c_vi2)))))
=> prefix (DEQ(discard(xt, cons{c_xh, E(c_ v12)))),
ENQ (discard (xt, con-(c_xh E(c_vi2)))))

-> true

Case.l.1l: in_stato(con-(c_;h, E(c_vi2)), c_xst)
[] Proved by cases

(engt (c_vi2) = xt) | not(engt(c_vi2) = xt)

Case.l.2
not (in_state (cons(c_xh, E(c_vil2)), c xst)) == true
involves proving Lemma lemmal.l17.2.1.2
(in_state(cons(c_xh, E(c_vi2)), c_xst)
& prefix (DEQ(cons(c_xh, E(c_vi2))), ENQ(cons (c_xh, E(c_vi2)))))
=> prefix (DEQ(discard(xt, cons(c_xh, E(c_vi2)))),
ENQ(discard(xt, cons(c_xh, E(c_vi2)))))

=> true
The case system now contains 1 eguation.
Deduction rule equality.3:

when x <=> y == true
yield x == y

116

has been applied to equation Case.l.2:

false <=> in state(cons(c_xh, E(c_vi2)), c_xst) == true
to yield the following equations:

Case.1l.2.1: false == in_state(cons(c_xh, E(c_vi2)), c_xst)

Ordered equation Case.l.2.l into the rewrite rule:
in_state(cons(c_xh, E(c_vi2)), c_xst) -> false

The case system now contains 1 rewrite rule.

Lemma lemmal.l7.2.1.2 in the proof by cases of Lemma lemmal.l7.2.1
(in_state (cons(c_xh, E(c_vi2)), c_xst)
& prefix(DEQ(cons(c_xh, E(c_vi2))), ENQ(cons(c_xh, E(c_vi2)))))
=> prefix (DEQ (discard (xt, cons (c_xh, E(c_vi2)))),
ENQ(discard(xt, cons(c_xh, E(c_vi2)))))

=-> true
Case.l.2: not(in_state(cons(c_xh, E(c_vi2)), c_xst))
[] Proved by rewriting (with unreduced rules).

Lemma lemmal.l7.2.1 for the basis step in the proof of Lemma lemmal.l7.2
(in_state (cons(c_xh, E(vi2)), xst)
& prefix (DEQ(cons(c_xh, E(vi2))), ENQ(cons(c_xh, E(vi2)))))
=> prefix (DEQ(discard(xt, cons (c_xh, E(vi2)))),
ENQ(discard(xt, coms(c_xh, E(vi2)))))

-> true
[] Proved by cases
in_state (cons(c_xh, E(vi2)), =xst) | not(in_state(cons(c_xh, E(vi2)), =xst))

The induction step in an inductive proof of Lemma lemmal.l7.2 for the induction
step in the proof of Conjecture lemmal.l?
(in_state(cons(c_xh, vil), xst)
& prefix(DEQ(cons(c_xh, vil)), ENQ(cons(c_xh, vil))))
=> prefix (DEQ(discard(xt, cons(c_xh, vil))),
ENQ(discard(xt, cons(c _xh, vil))))

=> true
is vacuous.

Lemma lemmal.l7.2 for the induction step in the proof of Conjecture lemmal.l7
(in_state(cons(c_xh, vil), xst)
& prefix (DEQ(cons(c_xh, vil)), ENQ(cons(c_xh, vil)}))
=> prefix (DEQ(discard(xt, cons(c_xh, vil))),
ENQ(discard(xt, cons(c_xh, vil))))

-> true
[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.

Conjecture lemmal.l?7
(in_state(xh, xst) & prefix (DEQ(xh), ENQ(xh)))
=> prefix (DEQ(discard(xt, xh)), ENQ(discard(xt, xh)))
=> true

[] Proved by induction over ‘xh::H’ of sort ‘H’.

The system now contains 1 equation, 154 rewrite rules, and 12 deduction rules.
Ordered equation lemmal.l7 into the rewrite rule:
(false <=> in_ state(xh, xst))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(DEQ(discard(xt, xh)), ENQ(discard(xt, xh)))
-> true
The system now contains 155 rewrite rules and 12 deduction rules.

Critical-pair computation abandoned because a theorem has been proved.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of
them to the system.

117

->q

118

5.5. Helping Lemma Set 2

add
((deqd (xst) =new) &in_state (xh,xst))=>(DEQ (xh) =null:->Seq)
(xh=xhl) => (ordered (xh) <=>ordered (xhl))
((xh=append (cons:H,Ev->H(xhl,E (pair(xe,xt))),xh2)) & ordered(xh) &
prefix (DEQ (append (xhl,xh2)) ,ENQ(append (xhl,xh2))) &
in (append (xhl,xh2), af(xst)) & (enqgr(top(deqd(xst)))<xt)) =>
prefix (DEQ (xh) ,ENQ (xh))

119

5.6. LP Proof Session of Lemma Set 2

Larch Prover (28 Jun 89) scripting on 14 July 1989 13:08:17 to
‘/usr0/cgong/verifyl/lemma2.scr’.

-> thaw theoryl

System thawed from ‘theoryl.frz’.

=> set name lemma2

The name prefix is now ‘lemma2’.

-> prove ((deqd(xst)=new)&in_ state (xh,xst))=>(DEQ(xh)=null:->Seq) by induction xh H

The basis step in an inductive proof of Conjecture lemma2.l
((degqd (xst) = new) & in state(xh, xst)) => (DEQ(xh) = null) -> true
involves proving the following lemma(s):

lemma2.1.1: ((deqgd(xst) = new) & in_state(null, xst)) => (DEQ(null) = null)
-> true
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemma2.1l
((degd (xst) = new) & in_state(xh, xst)) => (DEQ(xh) = null) -> true
uses the following equation(s) for the induction hypothesis:

Induct.l: ((deqd(xst) = new) & in_state(c_xh, xst)) => (DEQ(c_xh) = null)
-> true

The system now contains 1 equation, 155 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l into the rewrite rule:
({deqd (xst) = new) <=> false)
| (false <=> in state(c_xh, xat))
| (DEQ(c_xh) = null)
=> true

The system now contains 156 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemma2.1.2: ((deqd(xst) = new) & in_state(cons(c_xh, vil), xst))
=> (DEQ(cons(c_xh, vil)) = null)
-> true
which reduces to the equation
((degd(xat) = new) <=> false)
| (false <=> in_ state(cons(c_xh, vil), xst))
} (DEQ(con-(c_xh, vil)) = null)
=-> true

Proof of Lemma lemma2.l.2 suspended.
=-> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemma2.1.2 for the induction step
in the proof of Conjecture lemma2.1l

((deqd (xst) = new) & in_atat.(conl(c_;h, vil), xst))

=> (DEQ(cons(c_xh, vil)) = null)

-> true
involves proving the following lemma (s):

lemma2.1.2.1: ((deqd(xst) = new) & in_state(cons(c_xh, E(vi2)), xst))
=> (DEQ(cons(c_xh, E(vi2))) = null)
-> true
which reduces tc the equation
((deqgd (xst) = new) <=> false)
| (false <=> in_state(cons(c_xh, E(vi2)), xst))

120

| (DEQ(c_xh) = null)
-> true
lemma2.1.2.2: ((degd(xst) = new) & in_state(cons(c_xh, D(vi2)), xsat))
- (DEQ(cona(c_;h, D(vi2))) = null)
=> true
which reduces to the equation
((degd (xst) = new) <=> false)
| (false <=> in_state(cons(c_xh, D(vi2)), xst))
=-> true '

Proof of Lemma lemma2.l.2.2 suspended.
-> resume by case degd (xst)=new

Case.l.1
degd (c_xst) = new == true
involves proving Lemma lemma2.1.2.2.1
((deqd(c_xst) = new) & in state(cons(c_xh, D(vi2)), c_xst))
=> (DEQ(cons(c_xh, D(vi2))) = null)
-> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.l.l:
deqgd(c_xst) = new == true

to yield the following ecquations:
Case.l.l.1l: degd(c_xst) == new

Ordered equation Case.l.l.l into the rewrite rule:
degd (c_xst) => new

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when =x = y == true
yield x == y

has been applied to equation Case.l.l:
deqd(c_xst) = new == true

to yield the following equations:
Case.l.1.2: degd(c_xst) == new

Ordered equation Case.l.l.2 into the rewrite rule:
degd (c_xst) => new

The system now contains 157 rewrite rules and 12 deduction rules.

Lemma lemma2.1.2.2.1 in the proof by cases of Lemma lemma2.1.2.2
((doqd(c_;at) = new) & in;state(cons(c;;h, D(vi2)), c_xst))
=> (DEQ(cons(c_xh, D(vi2))) = null)
=-> true
Case.l.l: degd(c_xst) = new
is NOT provable using the current partially completed system. It reduces to
the equation
false <=> in_state(comns(c_xh, D(vi2)), c_xat) -> true

Proof of Lemma lemma2.1.2.2.1 suspended.
=> resume by case in_stato(cons(c_xh,D(viZ::deq_roc)),c_;st)
Case.2.1
in_state(cons(c_;h, D(c_vi2)), c_xst) == true
involves proving Lemma lemma2.1.2.2.1.1

((degd(c_xst) = new) & in state(cons(c xh, D(c_vi2)), c_xst))
-> (DEQ(cona(c_xh, D(c_vi2))) = null)

121

-> true
The case system now contains 1 equation.

Ordered equation Case.2.l into the rewrite rule:
in_state(cons(c_xh, D(c_vi2)), c_xst) => true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 157 rewrite rules, and 12 deduction rules.

Ordered equation Case.2.l intc the rewrite rule:
in_state(cons(c_xh, D(c_vi2)), c_xst) =-> true

The system now contains 158 rewrite rules and 12 deduction rules.

Lemma lemma2.1.2.2.1.1 in the proof by cases of Lemma lemma2.1.2.2.1

((degd(c_xst) = new) & in_state(cons(c_xh, D(c_vil2)), c_xst))

=> (DEQ(cons(c_xh, D(c_vi2))) = null)

=> true

Case.2.1: in_state(cons(c_xh, D(c_vi2)), <_xst)
is NOT provable using the current partially completed system. It reduces to
the equation

false ~> true

Proof of Lemma lemma2.1.2.2.1.1 suspended.
=> crit case with Abstraction.3

Critical pairs between rule Case.l.l.2:
degd (c_xst) =-> new
and rule Abstraction.3:
(in_stack(vd, degd(xst)) & in_state(xh, xst))
| (false <=> in state(cons(xh, D(vd)), xst))
-> true
are as follows:
false <=> in state(cons(xh, D(vd)), c_xst) == true

The system now contains 1 equation, 158 rewrite rules, and 12 deduction rules.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation lemma2.2:

false <=> in_state(cons(xh, D(vd)), c_xst) == true
to yield the feollowing equations:

lemma2.2.1: false == in state(cons(xh, D(vd)), c_xst)

Ordered equation lemma2.2.l1 into the rewrite rule:
in_state(cons(xh, D(vd)), c_xst) ~> false

Left-hand side reduced:

in_state (cons(c_xh, D(c_vi2)), c_xst) =-> true
became equation Case.2.l:
false == true

Equation Case.2.1
false == true
is inconsistent.

Lemma lemma2.1.2.2.1.1 in the proof by cases of Lemma lemma2.1.2.2.1
({(deqgd (c_xst) = new) & in_state(cons(c_xh, D(c_vi2)), c_xst))
=> (DEQ(cons(c_xh, D(c_vi2))) = null)
=> true
Case.2.1: in_state (cons(c_xh, D(c_vi2)), c_xst)
[] Proved by impossible case.

Case.2.2
not (in_state(cons(c_xh, D(c_vi2)), c_xst)) == true

122

involves proving Lemma lemma2.1.2.2.1.2
((degd (c_xst) = new) & in_stata(cons(c_xh, D(c_vi2)), c_xst))
=> (DEQ(cons(c_xh, D(c_vi2))) = null)
-> true)

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.2.2:

false <=> in state(cons(c_xh, D(c_vi2)), c_xat) == true
to yield the following equations:

Case.2.2.1: false == in state(cons(c_xh, D(c_vi2)), c_xst)

Ordered equation Case.2.2.l1 into the rewrite rule:
in_state(cons(c_xh, D(c_vi2)), c_xst) =-> false

The case system now contains 1 rewrite rule.

Lemma lemma2.1.2.2.1.2 in the proof by cases of Lemma lemma2.1.2.2.1
((degd(c_xst) = new) & in_state(cons(c_xh, D(c_vi2)), c_xst))
=> (DEQ(cons(c_xh, D(c.vi2))) = null)
-> true
Case.2.2: not (in_state(cons(c_xh, D(c_vi2)), c_xst))
[{] Proved by rewriting (with unreduced rules).

Lemma lemma2.1.2.2.1 in the proof by cases of Lemma lemma2.1.2.2
((degd (c_xst) = new) & in_state(cons(c_xh, D(vi2)), c_xst))
=> (DEQ(cons(c_xh, D(vi2))) = null)
=> true
Case.l.1l: degd(c_xst) = new

[] Proved by cases
in_state(cons(c_xh, D(vi2)), c_xst)
| not (in_state(cons(c_xh, D(vi2)), c_xst)})

Case.l.2
not (deqd (c_xst) = new) == true
involves proving Lemma lemma2.1.2.2.2
((deqd (c_xst) = new) & in_state(cons(c_xh, D(vi2)), c_xst))
=> (DEQ(cons(c_xh, D(vi2))) = null)
-> true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.l.2:
(degd (c_xst) = new) <=> false == true
to yield the following equations:
Case.l.2.1: degd(c_xst) = new == false

Ordered equation Case.l.2.1 into the rewrite rule:
degd (c_xst) = new ~> false

The case system now contains 1 rewrite rule.

Lemma lemma2.1.2.2.2 in the proof by cases of Lemma lemma2.1.2.2
((degd(c_xst) = new) & in state(cons(c_xh, D(vi2)), c_xst))
=> (DEQ(cons(c_xh, D(vi2))) = null)

-> true
Case.l.2: not (deqgd(c_xst) = new)
[] Proved by rewriting (with unreduced rules).

Lemma lemma2.1.2.2 for the basis step in the proof of Lemma lemma2.1.2

((degd (xst) = new) & in_state(cons(c_xh, D(vi2)), xst))
- (DEQ(cons(c_xh, D(vi2))) = null)

123

-> true
[] Proved by cases
(degqd(xst) = new) | not (degd(xst) = new)

Lemma lemma2.l1.2.1 for the basis step in the proof of Lemma lemma2.1l.2
((deqd(xst) = new) & in_state(cons(c_xh, E(vi2)), xst))
=> (DEQ(cons(c_xh, E(vi2))) = null)
=> true
is NOT provable using the current partially completed system. It reduces to
the equation
((degd (xst) = new) <=> false)
| (false <=> in state(cons(c_xh, E(vi2)), xst))
| (DEQ(c_xh) = null)
=-> true

Proof of Lemma lemma2.l1.2.1 suspended.

Critical-pair computation abandoned because a theorem has been proved.
Computed 1 new critical pair. Added 1 of them to the system.

-> resumes by case deqd(xst)=new

Case.3.1
degd(c_xst) = new == true
involves proving Lemma lemma2.1.2.1.1
((degqd(c_xst) = new) & in state(cons(c_xh, E(vi2)), c_xst))
=> (DEQ(cons(c_xh, E(vi2))) = null)
-> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.3.l:
degd(c_xst) = new == true

to yield the following equations:
Case.3.1.1: deqgd(c_xst) == new

Ordered equation Case.3.l1l.1 into the rewrite rule:
doqd(c_g-t) -> new

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
wvhen x = y == true
vield x m= y

has been applied to equation Case.3.1l:
deqd(c_xst) = new == true

to yield the following equations:
Case.3.1.2: deqd(c_;st) - new

Ordered equation Case.3.1.2 into the rewrite rule:
deqgd (c_xst) => new

The system now contains 157 rewrite rules and 12 deduction rules.

Lemma lemma2.1.2.1.1 in the proof by cases of Lemma lemma2.1.2.1
((doqd(c_xst) = new) & in_state(comns(c_xh, E(vi2)), c_xst))
=> (DEQ(cons(c_xh, E(vi2))) = null)
-> true
Case.3.1: degd(c_xst) = new
is NOT provable using the current partially completed system. It reduces to
the equation
(false <=> in state(cons(c_xh, E(vi2)), c_xst)) | (DEQ(c_xh) = null)
=> true

124

Proof of Lemma lemma2.1.2.1.1 suspended.
-> resume by case in_-tate(cona(c_;h,E(viZ::enq_rec)),c_xut)

Case.4.1
in_state(cons(c_xh, E(c_vi2)), c_xst) == true
involves proving Lemma lemma2.1.2.1.1.1
((degd(c_xst) = new) & in_state{cons(c_xh, E(c_vi2)), c_xst))
=> (DEQ(cons(c_xh, E(c_vi2))) = null)
=> true

The case system now contains 1 equation.

Ordered equation Case.4.l into the rewrite rule:
in_stste(cons(c_;h, E(c_vi2)), c_xst) -> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 157 rewrite rules, and 12 deduction rules.

Ordered equation Case.4.l into the rewrite rule:
in_state(cons(c_;h, E(c_vi2)), c_xst) -> true

The system now contains 158 rewrite rules and 12 deduction rules.

Lemma lemma2.1.2.1.1.1 in the proof by cases of Lemma lemma2.1.2.1.1

((deqd (c_xst) = new) & in_state(cons(c_xh, E(c_vi2)), c_xst))

=> (DEQ(cons(c_xh, E(c_vi2))) = null)

-> true

Case.4.1: in_state(cons(c_xh, E(c_vi2)), c_xst)
is NOT provable using the current partially completed system. It reduces to
the equation

DEQ(c_xh) = null -> true

Proof of Lemma lemma2.1.2.1.1.1 suspended.
-> crit case with lemmal.l5

Critical pairs between rule Case.4.l:
in_state(cons(c_xh, E(c_vi2)), c_xst) =-> true
and rule lemmal.l5:
(false <=> in_state(cons(xh, we), xst)) | in_state(xh, xst) -> true
are as follows:
in_atato(c_xh, c_xst) == true

The system now contains 1 equation, 158 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.3 into the rewrite rule:
in_state(c_xh, c_xst) -> true

The system now contains 159 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of
them to the system.

-> crit lemma2 with induct

Critical pairs between rule lemma2.3:
in_state(c_xh, c_xst) =-> true
and rule Induct.l:
((deqd (xst) = new) <=> false)
| (false <=> in_state(c_xh, xst))
| (DEQ(c_xh) = null)
-> true
are as follows:
DEQ(c_xh) = null == true

The asystem now contains 1 equation, 159 rewrite rules, and 12 deduction rules.

125

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation lemma2.4:
DEQ(c_xh) = null == true

to yield the following equations:
lemma2.4.1: DEQ(c_xh) == null

Ordered equation lemma2.4.l1 into the rewrite rule:
DEQ(c_xh) -> null

Left-hand side reduced:
((degd (xst) = new) <=> false)
| (false <=> in_state(c_xh, xst))
| (DEQ(c_xh) = null)
-> true
became equation Induct.l:
((degd (xst) = new) <=> false)
| (false <=> in state(c_xh, xat))
| (null = null)
-> true

Lermma lemma2.1.2.1.1.1 in the proof by cases of Lemma lemma2.1.2.1.1
((degd(c_xst) = new) & in_state(cons(c_xh, E(c_vi2)), c_xat))
=> (DEQ(cona(c_xh, E(c_vi2))) = null)
~> true
Case.4.1: in_state(cons(c_xh, E(c_vi2)), c_xst)
[] Proved by rewriting.

Case.4.2
not(in_stnto(cona(c_xh, E(c_vi2)), c_xst)) == true
inveolves proving Lemma lemma2.1.2.1.1.2
((deqd(c_xst) = new) & in_state(cons(c_xh, E(c_vi2)), c_xst))
=> (DEQ(cons(c_xh, E(c_vi2))) = null)
=-> true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.4.2:

false <=> in_state(cons(c_xh, E(c_vi2)), c_xst) == true
to yield the following equations:

Case.4.2.1: false == in state(cons(c_xh, E(c_vi2)), c_xsat)

Ordered equation Case.4.2.1 into the rewrite rule:
in_state(cons(c_xh, E(c_vi2)), c_xst) =-> false

The case system now contains 1 rewrite rule.

Lemma lemma2.1.2.1.1.2 in the proof by cases of Lemma lemma2.1.2.1.1
((daqd(c_gst) = new) & in_state(cons(c_xh, E(c_vi2)), c_xst))
=> (DEQ(cons(c_xh, E(c_vi2))) = null)
-> true
Case.4.2: not(in_state(cons(c_xh, E(c_vi2)), c_xsat))
[] Proved by rewriting (with unreduced rules).

Lerma lemma2.1.2.1.1 in the proof by cases of Lemma lemma2.1.2.1
((doqd(c_;st) = new) & in_state(cons(c_xh, E(vi2)), c_xst))
=> (DEQ(cons(c_xh, E(vi2))) = null)
=-> true
Case.3.1: degd (c_xst) = new

[] Proved by cases
in_state(cons(c_xh, E(vi2)), c_xst)
| not(in_state(cons(c_xh, E(vi2)), c_xst))

126

Case.3.2
not (deqd (c_xst) = new) == true
involves proving Lemma lemma2.1.2.1.2
((degqd (c_xst) = new) & in_state(cona(c_xh, E(vi2)), c_xst))
=> (DEQ(cons(c_xh, E(vi2))) = null)
=-> true

The case system now contains 1 equation.

Deduction rule equality.3:
when =x <a> y == true
yield x == y
has been applied to equation Case.3.2:
(deqd (c_xst) = new) <=> false == true
to yield the following equations:
Case.3.2.1: deqd(c_xst) = new == false

Ordered equation Case.3.2.1 into the rewrite rule:
deqd (c_xst) = new -> false

The case system now contains 1 rewrite rule.

Lemma lemma2.1.2.1.2 in the proof by cases of Lemma lemma2.1.2.1
((degd (c_xst) = new) & in_state(cons(c_xh, E(vi2)), c_xst))
=> (DEQ(consa(c_xh, E(vi2))) = null)
=> true
Case.3.2: not(degd(c_xst) = new)

[] Proved by rewriting (with unreduced rules).

Lemma lemma2.1.2.1 for the basis step in the proof of Lemma lemma2.1.2
((degd (xst) = new) & in_state (cons(c_xh, E(vi2)), =xst))
=> (DEQ(cons(c_xh, E(vi2))) = null)
=> true
[] Proved by cases
(degd (xst) = new) | not (degd(xst) = new)

The induction step in an inductive proof of Lemma lemma2.1.2 for the induction
step in the proof of Conjecture lemma2.l

((deqd (xst) = new) & in_state(cons(c_xh, vil), xst))

=> (DEQ(cons(c_xh, vil)) = null)

=> true
is vacuous.

Lemma lemma2.l.2 for the induction step in the proof of Conjecture lemma2.1l
((deqd (xst) = new) & in_state(cons(c_xh, vil), xst))
=> (DEQ(cons(c_xh, vil)) = null)
-> true

[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.

Conjecture lemma2.1l
({deqd (xst) = new) & in_state(xh, xst)) => (DEQ(xh) = null) =-> true
[] Proved by induction over ‘xh::H’ of sort ‘H’.
The system now contains 1 equation, 155 rewrite rules, and 12 deduction rules.
Ordered equation lemma2.l into the rewrite rule:
({(deqd (xst) = new) <=> false)
| (false <=> in state(xh, xst))
| (DEQ(xh) = null)
-> true
The system now contains 156 rewrite rules and 12 deduction rules.
Critical-pair computation abandoned because a theorem has been proved.

Computed 1 new critical pair. Added 1 of them to the system.

~> prove (xh=xhl)=> (ordered (xh) <=>ordered (xhl)) by induction xh H

127

The basis step in an inductive proof of Conjecture lemma2.5
(xh = xhl) => (ordered(xh) <=> ordered(xhl)) =-> true
inveolves proving the following lemma(s):

lemma2.5.1: (null = xhl) => (ordered(null) <=> ordered(xhl)) =-> true
which reduces to the equation
((null = xhl) <=> false) | ordered(xhl) ~-> true

Proof of Lemma lemma2.5.]1 suspended.
-> resume by induction xhl H

The basis step in an inductive proof of Lemma lemma2.5.1 for the basis step in
the proof of Conjecture lemma2.5

(null = xhl) => (ordered(null) <=> ordered(xhl)) => true
involves proving the following lemma(s):

lemma2.5.1.1: (null = null) => (ordered(null) <=> ordered(null)) -> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemma2.5.1 for the basis step
in the proof of Conjecture lemma2.5

(null = xhl) => (ordered(null) <=> ordered(xhl)) => true
uses the following equation(s) for the induction hypothesis:

Induct.2: (c_xhl = null) => (ordered(c_xhl) <=> ordered(null)) -> true
The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:
((c_xhl = null) <=> false) | o:dorod(c_xhl) -> true

The system now contains 157 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemma2.5.1.2: (cons(c_xhl, vil) = null)
=> (ordorod(cons(c_;hl, vil)) <=> ordered(null))
=> true
[] Proved by normalization

Lemma lemma2.5.1 for the basis step in the proof of Conjecture lemma2.5
(null = xhl) => (ordered(null) <=> ordered(xhl)) =-> true
[] Proved by induction over ‘xhl’ of sort ‘H’.

The inducticn step in an inductive proof of Conjecture lemma2.5
(xh = xhl) => (ordered(xh) <=> ordered(xhl)) =-> true
uses the following equation(s) for the induction hypothesis:

Induct.3: (c_xh = xhl) => (ordered(c_xh) <=> ordered(xhl)) ~-> true
The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

Ordered equation Induct.3 into the rewrite rule:
((c_xh = xhl) <=> false) | (ordered(c_xh) <=> ordered(xhl)) -> true

The system now contains 157 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemma2.5.2: (cons(c_xh, vil) = xhl)
=> (ordered(cons(c_xh, vil)) <=> ordered(xhl))
-> true
which reduces to the equation
((cons(c_xh, vil) = xhl) <=> false)
| {ordered(cons(c_xh, vil)) <=> ordered(xhl))
-> true

Proof of Lemma lemma2.5.2 suspended.

128

-> resums by induction xhl B

The basis step in an inductive proof of Lemma lemma2.5.2 for the induction step
in the proof of Conjecture lemma2.5

(cons(c_xh, vil) = xhl) => (ordered(cons(c_xh, vil)) <=> ordered(xhl))

=-> true
involves proving the following lemma (s):

lemma2.5.2.1: (cons(c_xh, vil) = null)
=> (ordered(cons(c_xh, vil)) <=> ordered(null))
-> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemma2.5.2 for the induction
step in the proof of Conjecture lemma2.5

(cons(c_xh, vil) = xhl) => (ordered(cons(c_xh, vil)) <=> ordered(xhl))

-> true
uses the following equation(s) for the induction hypothesis:

Induct.4: (c_xhl = cons(c_xh, vil))
=> (ordered(c_xhl) <=> ordered(cons(c_xh, vil)))
-> true

The system now contains 1 equation, 157 rewrite rules, and 12 deduction rules.

Ordered equation Induct.4 into the rewrite rule:
((c_xhl = cons(c_xh, vil)) <=> false)
| (ordered(c_xhl) <=> ordered(cons(c_xh, vil)))
=> true

The system now contains 158 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemma2.5.2.2: (cons(c_xh, vil) = cons(c_xhl, vi2))
-> (ordcrod(cona(c_xh, vil)) <=> ordered(cons(c_xhl, vi2)))
=-> true
which reduces to the equation
((c_xh = c_xhl) <=> false)
| ((vil = vi2) <=> false)
| (ordered(cons(c_xh, vil)) <=> ordered(comns(c_xhl, vi2)))
-> true

Proof of Lemma lemma2.5.2.2 suspended.
-> resume by case (c_xhmc xhl)&(vil=vi2::Ev)

Case.5.1
(c_vil = c_vi2) & (c_xh = c_xhl) == true
involves proving Lemma lemma2.5.2.2.1
(cons(c_xh, c_vil) = cons(c_xhl, c_vi2))
=> (ordered(cons(c_xh, c_vil)) <=> ordered(cons(c_xhl, c_vi2)))
-> true

The case system now contains 1 equation.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation Case.5.1:
(c_vil = c¢_vi2) & (c_xh = c_xhl) == true
to yield the following equations:
Case.5.1.1: c vil = ¢ vi2 == true
Case.5.1.2: c_xh = c_xhl == true

Deduction rule equality.4:
when x = y == true

129

yield x == y

has been applied to equation Case.5.1.2:
¢_xh = ¢c_xhl == true

to yield the following equations:
Case.5.1.2.1: c _xh == ¢_xhl

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.5.1.1:
c vil = c vi2 == true

to yield the following equations:
Case.5.1.1.1: c_vil == c vi2

Ordered equation Case.5.1.2.1 into the rewrite rule:
c_xh -> ¢ xhl

The case system now contains 1 equation and 1 rewrite rule.

Ordered equation Case.5.1.1.1 into the rewrite rule:
c_vil => c_vi2

The case system now contains 2 rewrite rules.

Lemma lemma2.5.2.2.1 in the proof by cases of Lemma lemma2.5.2.2
(cons(c_xh, c_vil) = cons(c_xhl, c_vi2))
=> (ordered(cons(c_xh, c_vil)) <=> ordered(cons(c_xhl, c_vi2)})
=> true
Case.5.1: (c_vil = ¢ _vi2) & (c_xh = c_xhl)
[1 Proved by rewriting (with unreduced rules).

Case.5.2
not ((c_vil = c_vi2) & (c_xh = c_xhl)) == true
involves proving Lemma lemma2.5.2.2.2
(cons(c_xh, ¢ _vil) = cons(c_xhl, c_vi2))
=> (ordered(cons(c_xh, c vil)) <=> ordarod(conl(c_xhl, c_vi2)))
=> true

The case system now contains 1 equation.

Ordered equation Case.S5.2 into the rewrite rule:
((c_vil = c_vi2) <=> false) | ((c_xh = ¢ _xhl) <=> false) =-> true

The case system now contains 1 rewrite rule.

Lemma lemma2.5.2.2.2 in the proof by cases of Lemma lemma2.5.2.2
(con-(c_xh, c_vil) = cons(c_xhl, c_vi2))
=> (ordered(cons(c_xh, c_vil)) <=> ordered(cons(c_xhl, c_vi2)))
-> true
Case.5.2: not((c_vil = c_vi2) & (c_xh = ¢ xhl))

[] Proved by rewriting (with unreduced rules).

Lemma lemma2.5.2.2 for the induction step in the proof of Lemma lemma2.5.2
(cons (c_xh, vil) = cons(c_xhl, vi2))
=> (ordered(cons(c_xh, vil)) <=> ordered(cons(c_xhl, vi2)))
-> true
[] Proved by cases
((c_xh = c_xhl) & (vil = vi2)) | not((c_xh = c xhl) & (vil = vi2))

Lemma lemma2.5.2 for the induction step in the proof of Conjecture lemma2.5
(cons(c_xh, vil) = xhl) => (ord.rod(con-(c_;h, vil)) <=> ordered(xhl))
-> true

[] Proved by induction over ‘xhl’ of sort ‘H’.

Conjecture lemma2.5
{xh = xhl) => (ordered(xh) <=> ordered(xhl)) ~-> true

[] Proved by induction over ‘xh::H’ of sort ‘H’.

The system now contains 1 equation, 156 rewrite rules, and 12 deduction rules.

130

Ordered equation lemma2.5 into the rewrite rule: -
((xh = xhl) <=> false) | (ordered(xh) <=> ordered(xhl)) =-> true

The system now contains 157 rewrite rules and 12 deduction rules.

-> prove
Please enter an equation to prove, terminated with a ‘..’ line, or ‘?’ for help:
((xh=append (cons:H,Ev->H(xhl,E (pair(xe,xt))),xh2)) & ordered(xh) &
prefix (DEQ (append (xhl, xh2)) ,ENQ (append (xhl,xh2))) &
in (append (xhl,xh2), af(xst)) & (engr(top(degd(xst)))<xt)) =>
prefix (DEQ (xh) ,ENQ (xh))

Conjecture lemma2.3
((engr (top (degd (xst))) < xt)
& (append(cons(xhl, E(pair(xe, xt))), xh2) = xh)
& in(append(xhl, xh2), af(xst))
& ordered(xh)
& prefix(DEQ(append(xhl, xh2)), ENQ(append(xhl, xh2))))
=> prefix (DEQ(xh), ENQ(xh))
-> true
is NOT provable using the current partially completed system. It reduces to
the equation
((engr (top(degd(xst))) < xt) <=> false)
| {((append(cons(xhl, E(pair(xe, xt))), xh2) = xh) <=> false)
| (false <=> in(append(xhl, xh2), af(xst)))
| (false <=> ordered(xh))
| (false <=> prefix (DEQ(append(xhl, xh2)), ENQ(append(xhl, xh2))))
| prefix(DEQ(xh), ENQ(xh))
-> true

Proof of Conjecture lemma2.3 suspended.

-> resume by case (engr (top(deqgd(xst)))<xt) & (append(cons(xhl,E (pair(xe,xt))),
xh2)=xh) &¢in (append (xhl, xh2) , af (xst)) &ordered (xh) &prefix (DEQ (append (xhl, xh2)),
ENQ (append (xhl, xh2)))

Case.l.1
(engr (top (degd(c_xst))) < c_xtl)
& (append(cons (c_xhl, E(pair (c_xe, c_xtl))), c__xh2) - c_xh)
& in(append(c_xhl, c_xh2), af(c_xst))
& ordered (c_xh)
& prefix (DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2)))
== true
invelves proving Lemma lemma2.3.1
((engr (top(degd(c_xst))) < c_xtl)
& (append(cons{c_xhl, E(pair(c_xe, c_xtl))), c_xh2) = c_xh)
& in(append(c_xhl, c_xh2), af(c_xat))
& ordered (c_xh)
& prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))))
=> prefix (DEQ(c_xh), ENQ(c_xh))
-> true

The case system now contains 1 equation.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation Case.l.l:
(engr (top (deqd (c_xst))) < c_xtl)
& (append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) = c xh)
& in(append(c_xhl, c_xh2), af(c_xat))
& ordered(c_xh)
& prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2)))

131

== true
to yield the following equations:
Case.1l.1.1: engr(top(deqgd(c_xst))) < c_xtl == true

Case.1.1.2: append(cons(c_xhl, E(pair(c_xe, c_xtl))), c _xh2) = c _xh == true
Case.1.1.3: in(append(c_xhl, c_xh2), af(c_xst)) == true

Case.l.1.4: ordered(c_xh) == true

Case.l.1.5: prefix (DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, < xh2)))

== true

Ordered equation Case.l.l.5 into the rewrite rule:
prefix (DEQ (append (c_xhl, c_xh2)), ENQ(append(c_xhl, c xh2))) =-> true

Ordered equation Case.l.l.4 into the rewrite rule:
ordered(c_xh) -> true

Ordered equation Case.l.l.3 into the rewrite rule:
in (append (c_xhl, ¢ _xh2), af(c_xst)) -> true

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation Case.l.1l.2:
append (cons (c_xhl, E(pair(c_xe, c xtl))), c_xh2) = ¢ _xh == true
to yield the following equations:
Case.l.1.2.1: append(cons(c_xhl, E(pair(c_xe, c_xtl))}), c_xh2) == c_xh

Ordered equation Case.l.l.l into the rewrite rule:
engr (top(deqd (c_xst))) < c_xtl -> true

The case system now contains 1 equation and 4 rewrite rules.

Ordered equation Case.l.1.2.1 into the rewrite rule:
append (cons (c_xhl, E(pair(c_xe, c_xtl))), c_xh2) -> c xh

The case system now contains 5 rewrite rules.
The system now contains 1 equation, 159 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation Case.l.l:
(engr (top (degd(c_xst))) < c_xtl)
& (append(cons(c_xhl, E(pair(c_xe, c xtl))), c _xh2) = c_xh)
& in(append(c_xhl, c_xh2), af(c_xst))
& ordered(c_xh)
& prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2)))
== true
to yield the following equations:
Case.l.1.6: engr(top(degd(c_xst))) < c_xtl == true
Case.1.1.7: append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) = c_;h == true
Case.1.1.8: in(append(c_xhl, c _xh2), af(c_xst)) == true
Case.1.1.9: ordered(c_xh) == true
Case.1.1.10: prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2)))
= true

Ordered equation Case.l.1.10 into the rewrite rule:
prefix (DEQ(append(c_xhl, c_xh2)), ENQ (append(c_xhl, c_xh2))) -> true

Ordered equation Case.1.1.9 into the rewrite rule:
ordered(c_xh) -> true

Ordered equation Case.l.l.8 into the rewrite rule:
in(append(c_xhl, c_xh2), af(c_xst)) -> true

Deduction rule egquality.4:

when x = y == true
yield x == y

132

has been applied to equation Case.l.1.7:

append (cons (c_xhl, E(pair(c_xe, c_xtl))), c_xh2) = c xh == true
to yield the following equations:
Case.1.1.7.1: append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) == c xh

Ordered equation Case.l.1.7.1 into the rewrite rule:
append (conas (c_xhl, E(pair(c_xe, c_xtl))), c_xh2) =-> c_xh

Ordered equation Case.l.1.6 into the rewrite rule:
engr (top(degd(c_xst))) < c_xtl -> true

The system now contains 164 rewrite rules and 12 deduction rules.

Lemma lemma2.3.l1 in the proof by cases of Conjecture lemma2.3
((enqr(top(deqd(c_xst))) < c_xtl)
& (append(cons(c_xhl, E(pair (c_xe, e xtl))), c_xh2) = c_xh)
& in(append(c_xhl, c_xh2), af(c_xst))
& ordered(c_xh)
& prefix(DEQ (append (c_xhl, c_xh2)), ENQ(append(c_xhl, c¢_xh2))))
=> prefix (DEQ(c_xh), ENQ(c_xh))
-> true
Case.l.1l: (enqgr(top(degd(c_xst))) < c_xtl)
& (append(cons(c_xhl, E(pair(c_xe, ¢ _xtl))), c_xh2) = c_xh)
in (append(c_xhl, c_xh2), af(c_xst))
ordered (c_xh)
prefix (DEQ(append (c_xhl, c_xh2)), ENQ(append(c_xhl, ¢ _xh2)))

n oo

is NOT provable using the current partially completed system. It reduces to
the equation
prefix(DEQ(c_xh), ENQ(c_xh)) => true

Proof of Lemma lemma2.3.1 suspended.
-> crit case.l.1.8 with Abstraction.l1l0

Critical pairs between rule Case.l.1.8:
in(append(c_;hl, c_ghz), af(c_xst)) -> true
and rule Abstraction.l0:
({(engr(top(degd(xst))) < xt) <=> false)
| (false <=> in(append(xhl, xh2), af(xst)))
| (false <=> ordered(append(cons(xhl, E(pair(xe, xt)})), xh2)))
| (false <=> prefix (DEQ(append(xhl, xh2)), ENQ(append(xhl, xh2))))
| prefix(DEQ(append(xhl, xh2)), append(cons(ENQ(xhl), xe), ENQ(xh2)))
-> true
are as follows:
((enqr (top (degd (c_xst))) < xt) <=> false)
| (false <=> ordered (append(cons(c_xhl, E(pair(xe, xt))), e _xh2)))
| prefix(DEQ(append(c_xhl, c_xh2)),
append (cons (ENQ (c_xhl), xe), ENQ(c_xh2)))

== true
The system now contains 1 equation, 164 rewrite rules, and 12 deduction rules.
Ordered equation lemma2.4 into the rewrite rule:
((engr (top (degd(c_xst))) < xt) <=> false)
| (false <=> orderod(appond(cons(c_;hl, E (pair(xe, xt))), c_xh2)))
| prefix(DEQ(append(c_xhl, c_xh2)),
append(cons(ENQ(c_;hl), xe), ENQ(c_xh2)))
-> true
The system now contains 165 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.

-> crit case with lemma2.2

Critical pairs between rule Case.l.1.9:
ordered(c_xh) -> true

133

and rule lemma2.2:
((xh = xhl) <=> false) | (ordered(xh) <=> ordered(xhl)) =-> true
are as follows:
((c_xh = xhl) <=> false) | ordered(xhl) == true
((c__xh = xh) <=> false) | ordered(xh) == true

The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.5 into the rewrite rule:
((c_xh = xhl) <=> false) | ordered(xhl) =-> true

The system now contains 166 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of
them to the system.

-> crit case.l.l1.6 with lemma2

Critical pairs between rule Case.l.l.6:
engr (top (deqd(c_xst))) < c_xtl => true
and rule lemma2.4:
((engr (top (deqd (c_xst))) < xt) <=> false)
| (false <=> ordered(append(cons(c_xhl, E(pair(xe, xt))), c_xh2)))
| prefix(DEQ(append(c_xhl, c_xh2)),
append (cons (ENQ(c_xhl), xe), ENQ(c_xh2)))

-> true
are as follows:
(false <=> ordered (append(cons(c_xhl, E(pair(xe, c_xtl))), c_xh2)))
| prefix(DEQ(append(c_xhl, c_xh2)),
append (cons (ENQ (c_xhl), xe), ENQ(c_xh2)))

== true
The system now contains 1 equation, 166 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.6 into the rewrite rule:
(false <=> ordered(append(cons(c_xhl, E(pair(xe, c_xtl))), c_xh2)))
| prefix(DEQ(append(c_xhl, c_xh2)),
append (cons (ENQ(c_xhl), xe), ENQ (c_xh2)))

=> true
The system now containa 167 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

-> crit case.1.1.7.1 with lemma2

Critical pairs between rule Case.l.1.7.1:
append (cons (c_xhl, E(pair(c_xe, c_xtl))), e xh2) -> c_xh
and rule lemma2.6:
(false <=> ordered (append(cons(c_xhl, E(pair(xe, c_xtl))), c_xh2)))
| prefix(DEQ(append(c_xhl, c_xh2)),
append (cons (ENQ(c_xhl), xe), ENQ(c_xh2)))

=> true
are as follows:
prefix (DEQ(append(c_xhl, c¢_xh2)),
append (cons (ENQ (c_xhl), c_xo) + ENQ(c xh2)))
== true

The system now contains 1 equation, 167 rewrite rules, and 12 deduction rules.
Ordered equation lemma2.7 into the rewrite rule:

prefix (DEQ (append (c_xhl, c_xh2)), append(cons(ENQ(c_xhl), c_xe), ENQ (c_xh2)))
-> true

134

The system now contains 168 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of
them to the system.

-> crit case.1.1.7.1 with lemmal.é6

Critical pairs between rule Case.1.1.7.1:
append (cons (c_xhl, E(pair(c_xe, c_xtl))}), c_xh2) => c xh
and rule lemmal.é6:
ENQ (append (cons(x, E(y)), z)) -> append(cons (ENQ(x), element(y)), ENQ(z))
are as follows:
ENQ (c_xh) == append(cons (ENQ(c_xhl), c_xe), ENQ(c_xh2))

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.8 into the rewrite rule:
append (cons (ENQ(c_xhl), c_xe), ENQ(c_xh2)) => ENQ(c_xh)

Left~hand side reduced:
prefix (DEQ (append (c_xhl, c_xh2)),
append (cons (ENQ(c_xhl), c_xe), ENQ(c _xh2)))
-> true
became equation lemma2.7:
prefix (DEQ (append (c_xhl, c_xh2)), ENQ(c_xh)) == true

Ordered equation lemma2.7 into the rewrite rule:
prefix (DEQ (append(c_xhl, c_xh2)), ENQ(c_xh)) => true

The system now contains 169 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.
-> crit case.1l.1.7.1 with lemmal.$8

Critical pairs between rule Case.l.1.7.1:
append(cons(c_xhl, E(pair(c_xe, c_gtl))), c_xh2) => c_xh
and rule lemmal.S8:
DEQ (append(cons(x, E(y)), z)) =-> DEQ(append(x, z))
are as follows:
DEQ(c_xh) == DEQ(append(c_xhl, c_xh2))

The system now contains 1 equation, 169 rewrite rules, and 12 deduction rules.

Ordered equation lemma2.9 into the rewrite rule:
DEQ(append(c_;hl, c_xh2)) =-> DEQ(c_xh)

Following 4 left-hand sides reduced:
prefix (DEQ(append(c_xhl, c_xh2)), ENQ(append(c.xhl, c_xh2))) => true
became equation Case.l1.1.10:
prefix (DEQ(c_xh), ENQ(append(c_xhl, c_xh2))) == true
((engr(top (degd(c_xst))) < xt) <=> false)
| (false <=> ordered (append (cons (c_xhl, E(pair(xe, xt))), c_xh2)))
| prefix(DEQ(append(c_xhl, c_xh2)),
append (cons (ENQ(c_xhl), xe), ENQ(c_xh2)))

-> true
became equation lemma2.4:
((engr (top(degd(c_xst))) < xt) <=> false)
| (false <=> ordered(append(cons(c_xhl, E(pair(xe, xt))), c_xh2)))
| prefix(DEQ(c_xh), append(cons(ENQ(c_xhl), xe), ENQ(c_xh2)))
== true
(false <=> ordered(append(cons(c_xhl, E(pair(xe, c xtl))), c_xh2)))
| prefix(DEQ(append(c_xhl, c_xh2)),
append (cons (ENQ (c_xhl), xe), ENQ(c_xh2)))

-> true

became equation lemma2.6:
(false <=> ordered(append (cons(c_xhl, E(pair(xe, c_xtl))), c_xh2)))

135

| prefix(DEQ(c_xh), append (cons(ENQ (c_;xhl) » xe), ENQ(c_xh2)))
== true
prefix (DEQ(append (c_xhl, c_xh2)), ENQ(c_xh)) =-> true
became equation lemma2.7:
prefix (DEQ(c_xh), ENQ(c_xh)) == true

Ordered equation Case.l.1.10 into the rewrite rule:
prefix (DEQ (c_xh), ENQ(append(c_xhl, c__xh2))) => true

Ordered equation lemma2.4 into the rewrite rule:
((engr (top(degd(c_xst))) < xt) <=> false)
| (false <=> ordered (append(cons(c_xhl, E(pair(xe, xt))), c_xh2)))
| prefix(DEQ(c_xh), append(cons(ENQ(c_xhl), xe), ENQ(c_xh2)))
-> true

Ordered equation lemma2.6 into the rewrite rule:
(false <=> ordered (append (cons (c_xhl, E(pair(xe, c_xtl))), c_xh2)))
| prefix (DEQ(c_xh), append(cons(ENQ(c_xhl), xe), ENQ(c_xh2)))
-> true

Ordered equation lemma2.7 into the rewrite rule:
prefix (DEQ(c_xh), ENQ(c_xh)) =-> true

The system now contains 170 rewrite rules and 12 deduction rules.

Lemma lemma2.3.1 in the proof by cases of Conjecture lemma2.3
((enqr (top(degd(c_xst))) < c_xtl)
& (append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) = c_xh)
& in(append(c_xhl, c_xh2), af(c_xst))
& ordered(c_xh)
& prefix (DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))))
=> prefix (DEQ(c_xh), ENQ(c_xh))
-> true
Case.l.1l: (engr (top(deqd(c_xst))) < c_xtl)
& (append(cons(c_xhl, E(pair(c_xe, c _xtl))), c_xh2) = c¢_xh)
& in(append(c_xhl, c_xh2), af(c_xat))
& ordered(c_xh)
& prefix(DEQ(appond(c_xhl, e_xh2)), ENQ(appond(c_xhl, c_xh2)))

[] Proved by rewriting.

Case.l.2
not ((engr (top (deqd (c_xst))) < c_xtl)
& (append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) = c_xh)
& in(append(c_xhl, c _xh2), af(c_xst))
& ordered(c_xh)
& prefix (DEQ (append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))))

== true
involves proving Lemma lemma2.3.2

((enqgr (top(degd (c_xat))) < c_xtl)
& (append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) = c_xh)
& in(append(c_xhl, c_xh2), af(c_xst))
& ordered (c_xh)
& prefix (DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))))
=> prefix (DEQ(c_xh), ENQ(c_xh))

-> true

The case system now contains 1 equation.

Ordered equation Case.l.2 into the rewrite rule:
((engr (top (degd(c_xst))) < c_xtl) <=> false)
| ((append(cons(c_xhl, E(pair(c_xe, c xtl))), c_xh2) = ¢ _xh) <=> false)
| (false <=> in (append (c_xhl, c_xh2), af (c_xst)))
| (false <=> ordered(c_xh))
| (false <=> prefix (DEQ (append (c_xhl, c_xh2)), ENQ (append (c_xhl, c_xh2))))
=-> true

The case system now contains 1 rewrite rule.

136

Lemma lemma2.3.2 in the proof by cases of Conjecture lemma2.3
({engr (top(degd(c_xst))) < c_xtl)
& (append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) = c_xh)
& in(append(c_xhl, c_xh2), af(c_xst))
& ordered(c_xh)
& prefix(DEQ(append(c_;hl, c_xh2)), ENQ(append(c_xhl, c_xh2))))
=> prefix (DEQ(c_xh), ENQ(c_xh))
-> true
Case.l.2: not((engr(top(deqd(c_xst))) < c_xtl)
& (append(cons(c_xhl, E(pair(c_xe, c_xtl))), c_xh2) = c_xh)
& in(append(c_xhl, c_xh2), af (c_xst))
& ordered(c_xh)
& prefix(DEQ (append(c_xhl, c_xh2)),
ENQ (append (c_xhl, c_xh2))))

[] Proved by rewriting (with unreduced rules).

Conjecture lemma2.3
((engr (top(deqgd (xst))) < xt)
& (append(cons(xhl, E(pair(xe, xt))), xh2) = xh)
& in(append(xhl, xh2), af(xst))
& ordered (xh)
& prefix (DEQ (append (xhl, xh2)), ENQ(append(xhl, xh2))))
=> prefix (DEQ(xh), ENQ(xh))
-> true
[] Proved by cases
((engr (top (deqgd (xst))) < xt)
& (append(cons(xhl, E(pair(xe, xt))), xh2) = xh)
& in(append(xhl, xh2), af(xst))
& ordered(xh)
& prefix (DEQ(append(xhl, xh2)), ENQ(append(xhl, xh2))))
| not ((engr(top(degd(xst))) < xt)
{(append (cons (xhl, E (pair(xe, xt))), xh2) = xh)
in(append(xhl, xh2), af(xst))
ordered (xh)
prefix (DEQ (append (xhl, xh2)), ENQ(append(xhl, xh2))))

R

The system now contains 1 equation, 159 rewrite rules, and 12 deduction rules.
Ordered equation lemma2.3 into the rewrite rule:
((engr (top (deqgd(xst))) < xt) <=> false)
| ((append(cons(xhl, E(pair(xe, xt))), xh2) = xh) <=> false)
| (false <=> in(append(xhl, xh2), af(xst)))
| (false <=> ordered(xh))
| (false <=> prefix (DEQ (append(xhl, xh2)), ENQ(append(xhl, xh2))))
| prefix(DEQ(xh), ENQ(xh))
=> true
The system now contains 160 rewrite rules and 12 deduction rules.
Critical-pair computation abandoned because a theorem has been proved.
Computed 1 new critical pair. Added 1 of them to the system.
-> forget undo
Undo stack cleared.

-> freeze theory2

System frozen in ‘theory2.frz’.

->q

137

5.7. Helping Lemma Set 3

add

(DEQ (append (xh ,xhl))=null:->Seq)=>((DEQ (xh)=null:->Seq) & (DEQ (xhl)=null:->Seq))
((xh=append (cons (xhl, D(trip(element (xn), engt(xn), xt))), xh2)) &

(DEQ(xhl)=null:->Seq) & (DEQ(xh2)=null:->Seq) & in (append(xhl,xh2),af(xst)) &
in(xn,engd (xst)) & least (xn,engd(xst))) => prefix(DEQ(xh),ENQ(xh))

((xh=append (cons (xhl, D(trip(element (xn), engt(xn), xt))), xh2)) &

in (append (xhl, xh2) ,af(xst)) & in(xn,enqgd(xst)) & least (xn,enqgd(xst)) &

prefix (DEQ (append (xhl, xh2)), ENQ(append(xhl, xh2)))&(DEQ(xh2)=null:->Seq)&
(engr (top (degqd (xst))) < engt (xn))) => prefix (DEQ(xh),ENQ(xh))

138

5.8. LP Proof Session of Lemma Set 3

-> thaw theory2

System thawed from ‘theory2.frz’.
-> set name lemma3

The name prefix is now ‘lemma3’.

-> prove (DEQ(append(xh ,xhl))=null:->Seq)=>((DEQ(xh)=null:->Seq) & (DEQ(xhl)=null:->Seq)) by induction
xh H

The basis step in an inductive proof of Conjecture lemma3.1l
(DEQ (append (xh, xhl)) = null) => ((DEQ(xh) = null) & (DEQ(xhl) = null))}
-> true

involves proving the following lemma(s):

lemma3.1.1: (DEQ(append(null, xhl)) = null)
=> ((DEQ(null) = null) & (DEQ(xhl) = null))
-> true
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemma3.l
(DEQ (append (xh, xhl)) = null) => ((DEQ(xh) = null) & (DEQ(xhl) = null))
-> true

uses the following equation(s) for the induction hypothesis:

Induct.l: (DEQ(append(c_xh, xhl)) = null)
=> ((DEQ(c_xh) = null) & (DEQ(xhl) = null))
=-> true

The system now contains 1 equation, 160 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l into the rewrite rule:
((DEQ(c_xh) = null) & (DEQ(xhl) = null))
| ((DEQ(append(c_xh, xhl)) = null) <=> false)
=-> true

The system now contains 161 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemma3.l1l.2: (DEQ(append(cons(c_xh, vil), xhl)) = null)
=> ((DEQ(cona(c_xh, vil)) = null) & (DEQ(xhl) = null))
-> true
which reduces to the equation
((DEQ(cons (c¢_xh, vil)) = null) & (DEQ(xhl) = null))
| ((DEQ(append(cons(c_xh, vil), xhl)) = null) <=> false)
-> true

Proof of Lemma lemma3.l.2 suspended.

-> resume by induction xhl
Please enter a sort for the induction: H

The basis step in an inductive proof of Lemma lemma3.l.2 for the induction step
in the proof of Conjecture lemma3.1l

(DEQ (append (cons (c_xh, vil), xhl)) = null)

=> ((DEQ(cons(c_xh, vil)) = null) & (DEQ(xhl) = null))

=> true
involves proving the following lemma (s):

lemma3.1.2.1: (DEQ(append(cons(c_xh, vil), null)) = null)
=> ((DEQ(cons(c_xh, vil)) = null) & (DEQ(null) = null))
-> true
[] Proved by normalization

139

The induction step in an inductive proof of Lemma lemma3.l.2 for the induction
step in the proof of Conjecture lemma3.1l

(DEQ (append (cons (c_xh, vil), xhl)) = null)

=> ((DEQ(cons(c_xh, vil)) = null) & (DEQ(xhl) = null))

-> true
uses the following equation(s) for the induction hypothesis:

Induct.2: (DEQ(append(cons(c_xh, vil), c_xhl)) = null)
=> ((DEQ(c_xhl) = null) & (DEQ(cons(c_xh, vil)) = null))
=> true

The system now contains 1 equation, 161 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:
((DEQ(c_xhl) = null) & (DEQ(cons(c_xh, vil)) = null))
| ((DEQ(append(cons(c_xh, vil), c_xhl)) = null) <=> false)
-> true

The system now contains 162 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemma3.1.2.2: (DEQ (append (cons (c_xh, vil), cons(c_xhl, vi2))) = null)
=> ((DEQ(cons(c_xh, vil)) = null)
& (DEQ(cons(c_xhl, vi2)) = null))

~-> true
which reduces to the equation
((DEQ(cons (c_xh, vil)) = null)
& (DEQ(cons(c_xhl, vi2)) = null))
| ((DEQ(cons (append(cons{c_xh, vil), c_xhl), vi2)) = null)
<=> false)

-> true
Proof of Lemma lemma3.l.2.2 suspended.
-> resume by induction vi2 Ev

The basis step in an inductive proof of Lemma lemma3.l1.2.2 for the induction
step in the proof of Lemma lemma3.l.2

(DEQ (append (cons (c_xh, vil), cons(c_xhl, vi2))) = null)

=> ((DEQ(cons(c_xh, vil)) = null) & (DEQ(cons(c_xhl, vi2)) = null))

-> true
inveolves proving the following lemma(s):

lemma3.1.2.2.1: (DEQ(append(cons(c_xh, vil), cons(c_xhl, E(vi3))})) = null)
=> ((DEQ(cons(c_xh, vil)) = null)
& (DEQ(cons(c_xhl, E(vi3))) = null))

-> true
[] Proved by normalization
lemma3.1.2.2.2: (DEQ(append(cons(c_xh, vil), cons(c_xhl, D(vi3)))) = null)
=> ((DEQ(cons(c_xh, vil)) = null)
& (DEQ(cons(c_xhl, D(vi3))) = null))

=> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemma3.l1.2.2 for the
induction step in the proof of Lemma lemma3.1l.2
(DEQ (append (cons (c_xh, vil), cons (c_xhl, vi2))) = null)
=> ((DEQ(cons(c_xh, vil)) = null) & (DEQ(cons(c_xhl, vi2)) = null))
-> true
is vacuous.

Lemma lemma3.1.2.2 for the induction step in the proof of Lemma lemma3.l.2

(DEQ (append (cons (c_xh, vil), cons(c_xhl, vi2))) = null)
=> ((DEQ(cons(c_xh, vil)) = null) & (DEQ(cons(c_xhl, vi2)) = null))

140

-> true
[] Proved by induction over ‘vi2::Ev’ of sort ‘Ev’.

Lemma lemma3.1.2 for the induction step in the proof of Conjecture lemma3.l
(DEQ (append (cons (c_xh, vil), xhl)) = null)
=> ((DEQ(cons(c_xh, vil)) = null) & (DEQ(xhl) = null))
=> true

[] Proved by induction over ‘xhl’ of sort ‘H’.

Conjecture lemma3.l
(DEQ (append (xh, xhl)) = null) => ((DEQ(xh) = null) & (DEQ(xhl) = null))
-> true

[] Proved by induction over ‘xh::H’ of sort ‘H’.

The system now contains 1 equation, 160 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.l into the rewrite rule:
((DEQ(xh) = null) & (DEQ(xhl) = null))
| ((DEQ(append(xh, xhl)) = null) <=> false)
=-> true

The system now contains 161 rewrite rules and 12 deduction rules.

-> prove
Please enter an equation to prove, terminated with a ‘..’ line, or ‘?’ for help:
{ (xh=append (cons (xhl, D(trip(element (xn), engt(xn), xt))), xh2)) &
(DEQ (xhl)=null:->Seq) & (DEQ(xh2)=null:->Seq) & in(append(xhl,xh2),af(xst)) &
in(xn,enqd(xst)) & least (xn,engd(xst))) => prefix (DEQ(xh),ENQ(xh))

.

Conjecture lemma3.2
((DEQ(xhl) = null)
(DEQ (xh2) = null)
(append (cons (xhl, D{(trip(element (xn), engt (xn), xt))), xh2) = xh)
in (append(xhl, xh2), af(xst))
in(xn, engd(xst))
least (xn, enqgd(xat)))
=> prefix (DEQ(xh), ENQ(xh))
=> true
is NOT provable uaing the current partially completed system. It reduces to
the equatien
((DEQ(xhl) = null) <=> false)
| ((DEQ(xh2) = null) <=> false)
| ((append(cons(xhl, D(trip(element (xn), engt(xn), xt))), xh2) = xh)
<=> false)

(4]

[LI O]

| (false <=> in(append(xhl, xh2), af(xst)))
| (false <=> in(xn, engd(xst)))

| (false <=> least (xn, enqgd(xst)))

| prefix(DEQ(xh), ENQ(xh))

-> true

Proof of Conjecture lemma3.2 suspended.

~> resums by case (append(cons(xhl,D(trip(element (xn),engt (xn),xt))),xh2)=xh)
&in (append (xhl,xh2) ,af (xst)) &in(xn, enqgd (xst)) &least (xn, enqd (xat)) &
(DEQ(xhl)=null:->Seq) & (DEQ (xh2) =null: ->Seq)

Case.l.1
(DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))), c_xh2)
= c xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, enqd(c_xst))

& least(c_xn, engd(c_xst))

== true

141

involves proving Lemma lemma3.2.1
((DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))), c_xh2)
= ¢ xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, engd(c_xst)))

=> prefix (DEQ(c_xh), ENQ(c_xh))

=-> true

The case system now contains 1 eguation.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to squation Case.l.l:
(DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append (cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c xtl))), c_xh2)
= ¢ xh)

in(append(c_xhl, c_xh2), af(c_xst))
in(ec_xn, engd(c_xst))
loaat(c_xn, engd (c_xst))
== true
to yield the following equations:
Case.l.1.1l: DEQ(c_xhl) = null == true
Case.1.1.2: DEQ(c_xh2) = null == true
Case.1.1.3: append(cons(c_xhl, D(trip(element (c_xn), engt(c_xn), c_xtl)))},

[B 4

c_xh2)
= c_xh
== true
Case.1l.1.4: in(append(c_xhl, c _xh2), af(c_xst)) == true
Case.1.1.5: in(c_xn, engd(c_xst)) == true
Case.l.1.6: least(c_xn, onqd(c_xat)) == true

Ordered equation Case.l.l1.6 into the rewrite rule:
least (c_xn, engd(c_xst)) -> true

Ordered equation Case.l.l.5 into the rewrite rule:
in(c_xn, enqd(c_xat)) =-> true

Ordered equation Case.l.l.4 into the rewrite rule:
in(append(c_xhl, c_xh2), af(c_xst)) -> true

Deduction rule equality.4:
when x = y == true
vield x == y
has been applied to equation Case.l1.1.3:
append (cons (¢_xhl, D(trip(elomont(c_xn), engt (c_xn), c_xtl))), c_xh2) = c_xh
== true
to yield the following equations:
Case.1.1.3.1: append(cons(c_xhl, D(trip(element (c_xn), enqgt{c_xn), c_xtl))),
c_xh2)
== c xh

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.l1.1.2:
DEQ(c_xh2) = null == true

to yield the following equations:
Case.1.1.2.1: DEQ(c_xh2) == null

Deduction rule equality.4:
when x = y == true

142

yield x == y

has been applied to equation Case.l.1l.1l:
DEQ(c_xhl) = null == true

to yield the following equations:
Case.1l.1.1.1: DEQ(c_xhl) == null

The case system now contains 3 equations and 3 rewrite rules.

Ordered equation Case.l.1.2.1 into the rewrite rule:
DEQ(c_xh2) => null

The case system now contains 2 equations and 4 rewrite rules.

Ordered equation Case.l.1.1.1 into the rewrite rule:
DEQ(c_xhl) => null

The case system now contains 1 equation and 5 rewrite rules.

Ordered equation Case.l.1.3.1 into the rewrite rule:
append (cons (c_xhl, D(trip(olement(c_xn), engt (c_xn), c _xtl))), c_xh2) =-> c_xh

The case system now contains 6 rewrite rules.
The system now contains 1 equation, 162 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to egquation Case.l.l:
(DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element (c_xn), engt (c_xn), c_xtl))), c_th)
= c xh)

& in(append(c_xhl, c _xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, engd(c_xst))
== rue
to yield the following equations:
Case.l.1.7: DEQ(c_xhl) = null == true
Case.1l.1.8: DEQ(c_xh2) = null == true
Case.1.1.9: append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))),
c_xh2)
= c_xh
== true
Case.1.1.10: in(append(c_xhl, c_xh2), af(c_xst)) == true
Case.1l.1.11: in(c_xn, engd(c_xst)) == true
Case.1l.1.12: least(c_xn, engd(c_xst)) == true

Ordered equation Case.l.1.12 into the rewrite rule:
least (c_xn, engd(c_xst)) =-> true

Ordered equation Case.l.1.ll into the rewrite rule:
in(c_xn, enqd(c_xat)) => true

Ordered equation Case.l.1.10 into the rewrite rule:
in (append(c_xhl, c_xh2), af(c_xst)) => true

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation Case.l.1.9:
append (cons (c_xhl, D(trip(element (c_xn), engt (c_xn), c_xtl))), c_xh2) = c_xh
== true
to yield the following equations:
Case.1.1.9.1: append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))),
c_xh2)
== c xh

143

Ordered equation Case.l.1.9.1 into the rewrite rule:
appond(cona(c_xhl, D(trip(element (c_xn), engt (c_xn), c_xtl))), c_;hZ) => c_xh

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.l.l.8:
DEQ(c_ xh2) = null == true

to yield the following equations:
Case.1.1.8.1: DEQ(c_xh2) == null

Ordered equation Case.l1.1.8.1 into the rewrite rule:
DEQ(c_xh2) =-> null

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.l.l.7:
DEQ(c_xhl) = null == true

to yield the following equations:
Case.1.1.7.1: DEQ(c_xhl) == null

Ordered equation Case.l.l1.7.1 into the rewrite rule:
DEQ(c_xhl) -> null

The system now contains 168 rewrite rules and 12 deduction rules.

Lemma lemma3.2.1 in the proof by cases of Conjecture lemma3.2
((DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt (c_xn), c_xtl))), c_xh2)
= c xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, enqgd(c_xst)))
=> prefix (DEQ(c_xh), ENQ(c_xh))
-> true
Case.l.1l: (DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl,
D(trip(element (c_xn), engt(c_xn), c_xtl))),

c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, engd(c_xst))

is NOT provable using the current partially completed system. It reduces to
the equation
prufix(DEQ(c_xh), ENQ(c_xh)) -> true

Proof of Lemma lemma3.2.l1 suspended.

-> crit case with lemmal.?

Critical pairs between rule Case.l.1.9.1:
append (cons (c_xhl, D(trip(element (c_xn), enqt(ec_xn), c_xtl))), c_xh2) =-> c_xh
and rule lemmal.7:
ENQ (append (cons(x, D(y)), z)) =-> ENQ(append(x, z))
are as follows:
ENQ(c_xh) == ENQ(append(c_xhl, c_xh2))

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.

144

Ordered equation lemma3.3 into the rewrite rule:
ENQ (append (c_xhl, ¢_xh2)) -> ENQ(c_xh)

The system now contains 169 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the asystem.
-> crit case with lemmal.d

Critical pairs between rule Case.1l.1.9.1:
append (cons (¢_xhl, D(trip(element (c_xn), engt(c_xn), c_xtl))), c_xh2) -> c_xh
and rule lemmal.9:
DEQ (append (cons(x, D(y)), z)) =-> append(cons(DEQ(x), what(y)), DEQ(z))
are as follows:
DEQ(c_xh) == cons(null, element(c_xn})

The system now contains 1 equation, 169 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.4 into the rewrite rule:
DEQ(c_xh) => cons(null, element(c_xn))

The system now contains 170 rewrite rules and 12 deduction rules.

Lemma lemma3.2.1 in the proof by cases of Conjecture lemma3.2
((DEQ(c_xhl) = null)
& (DEQ(c_;hZ) = null)
& (append(cons(c_xhl, D(trip (element (c_xn), engt (c_xn), c_xtl))), c_xh2)
= c xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, enqd(c_xst)))
=> prefix (DEQ(c_xh), ENQ(c_xh))
-> true
Case.l.1: (DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl,
D(trip (element (c_xn), engt (c_xn), c_xtl))),

c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd (c_xst))
& least (c_xn, engd(c_xst))

is NOT provable using the current partially completed system. It reduces to
the equation
prefix(cons(null, element(c_xn)), ENQ(c_xh)) =-> true

Proof of Lemma lemma3.2.l1 suspended.
Computed 1 new critical pair. Added 1 of them to the aystem.
-> crit case.l.l.ll with Abstraction.ll

Critical pairs between rule Case.l.1.11:
in(c_xn, engd(c_xst)) => true
and rule Abstraction.l1l:
(false <=> in(xh, af(xst)))
| (false <=> in(xn, engd(xst)))
| (false <=> least (xn, enqd(xst)))
| (false <=> prefix(DEQ(xh), ENQ(xh)))
| prefix(cons (DEQ(xh), element (xn)), ENQ(xh))
-> true
are as follows:
(false <=> in(xh, af(c_xast)))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(cons(DEQ(xh), element(c_xn)), ENQ (xh))

145

a= true
The system now contains 1 equation, 170 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.5 into the rewrite rule:
(false <=> in(xh, af(c_xst)))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(cons(DEQ(xh), element(c_xn)), ENQ(xh))
-> true

The system now contains 171 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.

~> instantiate xh by append(c_xhl,c_xh2) in lemma3.5

Equation lemma3.5:
(false <=> in(xh, af(c_xst)))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(cons (DEQ(xh), eloment(c_xn)), ENQ (xh))
-> true
has been instantiated to equation lemma3.5.1:
(false <=> prefix (DEQ(append(c_xhl, c _xh2)), ENQ(c_xh)))
| prefix(cons (DEQ (append(c_xhl, c_xh2)), olemont(c_xn)), ENQ (c_xh))
== true

Added 1 equation to the system.

Ordered equation lemma3.5.1 into the rewrite rule:
(false <=> prefix (DEQ(append(c_xhl, c_th)), ENQ(c_xh)))
| profix(cons(DEQ(append(c_xhl, c_;h2)), elemant(c_xn)), ENQ(c_xh))
-> true

The system now contains 172 rewrite rules and 12 deduction rules.

-> prove ((DEQ(xhl)=null:~->Seq)& (DEQ(xh2)=null:~->Seq))=>(DEQ (append(xhl,xh2))=null:->Seq) by induction
xhl H

The basis step in an inductive proof of Conjecture lemma3.é6
((DEQ(xhl) = null) & (DEQ(xh2) = null)) => (DEQ(append(xhl, xh2)) = null)
-> true

involves proving the following lemma(s):

lemma3.6.1: ((DEQ(null) = null) & (DEQ(xh2) = null))
=> (DEQ(append(null, xh2)) = null)
=> true
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemma3.é6
((DEQ(xhl) = null) & (DEQ(xh2) = null)) => (DEQ(append(xhl, xh2)) = null)
-> true

uses the following equation(s) for the induction hypothesis:

Induct.l: ((DEQ(c_xh3) = null) & (DEQ(xh2) = null))

=> (DEQ(append(c_xh3, xh2)) = null)
=> true

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.
Ordered equation Induct.l intoc the rewrite rule:
((DEQ(c_xh3) = null) <=> false)
| ((DEQ(xh2) = null) <=> false)
| (DEQ(append(c_xh3, xh2)) = null)
-> true

The system now contains 173 rewrite rules and 12 deduction rules.

The induction step involves proving the following lemma(s):

146

lemma3.6.2: ((DEQ(cona(c_xh3, vil)) = null) & (DEQ(xh2) = null))
=> (DEQ (append (cons(c_xh3, vil), xh2)) = null)
-> true
which reduces to the equaticn
((DEQ(cons (c_xh3, wvil)) = null) <=> false)
| ((DEQ(xh2) = null) <=> false)
| (DEQ(append(cons{c_xh3, vil), xh2)) = null)
=> true

Proof of Lemma lemma3.6.2 suspended.
=-> resume by induction xh2 H

The basis step in an inductive proof of Lemma lemma3.6.2 for the induction step
in the proof of Conjecture lemma3.é6

((DEQ(cons(c_xh3, vil)) = null) & (DEQ(xh2) = null))

=> (DEQ(append(cons(c_xh3, vil), xh2)) = null)

-> true
involves proving the following lemma(s):

lemma3.6.2.1: ((DEQ(cons(c_xh3, vil)) = null) & (DEQ(null) = null))
=> (DEQ(append(cons(c_xh3, vil), null)) = null)
=> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemma3.6.2 for the induction
step in the proof of Conjecture lemma3.é6

((DEQ(cons (c_xh3, vil)) = null) & (DEQ(xh2) = null))

=> (DEQ (append (cons(c_xh3, vil), xh2)) = null)

=> true .
uses the following equation(s) for the induction hypothesis:

Induct.2: ((DEQ{(c_xh4) = null) & (DEQ(cons(c_xh3, wvil)) = null))
=> (DEQ (append(cons(c_xh3, vil), < _xh4)) = null)
-> true

The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation Induct.2 into the rewrite rule:
((DEQ(c_xh4) = null) <=> false)
| ((DEQ(cons(c_xh3, vil)) = null) <=> false)
| (DEQ(append(cons(c_xh3, vil), c_;h4)) = null)
=-> true

The system now contains 174 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

lemma3.6.2.2: ((DEQ(cons(c_xh3, vil)) = null) & (DEQ(cons(c_xh4, vi2)) = null))
=> (DEQ(append(cons(c_xh3, vil), cons(c_xh4, vi2))) = null)
=> true
which reduces to the equation
((DEQ(cona (c_xh3, vil)) = null) <=> false)
| ((DEQ(cons(c_xhd4, vi2)) = null) <=> false)
| (DEQ(cons (append (cons (c_xh3, vil), c_xh4), vi2)) = null)
=> true

Proof of Lemma lemma3.6.2.2 suspended.
-> resume by induction vi2 Ev

The basis step in an inductive proof of Lemma lemma3.6.2.2 for the induction
step in the proof of Lemma lemma3.6.2

((DEQ(cons (c_xh3, vil)) = null) & (DEQ(cons(c_xh4, vi2)) = null))

=> (DEQ(append (cons(c_xh3, vil), cons(c_xh4, vi2))) = null)

-> true
involves proving the following lemma (s):

147

lemma3.6.2.2.1: ((DEQ(cons (c_xh3, vil)) = null)
& (DEQ(cons(c_xh4, E(vi3))) = null))
=> (DEQ(append(conl(c_;h3, vil), cons(c_xh4, E(vi3)))) = null)
-> true
[] Proved by normalization
lemma3.6.2.2.2: ((DEQ(cons(c_xh3, vil)) = null)
& (DEQ(cons(c_xh4, D(vi3))) = null))
=> (DEQ(append(cons(c_xh3, vil), cons(c_xh4, D(vi3)))) = null)
=> true
[] Proved by normalization

The induction step in an inductive proof of Lemma lemma3.6.2.2 for the
induction step in the proof of Lemma lemma3.6.2
((DEQ(cons (c_xh3, vil)) = null) & (DEQ(cons(c_xh4, vi2)) = null))
=> (DEQ(append(cons(c_xh3, vil), cons(c_xh4, vi2))) = null)
-> true
is vacuous.

Lemma lemma3.6.2.2 for the induction step in the proof of Lemma lemma3.6.2
((DEQ(cons (c_xh3, vil)) = null) & (DEQ(cons (c_xh4, vi2)) = null))
=> (DEQ(append (cons(c_xh3, vil), cons(c_xh4, vi2))) = null)
-> true .

[] Proved by induction over ‘vi2::Ev’ of sort ‘Ev’.

Lemma lemma3.6.2 for the induction step in the proof of Conjecture lemma3.é6
((DEQ(cons (c_xh3, vil)) = null) & (DEQ(xh2) = null))
=> (DEQ (append(cons(c_xh3, vil), xh2)) = null)
-> true

[] Proved by induction over ‘xh2’ of sort ‘H’.

Conjecture lemma3.6
((DEQ(xhl) = null) & (DEQ(xh2) = null)) => (DEQ(append(xhl, xh2)) = null)
-> true

[] Proved by induction over ‘xhl’ &f sort ‘H’.

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.6 into the rewrite rule:
((DEQ(xhl) = null) <=> false)
| ((DEQ(xh2) = null) <=> false)
| (DEQ(append(xhl, xh2)) = null)
-> true

The system now contains 173 rewrite rules and 12 deduction rules.

Lemma lemma3.2.1 in the proof by cases of Conjecture lemma3.2
((DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))), c_xh2)
= ¢ xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, enqd(c_xst))
& least (c_xn, engd(c_xst)))
=> prefix (DEQ(c_xh), ENQ(c_xh))
-> true
Case.l.1: (DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cona(c_xhl,
D(trip(element (c_xn), engt(c_xn), c_xtl))),

c_xh2)
= c_xh)

& in(append(c_xhl, <¢_xh2), af (c_xst))
& in(c_xn, engd (c_xst))

& least (c_xn, engd(c_xst))

is NOT provable using the current partially completed system. It reduces to

148

the equation
prefix (cons(null, element(c_xn)), ENQ(c_xh)) => true

Proof of Lemma lemma3.2.l1 suspended.
=> crit case with lemma3.6

Critical pairs between rule Case.l.1.7.1:
DEQ(c_xhl) =-> null
and rule lemma3.6:
((DEQ(xhl) = null) <=> false)
| ((DEQ(xh2) = null) <=> false)
| (DEQ(append(xhl, xh2)) = null)
-> true
are as follows:
((DEQ(xh2) = null) <=> false) | (DEQ(append(c_xhl, xh2)) = null) == true
((DEQ(xhl) = null) <=> false) | (DEQ(append(xhl, c xhl)) = null) == true

The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.7 into the rewrite rule:
((DEQ(xh2) = null) <=> false) | (DEQ(append(c_xhl, xh2)) = null) =-> true

The system now contains 174 rewrite rules and 12 deduction rules.
The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.8 into the rewrite rule:
((DEQ(xhl) = null) <=> false) | (DEQ(append(xhl, c xhl)) = null) =-> true

The system now contains 175 rewrite rules and 12 deduction rules.

Critical pairs between rule Case.1.1.8.1:
DEQ(c_xh2) =-> null
and rule lemma3.6:
((DEQ{(xhl) = null) <=> false)
| ((DEQ(xh2) = null) <=> false)
| (DEQ(append(xhl, xh2)) = null)

=-> true

are as follows:
((DEQ(xh2) = null) <=> false) | (DEQ(append(c_xh2, xh2)) = null) == true
((DEQ(xhl) = null) <=> false) | (DEQ(append(xhl, c_xh2)) = null) == true

The system now contains 1 equation, 175 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.9 into the rewrite rule:
((DEQ(xh2) = null) <=> false) | (DEQ(append(c_xh2, xh2)) = null) -> true

The system now contains 176 rewrite rules and 12 deduction rules.
The system now contains 1 equation, 176 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.l0 into the rewrite rule:
((DEQ(xhl) = null) <=> false) | (DEQ(append(xhl, c_xh2)) = null) =-> true

The system now contains 177 rewrite rules and 12 deduction rules.

Computed 5 new critical pairs, 1 of which reduced to an identity. Added 4 of
them to the system.

-> crit case.l1.1.7.1 with lemma3.10

Critical pairs between rule Case.l.1.7.1:
DEQ(c_xhl) => null
and rule lemma3.10:
((DEQ(xhl) = null) <=> false) | (DEQ(append(xhl, c_xh2)) = null) =-> true
are as follows:
DEQ (append (c_xhl, c_xh2)) = null == true

149

The system now contains 1 equation, 177 rewrite rulea, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation lemma3.l1l:
DEQ (append (c_xhl, c_th)) = null == true
to yield the following equations:
lemma3.11.1: DEQ(append(c_xhl, c_xh2)) == null

Ordered equation lemma3.l1l.1 into the rewrite rule:
DEQ (append (c¢_xhl, ¢ xh2)) -> null

Left-hand side reduced:
(false <=> prefix(DEQ(append(c_xhl, c_xh2)), ENQ(c_xh)))
| prefix(cons (DEQ(append(c_xhl, c_xh2)), element(c_xn)}, ENQ(c_xh))
=> true
became equation lemma3.5.1:
(false <=> prefix(null, ENQ(c_xh)))
| prefix(cons (DEQ(append(c_xhl, c_xh2)), element (c_xn)), ENQ(c_xh))
== true

Ordered equation lemma3.5.1 into the rewrite rule:
prefix(cons(null, element(c_xn)), ENQ(c_xh)) -> true

The system now contains 178 rewrite rules and 12 deduction rules.

Lemma lemma3.2.1 in the proof by cases of Conjecture lemma3.2
((DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(olomont(c_xn), engt (c_xn), < _xtl))), c_xh2)
= c xh)

& in(appond(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, engd(c_xst)))
> prefix(DEQ(c_;h), ENQ(c_xh))
-> true
Case.l.l: (DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl,
D(trip(element (c_xn), engt(c_xn), c_xtl))),

c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, enqgd(c_xsat))

[] Proved by rewriting.

Case.1l.2
not ((DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt (c_xn), c_xtl))),
c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xat))
& in(c_xn, enqgd(c_xst))
& leaat(c_xn, onqd(c_xst)))

== tIue
involves proving Lemma lemma3.2.2
((DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (appond(ccnl(c_;hl, D(trip (element (c_xn), engt(c_xn), c_xtl})), c_xh2)

150

= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, enqd(c__xst)))

=> prefix (DEQ(c_xh), ENQ(c_xh))

-> true

The case system now contains 1 equation.

Ordered equation Case.l.2 into the rewrite rule:
((DEQ(c_xhl) = null) <=> false)
| ((DEQ(c_xh2) = null) <=> false)
| ({(append(cons(c_xhl, D(trip(element (c_xn), enqt(c_xn), c xtl))), c_xh2)
= c_xh)
<=> false)

| (false <=> in(append(c__xhl, c_xh2), af(c_xst)))
| (false <=> in(c_xn, engd(c_xst)))

| (false <=> least(c_xn, enqgd(c_xst)))

-> true

The case system now contains 1 rewrite rule.

Lemma lemma3.2.2 in the proof by cases of Conjecture lemma3.2
((DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))), c_xh2)
= ¢ xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd (c_xst))
& least (c_xn, engd(c_xst)))
=> prefix (DEQ(c_xh), ENQ(c_xh))
=> true
Case.l.2: not ((DEQ(c_xhl) = null)
& (DEQ(c_xh2) = null)
& (appcnd(cons(c_xhl,
D(trip (element (c_xn), engt(c_xn), c_xtl))),

c_xh2)
= c_xh)

& in (a.ppond(c_xhl, c__xh2) , af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, engd(c_xst)))

[] Proved by rewriting (with unreduced rules).

Conjecture lemma3.2
((DEQ(xhl) = null)

(DEQ(xh2) = null)

& (append(cons(xhl, D(trip(element (xn), engt(xn), xt))), xh2) = xh)
& in(append(xhl, xh2), af(xst))

& in(xn, enqgd(xst))
&
-2

L]

least (xn, engd(xst)))
prefix (DEQ(xh), ENQ(xh))
-> true
[] Proved by cases
((DEQ(xhl) = null)
(DEQ(xh2) = null)
& (append(cons(xhl, D(trip(element (xn), engt(xn), xt))), xh2) = xh)
& in(append(xhl, xh2), af(xst))
& in(xn, engd(xst))
& least (xn, engd(xst)))
| not ((DEQ(xhl) = null)
& (DEQ(xh2) = null)
& (append(cons(xhl, D(trip(element (xn), enqgt(xn), xt))), xh2) = xh)

[]

151

& in(append(xhl, xh2), af(xst))
& in(xn, engd(xst))
& least (xn, enqgd(xst)))

The system now contains 1 equation, 162 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.2 into the rewrite rule:
((DEQ(xhl) = null) <=> false)
| ((DEQ(xh2) = null) <=> false)
| ((append(cons(xhl, D(trip(element (xn), engt(xn), xt))), xh2) = xh)
<=> false)

| (false <=> in(append(xhl, xh2), af(xst)))
| (false <=> in(xn, engd(xst)))
| (false <=> least (xn, engd(xst)))
| prefix(DEQ(xh), ENQ(xh))
-> true

The system now contains 163 rewrite rules and 12 deduction rules.
Critical-pair computation abandoned because a thecrem has been proved.
Computed 1 new critical pair. Added 1 of them to the system.

-> prove

Please enter an equation to prove, terminated with a ‘..’ line, or ‘?’ for help:
((xh=append (cons (xhl, D(trip(element (xn), enqgt(xn), xt))), xh2)) &

in (append{(xhl, xh2) ,af(xst)) & in(xn,enqgd(xst)) & least (xn,enqgd(xst)) &
prefix (DEQ (append (xhl, xh2))}, ENQ(append(xhl, xh2)))&(DEQ(xh2)=null:~>Seq)é&
(engzr (top (degd (xst))) < engt (xn))) => prefix (DEQ(xh),ENQ(xh))

Conjecture lemma3.l2
((engr (top(degd(xst))) < engt(xn))
& (DEQ(xh2) = null)
{(append (cons (xhl, D(trip(element (xn), engt(xn), xt))), xh2) = xh)
in (append (xhl, xh2), af(xst))
in(xn, engd(xst))
least (xn, enqgd(xst))
prefix (DEQ (append (xhl, xh2)), ENQ(append(xhl, xh2))))
=> prefix (DEQ(xh), ENQ(xh))
-> true
is NOT provable using the current partially completed system. It reduces to
the equation
((engr(top(deqgd(xst))) < engt(xn)) <=> false)
| ((DEQ(xh2) = null) <=> false)
| ((append{cons(xhl, D(trip(element (xn), engt(xn), xt))), xh2) = xh)
<=> false)

SRR

| (false <=> in(append(xhl, xh2), af(xst)))
| (false <=> in(xn, engd(xst)))
| (false <=> least (xn, enqgd(xst)))
| (false <=> prefix (DEQ(append(xhl, xh2)), ENQ(append(xhl, xh2))))
| prefix(DEQ(xh), ENQ(xh))
-> true

Proof of Conjecture lemma3.l2 suspended.
-> resume by case (engr(top(deqgd(xst)))<enqgt (xn)) & (DEQ(xh2) = null:->Seq)&
(append (cons (xhl,D (trip (element (xn) , enqgt (xn) ,xt))),xh2)=xh) &
in (append (xhl, xh2),af(xst)) &in(xn,enqgd (xst)) &least (xn,enqd (xst)) &
prefix (DEQ (append (xhl, xh2)), ENQ(append(xhl, xh2)))
Case.2.1
(engr (top(degd(c_xst))) < engt(c_xn))

152

& (DEQ(c_xh2) = null)

& (append(cons(c_xhl, D(trip(element(c_xn), enqgt(c_xn), c_xtl))), c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

& in(c_xn, enqd(c_xst))

& least (c_xn, enqgd(c_xst))

& prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2)))

== true
involves proving Lemma lemma3.12.1
((engr (top (dch(c_xst))) < engt (c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn}), engt(c xn), ¢ xtl))), c_xh2)
= c xh)

in(append(c_xhl, c_xh2), af(c_xst))

in(c_xn, engd (c_xst))

least (c_xn, engd(c_xst))

prefix (DEQ (append(c_xhl, c_xh2)), ENQ(append(c_xhl, ¢ xh2))))
=> prefix (DEQ(c_xh), ENQ(c_xh))

=> true

"R

The case system now contains 1 equation.

Deduction rule boolean.3:
when x & y == true
vield x == true
y == true
has been applied to equation Case.2.1l:
(engr (top (deqd (c_xat))) < engt (c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), ¢ xtl))), c_xh2)
= ¢ xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least(c_xn, engd(c_xst))
& prefix (DEQ(append(c_xhl, c xh2)), ENQ(append(c_xhl, c_xh2)))
== true
to yield the following equations:
Case.2.1.1: engr(top(degd(c_xst))) < engt(c_xn) == true

Case.2.1.2:; DEQ(c_xh2) = null == true
Case.2.1.3: append(cons(c_xhl, D(trip(element (c_xn), engt (c_xn), c_xtl))}),
c_xh2)
= c_xh

== true
Case.2.1.4: in(append(c_xhl, c_xh2), af(c_xst)) == true
Case.2.1.5: in(c_xn, engd(c_xst)) == true
Case.2.1.6: least(c_xn, enqd(c_xst)) == true
Case.2.1.7: prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2)))

== true

Ordered equation Case.2.1.7 into the rewrite rule:
prefix (DEQ (append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))) => true

Ordered equation Case.2.l1.6 into the rewrite rule:
least (c__xn, enqd(c_xst)) =-> true

Ordered equation Case.2.1.5 into the rewrite rule:
in(c_xn, engd (c_xst)) =-> true

Ordered equation Case.2.l1.4 into the rewrite rule:
in(append(c_xhl, c_xh2), af(c_xst)) -> true

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation Case.2.1.3:
append (cons (¢_xhl, D(trip(element (c_xn), engt(c_xn), c xtl)}), c_xh2) = c_xh

153

== true
to yield the following equations:
Case.2.1.3.1: append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))),
c_xh2)
- c.xh

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.2.1.2:
DEQ(c_;hZ) = null == true

to yield the following equations:
Case.2.1.2.1: DEQ(c_xh2) == null

Ordered equation Case.2.1.l1 into the rewrite rule:
enqr(top(deqd(c_xst))) < engt (c_xn) => true

The case system now contains 2 equations and 5 rewrite rules.

Ordered equation Case.2.1.2.1 into the rewrite rule:
DEQ(c_xh2) =-> null

The case system now contains 1 equation and 6 rewrite rules.

Ordered equation Case.2.1.3.1 into the rewrite rule:
append (cons (c_xhl, D(trip(element(c_xn), engt(c_xn), c xtl))), <_xh2) -> c_xh

The case system now contains 7 rewrite rules.
The system now contains 1 equation, 163 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:
when x & y == true
yield x == true
Yy == true
has been applied to equation Case.2.1:
(engr (top (degd (c_xst))) < engt (c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))), c_xh2)
= c xh)

& in(append(c_xhl, c _xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least(c_xn, enqgd(c_xst))
& profix(DEQ(append(c_;hl, c_xh2)), ENQ(appond(c_;hl, c_xh2)))
== true
to yield the following equations:
Case.2.1.8: onqr(tcp(doqd(c_xst))) < engt (¢c_xn) == true
Case.2.1.9: DEQ(c_xh2) = null == true
Case.2.1.10: append (cons (c_xhl, D(trip(oloment(c_gn), enqgt (c_xn), < xtl))),
c_xh2)
= c xh
== true
Case.2.1.11: in(append(c_xhl, c_xh2), af(c_;at)) == true
Case.2.1.12: in(c_xn, engd(c_xat)) == true
Case.2.1.13: l.ast(c_;n, engd (c_xst)) == true
Case.2.1.14: prefix(DEQ(append(c_xhl, c _xh2)), ENQ(append(c_xhl, c_xh2)))
== true

Ordered equation Case.2.1.14 into the rewrite rule:
prefix(DEQ(appond(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))) -> true

Ordered equation Case.2.1.13 into the rewrite rule:
1east(c_xn, engd (c_xst)) =-> true

Ordered equation Case.2.1.12 into the rewrite rule:
in(c_xn, engd(c_xst)) -> true

Ordered equation Case.2.1.11 into the rewrite rule:

154

in(append (c_xhl, c_xh2), af(c_xst)) -> true

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation Case.2.1.10:
append (cons (c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))), c xh2) = c_xh
== true
to yield the following equations:
Case.2.1.10.1: append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))),
c_xh2)
== c_xh

Ordered equation Case.2.1.10.1 into the rewrite rule:
append (cons (c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))), e_xh2) -> c_xh

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.2.1.9:
DEQ(c_;hZ) = null == true

to yield the following equations:
Case.2.1.9.1: DEQ(c_xh2) == null

Ordered equation Case.2.1.9.1 into the rewrite rule:
DEQ(c_xh2) -> null '

Ordered equation Case.2.1.8 into the rewrite rule:
engr (top (deqd (c_xst))) < engt (c_xn) => true

The system now contains 170 rewrite rules and 12 deduction rules.

Lemma lemma3.12.1 in the proof by cases of Conjecture lemma3.12
((engr (top (degd (c_xat))) < engt (c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))), c_xh2)
= ¢ xh)

& in(append(c_xhl, c_xh2), af(c_xst))
& in(c_xn, engd(c_xst))
& least (c_xn, engd(c_xst))
& prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))))
=> prefix (DEQ(c_xh), ENQ(c_xh))
=-> true
Case.2.1: (engr(top(deqd(c_xst))) < engt (c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl,
D(trip(alement(c_;n), engt (c_xn), c_xtl))),

ec_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

& in(c_xn, enqgd(c_xst))

& least (c_xn, onQd(c_xst))

& prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2)))

is NOT provable using the current partially completed system. It reduces to
the equation
prefix (DEQ(c_xh), ENQ(c_xh)) => true
Proof of Lemma lemma3.12.1 suspended.
-> crit case with lemmal.?
Critical pairs between rule Case.2.1.10.1:
append(cons(c_xhl, D(trip (element (c_xn), engt(c_xn), c_xtl))), c_xh2) -> c xh

and rule lemmal.7:
ENQ (append (cons(x, D(y)), z)) =-> ENQ(append(x, z))

155

are as follows:
ENQ(c_xh) == ENQ(append(c_xhl, c_xh2))

The system now contains 1 equation, 170 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.13 into the rewrite rule:
ENQ (append (c_xhl, c_xh2)) => ENQ(c_xh)

Left-hand side reduced:

profix(DEQ(appond(c_;hl, c_xh2)), ENQ(append(c_xhl, c_xh2))) -> true
became equation Case.2.1.14:
prefix (DEQ(append(c_xhl, c xh2)), ENQ(c_xh)) == true

Ordered equation Case.2.1.14 into the rewrite rule:
prefix (DEQ (append(c_xhl, c_xh2)), ENQ(c _xh)) => true

The system now contains 171 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.
-> crit case with lemmal.S

Critical pairs between rule Case.2.1.10.1:
append (cons (c_xhl, D(trip(element(c xn), engt(c_xn), c_xtl))), c_xh2) -> c_xh
and rule lemmal.9:
DEQ (append(cons(x, D(y)), z)) =-> append(cons(DEQ(x), what(y)), DEQ(z))
are as follows:
DEQ(c_xh) == cons(DEQ(c_xhl), element(c_xn))

The system now contains 1 equation, 171 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.l4 into the rewrite rule:
cons (DEQ(c_xhl), element(c_xn)) => DEQ(c_xh)

The system now contains 172 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.
=> crit case.2.1.12 with Abstraction.ll

Critical pairs between rule Case.2.1.12:
in(c_xn, engd(c_xst)) -> true
and rule Abstraction.ll:
(false <=> in(xh, af(xst)))
| (false <=> in(xn, engd(xst)))
| (false <=> least (xn, engd(xst)))
| (false <=> prefix(DEQ(xh), ENQ(xh)))
| prefix(cons (DEQ(xh), element (xn)), ENQ(xh))
-> true
are as follows:
(false <=> in(xh, af(c_xat)))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(cons(DEQ(xh), element(c_xn)), ENQ(xh))
== true

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.
Ordered equation lemma3.l5 into the rewrite rule:
(false <=> in(xh, af(c_xst)))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(cons(DEQ(xh), element(c_xn)), ENQ(xh))
=> true
The system now contains 173 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

~> instantiate xh by append(c_xhl,c_xh2) in lemma3.15

156

Equation lemma3.15:
(false <=> in(xh, af(c_xst)))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(cons(DEQ(xh), element(c_xn)), ENQ(xh))
=> true
has been instantiated to equation lemma3.15.1:
prefix (cons (DEQ (append (¢c_xhl, c_xh2)), element (c_xn)), ENQ{(c_xh)) == true

Added 1 equation to the system.

Ordered equation lemma3.l15.1 into the rewrite rule:
profix(cons(DEQ(append(c_;hl, c_xh2)), olomont(c_gn)), ENQ(c_xh)) => true

The system now contains 174 rewrite rules and 12 deduction rules.
~-> prove (DEQ(xh2)=null:->Seq)=>(DEQ(append (xhl,xh2))=DEQ(xhl)) by induction xh2 H

The basis step in an inductive proof of Conjecture lemma3.1l6
(DEQ(xh2) = null) => (DEQ(append(xhl, xh2)) = DEQ(xhl)) =-> true
involves proving the following lemma(s):

lemma3.16.1: (DEQ(null) = null) => (DEQ(append(xhl, null)) = DEQ(xhl)) -> true
[] Proved by normalization

The induction step in an inductive proof of Conjecture lemma3.16
(DEQ(xh2) = null) => (DEQ(append(xhl, xh2)) = DEQ(xhl)) =-> true
uses the following equation(s) for the induction hypothesis:

Induct.3: (DEQ(c_xh3) = null) => (DEQ(append (xhl, c_xh3)) = DEQ(xhl)) =-> true
The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Ordered equation Induct.3 into the rewrite rule:
((DEQ(c_xh3) = null) <=> false) | (DEQ(append(xhl, c_xh3)) = DEQ(xhl))
-> true

The system now contains 175 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma(s):

lemma3.16.2: (DEQ(cons(c_xh3, vil)) = null)
=> (DEQ(append(xhl, cons(c_xh3, vil))) = DEQ(xhl))
=-> true
which reduces to the equation
((DEQ(cons (c_xh3, vil)) = null) <=> false)
| (DEQ(cons (append(xhl, c_xh3), vil)) = DEQ(xhl))
-> true

Proof of Lemma lemma3.16.2 suspended.
=> resume by induction vil Ev

The basis step in an inductive proof of Lemma lemma3.16.2 for the induction
step in the proof of Conjecture lemma3.16

(DEQ(cons (c_xh3, vil)) = null)

=> (DEQ(append(xhl, cons(c_xh3, vil))) = DEQ(xhl))

-> true
involves proving the following lemma(s):

lemma3.16.2.1: (DEQ(cons(c_xh3, E(vi2))) = null)
=> (DEQ(append(xhl, cons(c_xh3, E(vi2)))) = DEQ(xhl))
-> true
[] Proved by normalization

lemma3.16.2.2: (DEQ(cons(c_xh3, D(vi2))) = null)
=> (DEQ (append (xhl, cons(c_gh3, D(vi2)))) = DEQ(xhl))
=-> true
[] Proved by normalization

157

The induction step in an inductive proof of Lemma lemma3.16.2 for the induction
step in the proof of Conjecture lemma3.l6

(DEQ(cons (c_xh3, vil)) = null)

=> (DEQ(append(xhl, cons(c_xh3, vil))) = DEQ(xhl))

=> true
is vacuous.

Lemma lemma3.16.2 for the induction step in the proof of Conjecture lemma3.1l6
(DEQ(cons (c_xh3, vil)) = null) i
=> (DEQ(append (xhl, cona(c_xh3, vil))) = DEQ(xhl))
-> true

[] Proved by induction over ‘vil::Ev’ of sort ‘Ev’.

Conjecture lemma3.l6 .
(DEQ(xh2) = null) => (DEQ(append(xhl, xh2)) = DEQ(xhl)) <> true
[] Proved by induction over ‘xh2’ of sort ‘H’.

The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.16 into the rewrite rule:
((DEQ(xh2) = null) <=> false) | (DEQ(append(xhl, xh2)) = DEQ(xhl)) =-> true

The system now contains 175 rewrite rules and 12 deduction rules.

Lemma lemma3.12.1 in the proof by cases of Conjecture lemma3.1l2
((engr (top (deqd(c_xst))) < engt (c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip (element (c_xn), engt(c_xn), ¢ _xtl))), c_xh2)
= c_xh)

in(append (c_xhl, c_xh2), af(c_xst))

in(c_xn, engd(c_xst)})

least (c_xn, engd(c_xst))
prefix(DEQ(appond(c_ghl, c_xh2)), ENQ(append(c_xhl, c_xh2))))

=> prefix (DEQ(c_xh), ENQ(c_xh))

-> true
Case.2.1l: (engr(top(deqd(c_xst))) < engt(c_xn))

& (DEQ(c_xh2) = null)

& (append (cons(c_xhl,

D(trip (element (c_xn), engt(c_xn), c_xtl))),

SR

c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

& in(c_xn, engd(c_xst)))

& least(c_xn, engd(c_xst))

& prefix (DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2)))

is NOT provable using the current partially completed system. It reduces to
the equation
prefix (DEQ(c_xh), ENQ(c_xh)) => true

Proof of Lemma lemma3.12.1 suspended.
-> instantiate xhl by c_xhl, xh2 by c_xh2 in lemma3.16
Equation lemma3.16:
((DEQ(xh2) = null) <=> false) | (DEQ(append(xhl, xh2)) = DEQ(xhl)) -> true
has been instantiated to equation lemma3.16.3:
DEQ (append (c_xhl, c_xh2)) = DEQ(c_xhl) =-> true
Added 1 equation to the system.
Deduction rule equality.4:
when x = y == true

yield x == y
has been applied to equation lemma3.16.3:

158

DEQ(append (c_xhl, c_xh2)) = DEQ(c_xhl) -> true
to yield the following equations:
lemma3.16.3.1: DEQ(append(c_xhl, c_xh2)) == DEQ(c_xhl)

Ordered equation lemma3.16.3.1 into the rewrite rule:
DEQ(append (c¢_xhl, ¢ _xh2)) => DEQ(c_xhl)

Following 2 left-hand sides reduced:
prefix (DEQ(append(c_xhl, c_xh2)), ENQ(c_xh)) =-> true
became equation Case.2.1.14:
prefix (DEQ(c_xhl), ENQ(c_xh)) == true
prefix (cons (DEQ(append (c_xhl, c_xh2)), element(c_xn)), ENQ(c_xh)) => true
became equation lemma3.15.1:
prefix (cons (DEQ(c_xhl), element(c_xn)), ENQ(c_xh)) == true

Ordered equation Case.2.l1.1l4 into the rewrite rule:
prefix (DEQ(c_xhl), ENQ(c_xh)) =-> true

Ordered equation lemma3.15.1 into the rewrite rule:
prefix(DEQ(c_xh), ENQ(c__xh)) => true

The system now contains 176 rewrite rules and 12 deduction rules.

Lemma lemma3.12.1 in the proof by cases of Conjecture lemma3.l2
((engr (top (deqgd (c_xst))) < engt (c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))), c_xh2)
= ¢ xh)

in (append(c_xhl, c_xh2), af(c_xst))
in(c_xn, engd(c_xst))
least (c_xn, engd(c_xst))
prefix (DEQ (append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))})

=> prefix (DEQ(c_xh), ENQ(c_xh))
-> true
Case.2.1: (engr(top(degd(c_xst))) < engt(c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl,

D(trip (element (c_xn), engt(c_xn), c_xtl))),

[L O 4]

c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

& in(c_xn, enqgd(c_xst))

& least(c_xn, enqd(c_xsat))

& prefix (DEQ (append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2)))

[] Proved by rewriting.

Case.2.2
not ((engr (top(deqgd(c_xst))) < engt(c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), engt(c_xn), c_xtl))),
c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

& in(c_xn, engd(c_xst))

& least (c_xn, engd(c_xst))

& prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2})))

== true
involves proving Lemma lemma3.12.2
((engr (top(deqd (c_xst))) < engt(c_xn)) .
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl, D(trip(element(c_xn), enqgt(c_xn), c_xtl))), c_xh2)
= ¢ xh)

159

in (append(c_xhl, c xh2), af(c_xst))

in(c_xn, enqd(c_xst))

least (c_xn, engd(c_xst))

prefix (DEQ(append (c_xhl, c¢_xh2)), ENQ(append(c_xhl, c_xh2))))
=> prefix (DEQ(c_xh), ENQ(c_xh))

-> true

n R

The case system now contains 1 equation.

Ordered equation Case.2.2 intc the rewrite rule:
((engr (top(deqd(c_xst))) < engt(c_xn)) <=> false)
| ((DEQ(c_xh2) = null) <=> false)
| ((append(cons(c_xhl, D(trip(element(c_xn), enqgt(c_xn), c_xtl))), c_xh2)
= c_xh)
<=> false)

| (false <=> in(append(c_xhl, c_xh2), af(c_xst)))

| (false <=> in(c_xn, enqgd(c_xst)))

| (false <=> least (c_xn, engd(c_xst)))

| (false <=> prefix(DEQ(append(c_xhl, c_xh2)), ENQ(append(c_xhl, c_xh2))))
-> true

The case system now contains 1 rewrite rule.
Lemma lemma3.l12.2 in the proof by cases of Conjecture lemma3.12

((enqr (top (degd (c_xst))) < engt(c_xn))
& (DEQ(c_xh2) = null)

& (append(cons(c_xhl, D(trip(element(c_xn), engt{(c_xn), c_xtl))), c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

& in(c_xn, engd(c_xst))

& least(c_xn, engd(c_xst))

& prefix (DEQ(append(c_xhl, c_xh2)), ENQ (append (c_xhl, c_xh2))))

=> prefix (DEQ(c_xh), ENQ(c_xh))
=> true
" Case.2.2: not ((engr (top (deqd (c_xst))) < engt(c_xn))
& (DEQ(c_xh2) = null)
& (append(cons(c_xhl,
D(trip(elemsnt(c_xn), enqgt (c_xn), c _xtl))),

c_xh2)
= c_xh)

& in(append(c_xhl, c_xh2), af(c_xst))

& in(c_xn, engd(c_xst))

& loast(c_xn, engd (c_xst))

& prefix(DEQ(append(c_xhl, c_xh2)),
ENQ (append (c¢_xhl, c_xh2))))

[] Proved by rewriting (with unreduced rules).

Conjecture lemma3.12
((engr (top (deqd(xst))) < engt (xn))
& (DEQ(xh2) = null)
& (append(cons(xhl, D(trip(element (xn), engt(xn), xt))), xh2) = xh)
& in (append(xhl, xh2), af(xst))
& in(xn, enqgd(xst))
& least (xn, enqgd(xst))
& prefix (DEQ(append (xhl, xh2)), ENQ(append(xhl, xh2))))
=> prefix (DEQ(xh), ENQ(xh))
-> true
[] Proved by cases
((engr (top(deqd(xst))) < engt (xn))
& (DEQ(xh2) = null)
& (append(cons(xhl, D(trip(element (xn), engt(xn), xt))), xh2) = xh)
& in(append(xhl, xh2), af(xst))

160

& in(xn, engd(xst))
& least (xn, engd(xst))
& prefix (DEQ (append (xhl, xh2)), ENQ(append (xhl, xh2))))
| not ((engr(top(deqgd(xst))) < engt (xn))
& (DEQ(xh2) = null)
& (append(cons(xhl, D(trip(element (xn), engt(xn), xt))), xh2) = xh)
in(append (xhl, xh2), af(xst))
& in(xn, engd(xst))
& least (xn, engd(xst))
& prefix(DEQ(append (xhl, xh2)), ENQ(append(xhl, xh2))))

[

The system now contains 1 equation, 163 rewrite rules, and 12 deduction rules.

Ordered equation lemma3.12 into the rewrite rule:
((engr (top(degd(xst))) < engt(xn)) <=> false)
| ((DEQ(xh2) = null) <=> false)
| ((append(cona(xhl, D(trip(element (xn), engt (xn), xt))), xh2) = xh)
<=> false)

| (false <=> in(append(xhl, xh2), af(xst)))
| (false <=> in(xn, enqd(xst)))
| (false <=> least (xn, engd(xst)))
| (false <=> prefix (DEQ(append(xhl, xh2)), ENQ (append(xhl, xh2))))
| prefix(DEQ(xh), ENQ(xh))
-> true
The system now contains 164 rewrite rules and 12 deduction rules.
-> ged

All conjectures have been proved.

-> freeze theory3

161

6. LP Proof of Correctness Condition

The prefix property is stated in the fourth line below.

-> thaw theory3
System thawed from ‘theocry3.frz’.
-> set name sync
The name prefix is now ‘sync’.
-> prove in(xh, af(xst))=>prefix(DEQ(xh),ENQ(xh)) by induction xst St
The basis step in an inductive proof of Conjecture aync.l
in(xh, af(xst)) => prefix(DEQ(xh), ENQ(xh)) =-> true
involves proving the following lemma (s):
sync.l.1l: in(xh, af(init)) => prefix(DEQ(xh), ENQ(xh)) ~-> true
which reduces to the equation
(false <=> in(xh, af(init))) | prefix(DEQ(xh), ENQ(xh)) -> true
Proof of Lemma sync.l.l suspended.
=> resume by case in(xh,af(init))
Case.l.1
in(c_gh, af(init)) == true
involves proving Lemma sync.l.l.1
in(c_xh, af(init)) => prefix(DEQ(c_xh), ENQ(c_xh)) -> true

The case system now contains 1 equation.

Ordered equation Case.l.l inte the rewrite rule:
in(c_xh, af(init)) =-> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 164 rewrite rules, and 12 deduction rules.

Ordered ecuation Case.l.l into the rewrite rule:
in(c_xh, af(init)) -> true

The system now contains 165 rewrite rules and 12 deduction rules.

Lemma sync.l.l.1 in the proof by cases of Lemma sync.l.1l

in(c_xh, af(init)) => prefix(DEQ(c_xh), ENQ(c_xh)) =-> true

Case.l.1l: in(c_xh, af(init))
is NOT provable using the current partially completed system. It reduces to
the equation

prefix (DEQ(c_xh), ENQ(c_xh)) => true

Proof of Lemma sync.l.l.1l suspended.
=> crit case with Abstraction
Critical pairs between rule Case.l.l:
in(c_xh, af(init)) -> true
and rule Abstraction.5:
(in_state(xh, xst) & ordered(xh)) | (false <=> in(xh, af(xst))) -> true
are as follows:
in_state(c_xh, init) & ordered(c_xh) == true

The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

162

when x & y == true
yield x == true
y == true
has been applied to equation sync.2:
in_stato(c_xh, init) & ordered(c_xh) == true
to yield the following equations:
sync.2.1l: in_state(c_xh, init) == true
sync.2.2: orderod(c_}h) == true

Ordered equation sync.2.2 into the rewrite rule:
ordered(c_;h) -> true

Ordered equation sync.2.l into the rewrite rule:
in_state (c_xh, init) => true

The system now contains 167 rewrite rules and 12 deduction rules.

Computed 2 new critical pairs, 1 of which reduced to an identity. Added 1 of
them to the system.

~> ecrit sync with lemmal.l2

Critical pairs between rule sync.2.1l:
in_state(c_xh, init) => true
and rule lemmal.12:
(false <=> in_ state(x, init)) | (null = x) => true
are as follows: '
¢ _xh = null == true

The system now contains 1 equation, 167 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation sync.3:
c_xh = null == true

to yield the following equations:
sync.3.1l: c_xh == null

Ordered equation sync.3.1 into the rewrite rule:
c_xh => null

Following 3 left-hand sides reduced:
in(c_gh, af (init)) => true

became equation Case.l.1l:

in(null, af(init)) == true
ordered(c_xh) => true

became equation sync.2.2:

ordered (null) == true
in_state (c_xh, init) -> true

became equation sync.2.1l:

in_state(null, init) == true

The system now contains 3 equations, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case.l.l into the rewrite rule:
in(null, af(init)) => true

The system now contains 166 rewrite rules and 12 deduction rules.

Lemma sync.l.1.l1 in the proof by cases of Lemma sync.1l.l
in(c_xh, af(init)) => prefix (DEQ(c_xh), ENQ(c_xh)) -> true
Case.l.1: in(c_xh, af(init))

[] Proved by rewriting.

Case.l.2
not (in(c_xh, af(init))) == true
involves proving Lemma sync.l1.1.2
in(c_xh, af(init)) => prefix(DEQ(c_xh), ENQ(c_xh)) => true

163

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.l.2:
false <=> in(c_xh, af(init)) == true
to yield the following equations:
Case.l.2.1: false == in(c_xh, af(init))

Ordered equation Case.l.2.l into the rewrite rule:
in{c_xh, af(init)) =-> false

The case system now contains 1 rewrite rule.

Lemma sync.l.l1.2 in the proof by cases of Lemma sync.l.l
in(c_xh, af(init)) => prefix(DEQ(c_xh), ENQ(c_xh)) -> true
Case.l.2: not(in(c_xh, af(init)))

[] Proved by rewriting (with unreduced rules).

Lemma sync.l.l for the basis step in the proof of Conjecture sync.l
in(xh, af(init)) => prefix(DEQ(xh), ENQ(xh)) -> true

[] Proved by cases
in(xh, af(init)) | not(in(xh, af(init)))

The induction step in an inductive proof of Conjecture sync.l
in(xh, af(xst)) => prefix(DEQ(xh), ENQ(xh)) => true
uses the following equation(s) for the induction hypothesis:

Induct.l: in(xh, af(c_xst)) => prefix(DEQ(xh), ENQ(xh)) => true
The system now contains 1 equation, 164 rewrite rules, and 12 deduction rules.

Ordered equation Induct.l into the rewrite rule:
(false <=> in(xh, af(c_xst))) | prefix (DEQ(xh),. ENQ(xh)) => true

The system now contains 165 rewrite rules and 12 deduction rules.
The induction step involves proving the following lemma (s):

sync.1l.2: in(xh, af(deqg(c_xst, vil, vi2))) => prefix(DEQ(xh), ENQ(xh)) -> true
which reduces to the equation
(false <=> in(xh, af(deq(c_xst, vil, vi2))))
| prefix(DEQ(xh), ENQ(xh))
-> true
sync.1.3: in(xh, af(eng(c_xst, vil, vi2))) => prefix (DEQ(xh), ENQ(xh)) -> true
which reduces to the equation
(false <=> in(xh, af(enq(c_xst, vil, vi2))))
| prefix(DEQ(xh), ENQ(xh))
-> true
sync.1.4: in(xh, af(commit (c_xst, vil))) => prefix (DEQ(xh), ENQ(xh)) -> true
which reduces to the equation
(false <=> in(xh, af(commit (c_xst, vil))))
| prefix(DEQ(xh), ENQ(xh))
=> true
sync.1.5: in(xh, af(abort(c_xst, vil))) => prefix(DEQ(xh), ENQ(xh)) => true
which reduces to the equation
(false <=> in(xh, af(abort(c_xst, vil))))
| prefix(DEQ(xh), ENQ(xh))
-> true

Proof of Lemma sync.l.5 suspended.
Critical-pair computation abandoned because a theorem has been proved.
Computed 1 new critical pair. Added 1 of them to the system.

=> resume by case in(xh,af (abort (c_xst,vil)))

164

Case.2.1
in(c_xh, af(abort(c_xst, c_vil))) == true
involves proving Lemma sync.l.5.1
in(c_xh, af(abort(c_;st, c_yil))) -> prefix(DEQ(c_xh), ENQ(c_xh)) -> true

The case system now contains 1 eguation.

Ordered equation Case.2.l1 into the rewrite rule:
in(c_xh, af(abort(c_xst, c_vil))) -> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case.2.l into the rewrite rule:
in(c_xh, af(abort(c_xst, c_vil))) =-> true

The system now contains 166 rewrite rules and 12 deduction rules.

Lemma sync.1.5.1 in the proof by cases of Lemma sync.l1.5
in(c_xh, af(abort(c_xst, c_vil))) => prefix (DEQ(c_xh), ENQ(c_xh)) -> true
Case.2.1: in(c_;h, af(abort(c_xst, c_vil)))
is NOT provable using the current partially completed system. It reduces to
the equation
prefix (DEQ(c_xh), ENQ(c xh)) -> true

Proof of Lemma sync.l.5.1 suspended.
-> crit case with Abstraction

Critical pairs between rule Case.2.1l:
in(c_xh, af(abort(c_xst, c_vil))) => true
and rule Abstraction.5:
(in;state(xb, xst) & ordered(xh)) | (false <=> in(xh, af(xst))) -> true
are as follows:
in_state(c_xh, abort(c_xst, c_vil)) & ordered(c_xh) == true

The system now contains 1 equation, 166 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

when x & y == true

yield x == true

y == true

has been applied to equation sync.4:

in_state(c_xh, abort(c_xst, c_vil)) & ordered(c_xh) == true
to yield the following equations:

sync.4.1l: in_state(c_xh, abort(c_xast, c_vil)) == true

sync.4.2: ordered(c_xh) == true

Ordered equation sync.4.2 into the rewrite rule:
ordered(c_xh) => true

Ordered equation sync.4.l into the rewrite rule:
in_state(c_xh, abort(c _xst, c_vil)) => true

The system now contains 168 rewrite rules and 12 deduction rules.

Critical pairs between rule Case.2.l:

in(c_xh, af(abort(c_xst, c_vil))) => true
and rule Abstraction.9:

((discard (xt, c hl) = xh) & in(c_hl, af(xst)))

| (false <=> in(xh, af(abort(xst, xt))))
-> true
are as follows:
(c_xh = discard(c_vil, c hl)) & in(c_hl, af(c_xst)) == true

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.

165

Deduction rule boolean.3:

when x & y == true

yield x == true

y == true

has been applied to equation sync.5:

(c_xh = discard(c_vil, c hl)) & in(c_hl, af(c_xst)) == true
to yield the following equations:)

sync.5.1: c_xh = discard(c_vil, c_hl) == true

sync.5.2: in(c_hl, af(c_xst)) == true

Ordered equation sync.5.2 into the rewrite rule:
in(c_hl, af(c_xst)) =-> true

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation sync.5.1:
c_xh = discard(c_vil, c_hl) == true

to yield the following equations:
sync.5.1.1: c_xh mm= discard(c_vil, c_hl)

The system now contains 1 equation, 169 rewrite rules, and 12 deduction rules.

Ordered equation sync.5.1.1 into the rewrite rule:
c_xh -> discard(c_vil, c_hl)

Following 3 left-hand sides reduced:
in(c_xh, af(abort(c_xst, c_vil))) => true
became equation Case.2.l:
in(discard(c_vil, c_hl), af(abort(c_xst, c_yil))) == true
ordered(c_xh) =-> true
became equation sync.4.2:
ordered(discard(c_vil, c_hl)) == true
in_state(c_xh, abort(c_xst, c_vil)) -> true
became equation sync.4.l:
in_state(discard(c_vil, ¢ _hl), abort(c_xst, c_vil)) == true

The system now contains 3 equations, 167 rewrite rules, and 12 deduction rules.

Ordered equation Case.2.l into the rewrite rule:
in(diascard(c_vil, c_hl), af(abort(c_xst, c_vil))) =-> true

Ordered equation sync.4.2 into the rewrite rule:
ordered(discard(c_vil, c_hl)) => true

Ordered equation sync.4.l into the rewrite rule:
in_state(discard(c_vil, c_hl), abort(c_xst, c _vil)) -> true

The system now contains 170 rewrite rules and 12 deduction rules.

Lemma sync.l1.5.1 in the proof by cases of Lemma sync.l.5
in(c_xh, af(abort(c_xst, c_vil))) => prefix (DEQ(c_xh), ENQ(c_xh)) =-> true
Case.2.1: in(c_xh, af(abort(c_xst, c vil)))
is NOT provable using the current partially completed system. It reduces to
the equation
prefix (DEQ(discard(c_vil, c_hl)), ENQ(discard(c_vil, c_hl))) => true

Proof of Lemma sync.l.5.1 suspended.

Critical pairs between rule Case.2.1l:
in(c_xh, af(abort(c_xst, c_vil))) => true
and rule Abstraction.ll:
(false <=> in(xh, af(xst)))
| (false <=> in(xn, engd(xst)))
| (false <=> least (xn, enqd(xst)))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(cons (DEQ(xh), element (xn)), ENQ(xh))
-> true
are as follows:

166

(false <=> in(xn, enqgd(abort (c_xst, c_vil))))
| (false <=> least (xn, enqgd (abort (c_xst, c_vil))))
| (false <=> prefix (DEQ(discard(c_vil, c hl)), ENQ(discard(c_vil, c_hl))))
| prefix(cons (DEQ(discard(c_vil, c_hl)), element(xn)),
ENQ(discard(c_vil, c _hl)))

== true
The system now contains 1 equation, 170 rewrite rules, and 12 deduction rules.

Ordered equation sync.6é into the rewrite rule:
(false <=> in(xn, engd (abort (c_xst, c_vil))))
| (false <=> least (xn, enqd (abort (c_xst, c_vil))))
| (false <=> prefix (DEQ(discard(c_vil, c_hl)), ENQ(discard(c_vil, c_hl))))
| prefix(cons(DEQ(discard(c_vil, c_hl)), element(xn)),
ENQ(discard(c_vil, c_hl)))

=> true
The system now contains 171 rewrite rules and 12 deduction rules.
Computed 3 new critical pairs. Added 3 of them to the system.
=> crit induct with sync

Critical pairs between rule Induct.l:
(false <=> in(xh, af(c_xst))) | prefix (DEQ(xh), ENQ(xh)) =-> true
and rule sync.5.2:
in(c_hl, af(c_xst)) => true
are as follows:
prefix (DEQ(c_hl), ENQ(c_hl)) == true

The system now contains 1 equation, 171 rewrite rules, and 12 deduction rules.

Ordered equation sync.7 into the rewrite rule:
prefix (DEQ(c_hl), ENQ(c_hl)) => true

The system now contains 172 rewrite rules and 12 deduction rules.

Computed 3 new critical pairs, 2 of which reduced to an identity. Added 1 of
them to the system.

~-> crit sync with lemmal.l7

Critical pairs between rule sync.7:
prefix (DEQ(c_hl), ENQ(c_hl)) =-> true
and rule lemmal.l7:
(false <=> in_ state(xh, xst))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix (DEQ(discard(xt, xh)), ENQ(discard(xt, xh)))
=> true
are as follows:
(false <=> in_state(c_hl, xst))
| prefix(DEQ(discard(xt, c_hl)), ENQ(discard(xt, c_hl)))
== true

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.

Ordered equation sync.8 into the rewrite rule:
(false <=> in_state(c_hl, xst))
| prefix(DEQ(discard(xt, c _hl)), ENQ(discard(xt, c_hl)))
-> true

The system now contains 173 rewrite rules and 12 deduction rules.
Critical pairs between rule sync.4.1:
in_state (discard(c_vil, c_hl), abort(c_xst, e _vil)) -> true

and rule lemmal.l7:
(false <=> in state(xh, xst))

167

| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(DEQ(discard(xt, xh)), ENQ(discard(xt, xh)))
-> true
are as follows:
(false <=> prefix(DEQ(discard(c_vil, c_hl)), ENQ(discard(c_vil, c_hl))))
| prefix(DEQ(discarxd(xt, discard(c_vil, c¢_hl))),
ENQ(discard(xt, discard(c_vil, c_hl))))

== true
The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation sync.9 into the rewrite rule:
(false <=> prefix (DEQ(discard(c_vil, c_hl)), ENQ(discard(c_vil, c hl))))
| prefix(DEQ(discard(xt, discard(c_vil, c_hl))),
ENQ(discard(xt, discard(c_vil, c_hl))))

-> true
The system now contains 174 rewrite rules and 12 deduction rules.

Computed 6 new critical pairs, 4 of which reduced to an identity. Added 2 of
them to the system.

=> crit sync.5.2 with Abstraction.5

Critical pairs between rule sync.5.2:
in(e_hi, af(c_xst)) -> true
and rule Abstraction.5:
(in_state (xh, xst) & ordered(xh)) | (false <=> in(xh, af(xst))) -> true
are as follows:
in_state(c_hl, c _xst) & ordered(c_hl) == true

The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:
when x & y == true
vield x == true
y == true
has been applied to equation sync.10:
in_state(c_hl, c_xst) & ordered(c_hl) == true
to yield the following equations:
sync.10.1: in_state(c_hl, c_xst) == true
sync.10.2: ordered(c_hl) == true

Ordered equation sync.10.2 into the rewrite rule:
ordered(c_hl) =-> true

Ordered equation sync.l10.l1 into the rewrite rule:
in_state(c_hl, ¢ _xst) => true

The system now contains 176 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.
-> crit sync with sync
Critical pairs between rule sync.10.1l:
in_state(c_hl, c_xst) -> true
and rule sync.8:
(false <=> in state(c_hl, xst))
| prefix(DEQ(discard(xt, c_hl)), ENQ(discard(xt, c_hl)))
-> true
are as follows:
prefix (DEQ(discard(xt, c_hl)), ENQ(discard(xt, c_hl))) == true

The system now contains 1 equation, 176 rewrite rules, and 12 deduction rules.

Ordered equation aync.ll into the rewrite rule:

168

prefix (DEQ (discard (xt, c_hl)), ENQ(discard(xt, c_hl))) => true

Following 3 left-hand sides reduced:
(false <=> in(xn, engd(abort(c_xst, c_vil))))
| (false <=> least (xn, engd(abort(c_xst, e_vil))))
| (false <=> prefix(DEQ(discard(c_vil, c_hl)), ENQ(discard(c_vil, c_hl))))
| prefix(cons(DEQ(discard(c_vil, c_hl)), element(xn)),
ENQ(discard(c_vil, c_hl)))

-> true
became equation sync.6:
(false <=> in(xn, engd(abort(c_xst, c_vil))))
| (false <=> least (xn, engd (abort (c_xst, c_vil))))
| (false <=> true)
| profix(cons(DEQ(disca:d(c_vil, c_hl)), element(xn)),
ENQ(discard(c_vil, < _hl)))

== true
(false <=> in_state(c_hl, xst))
| prefix(DEQ(discard(xt, c_hl)), ENQ(discard(xt, c_hl)))
=-> true
became equation sync.8:
(false <=> in_state(c_hl, xst)) | true == true
(false <=> prefix(DEQ(discurd(c_vil, c_hl)), ENQ(diacard(c_vil, c_bl))))
| prefix(DEQ(discard(xt, discard(c_vil, c_hl))),
ENQ (discard (xt, discard(c_vil, c_hl))))

=> true
became equation sync.9:
(false <=> true)
| prefix(DEQ (discard(xt, diacard(c_vil, c_hl))),
ENQ (discard (xt, diacard(c_vil, c_hl))))

== true

Ordered equation sync.6 into the rewrite rule:
(false <=> in(xn, engd(abort (c_xst, c_vil))))
| (false <=> least (xn, engd (abort (c_xst, c_vil))))
| profix(cons(DEQ(discard(c_vil, c hl)), element(xn)),
ENQ (discard(c_vil, c_hl)))

-> true

Ordered equation sync.9 into the rewrite rule:
prefix (DEQ(discard (xt, discard(c_vil, c_hl))),
ENQ(discard(xt, discard(c_vil, c_hl))))
=> true

The system now contains 176 rewrite rules and 12 deduction rules.

Lemma sync.1.5.1 in the proof by cases of Lemma sync.l.5
in(c_xh, af(abort(c_}st, c_vil))) => prefix (DEQ(c_xh), ENQ(c_xh)) => true
Case.2.1: in(c_xh, af(abort(c_;st, c_vil)))

[] Proved by rewriting.

Case.2.2
not (in(c_xh, af(abort(c_xst, e vil)))) == true
involves proving Lemma sync.1.5.2
in(e_xh, af(abort(c_xst, c_vil))) => prefix (DEQ(c_xh), ENQ(c_xh)) -> true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.2.2:

false <=> in(c_xh, af(abort(c_xst, c vil))) == true
to yield the following equations:

Case.2.2.1: false == in(c_xh, af (abort (c_xst, c_vil)))

169

Ordered equation Case.2.2.1 into the rewrite rule:
in(c_xh, af(abort(c_xst, c_vil))) -> false

The case system now contains 1 rewrite rule.

Lemma sync.l1.5.2 in the proof by cases of Lemma sync.l.5
in(c_xh, af(abort(c _xst, c_vil))) => prefix(DEQ(c_xh), ENQ(c_xh)) => true
Case.2.2: not(in(c_xh, af(abort(c_xst, c_vil)}))

[] Proved by rewriting (with unreduced rules).

Lemma sync.l.5 for the induction step in the proof of Conjecture sync.1l
in(xh, af(abort(c_xst, vil))) => prefix(DEQ(xh), ENQ(xh)) -> true
[] Proved by cases
in(xh, af(abort(c_xst, vil))) | not(in(xh, af(abort(c_xst, vil))))

Lemma sync.l.4 for the induction step in the proof of Conjecture sync.l
in(xh, af(commit (c_xst, vil))) => prefix (DEQ(xh), ENQ(xh)) => true
is NOT provable using the current partially completed system. It reduces to
the equation
(false <=> in(xh, af(commit (c_xst, vil)))) | prefix(DEQ(xh), ENQ(xh))
=> true

Proof of Lemma sync.l.4 suspended.
Critical-pair computation abandoned because a theorem has been proved.

Computed 4 new critical pairs, 3 of which reduced toc an identity. Added 1 of
them to the system.

=> resume by case in(xh,af(commit (c_xst,vil)))
Case.3.1
in(c_xh, af(commit(c_xst, c_vil))) == true
involves proving Lemma sync.l.4.1
in(c_xh, af(commit(c_xst, c_vil))) => prefix(DEQ(c_xh), ENQ(c_xh)) =-> true

The case system now contains 1 equation.

Ordered equation Case.3.l into the rewrite rule:
in(c_xh, af(commit(c_xst, c_yil))) =-> true

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case.3.l into the rewrite rule:
in(c_xh, af(commit(c_xst, c_vil))) -> true

The system now contains 166 rewrite rules and 12 deduction rules.
Lemma sync.l.4.1 in the proof by cases of Lemma sync.l.4
in(c_xh, af(commit(c_xst, c_vil))) => prefix(DEQ(c_xh), ENQ(c_xh)) -> true
Case.3.1l: in(c_xh, af(commit(c_xst, c_vil)))
is NOT provable using the current partially completed system. It reduces to
the equation
prefix (DEQ(c_xh), ENQ(c_xh)) -> true
Proof of Lemma sync.l.4.l1l suspended.

-> crit case with Abstraction

Critical pairs between rule Case.3.1l:

in(c_xh, af(commit(c_xst, c_vil))) => true
and rule Abstraction.5:
(in_state (xh, xst) & ordered(xh)) | (false <=> in(xh, af(xst))) => true

are as follows:
in_state(c_xh, commit (c_xst, c_vil)) & ordered(c_xh) == true

170

The system now contains 1 equation, 166 rewrite rules, and 12 deduction rules.

Deduction rule booclean.3:

when x & y == true

yield x == true

y == true

has been applied to equation sync.12:

in_state (c_xh, commit (c_xst, c_vil)) & ordered(c_xh) == true
to yield the following egquations:

sync.12.1l: in_state(c_xh, commit(c_xst, c_vil)) == true

sync.12.2: ordered(c_xh) == true

Ordered equation sync.12.2 into the rewrite rule:
ordered(c_xh) -> true

Ordered equation sync.l2.1l into the rewrite rule:
in_state(c_xh, commit (c_xst, c_vil)) -> true

The system now contains 168 rewrite rules and 12 deduction rules.

Critical pairs between rule Case.3.1:

in(c_xh, af(commit (c_xst, c_vil))) => true
and rule Abstraction.$8:
(false <=> in(xh, af(commit (xst, xt)))) | (DEQ(xh) = null) => true

are as follows:
DEQ(c_xh) = null == true

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation sync.13:
DEQ(c_xh) = null == true

to yield the following equations:
sync.13.1:_DEQ(c_;h) == null

Ordered equation sync.13.1 into the rewrite rule:
DEQ(c_xh) => null

The system now contains 169 rewrite rules and 12 deduction rules.

Lemma sync.l.4.1 in the proof by cases of Lemma sync.l.4
in(c_xh, af(commit(c_xst, c_vil))) => prefix(DEQ(c_xh), ENQ(c_xh)) => true
Case.3.1l: in(c_xh, af(commit(c_xst, c vil)))

[] Proved by rewriting.

Case.3.2
not (in(c_xh, af(commit(c_xst, c_vil)))) == true
invelves proving Lemma sync.l.4.2
in(c_xh, af(commit(c_xst, c_vil))) => prefix(DEQ(c_xh), ENQ(c_xh)) =-> true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=m> y == true

yvield x == y
has been applied to equation Case.3.2:

false <=> in(c_xh, af(commit (c_xsat, c vil))) == true
to yield the following equations:

Case.3.2.1: false == in(c_xh, af(commit (c_xst, c vil)))

Ordered equation Case.3.2.1 into the rewrite rule:
in(c_xh, af(commit(c_xst, c_vil))) =-> false

The case system now contains 1 rewrite rule.

Lemma sync.1.4.2 in the proof by cases of Lemma sync.l.4
in(c_xh, af(commit(c_xst, c_vil))) => prefix (DEQ(c_xh), ENQ(c_xh)) =-> true

171

Case.3.2: not(in({c_xh, af(commit (c_xst, c_vil))))
[] Proved by rewriting (with unreduced rules).

Lemma sync.l.4 for the induction step in the proof of Conjecture sync.l
in(xh, af(commit (c_xst, vil))) => prefix (DEQ(xh), ENQ(xh)) =-> true
[] Proved by cases
in(xh, af(commit (c_xst, vil))) | not(in(xh, af(commit(c_xst, vil))))

Lemma sync.l.3 for the induction step in the procf of Conjecture sync.l
in(xh, af(eng(c_xst, vil, vi2))) => prefix(DEQ(xh), ENQ(xh)) =-> true

is NOT provable using the current partially completed system. It reduces to

the equation
(false <=> in(xh, af(eng(c_xst, vil, vi2)))) | prefix(DEQ(xh), ENQ(xh))
=> true

Proof of Lemma sync.l.3 suspended.

Critical~-pair computation abandoned because a theorem has been proved.
Computed 2 new critical pairs. Added 2 of them to the system.

=> resume by case in(xh,af(eng(c_xst,vil,vi2::EL)))

Case.4.1
in(c_xh, af(eng(c_xst, c_vil, c_vi2))) == true

involves proving Lemma sync.l.3.1
in(c_xh, af(eng(c_xst, c_vil, c vi2))) => prefix (DEQ(c_xh), ENQ(c_xh))
=> true

The case system now contains 1 equation.

Ordered equation Case.4.l into the rewrite rule:
in(c_xh, af(engq(c_xst, ¢ _vil, c_vi2))) =-> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case.4.l into the rewrite rule:
in(c_xh, af(eng(c_xst, ¢ _vil, c_vi2))) -> true

The system now contains 166 rewrite rules and 12 deduction rules.

Lemma sync.l.3.1 in the proof by cases of Lemma sync.l.3
in(c_xh, af(eng(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
-> true
Case.4.l: in(c_xh, af(eng(c_xst, c_vil, c_vi2)))
is NOT provable using the current partially completed system. It reduces to
the equatioen
prefix (DEQ(c_xh), ENQ(c_xh)) => true

Proof of Lemma sync.l.3.1 suspended.
-> add when_eng(c_xst,z,w,c_vil,c_vi2)
Added 1 equation to the system.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation sync.l4:
((engr (top(degd(c_xst))) < c_yil) | (degd(c_xst) = new))

& (((c_vi2 = element (z)) <=> false) | (false <=> in(z, engd(c_xst))))
& (((c_vi2 = what(w)) <=> false) | (false <=> in stack(w, degd(c_xst))))
-> true
to yield the following equations:
sync.14.1: (engr(top(degd(c_xst))) < c_vil) | (degd(c_xst) = new) == true
sync.14.2: ((c_vi2 = element (z)) <=> false) | (false <=> in(z, engd(c_xst)))

172

== true
sync.14.3: ((c_vi2 = what(w)) <=> false)
| (false <=> in_stack(w, deqgd(c_xst)))
== true

Ordered equation sync.14.3 into the rewrite rule:
((c_vi2 = what(w)) <=> false) | (false <=> in_stack(w, deqd(c_xst))) -> true

Ordered equation sync.l14.2 into the rewrite rule:
((c_vi2 = element (z)) <=> false) | (false <=> in(z, engd(c_xst))) -> true

Ordered equation sync.l4.1 into the rewrite rule:
(enqr(top(deqd(c_xat))) < c_vil) | (deqd(c_xst) = new) -> true

The system now contains 169 rewrite rules and 12 deduction rules.
-> crit case with Abstraction

Critical pairs between rule Case.4.1l:

in(c_xh, af(eng(c_xst, c_vil, c_vi2))) => true
and rule Abstraction.5:
(in_state (xh, xst) & ordered(xh)) | (false <=> in(xh, af(xat))) =-> true

are as follows:
in_state (c_xh, eng(c_xst, c vil, c_vi2)) & ordered (c_xh) == true

The system now contains 1 equation, 169 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

when x & y == true

yield x == true

y == true

has been applied to equation sync.15:

in_state(c_xh, eng(c_xst, e_vil, c_vi2)) & ordered(c_xh) == true
to yield the following equations:

sync.15.1: in_state(c_xh, eng(c_xst, c_vil, c_vi2)) == true

sync.15.2: ordored(c_;h) == true

Ordered equation sync.15.2 into the rewrite rule:
ordered(c_xh) -> true

Ordered equation sync.l15.1 into the rewrite rule:
in_state(c_xh, eng(c_xst, c_vil, c_vi2)) -> true

The system now contains 171 rewrite rules and 12 deduction rules.

Critical pairs between rule Case.4.1:
in(c_xh, af(eng(c_xst, c_vil, c vi2))) -> true
and rule Abstraction.6:)
((append (cons (c_hl, E(pair(xe, xt))), c_h2) = xh)
& in(append(c_hl, c_h2), af(xst)))
| (false <=> in(xh, af(eng(xst, xt, xe))))
-> true
are as follows:
(append(cons (c_hl, E(pair(c_vi2, c_vil))), c_h2) = c_xh)
& in(append(c_hl, c_h2), af(c_xst))
== true

The system now contains 1 equation, 171 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation sync.l6:
(append (cons (c_hl, E(pair(c_vi2, c_vil))), c_h2) = c_xh)
& in(append(c_hl, c_h2), af(c_xst))
== true
to yield the following equations:
sync.16.1: append(cons(c_hl, E(pair(c_vi2, c_vil))), c_h2) = c _xh == true

173

sync.16.2: in(append(c_hl, c_h2), af(c_xst)) == true

Ordered equation sync.l16.2 into the rewrite rule:
in(append(c_hl, c_h2), af(c_xst)) => true

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation sync.16.1:
append(cons(c_hl, E(pair(c_vi2, c_vil))), c_h2) = c xh == true
to yield the following equations:
sync.16.1.1: append(cons(c_hl, E(pair(c_vi2, c_vil))), c_h2) == c_xh

The system now contains 1 equation, 172 rewrite rules, and 12 deduction rules.

Ordered equation sync.l6.1.1 into the rewrite rule:
append (cons (c_hl, E(pair(c_vi2, c_vil))), e h2) =-> c xh

The system now contains 173 rewrite rules and 12 deduction rules.

Critical pairs between rule Case.4.l:
in(ec_xh, af(eng(c_xst, c_vil, c_vi2))) => true
and rule Abstraction.ll:
(false <=> in(xh, af(xst)))
| (false <=> in(xn, engd(xst)))
| (false <=> least (xn, engd(xst)))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(cons (DEQ(xh), element (xn)), ENQ(xh))
=-> true
are as follows:
(((pair(c_vi2, c_vil) = xn) <=> false) & (false <=> in(xn, enqgd(c_xst))))
| ((engt(xn) < c_vil) <=> false)
| (false <=> least (xn, onqd(c_;st)))
| (false <=> prefix(DEQ(c_xh), ENQ(c_xh)))
| prefix(cons(DEQ(c_xh), element (xn)), ENQ(c_xh))
== true

The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation sync.l7 into the rewrite rule:
(((pair(c_vi2, ¢_vil) = xn) <=> false) & (false <=> in(xn, enqgd(c_xst))))
| ((engt(xn) < c_vil) <=> false)
| (false <=> least (xn, enqgd(c_xst)))
| (false <=> prefix(DEQ(c_xh), ENQ(c_xh)))
| prefix(cons(DEQ(c_xh), element (xn)), ENQ(c_xh))
-> true

The system now contains 174 rewrite rules and 12 deduction rules.

Computed 3 new critical pairs. Added 3 of them to the system.

=> resume by case degd(c_xst)=new

Case.5.1
deqgd (c_xst) = new == true

involves proving Lemma sync.l1.3.1.1
in(c_xh, af(enq(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
-> true

The case system now contains 1 equation.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.5.1:
degd (c_xst) = new == true

to yield the following equations:
Case.5.1.1: degd (c_xst) == new

174

Ordered equation Case.5.1.1 into the rewrite rule:
degd (c_xst) =-> new

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation Case.5.1:
degd (c_xst) = new == true

to yield the following equations:
Case.5.1.2: degd (c_xst) == new

Ordered equation Case.5.1.2 into the rewrite rule:
deqgd (c_xat) -> new

Following 2 left-hand sides reduced:

((c_vi2 = what(w)) <=> false) | (false <=> in stack(w, degd(c_xst)))
=-> true

became equation sync.14.3:

((c_vi2 = what (w)) <=> false) | (false <=> in_stack(w, new)) == true

(engr (top (deqgd(c_xst))) < e_vil) | (degqd (c_xst) = new) -> true
became equation sync.14.1:
(engr (top (new)) < e vil) | (deqd(c_xst) = new) == true

The system now contains 173 rewrite rules and 12 deduction rules.

Lemma sync.1.3.1.1 in the proof by cases of Lemma sync.l.3.1
in(c_xh, af(eng(c_xst, c_vil, c _vi2))) => prefix (DEQ(c_xh), ENQ(c_xh}))
-> true
Case.5.1: degd(c_xst) = new
is NOT provable using the current partially completed system. It reduces to
the equation
prefix (DEQ(c_xh), ENQ(c_xh)) -> true

Proof of Lemma sync.l.3.1.1 suspended.
=> crit case with lemma2.l

Critical pairs between rule Case.5.1.2:
degd (c_xst) => new
and rule lemma2.1l:
((degd (xst) = new) <=> false)
| (false <m> in_state(xh, xat))
| (DEQ(xh) = null)
=> true
are as follows:
(false <=> in state(xh, c_xst)) | (DEQ(xh) = null) == true

The system now contains 1 equation, 173 rewrite rules, and 12 deduction rules.

Ordered equation sync.1l8 into the rewrite rule:
(false <=> in_state (xh, c_xat)) | (DEQ(xh) = null) -> true

The system now contains 174 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.
-> crit sync with lemmal.$
Critical pairs between rule sync.16.1.1:
append (cons (c_hl, E(pair(c_vi2, c_vil))), < _h2) -> c_xh
and rule lemmal.8:
DEQ(append (cons(x, E(y)), z)) ~> DEQ(append(x, z))

are as follows:
DEQ(c_xh) == DEQ (append(c_hl, < _h2))

175

The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.

Ordered equation sync.l9 into the rewrite rule:
DEQ(append(c_hl, c_h2)) =-> DEQ(c_xh)

The system now contains 175 rewrite rules and 12 deduction rules.

Critical pairs between rule sync.18:
(false <=> in_:tato(xh, c_xst)) | (DEQ(xh) = null) =-> true
and rule lemmal.8:
DEQ (append(cons(x, E(y)), z)) -> DEQ(append(x, z))
are as follows:
(false <=> in state (append(cons(x, E(y)), z), c_xst))
| (DEQ(append(x, z)) = null)
== true

The system now contains 1 equation, 175 rewrite rules, and 12 deduction rules.
Ordered equation sync.20 into the rewrite rule:
(false <=> in_state (append(cons(x, E(y)), z), c_xst))
| (DEQ(append(x, z)) = null)
=> true
The system now contains 176 rewrite rules and 12 deduction rules.
Computed 2 new critical pairs. Added 2 of them to the asystem.

-> crit sync.16.2 with Abstraction.$

Critical pairs between rule sync.l16.2:

in(append(c_hl, c_h2), af(c_xst)) -> true
and rule Abstraction.5: :
(in_state(xh, xst) & ordered(xh)) | (false <=> in(xh, af(xst))) -> true

are as follows:
in_state (append(c_hl, c _h2), c_xst) & ordered(append(c_hl, c_h2)) == true

The system now contains 1 equation, 176 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

when x & y == true

yield x == true

y == true

has been applied to equation sync.21:

in_state (append(c_hl, c h2), c_xst) & ordered(append(c_hl, c_h2)) == true
to yield the following equations:

sync.21.1: in_ state (append(c_hl, ¢ h2), c_xst) == true

sync.21.2: orde:od(appond(c_hl, c_pz)) == true

Ordered equation sync.21.2 into the rewrite rule:
ordered(append(c_hl, c_h2)) -> true

Ordered equation sync.2l.l1 into the rewrite rule:
in_state(append(c_hl, c_h2), c_xst) -> true

The system now contains 178 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.
-> crit sync with sync
Critical pairs between rule sync.l19:
DEQ (append(c_hl, e _h2)) =~> DEQ(c_xh)
and rule sync.18:
(falase <=> in_state(xh, c_xst)) | (DEQ(xh) = null) -> true
are as follows:

DEQ(c_xh) = null == true

The system now contains 1 equation, 178 rewrite rules, and 12 deduction rules.

176

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation sync.22:
DEQ(c_xh) = null == true

to yield the following equations:
sync.22.1: DEQ(c_xh) == null

Ordered equation sync.22.1 into the rewrite rule:
DEQ(c_xh) => null

Left-hand side reduced:
(((pair(c_viz, c_vil) = xn) <=> false) & (false <=> in(xn, enqd(c_xat))))
| ((engt(xn) < c_vil) <=> false)
| (false <=> least (xn, engd(c_xst)))
| (false <=> prefix(DEQ(c_xh), ENQ(c_xh)))
| prefix(cons(DEQ(c_xh), element(xn)), ENQ{(c_xh))
-> true
became equation sync.17:
(((pair(c_vi2, c_vil) = xn) <=> false) & (false <=> in(xn, engd (c_xst))))
| ({engt(xn) < c_vil) <=> false)
| (false <=> least (xn, engd(c_xst)))
| (false <=> prefix(null, ENQ(c_xh)))
| prefix(cons (DEQ(c_xh), element(xn)), ENQ(c_xh))
== true .o

Ordered equation sync.l7 into the rewrite rule:
(((pair(c_vi2, c_vil) = xn) <=> false) & (false <=> in(xn, engd(c_xst))))
| ({engt(xn) < c_vil) <=> false)
| (false <=> least(xn, engd(c_xst)))
| prefix(cons (null, element (xn)), ENQ(c_xh))
-> true

The system now contains 179 rewrite rules and 12 deduction rules.

Lemma sync.1.3.1.1 in the proof by cases of Lemma sync.1.3.1
in(c_xh, af(enq(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
=> true
Case.5.1: deqgd(c_xst) = new

[] Proved by rewriting.

Case.5.2
not (degd(c_xst) = new) == true

involves proving Lemma sync.l1.3.1.2
in(c_xh, af(enqg(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
=-> true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.5.2:
(deqd (c_xst) = new) <=> false == true
to yield the following equations:
Case.5.2.1: deqd(c_xast) = new == false

Ordered equation Case.5.2.1 into the rewrite rule:
deqgd(c_xst) = new -> false

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 174 rewrite rules, and 12 deduction rules.
Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.5.2:

177

(deqd(c_;st) = neaw) <=> false == true
to yield the following equations:
Case.5.2.2: deqd(c_xst) = new == false

Ordered equation Case.5.2.2 into the rewrite rule:
degd (c_xst) = new -> false

Left~hand side reduced:

(engr (top(degd (c_xst))) < c_vil) | (degd(c_xst) = new) -> true
became squation sync.14.1:
(engr (top(deqd (c_xst))) < c_vil) | false == true

Ordered equation sync.l4.l1l into the rewrite rule:
engr (top (degd (c_xst))) < c_vil => true

The system now contains 175 rewrite rules and 12 deduction rules.

Lemma sync.1.3.1.2 in the proof by cases of Lemma sync.1.3.1
in{c_xh, af(eng(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
=> true
Case.5.2: not(deqgd(c_xst) = new)
is NOT provable using the current partially completed system. It reduces to
the equation
prefix (DEQ(c_xh), ENQ(c_xh)) =-> true

Proof of Lemma sync.l1l.3.l1.2 suspended.
Critical-pair computation abandoned because a theorem has been proved.

Computed 3 new critical pairs, 2 of which reduced to an identity. Added 1 of
them to the system. .

=-> crit induct with sync.16.2

Critical pairs between rule Induct.l:
(false <=> in(xh, af(c_xst))) | prefix(DEQ(xh), ENQ(xh)) -> true
and rule sync.16.2:
in(append(c_hl, c h2), af{c_xst)) -> true
are as follows:
prefix (DEQ(append(c_hl, c_h2)), ENQ(append(c_hl, c h2))) == true

The system now contains 1 equation, 175 rewrite rules, and 12 deduction rules.

Ordered equation sync.23 into the rewrite rule:
prefix(DEQ(append(c_hl, c_h2)), ENQ(append(c_hl, ¢ h2))) => true

The system now contains 176 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.

-> instantiate xhl by c hl,xh2 by ¢ _h2,xh by c_xh,xe by ¢ _vi2,xt by ¢ vil,xst by c_xst in lemma2.3

Equation lemma2.3:
({enqgr (top (deqd(xst))) < xt) <=> false)
| ((append(cons(xhl, E(pair(xe, xt))), xh2) = xh) <=> false)
| (false <=> in{(append(xhl, xh2), af(xst)))
| (false <=> ordered(xh))
| (false <=> prefix (DEQ (append(xhl, xh2)), ENQ(append(xhl, xh2))))
| prefix(DEQ(xh), ENQ(xh))
-> true
has been instantiated to equation lemma2.3.1:
prefix (DEQ(c_xh), ENQ(c_xh)) => true

Added 1 equation to the system.

Ordered equation lemma2.3.1 into the rewrite rule:
prefix (DEQ(c_xh), ENQ(c_xh)) => true

178

Left-hand side reduced:
(((pair(c_vi2, c_vil) = xn) <=> false) & (false <=> in(xn, engd(c_xst))))
| ((engt (xn) < c_vil) <=> false)
| (false <=> least (xn, engd(c_xst)))
| (false <=> prefix(DEQ(c_xh), ENQ(c_xh)))
| prefix(cons(DEQ(c_xh), element(xn)), ENQ(c_xh))
-> true
became equation sync.l17:
(((pair(c_vi2, c_vil) = xn) <=> false) & (false <=> in(xn, enqgd(c_xst))))
| ((engt(xn) < c_vil) <=> false)
| (false <=> least (xn, engd(c_xst)))
| (false <=> true)
| prefix(cons (DEQ(c_xh), element (xn)), ENQ(c_xh))
== true

Ordered equation sync.l7 into the rewrite rule:
(((pair(c_vi2, c_vil) = xn) <=> false) & (false <=> in(xn, engd(c_xst))))
| ({engt(xn) < c_vil) <=> false)
| (false <=> least (xn, engd(c_xst)))
| prefix(cons (DEQ(c_xh), element(xn)), ENQ(c_xh))
=> true

The system now contains 177 rewrite rules and 12 deduction rules.

Lemma sync.1.3.1.2 in the proof by cases of Lemma sync.1.3.1
in(c_xh, af(eng(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
-> true
Case.5.2: not(deqd(c_xst) = new)

[] Proved by rewriting.

Lemma sync.l.3.1 in the proof by cases of Lemma sync.l.3
in(c_xh, af(eng(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
=> true
Case.4.1: in(c_xh, af(eng(c_xst, c_vil, c_vi2)))
[] Proved by cases
(degd(c_xst) = new) | not(degd(c_xst) = new)

Case.4.2
not (in(c_xh, af(eng(c_xst, c_vil, c_vi2)))) == true

involves proving Lemma sync.l1.3.2
in(c_xh, af(enq(c_;st, c_vil, c_yi2))) => prefix (DEQ(c_xh), ENQ(c_xh))
-> true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to equation Case.4.2:

false <=> in(c_xh, af(eng(c_xst, c_vil, c_vi2))) == true
to yield the following equations:

Case.4.2.1: false == in(c_xh, af(eng(c_xst, c_vil, c_vi2)))

Ordered equation Case.4.2.1 into the rewrite rule:
in(c_xh, af(eng(c_xst, c_vil, c_vi2))) => false

The case system now contains 1 rewrite rule.

Lemma sync.1.3.2 in the proof by cases of Lemma sync.1.3
in(c_xh, af(eng(c_xst, c vil, ¢ vi2))) => prefix(DEQ(c_xh), ENQ(c_: xh))
=> true
Case.4.2: not(in(c_xh, af(enq(c_xst, c_vil, c_vi2))))

[] Proved by rewriting (with unreduced rules).

Lemma sync.l.3 for the induction step in the proof of Conjecture sync.1l
in(xh, af(eng(c_xst, vil, vi2))) => prefix(DEQ(xh), ENQ(xh)) =-> true

[] Proved by cases
in(xh, af(eng(c_xat, vil, vi2))) | not (in(xh, af (eng(c_xst, vil, vi2))))

179

Lemma sync.l.2 for the induction step in the proof of Conjecture sync.l
in(xh, af(deq(c_xst, vil, vi2))) => prefix (DEQ(xh), ENQ(xh)) =-> true

is NOT provable using the current partially completed system. It reduces to

the equation
(false <=> in(xh, af(deq(c_xst, vil, vi2)))) | prefix(DEQ(xh), ENQ(xh))
=-> true

Proof of Lemma sync.l.2 suspended.
-> resume by case in(xh,af(deg(c_xst,vil,vi2::enq_rec)))

Case.6.1
in(c_xh, af(deg(c_xst, c_vil, c_vi2))) == true

invelves proving Lemma sync.l1.2.1
in(c_xh, af(deq(c_xst, c _vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
=> true

The case system now contains 1 equation.

Ordered equation Case.6.l1l into the rewrite rule:
in(c_xh, af(deg(c_xst, c_vil, c_vi2))) -> true

The case system now contains 1 rewrite rule.
The system now contains 1 equation, 165 rewrite rules, and 12 deduction rules.

Ordered equation Case.6.l into the rewrite rule:
in(c_xh, af(deq(c_xst, c_vil, c_vi2))) =-> true

The system now contains 166 rewrite rules and 12 deduction rules.

Lemma sync.l.2.1 in the proof by cases of Lemma sync.l.2
in(c_xh, af(deq(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
=-> true
Case.6.1: in(c_xh, af(deg(c_xst, c _vil, c_vi2)))
is NOT provable using the current partially completed system. It reduces to
the equation
prefix (DEQ(c_xh), ENQ(c_xh)) =-> true

Proof of Lemma sync.l.2.l suspended.
-> e¢rit case with Abstraction

Critical pairs between rule Case.6.1l:
in(c_;h, af(doq(c_xst, e vil, c_vi2))) => true
and rule Abstraction.5:
(in_state(xh, xst) & orderxed(xh)) | (false <=> in(xh, af(xst))) => true
are as follows:
in_state (c_xh, deqg(c_xst, c_vil, c_vi2)) & ordered(c_xh) == true

The system now contains 1 equation, 166 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

when x & y == true

yield x == true

y == true

has been applied to equation sync.24:

in_state (c_xh, deqg(c_xst, c_vil, ¢ _vi2)) & ordered(c_xh) == true
to yield the following equations:

sync.24.1: in state(c_xh, deg(c_xst, c_vil, c_vi2)) == true

sync.24.2: o:dered(c_xh) == true

Ordered equation aync.24.2 into the rewrite rule:
ordered(c_xh) -> true

Ordered equation sync.24.1 into the rewrite rule:
in_state (c_xh, deg(c_xst, c_vil, c_vi2)) => true

The system now contains 168 rewrite rules and 12 deduction rules.

180

Critical pairs between rule Case.6.1l:
in(c_xh, af(deqg(c_xst, c vil, ec_vi2))) => true
and rule Abstraction.7:
((DEQ(c_h2) = null)
& (append(cons(c_hl, D(trip(element (xn), engt(xn), xt))), c_h2) = xh)
& in(append(c_hl, c_h2), af(xst)))
| (false <=> in(xh, af(deg(xst, xt, xn))))
=> true
are as follows:
(DEQ(c_h2) = null)
& (append(cons(c_hl, D(trip(element (c_vi2), engt(c_vi2), c_vil))), <_h2)
= c_xh)

& in(append(c_hl, c_h2), af(c_xst))
== true

The system now contains 1 equation, 168 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation sync.25:
(DEQ(c_h2) = null)
& (append(cons(c_hl, D(trip(element (c_vi2), engt(c_vi2), c_vil))), c_h2)
= c_xh)

& in(append(c_hl, c_h2), af(c_xst))
== true
to yield the following equations:
sync.25.1: DEQ(c_h2) = null == true
sync.25.2: append(cons(c_hl, D(trip(element(c_vi2), engt(c_vi2), c_vil))),
<c_h2)

= c_xh
== true

sync.25.3: in(append(c_hl, c_h2), af(c_xst)) == true

Ordered equation sync.25.3 into the rewrite rule:
in(append(c_hl, c_h2), af(c_xst)) -> true

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to egquation sync.25.2:
append (cons (c_hl, D(trip(element (c_vi2), engt(c_vi2), c_vil))), c_h2) = ¢ _xh
== true
to yield the following equations:
sync.25.2.1: append(cons(c_hl, D(trip(element(c_vi2), engt(c_vi2), c_vil))),
c_h2)
== c_xh

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation sync.25.1:
DEQ(c_h2) = null == true

to yield the following equations:
sync.25.1.1: DEQ{(c_h2) == null

The system now contains 2 equations, 169 rewrite rules, and 12 deduction rules.

Ordered equation sync.25.1.1 into the rewrite rule:
DEQ(c_h2) => null

Left-hand side reduced:

((DEQ(c_h2) = null)
& (append(cons(c_hl, D(trip(element (xn), engt(xn), xt))), c_h2) = xh)
& in(append(c_hl, c_h2), af(xst)))

181

| (false <=> in(xh, af(deg(xst, xt, xn))))
-> true
became equation Abstraction.7:
((append(cons(c_hl, D(trip(element (xn), engt (xn), xt))), c_h2) = xh)
& (null = null)
& in(appond(c_bl, e_h2), af(xst)))
| (false <=> in(xh, af(deq(xst, xt, xn))))
-> true

Ordered equation Abstraction.7 into the rewrite rule:
((append (cons(c_hl, D(trip(element (xn), enqgt(xn), xt))), c_h2) = xh)
& in(append(c_hl, c_h2), af(xst)))
| (false <=> in(xh, af(deg(xst, xt, xn))))
=> true

The system now contains 1 equation, 170 rewrite rules, and 12 deduction rules.

Ordered equation sync.25.2.1 into the rewrite rule:
append (cons (c_hl, D(trip(element (c_vi2), engt(c_vi2), c vil))), <_h2) -> c_xh

The system now contains 171 rewrite rules and 12 deduction rules.

Critical pairs between rule Case.6.l:
in(c_xh, af(deq(c_xst, c_vil, c_vi2))) =-> true
and rule Abstraction.ll:
(false <=> in(xh, af(xst)))
| (false <=> in(xn, engd(xst)))
| (false <=> least (xn, engd(xst)))
| (false <=> prefix (DEQ(xh), ENQ(xh)))
| prefix(cons (DEQ(xh), element (xn)), ENQ(xh))
-> true
are as follows:
(false <=> in(xn, engd(c_xst)))
| (false <=> least (xn, delete(engd(c_xst), c_vi2)))
| (false <=> prefix(DEQ(c_xh), ENQ(c_xh)))
| (e_vi2 = xn)
| p:efix(cona(DEQ(c_xh), element (xn)), ENQ (c_xh))
== true

The system now contains 1 equation, 171 rewrite rules, and 12 deduction rules.

Ordered equation sync.26 into the rewrite rule:
(false <=> in(xn, engd(c_xst)))
| (false <=> least (xn, delete (enqgd(c_xst), c_vi2)))
| (false <=> prefix (DEQ(c_xh), ENQ(c_xh)))
| (e_vi2 = xn)
| profix(cons(DEQ(c_;h), element (xn)), ENQ(c_xh))
=-> true

The system now contains 172 rewrite rules and 12 deduction rules.
Computed 3 new critical pairs. Added 3 of them to the system.

=> add when_deq(c_xst,x,c_vil,c_vi2)

Added 1 equation to the system.

Deduction rule booclean.3:
when x & y == true
yield x == true
y == true
has been applied to equation sync.27:
(engt (c_vi2) < e_vil)
& in(c_vi2, engd(c_xst))
& least(c_vi2, engd(c_xst))
& (((degr (top(degd(c_xst))) < c_vil)
& (engr(top(degd(c_xst))) < engt(c_vi2)))
| (degd(c_xst) = new))

182

& (((element (c_vi2) = what (x)) <=> false)
| (false <=> in_stack(x, doqd(c_xst))))

-> true
to yield the following equations:

sync.27.1: engt(c_vi2) < c_vil == true

sync.27.2: in(c_vi2, engd(c_xst)) == true

sync.27.3: least(c_vi2, engd(c_xat)) == true

sync.27.4: ((degr(top(degd(c_xst))) < c_vil)
& (engr(top(degd(c_xst))) < engt(c_vi2)))
| (degd(c_xst) = new)

== true
sync.27.5: ((element (c_vi2) = what(x)) <=> false)
| (false <=> in_stack(x, degd(c_xst)))
' mm true

Ordered equation sync.27.5 into the rewrite rule:
((element (c_vi2) = what(x)) <=> false) | (false <=> in_stack(x, degd(c_xst)))
-> true

Ordered equation sync.27.4 inte the rewrite rule:
((doq:(top(doqd(c_xat))) < c_vil) & (engr (top (degd(c_xst))) < enqgt(c_vi2)))
| (degd(c_xst) = new)
-> true

Ordered equation sync.27.3 into the rewrite rule:
least (c_vi2, engd(c_xst)) => true

Ordered equation sync.27.2 into the rewrite rule:
in(c_vi2, engd(c_xst)) => true

Ordered equation sync.27.l1l into the rewrite rule:
enqt(c_viZ) < c_vil -> true

The system now contains 177 rewrite rules and 12 deduction rules.
~> erit induct with sync

Critical pairs between rule Induct.l:
(false <=> in(xh, af(c_xst))) | prefix(DEQ(xh), ENQ(xh)) =-> true
and rule sync.25.3:
in(append(c_hl, c_h2), af(c_xst)) -> true
are as follows:
prefix (DEQ (append(c_hl, c_h2)), ENQ(append(c_hl, c_h2))) == true

The system now contains 1 equation, 177 rewrite rules, and 12 deduction rules.

Ordered equation sync.28 into the rewrite rule:
prefix (DEQ(append(c_hl, c_h2)), ENQ(append(c_hl, c_h2))) => true

The system now contains 178 rewrite rules and 12 deduction rules.

Computed 8 new critical pairs, 7 of which reduced to an identity. Added 1 of
them to the system.

=> resume by case deqd(c_xst)=new

Case.7.1
deqgd(c_xst) = new == true

involves proving Lemma sync.l1.2.1.1
in(c_xh, af(deg(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh)})
=-> true

The case system now contains 1 equation.
Deduction rule equality.4:
when x = y == true

yield x == y
has been applied to equation Case.7.1l:

183

doqd(c_;st) = new == true
to yield the following equations:
Case.7.1.1: deqgd (c_xst) == new

Ordered equation Case.7.1.1 into the rewrite rule:
deqd(c_gat) => new

The case system now contains 1 rewrite rule.

The system now contains 1 equation, 178 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when X = y == true
yvield x == y

has been applied to equation Case.7.1l:
deqd(c_;st) = new == true

to yield the following equations:
Case.7.1.2: degd (c_xst) == new

Ordered equation Case.7.1.2 into the rewrite rule:
deqgd (c_xst) -> new

Following 2 left-hand sides reduced:
((element (c_vi2) = what(x)) <=> false)
| (false <=> in_stack(x, degd(c_xst)))

=-> true
became equation sync.27.5:
((element (c_vi2) = what(x)) <=> false) | (false <=> in_stack(x, new))
== true

((degr (top (deqd(c_xst))) < c_vil) & (engr (top(degd(c_xst))) < enqgt(c_vi2)))
| (degd(c_xst) = new)
-> true
became equation sync.27.4:
((degr (top(new)) < c_vil) & (engr (top (degd(c_xst))) < engt(c_vi2)))
| (degd(c_xst) = new)
== true

The system now contains 177 rewrite rules and 12 deduction rules.

Lemma sync.l1l.2.1.1 in the proof by cases of Lemma sync.1.2.1
in(c_xh, af(deq(c_xst, c_vil, c_vi2))) => prefix (DEQ(c_xh), ENQ(c_xh))
-> true
Case.7.1: degd(c_xst) = new
is NOT provable using the current partially completed system. It reduces to
the equation
pzofix(DEQ(c_xh), ENQ(c_xh)) => true

Proof of Lemma sync.l1.2.1.1 suspended.
=> crit case with lemma2.l

Critical pairs between rule Case.7.1.2:
deqd(c_;at) => new
and rule lemma2.l:
((deqgqd(xst) = new) <=> false)
| (false <=> in state(xh, xst))
| (DEQ(xh) = null)
=> true
are as follows:
(false <=> in_state(xh, c _xst)) | (DEQ(xh) = null) == true

The system now contains 1 equation, 177 rewrite rules, and 12 deduction rules.

Ordered equation sync.29 into the rewrite rule:
(false <=> in state(xh, c_xst)) | (DEQ(xh) = null) =-> true

The system now contains 178 rewrite rules and 12 deduction rules.

Computed 1 new critical pair. Added 1 of them to the system.

184

=> crit sync.25.3 with Abstraction.5

Critical pairs between rule sync.25.3:
in(append(c_hl, c_h2), af(c_xst)) =-> true
and rule Abstraction.5:
(in_state (xh, xst) & ordered(xh)) | (false <=> in(xh, af(xst))) -> true
are as follows:
in_state (append(c_hl, c_h2), c_xst) & ordered(append(c_hl, c_h2)) == true

The system now contains 1 equation, 178 rewrite rules, and 12 deduction rules.

Deduction rule boolean.3:

when x & y == true

vield x == true

y == true

has been applied to equation sync.30:

in_state (append(c_hl, c¢_h2), c_xst) & ordered(append(c_hl, c_h2)) == true
to yield the following equations:

sync.30.1: in_state(append(c_hl, c h2), c_xst) == true

sync.30.2: ordered(append(c_hl, c_h2)) == true

Ordered equation sync.30.2 into the rewrite rule:
ordered(append(c_hl, c_h2)) -> true

Ordered equation sync.30.1 into the rewrite rule:
in_stato(append(c_hl, c_h2), c_xst) => true

The system now contains 180 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.
~> crit sync.30.1 with sync.29

Critical pairs between rule sync.30.1:
in_state (append(c_hl, c¢_h2), c_xst) => true
and rule sync.29:
(false <=> in_ state(xh, c_xst)) | (DEQ(xh) = null) =~> true
are as follows:
DEQ(append (c_hl, < h2)) = null == true

The system now contains 1 equation, 180 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y
has been applied to equation sync.31l:
DEQ(append(c_hl, c_h2)) = null == true
to yield the following equations:
sync.31.1: DEQ(append(c_hl, c_h2)) == null

Ordered equation sync.31l.l1l into the rewrite rule:
DEQ(append (c_hl, c h2)) -> null

Left-hand side reduced: :
prefix (DEQ (append(c_hl, c_h2)), ENQ(append(c_hl, c_h2))) => true
became equation sync.28:
prefix(null, ENQ(append{c_hl, c_h2))) == true
The system now contains 180 rewrite rules and 12 deduction rules.
Computed 1 new critical pair. Added 1 of them to the system.
=> crit sync.31l.1 with lemma3.1l
Critical pairs between rule sync.31l.1l:
DEQ(append(c_hl, c_h2)) => null

and rule lemma3.1l:
((DEQ(xh) = null) & (DEQ(xhl) = null))

185

| ((DEQ(append(xh, xhl)) = null) <=> false)
=> true
are as follows:
((DEQ{append (c_hl, append(c_hz, xhl))) = null) <=> false)
| (DEQ(xhl) = null)
== true
((DEQ (append (xh, append(c_hl, c_h2))) = null) <=> false) | (DEQ(xh) = null)
== true
DEQ(c_hl) = null == true

The system now contains 1 equation, 180 rewrite rules, and 12 deduction rules.

Ordered equation sync.32 into the rewrite rule:
((DEQ(append(c_hl, append (c_h2, xhl))) = null) <=> false) | (DEQ(xhl) = null)
~> true

The system now contains 181 rewrite rules and 12 deduction rules.
The system now contains 1 equation, 181 rewrite rules, and 12 deduction rules.

Ordered equation sync.33 into the rewrite rule:
((DEQ (append (xh, append(c_hl, c_h2))) = null) <=> false) | (DEQ(xh) = null)
=> true

The system now contains 182 rewrite rules and 12 deduction rules.
The system now contains 1 equation, 182 rewrite rules, and 12 deduction rules.

Deduction rule equality.4:
when x = y == true
yield x == y

has been applied to equation sync.34:
DEQ(c_hl) = null == true

to yield the following equations:
sync.34.1: DEQ(c_hl) == null

Ordered equation sync.34.1 into the rewrite rule:
DEQ(c_hl) => null

The system now contains 183 rewrite rules and 12 deduction rules.

Computed 3 new critical pairs. Added 3 of them tq the system.

=> instantiate xhl by c_hl,xh2 by ¢_h2,xn by c_vi2,xt by c_vil,xh by c_xh,xst by c_xst in lemma3.2

Equation lemma3.2:
((DEQ(xhl) = null) <=> false)
| ((DEQ(xh2) = null) <=> false)
| ((append(cons(xhl, D(trip(element (xn), enqgt(xn), xt))), xh2) = xh)
<=> false)

| (false <=> in(append(xhl, xh2), af(xst)))
| (false <=> in(xn, engd(xst)))
| (false <=> least (xn, engd(xat)))
| prefix(DEQ(xh), ENQ(xh))
=-> true
has been instantiated to equation lemma3.2.1:
prefix(DEQ(c_xh), ENQ(c_xh)) => true

Added 1 equation to the system.

Ordered equation lemma3.2.1 into the rewrite rule:
prefix (DEQ(c_xh), ENQ(c_xh)) -> true

Left-hand side reduced:

(false <=> in(xn, engd (c_xst)))
| (false <=> least (xn, delets(enqd(c_xst), c vi2)))

186

| (false <=> prefix(DEQ(ec_xh), ENQ(c_xh)))
| (e_vi2 = xn)
| prefix(cons(DEQ(c_xh), element (xn)), ENQ(c_xh))
-> true
became equation sync.26:
(false <=> in(xn, enqgd(c_xst)))
| (false <=> least (xn, delete (engd(c_xst), c_vi2)))
| (false <=> true)
| (e_vi2 = xn)
| prefix(cons(DEQ(c_xh), element (xn)), ENQ(c_xh))
== true

Ordered equation sync.26 into the rewrite rule:
(false <=> in(xn, engd(c_xst)))
| (false <=> least(xn, delete(engd(c_xst), c_vi2)))
| (e_vi2 = xn)
| prefix(cona(DEQ(c_xh), element (xn)), ENQ(c_xh))
-> true

The system now contains 184 rewrite rules and 12 deduction rules.

Lemma sync.1.2.1.1 in the proof by cases of Lemma sync.l.2.1
in(c_xh, af(deq(c_xst, c_vil, c_vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
-> true
Case.7.1: deqd(c_xst) = new

[] Proved by rewriting.

Case.7.2
not (deqgd (c_xst) = new) == true

involves proving Lemma sync.1.2.1.2
in(c_xh, af (deg(c_xst, c_vil, c_vi2))) => prefix (DEQ(c_xh), ENQ(c_xh))
=> true

The case system now contains 1 equation.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.7.2:
(degd (c_xst) = new) <=> false == true
to yield the following equations:
Case.7.2.1: deqd(c_xst) = new == false

Ordered equation Case.7.2.1 into the rewrite rule:
degd (c_xst) = new -> false

The case asystem now contains 1 rewrite rule.
The system now contains 1 equation, 178 rewrite rules, and 12 deduction rules.

Deduction rule equality.3:
when x <=> y == true
yield x == y
has been applied to equation Case.7.2:
(degd (c_xst) = new) <=> false == true
to yield the following equations:
Case.7.2.2: degd(c_xst) = new == false

Ordered equation Case.7.2.2 into the rewrite rule:
deqd(c_xst) = new -> false

Left~hand side reduced: -
((deqr(top(deqd(c_xst))) < c_vil) & (engr(top(degd(c_xst))) < engt({c_vi2)))
| (degd(c_xst) = new)
-> true
became equation sync.27.4:
((degr (top(deqd(c_xst))) < c_vil)
& (enqgr(top(degd(c_xst))) < engt(c_vi2)))
| false

187

== true

Deduction rule boolean.3:
when x & y == true
yield x == true
y == true
has been applied to equation sync.27.4:
(degr (top (degd(c_xst))) < c_vil) & (engr(top(degd(c xst))) < engt (c_vi2))

== true
to yield the following equations:
sync.27.4.1: degr(top(degd(c_xst))) < c_vil == true

sync.27.4.2: enqr(top(deqd(c_x-t))) < engt (c_vi2) == true

Ordered equation sync.27.4.2 into the rewrite rule:
enqgr (top (degd(c_xst))) < engt(c_vi2) => true

Ordered equation sync.27.4.1 into the rewrite rule:
deqr(top(deqd(c_xst))) < ¢_vil -> true

The system now contains 180 rewrite rules and 12 deduction rules.

Lemma sync.1.2.1.2 in the proof by cases of Lemma sync.l1.2.1
in(c_xh, af(deqg(c_xst, c_vil, c vi2))) => prefix (DEQ(c_xh), ENQ(c_xh))
=> true
Case.7.2: not(degd(c_xst) = new)
is NOT provable using the current partially completed system. It reduces to
the equation
prefix(DEQ(c_xh), ENQ(c_xh)) => true

Proof of Lemma sync.1.2.1.2 suspended.

-> instantiate xst by c_xst, xh by c_xh,xhl by ¢ hl,xh2 by ¢_h2,xn by c_vi2,xt by c_vil in lemma3.3

Equation lemma3.3:
((engr(top(deqd(xst))) < engt (xn)) <=> false)
| ((DEQ(xh2) = null) <=> false)
| ((append{cons(xhl, D(trip(element (xn), enqt(xn), xt))), xh2) = xh)
<=> false)

| (false <=> in(append(xhl, xh2), af(xst)))
| (false <=> in(xn, engd(xst)))
| (false <=> least (xn, engd(xst)))
| (false <=> prefix (DEQ(append(xhl, xh2)), ENQ(append(xhl, xh2))))
| prefix(DEQ(xh), ENQ(xh))

-> true

has been instantiated to equation lemma3.3.1:
prefix (DEQ(c_xh), ENQ(c_xh)) -> true

Added 1 equation to the system.

Ordered equation lemma3.3.1 into the rewrite rule:
prefix (DEQ(c_xh), ENQ(c_xh)) -> true

Left-hand side reduced:
(false <=> in(xn, engd (c_xst)))
| (false <=> least (xn, delete (engd(c_xst), c_vi2)))
| (false <=> prefix(DEQ(c_xh), ENQ(c_xh)))
| (c_yiz = xn)
| prefix(con-(DEQ(c_;h), element (xn)), ENQ(c_xh))
-> true
became equation sync.26:
(false <=> in(xn, engd(c_xst)))
| (false <=> least (xn, delete (engd(c_xst), c_vi2)))
| (false <=> true)
| (e_vi2 = xn)
| prefix(cons(DEQ(c_xh), element (xn)), ENQ (c_xh))
== tLrue

188

Ordered equation sync.26 into the rewrite rule:
(false <=> in(xn, enqd(c_xst)))
| (false <=> least (xn, delete(engd(c_xst), c_vi2)))
| (e_vi2 = xn)
| prefix(cons(DEQ(c_xh), element(xn)), ENQ(c_xh))
=> true

The system now contains 181 rewrite rules and 12 deduction rules.

Lemma sync.1.2.1.2 in the proof by cases of Lemma sync.1l.2.1
in(c_xh, af(deq(c_xst, c_vil, c_vi2))) => prefix (DEQ(c_xh), ENQ(c_xh))
=> true
Case.7.2: not (degd(c_xst) = new)

[] Proved by rewriting.

Lemma sync.l.2.l1 in the proof by cases of Lemma sync.l.2
in(c_xh, af(deg(c_xst, c_vil, c_vi2))) => prefix (DEQ(c_xh), ENQ(c_xh))
~> true
Case.6.1: in(c_xh, af(deq(c_;st, c_vil, c_vi2)))

[} Proved by cases

(degd(c_xst) = new) | not(deqd(c_xst) = new)
Case.6.2
not (in(c_xh, af(deq(c_xst, c vil, c_vi2)))) == true

involves proving Lemma sync.l.2.2
in(c_;h, af (deq(c_xst, c_vil, c_vi2))) => prefix (DEQ(c_xh), ENQ(c_xh))
=> true

The case system now contains 1 equation.

Deduction rule equality.3:

when x <=> y == true

yield x == y
has been applied to egquation Case.6.2:

false <=> in(c_xh, af(deq(c_xst, c_vil, c_vi2))) == true
to yield the following equations:

Case.6.2.1: false == in(c_xh, af(deg(c_xst, c_vil, c_vi2)))

Ordered equation Case.6.2.1 into the rewrite rule:
in(c_xh, af(deg(c_xst, c_vil, c_vi2))) => false

The case system now contains 1 rewrite rule.

Lemma sync.l1.2.2 in the proof by cases of Lemma sync.l.2
in(c_xh, af(deg(c_xst, c_vil, ¢ _vi2))) => prefix(DEQ(c_xh), ENQ(c_xh))
~> true
Case.€.2: not(in(c_xh, af(deq(c_xst, c vil, c _vi2))))

[] Proved by rewriting (with unreduced rules).

Lemma sync.l.2 for the induction step in the proof of Conjecture sync.1l
in(xh, af(deqg(c_xst, wvil, vi2))) => prefix(DEQ(xh), ENQ(xh)) =-> true
[] Proved by cases
in(xh, af(deg(c_xst, vil, vi2))) | not (in(xh, af(deg(c_xst, vil, vi2))))
Conjecture sync.l
in(xh, af(xst)) => prefix(DEQ(xh), ENQ(xh)) => true
[] Proved by induction over ‘xst::St’ of sort ‘St’.

The system now contains 1 equation, 164 rewrite rules, and 12 deduction rules.

Ordered equation sync.l into the rewrite rule:
(false <=> in(xh, af(xst))) | prefix(DEQ(xh), ENQ(xh)) =-> true

The system now contains 165 rewrite rules and 12 deduction rules.

->q

189

References

See the bibliography of [5] for a more extensive list of references.

{1] J.M. Wing, M.P. Herlihy, S.M. Clamen, D.L. Detlefs, K. Kietzke, R.A. Lermner, S.-Y. Ling.
The Avalon/C++ Programming Language(Version 0)
CMU-CS-88-209R

{2] M.P. Herlihy, J. M. Wing.
Reasoning About Atomic Objects
Symposium on Formal Techniques in Real-time and Fault-tolerant Systems,
22-23 September 1988, Warwick, U.K., Lecture Notes in Computer Science 331,
Springer-Verlag, pp. 193-208, also CMU-CS-87-176

[3] J.V.Guttag, J.J.Homing, J.M.Wing
Larch in Five Easy Pieces
IEEE Software 2(5):24-36, September, 1985

[4] S.J.Garland, J.V.Guttag
LP: The Larch Prover
Proceedings of the 9th Intemnational Conference on Automatic Deduction, LNCS 310

[5] J.M. Wing and C. Gong

Machine-Assisted Proofs of Properties of Avalon Programs
CMU-CS-89-171

190

