
The Avalon/C++ Programming Language (Version O)

Jeannette M. Wing, Maurice Herlihy, Stewart Clamen,
David Detlefs, Karen Kietzke, Richard Lerner, Su-Yuen Ling

6 April 1989
CMU-CS-88-209R

Please send direct comments, corrections, and questions to wing@cs.cmu.edu; send bug reports to
avalon@cs.cmu.edu. This document should be informally referred to as "The Avalon Report" since it is more than a
language manual.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No.
4976 (Amendment 20), under contract F33615-87-C-1499 monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB. Additional suppport for J. Wing was provided in part by the
National Science Foundation under grant CCR-8620027.

The views and conclusions contained in this document axe those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of the Defense Advanced Research Projects Agency or
the U.S. Government.

In orderto get Avalon/C++, youwirlneed to have the followinglicenses:
1. Math

2. Camelot

3. AT&T C++

We shouldhave licenses1 and 2 on file. You willneed to send a copyof the signaturepage for license3

to the followingaddress:

Karen Kietzke
Schoolof ComputerScience
CarnegieMellonUniversity
Pittsburgh,PA 15213

We would appreciate it if you would answer the followingquestions to assist us in coming up with
reasonabledefault values. Pleasesend electronicmailwithyouranswersto "avalon@cs.cmu.edu".

1. What directorydo youuse lor yourstandardC++ includefiles?

2. Where are cfront (the C++ preprocessor)and munch (the programthat looks for global
variableswith constructorsin .o files)?

3. What C compilerdo youuse?

AlthoughAvalon/C++ is distributedfor free, we (the Avalon project) requestthat you acknowledgeus
when youreferto ourwork.

If you have any questions, send electronic mail to "avalon@cs.cmu.edu" or call Karen Kietzke at

(412)268-7663.

The Avalon/C++ Programming Language (Version O)

Jeannette Wing1.

Maurice Herlihy
Stewart Clamen

• David Detlefs
Karen Kietzke

Richard Lerner

Su-Yuen Ling

ComputerScience Department
Carnegie Mellon University

Pittsburgh, PA 15213-3890

6 April 1989

Abstract

Avalon/C++ is a language for implementing reliable distributed programs. People who wish to read or write
Avalon/C++ programs should read this document, though not necessarily all of iL It contains a quick overview of
the terminology of our intendedapplicationdomain, a tutorial-by-exampleintroductionto the language, a reference
manual for the Avalon extensions to C++, a library of built-in classes, and a list of practical programming
guidelines. The appendices include the language's grammarand the I/NIX man pages for ace, the Avaion/C++
preprocessor.

• Please send direct comments, corrections, and questions to wing@cs.cmu.edu; send bug reports to
avalon@cs.cmu.edu. This document shouldbe informally referred to as "The Avalon Report" since it is more than
a language manual.

This research was sponsored by the Defense Advanced Research Projects Agency (IX)D), ARPA Order No. 4976
(Amendment 20), under contract :':33615-87-C-1499 monitored by the Avionics Laboratory, Air Force Wright
Aeronautical Laboratories, Wright-Patterson AFB. Additional support for J. Wing was provided in part by the
National Science Foundation under grant CCR-8620027. The views and conclusions contained in this document are
those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of
the Defense Advanced Research Projects Agency or the US Government.

Table of Contents
1. Overview I

1.1. Terminology I
1.2. Avalon/C++ Specifics I
1.3. A Roadmap to this Document 2

2. A Tutorial Introduction 3
2.1. Array of Atomic Integers 3

" 2.1.1. Using Jack and Jill 3
2.1.2. The Jill Server Declaration 5
2.1.3. The Jill Server Def'mition 7

" 2.1.3.1. Jill's Data Member 7
2.1.3.2. Jill's Operations 8

2.1.4. The Jack Application 9
2.2. FIFO Queue 12

2.2.1. The Queue Representation 13
2.2.2. The Queue Operations 13
2.2.3. Commit and Abort 15
2.2.4. Enq and Deq Synchronization Revisited 16

2.3. Atomic Counters 16
2.3.1. Counter Representation 17
2.3.2. Counter Operations 19
2.3.3. Counter's Commit and Abort 21

3. Reference Manual 25
3.1. Lexicai Considerations 25
3.2. Servers 25

3_..1. Defining Servers 25
3.2.2. Usin8 Servers 26

3.3. Base Classes 26
3.3.1. Class Recoverable 27
3.3.2. Class Atomic • 27
3.33. Class Subatomic 28

3.4. Control Structures 29
3.4.1. Start 29
3.4.2. Costart 30
3.4.3. Leave 30
3.4.4. Return 31
3.4.$. Break and Continue 31
3.4.6. Except Clauses 31
3.4.7. Pinning 32
3.4.8. When 32

3.$. Transmission of Data 32

4. Library 35

4.1. Non-atomic Avalon/C++ Types and Type Generators 35
4.1.1. Bools 35

• 4.1.2. Transaction Identifiers 35
4.1.3. x_string: Transmissible Strings 36
4.1.4. Variants 37

• 4.2. Atomic Types 38
4.2.1. Atomic Strings 38

4.3. Catalog Server 40
4.4. server root 41

5. Guidelines for Programmers 43

5.1. Choosing Identifiers 43
5.2. Using and Implementing Avalon Types 43

5.2.1. Using a Recoverable Type 43
5.2.2. Using an Atomic Type 44
5.2.3. Implementing Recoverable Types 44
5.2.4. Implementing an Atomic Type 47

5.3. Constructing an Avalon Program 48
5.3.1. Server Programs 48
5.32. Client Programs 48
53.3. Example Templates 48

5.4. For Experts Only 49 _,
5.4.1. Undo and Destructors 49
$.4.2. User-Defined Transmission Functions 49
5.4.3. Processes 50
5.4.4. Pragnms 50

Appendix L Grammar 53
1.1. Expressions 53
1.2. Declarations 54
1.3. Statements 57
1.4. External Definitions 58
I..5.Preprocessor 58

Appendix 11. UNIX Man Pages for ACC 59
Index 65

tu

List of Figures
Figure 2-1: Declaration of jm Server 6
Figure 2-2: The atomic Jut Class 7
Figure 2-3: Definition of the Jill Server S
Figure 24: First Part of the Jack Application 10
Figure 2-$: Bellinaiall of the jill transaction Function 11
Figure 2-6: End of the jiiltransaction Function 12
Figure 2-7: Queue Representation 14
Figure 24: Queue Operations 14

• Figure 2-9: Queue's Commit and Abort 15
Figure 2-10: Atomic Counter Derived from Class Atomic 17
Figure 2-I1: Auxiliary Structures for Counter 18

" Figure 2-12: Atomic Counter Derived from Class Subatomic 19
Figure 2.13: Counter's lac and Dec Operations 19
Figure 2.I4: Counter's Inc and Dec Auxiliary Operations 20
Figure 2-15: Counter's Is_zero Operation 21
Figure 2-16: Counter's hzero_work Operation 22
Figure 2.17: Counter's Commit and Abort 23
Figure 3-1: Transmissible and Non.Transmissible Types 33
Figure $-1: User-defined Transmission Functions $1

1. Overview

1.1. Terminology
A distr_utedsystemconsistsof multiplecomputers(callednodes)thatcommunicatethrougha network.
Distributedsystems are typically subject to several kinds of failures:nodes may crash,perhapsdestroyinglocal disk

storage, and communications may fail, via lost messages or network partitions. A widely-accepted technique for
preserving consistency in the presence of failures and concurrency is to organize computations as sequential

" processes called transactions. Transactions are atomic, that is, serializable, transaction-consistent, and persistent.

Serializability means that transactions appear to execute in a serial order. Transaction-consistency ("all-or-
, nothing") means that a transactioneither succeeds completely and commits, or aborts andhas no effect. Persistence

means that the effects of a committed transaction survive failures.

An Avalon/C++programconsistsofasetofservers,eachofwhichencapsulatesasetofobjectsandexlxr,sasetof
operationsanda setofconstructors.A serverresidesata singlephysicalnode,buteachnodemay be home to

multipleservers.An applicationprogrammay explicitlycreatea serverata specifiednodeby callingoneofits
constructors. Rather than sharing data directly, servers communicate by calling one another's operations. An

operation call is a remote procedure call with call-by-value transmission of arguments and results. Objects may be
stable or volatile; stable objects survive crashes, while volatile objects do not. Avalon/C++ includes a variety of

primitives for creating transactions in sequence or in parallel, and for abortingand committing transactions. Each
transaction is identified with a process, and is the execution of a sequence of operations.

Transactionsin Avalon/C++ may be nested. A subtransaction's commit is dependent on that of its parent;aborting a
parent will cause a committed child's effects to be rolled back. A transaction's effects become permanent only
when it commits at the top level. We .use standard tree terminology when discussing nested transactions: a

transaction T has a unique parent, a (possibly empty) set of siblings, and sets of ancestors and descendants. A
transactionisconsidereditsown ancestorordescendant.IftransactionB isanancestorofA,thenA iscommitted

withrespecttoB ifeverytransactionthatisbothanancestorofA andaproperdescendantofB hascommitted.IfB
isnotanancestorofA, thenA .iscommittedwithrespecttoB ifA iscommittedwithrespecttotheleastcommon
ancestor of A and B in the transaction tree.

Avalon/C++ provides transactionsemantics via atomic objects. All objects accessed by transactions must be atomic
to ensure their serializability, transaction-consistency,and persistence. Avalon/C++ provides a collection of built-in
atomic types, and users may define their own atomic types by inheriting from the built-in ones.

Sometimes it may be too expensive to guarantee atomicity at all levels of a system. Instead it is often useful to
"implement atomic objects from non-atomic components, called recoverable objects in Avalon; they satisfy certain
weak consistency properties in the -_resenceof crashes. Users who define their own atomic types from non-atomic
components areresponsible forensuring that their types are indeedatomic.

, 1.2. Avalon/C++ Specifics
Avalon/C++ is a superset of C++ [14], itself an extension of C [7]. C++ is designed to combine advantages of C,
such as concise syntax, efficient object code, and portability, with important features of object-oriented

programming, such as abstract data types, inheritance, and generic functions. We assume the reader has some

knowledge of C++ and freely use its terminology; see [14] for more informationon C++.

Avalon's run-time environment relies on the Camclot system [13, 12] to handle operating-system level details of

u-ansactionmanagement, inter-nodecommun/cation, commit protocols,and automatic crashrecovery. We benefited
extensively from the Camelot Library[1], which provides a clean interface between the Avalon and Camelot
implementors. Some of Avalon's design was influenced by Camelot, in particular those aspects that Camelot
implementors worked hard to make efficient: however, the reader is not expected to know Camelot nor use it
direcdy.

Much of Avalon's design has been inspiredby Argus [11] and we owe the descriptionsof some of Avalon's control
structuresto the Argus Reference Manua/[10]. For other paperson Avalon/C-_., please see [2, 5, 6, 16].

1.3. A Roadnmp to this Document
The rest of tltis document is divided as follows:

Chapter2 A tutorialintroductionto the language. Detailed wallahroughsof threesimple examples.

Chapter3 A reference mant,zI for the Avalon extensions to C++. Note thatit is only about ninepages
long.

Chapter4 A library of Avalon built-in classes and the catalog server.

Chapter 5 A list of practical guidelines for novice and expertprogrammers.

Appendix I The full grammarfor Avalon/C++.

Appendix 1I The Unix manpages for runningacc, the Avalon/C++ preprocessor.

A Note on Specifications

In wrilmg the descriptions of the meanings of operations, in particulara class's member functions, we use the
following clauses:

• modules: A list of objects whose values may possibly changeas a result of executing the operation.

• requires: A pre-condition on any invocation state of the operation. The calJer is responsible for
ensuringit holds; the implementormay assume it holds at the point of invocation.

• when: A condition on the state of the system that must hold before the operation proceeds. This
condition is often necemary to give since the state of the system may change between the point of
invocation and the actual point of execution of an operation.

• ensures: A post-condition on the returningstate. The implementormust ensure that it holds; the caller
may assume it holds uponreturn.

In C++, a pointer to the object for which a member function is invoked is a hidden argument to the function. As
C++ does, we refer to this impficit argument as eh_,8 in our specifications.

The absence of a requires (when) clause is the same as the predica_ being TRUE. The absence of a modifies
clause indicates that no changes are made to the values of any object. This specification style and notational

conventions areborrowedfromLarch[4].

2. A Tutorial Introduction
An Avalon/C++ system consists of a set of programs, each of which is an application or a server. Applications
invoke operations on servers, which may, in turn, invoke operations on other servers.

An Avalon server is very much like z C-_ class. Just like a class, a server encapsulates some data, and defines the

operations that can be used to manipulate that data. A client invokes an operation on a server object using the same
syntax it would use to invoke an operation on a class object. There are two main differences between classes and

• servers. First, a server supports concurrency: more than one client may invoke operations on a server at the same

time. These concurrent operations execute as concurrent threads (or lightweight processes) within the server. The

, server must be implemented so that this concurrency makes sense. Second, a server's data (if the server is

implemented correctly) is persistent, i.e., it will survive crashes in a consistent state.

This chapter describes at length three examples, illustrating all the basic features of Avalon/C++. The fast example

shows how to cream, commit, and abort transactions; to invoke operations on servers; and to define and use a simple

atomic type derived from the built-in Avalon class atom£c. The second and third examples illustrate the use of

two other built-in classes, e=ans_4d and sul)at;om.t.c, to show another way Avalon users can define atomic

types, and to show what makes Avalon especially different from other (fault-toleran0 distributed programming

languages. We hope the reader will see that programming in Avalon/C++ is not much different from ordinary C++

programming.

2.1. Array of Atomic Integers
In this section, we walk through the use and implementation of a simple Avalon server, called "Jill," and client,

called "Jack," (so named for historical reasons). The Jill server encapsulates an array of atomic integers. From the

client's viewpoint, each of these integers is atomic; they ate recovered after a crash to the state observed by the last

committed transaction, and they ensure the serializability of the transactions that access them. Since each of the

elements of the array is atomic, the array as a whole is also atomic. The elements of the Jill array are initially given

the value -I to represent an uninitialized state, after which the Jill server permits only non-negative values to be

written in the array.

An atomic array of integers might be useful as a representation for a conference room reservation system. The

elements of the array could represent blocks of time, and writing a value into an element could represent reserving

the conference room at that time fc¢ the person represented by that value. Or, the array could be used to represent a

set of bank accounts, indexed by account numbers. Applications that wished to transfer money from one account to

another could do so within a wansaction, so that no partial transfers would ever happen. These examples are only

meant to be suggestive; in both cases, other representations might be more convenient and/or efficient. Still, they

show that even a very simple server such as Jill is not too far removed from real-world applications.

2.1.1. Using Jack and Jill
Before we show any Avalon code,'let us first see how a user might interact with Jack and Jill. We begin by

assuming that the Jill server has been started. To start up Jack on a Unix system (after making sure that the directory

containing the av_.Jack executable is on your search path), type:

The Jack application starts a transaction and responds with:
Typ@ ? £oE • l:Lst; of cozz_ands.
Jack[l]

Jack [I] is the prompt. The "l" indicates the current transaction nesting level. If we type "?", we get the

following I/stof commands:
Co_mancts axI:

z l_ad _ray e:Lemont.
v Write s.rray e_emant.
b iJe_.n nestod _ransac_£on.
a Commit Lnnmrmost t_ans&_t£on.
• &bo_ /,_zmost tzansaet:l, on.
& Lborg Cop].m]. Czansa(%rLon.
q _bo_ COl) lev_J, tzansaat:l.on and ¢lu:l.C pzoq'_sm.

Jack (I]

Let'S say we want to read what is stored at location 7 of the array:

Jack[1] z
LoaaC_on Co road: 7
Location 7 £s un£n£C£al£zed.
S•ck (1]

As we can see, we have not yet given location 7 a value. Let's do so:
Jack (I] v
bocat£on Co wz£Ce: 7
Value to wr£te: 7
W_£Co suocmmdmd.
O'ack [I] :
Locate.on Co road: 7
Valuta at _o_at_on 7 £s 7.
Jack (1]

Now we can begin a subu_don, using the "b" command. In this u_nsacuon, we fu_t _d the value in loc_ion
7, andthen give it a new value:

Jack(l] b
Jack (2] :
Loc_t_Lon t:o Lead: 7
Va_ue aC loaat£on 7 £8 7.
Jack(2] w
Locat£on to wr_C•: 7
Valuta Co vr_C•: 27
N_:£Ce succeeded.
Jack(2] :
Looat£on Co L-m_[: 7
Va_ue aC locaC£on 7 is 27.
Sack [2]

Note thaLthe l]rOmlXhas¢hang_ to in_ca_ the (nnsact/onnesdnglevel. Let's continuewith anotherncsrr_:!
transact/on:

,;•ck (21 b
#•ck(3)
Lo_at£on to read: 7
Valuta at _o_at£on 7 £• 27.
Jack(3] w
Loc_t£on Co vr'J.te: 7
Va_u@ to v_:LCo: 37

/

W_£C• suooeed4_.
J•ok(3] =
Lo_at_Loa to :_ad: 7 .
Va_ at lo_t_Loo 7 LS 37.
Jack(3)

If we commit this subtransact/on, then we returnto its parent,with its effects visible:
Jack (3] a
T_ans•_on _Omm4t_od.
Jack (2] :
LocaC£on to _ead: 7
Va_ue aC loeaC£on 7 £s 37.
J'ack(2]

Now, however, if we abort the second-level transaction, we return to the top-level transaction, but none of the
effects of the aborted transaction (or its children) _e visible.

Jack(2) •
T=anea_£on algoL-Cod as poe =equesC.
Jack (1] =
Location to read: 7
Value at loc_C£on 7 is 7.
Jack(l)

Now, suppose we start up another instance of av...Jack (in another window, perhaps). In d_ Jack, we scan a

wdnsaction, and write into location I0. Then we attempt to read the value we have written into location 7.

• q av Jack
Type ? foe a list of aomaancbs.
Jack(I) v
Location to writs: 10

" Value Co wEite: i0
WEite succeeded.

Jaok (I]E
Location to Eeaa: 7

The other Jack ("Jack B") does not immediamly return an answer. This is because the fh'st Jack ("Jack A")

obtamed a write lock on location 7. This lock excludes all other transactions from observing the value written there.

This is needed to ensure seria/Lzab_lity: Jack A's transaction may either commit or abort. If it commits, then Jack

B's query should return 7; if it aborts, then Jack B should inform the user that location 7 is s_Ll uninitialized. Thus,

Jack B cannot rcmm anything until Jack A's top-level _ansaction terminates. Let's commit Jack A's transaction:
Jack (I] c
TEanm&=tlon aommit_'.ea.
(TEansactlon was Lop level.) Value at location 7 is 7.
Jack (I| Jack (I]

Commming JackA's _tion allowedJackB'su'ansactiontoproceedwiththecompletionofthereadoperation.

Now let Jack A start a new transaction. If we attempt to write a new value into location 7 in this _tion, we are

also suspended, for similar reasons:
Jack (1] v
Location to w=ite: 7
V/LlUe to wEite: 70

JackA cannotwriteintolocation7,becauseJackB'stransactionhasalreadyobserveda valuethere.JackA must

wa/tforJack B's u-ansactionto _-rnina(ebeforeitcan invalidatethisobservation.Let'sfermi,ateJackB's

u'ansactionwithanabort:

Jack(l] •

TEanlsotion abo_cea Is poe Eequeet.
WElte suooeeded,. (TEanlaot£on van top level.)

Jack(l] E Jack(l]
Location to Ella: 7
Value at lo_lt.tion 7 is 70.

Jack (1]

Note that in this particular situation, even if Jack B had committed, Jack A still reads a 70 at location 7 since Jack
A's write would still be _ after Jack B's read. This scenario has shown how the Jack application can

manipulate the atomic integers contained in a Jill server. In doing so, it has demonstrated some of the properties of

transactions,nestedIransactions,and atomic objects.

• The next two sections describe the declaration and definition of the Jill server, all the way down to the level of the

Avalon built-in at:om.£c_.inc type; then the following section describes the Jack application program.

2.1.2. The Jill Server Declar:Ition
A C++ classhasadeclarationandadefinition.A classdeclarationisgenerallyputinanincludef'de,sothatallf'des

thatneedtousetheclasscanhaveaccesstothenecessaryinformation.The classdefinition(thebodiesoftheclass

operations)isputinoneormore files,eachofwhichincludesthedeclaration.An Avalonservershouldbe written

av jill.h:
#£nc_.udm <&vaJ.on.Is>

//]l=z'o= _s,r.."m=,acodes £=_ ope=at:_ors p=ocoetu=es.
coast: £nt ZI_I_ OUT_Of_lOUIml m 1; I/ ,%Cr.(_p't:Co acc:ess a looac_.on ouc of bounds.
coast: £nC Z_ V/kM_ m 2; // &Ct*mpt:Co £nsea_c • n_la'c£ve numl=m=.

// SysC,m ¢onsCsnt:s.
consC _nC MLlt/kY_SZZlm 1000; // t/umber of cells £n the a:=ay.

so=vet J_.:L1 (
stable at:omlo _ne dat:a[Ag..qAY.SZZlg]:
stable aComka==£nCgqme=at:£on;

pul)_._.o:
£nr. =mML(Jaat:£nda_);
voXd w=£t:o(4nC £ndmx, 1.or value) ;
_/,J.J. () : ("aT...:J_L:I.J,","_,ocaJ,hos1:", 5);
vo£($ mLtn ();

);

Figure 2-1: Declaration of Jill Server

using the same conventions. Thus, we will t'ast examine Figure 2-1, the include file that declares the Jill server.

The first line of this file includes the foe arab.on, h. All Avalon programs must include this file before a]/others.

The next three statements in the file declare and initialize constants used in the program. We follow the C++

recommendation against using preprocessor macros whenever possible. The f'Lrst two constants,

ZlqDZX_OUT Or_ISOUICD8 and ZZ_T_GAZ,_VA_,UZ,are used as error codes. The third, _Y SZZZ, destining,
the size of the array.

Next. we come to the declaration of the Jill server. This is textually identical to a C++ class declaration, with the

keyword set=vet substituted for cJ.ase. A Jill server contains one data member, datea, and four operations,

which are the only means of accessing the server's data. A server differs slightly from a class in that all data

members of a server must be private. Here, dae, a is also declared to be sr.abJ._t, which asserts that it is persistent.

i.e., will survive crashes. Avalon guarantees persistence of the built-in atomic data type, at:om.£c...:l.nt:; in general,

the programmer must correctly implement any user-def'med type of stable variables to ensure their persistence.

Though the Jill server does not, a server could also have data members that are volatile, that is, not stable. Volatile

data are often useful for efficiency, but care should be taken to ensure that all important data is stable. For example,

a server might represent a database as set of records, and maintain a volatile index that allows operations to look up

records based on different fields of the record. The index would speed up the server during normal operation, but

could always be reconstructed after a crash.
)

The tour operations of the Jill server come in two categories: user operatio_ and server operations. I_ad,

w=£Ce, and the constructor, :J£J._,, are user operations, the ones that clients can invoke, aaad returns the integer

stored at the given index, and w=£cm writes the given value at the given index. The intent of these should be fairly

clear, we will go over their implementations shortly. The constructor is a special user operation invoked to initialize

the Jill server, A server will not accept any calls to other user operations until it has received a constructor call, and

it will not accept any conslructor calls once it has started acceptingcalls to other user operations.Since all servers

implicitly inherit from the sex-ve=.=rooc class, the colon syntax tells the sexve=._rooC constructor where to

find the server executable (first argument), what machine to start it on (second argument), and how many chunks of

recoverable storage to allocate (third argument). See section 4.4 for a more complete description of the

me_v_r.,=oot consmactor. The remaining operation, main, is invoked automatically by the server. For

implementation reasons, every server must have a main operation, even if it has no body. (The definition of main

serves as a marker, so the Avalon preprocessor can decide where to put the C++ ma_-x procedure for the server.) If

the main operation does have a body, it is executed in the background, concurrently with user operations. Another

kind of server operation (not shown here), invoked automatically by the system, is an optional _:tcove= operation.

If det'med, it is executed whenever the server is started after any crash. A typical =tcovt= operation might

reinitialize volatile data.

2.1.3. The Jill Server Definition

2.1.3.1. Jill's Data Member
Jill's data member, (tat:a, is a stable array of A.q.qA_._SIZZ aCoed.c__C's. An aComic_£nC is an atomic

integer, an integer specially implemented so that it ensures the serializability of transactions that access it, and is

recovered after a crash with the value observed by the last committed transaction that accessed it. These properties

are quite easy to achieve in Avalon. Figure 2-2 shows the declaration and def'mition of the ar.oncLc Lnt. class.

atomic_int.h:
// De(_].mm t_he &Com£(= £nCeqe£ cla-,s.

IH.nc.l.udm <&valon. h>

class atom_.c__nt: public ,,Comic= (
int v_l.;

inC OlpeZ&Coz_(inC _hs);
opmzaCoc int: () ;

);

atomic_int.av:
// De£inem the &tomka in_egez el&am.

#inalude <&velon. h>

int at_i= int: :opeEatcEm (int Ehs) {

wEite_l_.:k ();
pinning () Eetu=n v&l m =hs;

)

&tomiG.Int: :opeEato= int () {
:ead.loo.k () ;
zetuz_ vat;

)

Figure 2-2: The atomic_int Class

The f'fle atcmic_£nC.h declarcs the aCom:Lc_LnC class. This is derived from the class atomic, which

provides operations that are used to make integers appear atomic. In particular, class aConct.c has two operations,

cead._:l.ock and w=:i.Ce_lock, which can be used in implementing operations of derived classes.

The class aCom:Lc. LnC has one data member, an integer called val, which holds the value of the atomic integer.

We show two operations of aCom.i.c_inc's, both of which are C._- overloaded operators. One is the assignment

operator, and the other is the coercion operator that converts an acomic_.knt: into an inc. The assignment

operator is the only way to change the value of an aco:_c inC, and the coercion to inc is the only way of using

thatvalueinaprogram.Thus,theseoperatorsmediateall.accesstotheatomicinteger.

Inthefileatom._,c_£nt,av,we seethattheimplementadonsoftheseoperationsarequitesimple.Takingthemin
reverse order, we see that the opszatoz :l.nt () simply calls zead._lock and returns the currentvalue. The
assignmentoperatorgets a write lock on the atom.t.c...£ng, and then, within a p:l.nn:l.ng block, it sets the value to
a new value, and returns the new value. The pinning block informs the Camelot system that the change must be
logged permanently(i.e., to stable storage) so thatin the event of crash recovery, the value of an atomic integer is
consistenL Modifications to any atomic object should always be madefrom within a pinningblock. The use of read
and write locks guarantees that if a transactionobserves the value of an awmic integer, then no other transaction
may change it until the observer terminates. (Note that damtype inductionis n_ W really make this guarantee;
we can prove that this is trueonly if these two operatorsare the only ways of accessing atom:l.c :l.nt's.)

2.1.3.2. Jill's Operations

Now that we understandatomic integers, we can consider the implementationof the operations of the Jill server.
Figure 2-3 shows the contents of the t'deav...J £_,_.. av, which contains the def'midons.

av..jill.av:
II _ body of Ch. "av._:_:Lll"se=v.-,.

l)£nal,udm "av._:J£11.h"

£nC _£11::clad(£ne £ndax) (
// If £ndm_is ouC of bounds, ceturn an er=or coda.
if (£ndaz < 0 l[indm_ >m ARRAY SZZE) undo (ZNDRX 0UT 0V BOUNDS) leave;
ceCuzn dace [index] ;

)

vo£d _£1_: :wz£te(£nc £ndax, £nc value) (
11 If .index £s macof bounds, ceCu=n an ecror cocl,.
£f (£nde_ < 0 II £ndex >-_Y_SZZZ) undo (ZI_DI[X_OUT_or_BoOI_DS)leave;

// Z£ v_ue 4t ne_raC£ve, c.Qturn an ezror code.
£f (valul < O) undo (ZLLR__VIL0t) leave;

ctata[£ndmx] = va.l.ue;
)

:t.l.::_:t._.3.(){
£o= (£nt £- 0; £ < _UUkY_SZ_B; £_) d_ta[£] --l;

)

vo£d J£11: :ma.tn() ()

Figure 2-3: Def'mitionof the Jill Server

gmad takes an index, and relm'nsthe value at that index, gaad assumes thatit is being invoked by a client thatis
executing within a transaction. If the index is not within the arraybounds, =earl executes the statement"

undo (ZlmgXOUTcf_s_mms) leave;

This aborts the client's wansaction. The abon code ZNDZX..OUT_OF_I_OI_S canbe usedin an axcept: clause,
as we will see when we examine the Jack application. It"the index passes this test, then we simply returnthe value
in the daea array at the index. ActuaLly this is a little more subtle than that: the elements of data are

aeoau.c__me's, and read returnsan kne. Thus, the C++ automatic coercion mechanisms call the coercion

operatoron the indexed element before :eturningit. The coercion operator gets a read lock on the element before
returningits value, w=£te is very simLla:-.It checks that the index is within the properrange,and that the value to

be written is not negative; if so, it assigns the new value to the element. Again, the overloadedassignment operator

of atomic_int takes care of getting the write lock on the atomic integer and logging its new value. The
important lesson to learn from the Jill server is how the right implementation of atomic...int made it possible to

treat atomic...int's almost as if they were regular£nt's within the bodies of the server's operations.

The constructor, Jill, sets all the elements of data to -1, as we specified in the descriptionof Jill. Finally, the
server operationmain has no body but, as we have explained, every server must have a main operation.

, 2.1.4. The Jack Application
This section shows the code for the Avalon application, "Jack," which uses a Jill server. Most Avalon applications

look very similar to Jack so in subsequent examples, we will omit the application-side code. When Jack starts, it
enters a transaction. It then executes user commands until the user enters the command to exit the program. The

usermay reador write arrayelements, startnested transactions, and commit or abort transactions. Figure 2-4 shows

the f'trstpartof the code in av_.J ack. av.

Like all Avalon programs, av_Jack, av starts by including ava2.on, h. It also includes ltzeam.h and
ctype, h from the C+4. library, and av_jill, h to get the declaration of the Jill server. After the includes,

av_Jack, av declares two more constants used as abort codes within this file and declares the two functions
defined in this f'deso that they can be used before they aredefined. The next statementdeclaresa global variableof
the Jill server type. The client programcan invoke operations on this server object just as if it were a class object.

The main procedure prints out an initial message and locates the jill server. If it cannot find it, it calls the J£2.1
constructor. It then repeatedly calls Jill..t:ansac,:ion until the value of quit-_f2.ag indicates that the user

wants to exit the program. Finally, the print:_halp procedureprints out a help message.

Now we consider the heart of the _'ackapplication, the Ji2.1_t:zansaction function. Ji2.1_tzansaction

begins (Figure 2-5) by starting a ts:ansactkon. It then enters a command loop, in which it remains until the

user decides to quit the program,or terminate (commit or abort) the current top-level transaction. It prints out a
prompt (which contains the current transaction nesting level, which it is given as an input.) Next, it gets an input
command,andentersa switch statementthatprocessesthatinput.The 'r'and'w'commandsshouldbe fairly

seLf-explanatory.Notethattheread andwzite operationsareinvokedon theobjectdenotedby theJi12._szv
variableexactlyasifitwereanormalclassobject.The'c'commandusesthe:l.eavestatementtocommitandexit
thecurrenttransaction.The 'a'command abortstheinnermosttransaction,usingtheundo 2.eevQstatement.We

passanabortcodethatindicatesthattheuserabortedthetransaction.The 'A'command abortsthecurrenttop-level
transaction.ThisisimplementedbyRrstabortingtheinnermosttransaction,usingaspecialabortcode.We willsee

inamomenthow thiscodeisprocessed.The 'q'commandexitstheprogram.To do this,we setthequit_f:l.ag,

and exit Jill ..t_zansacttion. We use the special undo return statement to indicate thatwe not only want
• to return from the current procedure,but also to abort any transactionsstarted by that procedure. The 'b' command

startsa nested transactionby making a recursivecall to Ji2.1_t_:ansaction (with level incremented by one.)

• An input of '7' causes the help message to be printed, and if the input command is none of these, a message to that

effect is printed.

The restof Ji2.1_t_:ansac_ionis shown in Figure2-6. The ftrst statement in this figure is just after the body of
the loop that waited for the quit_f2.ag to be set (by a nested wansaction.) If we reachhere, we do the same thing
we did when the user entered a 'q': undo retuL-n. The next scope we leave is that of the transaction. This

transaction block has an except clause appended to it. An except clause allows access to the abort codes
provided in undo Zeave statemcnts. If a transaction with an except clause aborts, the abort code, if there is one,

I0

i

av_jack.av:
#inaludm _ava_on. h_
#include _stzoam. h_
#include _C_Yl_.h_
#Inc_u4m -av _£11.h"

// /kbox_ aeries.
cerise int USER P_QUESTED •JOLT m 100;
cerise inC TO_ LEVEL AJORT = 101;

// Fozwazd dmc_a=aClons. _.
void _£II .CranmacrClon(Int, inC*) ;
void print hmlp () ;

// Glob_ Hz'ver va_iadDle.
Jill *J,tll aj:v:

void main () (
inC qu_C _lag = O;

tout _ -Looking fez Jill...\n";
3ill s_- (_111 _) SlocaCe_aerve: ("Jill");
i_ (Jill s_, --- NULL)(

_out _< "Couldn't find Jill. StaEClng • new Jill...\n";

Jill_mEv -new Jill;
)else •out << "Found Jill.\n";

aou_ <, "TTI_ ? foe • lie_ of c_andI.\n";
vh.t.le (quil: _1_1 < 2) (.

•qult_fl_ ,, 0;
Jill .tEansaa_ion (l, &qult £I_) ;
=out << "(TEansaatlon was _op level.)\n";

)
mxlt (0);

}

// pEint help -- PEintm the c:osm•.ndm.

void pz:f.nC help() (
couc << "\n\

Comsm'Ldm axe: \n\
]: Read Lc_ay el_mmnt. \n\
w W_i_e aEEa_ elmmmnC.\n\
b Be_n nee_ CEansac_ion.\n\
= Co_L_ £nne_mo8_ CEanm&_clon.\n\
• J_oz_ inneEmomt CEans•_tlon.\n\

/k /k_oEtCop level CEmmm&c_.ion.\n\
q A/mx-t Cop level CEag_acr'.iogsand q_iC pEogEme.\n\n";

}

F_gure2-4:PkstPanoftheJackApplication

is as_gnod W the var_sb_ named after_e except. The restof the except statement _ exactly tLkea swltch on
• is value. In _ill...t_ansacclon, the first two cases hand/euser-reques_d aborts. _ either case, we printout
a message and return. _ a rap-level abort has been requested, then we set the c_ult..._lag m exit aU enclosing

Jill...t_ansactlon cal/s. The thkd and fourth cases handle_-ansacuonsthat were abortedby server opera,ions
because of knproper inputs. They both print an appropriatemessage and return from Jill..t_ansaction.

Finally, if the transactionaborted but the code is none of the above, then the abort must have been caused by the
underlying system. We can find out why by calling the routine avalon_abort:_cod_...to_st=in_, which

II

// Zntezac_£vely censtz_c,_ and perform a Cransaciton utilizing the _ill
// sezvmz. Can be cuLlled zecursively Co consCcucC nested CcansacCicns.

void Jill.C,:-nsac_cion(inC level, _nC* quiC flag..pCc) (
sCaEC Cr-nsac_ion (

=ha= cad;

while (!*quit flag..pCc) (
. inC index - O;

inC value m 0;

Cout << "Jack[" << level << "] ";

' while (isspace ('_ m _stchar ()))

switch (c=,d) (
case 'r': // Read an azzay element

cout << "Location t:o Eead: ";
tin >> index;

value - _ill swv->Eead(index) ;
if (value ,ms -I)

tout << "Location " << index <4 " is unlnltialized.\n";
else

tout << "Value at location " << index << " is " << value << ".\n";

b=eak;

case 'w': // Write an array element
tout << "Location to welts: ";

cin >> index;
=out << "Value to WEltS: ";

cln >> value;

Jill mrv->wEite (index, value) ;
cout << "WEi_e succeeded. \n";
bEeak;

ease 'c': // Commit this tcansaction

leave;

ease ' a': // Abort this transaction

undo (USER, REQUESTED ABORT) leave;

ease 'A': // Abort top-level transaction

undo (TOP IXVEL ABORT) leave;

case 'q': // Aboz_ to Lop level t_ansa_ion and c_llt.

*qu.t.C_flag_.pCr ,, 2;
undo retuwn;

ease 'b': // Begin a subtransacCion

_ill_C=anmactlon (level+l, gulf_flag_pit) ;
cent Anus;

ease ' 7': // Prink shore help alssage

print help () ;
break;

• default:

cout << -Unknown command. Type ? fez a llst of cemnands.\n";
}

} // . . .contlnued. ••

Figure 2-5: Beginning of the ji/l_uansaction Funcuon

12

takes an integer a_mnent (Section 3.4.6). All arms of the except statementreturnfTomJ£11..t=ansactton,
so if we exit the transactionand reach the last line of the procedure,the transactionmust have committed. We print
a message to thateffect.

i

/I ...:sst of _)_._._,. transactS.on...
// _J,t_f:L_ fzom nested CzansacC_.on ts non-zezo, so we mast undo cecum.
undo z_Cuzn;

) exempt (C=ans status) (
cases TOP z,r¢l_ kBOR_:

*q_t_flaq..ptz - _.;
c_se usn_nsQv/s___Ol_:

couC << "Tzansac_£on abo_:od as po_ roquosC.\n":
reC_n;

casm Z'NDBX OUT 03' BOUNDS:,ms mm am

eouC << "TransacC£on aborted: _ray _ndmx ouC of bounds. \n";
_eCu---Jcs;

case Z_ VkLZTlt:
eouC << "T_:ansaeC£on s.bortod: &t'CmupC to wrl.to a negaC_,vo vaJ.ue.\n";
cecum;

da fa_,_,C:

eouC << ava_.ou__bocC eodm Co sC:_.ng (Ca:arts. status) <_ "\n";
_QCI.lZTI;

}
// O_hez'_:t.sm, we eomm.tCCed.
0o_ << "Trlu_m&c_4on em_,:LCC_K_,.\n" ;

}

Figure 2-6: End of the jill_transactionFunction

2.2. FIFO Queue
Let us consider how one would implement an atonflcfirst-in-first-out (FIFO) queue. The easiest way to def'mesuch

a queue is m inherit from aCom.£c. A limiuuion of this approachis that enq and dsq operations would both be
classifiedaswriters, permitting little concurrency. Instead, we show how a highly concurrentatomic FIFO queue
can be implemented by inheriting from subaCoucLc. Our implementationis interesting for two reasons. First, it
supportsmore concurrency thancommutativity-basedconcurrencycontrol schemes such as two-phase locking. For
example, it permits concurrent _mq operations, even though _mq's do not commute. Second, it supports more
concurrency than any locking-based protocol, because it takes advantage of state information. For example, it
permitsconcurrent_mq and daq operations while the queue is non-empty.

In orderto permit such concurrency k is necessary to provide:
1. A way to compete whether one transaction has committed with respect to mother. In particular.
supposeA andB are concurrenttransact/ons:

•Ifitisknown thatA hascommittedwithrespecttotransactionB,thenB shouldbeallowedto
observe the effects of A's operations. Thus, B need notwait and may proceed.

• If it is not known that A has committed with respect to B, then B must not do anything that
depends on A's effects, since A may still commit or abort. B should also not invalidate any
resultsthatA may haveobserved,sinceB may commitbeforeA.Thus, B mighthaveto waittill
A completes.

2.Exclusiveaccesstoanobjectperoperation.Thatis,whiletransactionsmay go on concurrently,we
needtopreventindividualoperationsfrominterferingwitheachother.

Fortunately,Avalonprovidesthefirstcapabilitywiththeclassr.::ans_£d,whichgivesusaway totesttransaction-
commitorder,andthesecondwiththeclasssubaCom._.c,whichgivesusa way toprovidemutualexclusionper

13

object.

In Avalon when a =ans_lion commits, the run-time system assigns it a timestamp generated by a logical clock [8].
Atomicobjectsareexpectedtoensurethatall transactionsareserializablein theorderof theircommittimesmmps,a
propertycalledhybrid atomicity [15]. This propertyis automaticallyensuredby two-phaselocking protocols[3],
suchasthatusedfortheatomic_int'sin Jill's array. However,additionalconcurrencycanbeachievedby takingthe

timestamporderingexplicitlyintoaccount.Thetrans_£d classprovidesoperationsthatpermitrun-timetesting
oftransaction-commitorder,andthusofserializationorder.[nparticular,tranm_£d providesa partial-ordering
function<:fortransactionswithtrans_id'stlandt2,_ftl< t2evaluatestotrue,thenifbothtransactionscommit,tl

" isserializedbeforet2.Notethat< inducesa partialorderon trans_id's;astransactionscommittheybecome

comparable.Section4.1.2describesthistypeinmoredetail.

Class8td=atomAc providesoperationsthat give wansactionsexclusiveaccessto objects. Eachsubatomicobject
hasa short-termlock, similarto a monitorlock,usedto ensurethatconcurrentoperationsdonot interfere. Avalon's

specialcontrolconstruct,thewhen statement,is usedasa kindof conditionalcriticalregion:
when (<_ST>) (

<... BODY... >

}

The calling process atomically acquires the object's short-term lock, blocks until the condition becomes true
(releasing the lock if it is not), and then executes the body. The lock is released after the body is executed. Any
changesmadeto the objectwhile the lock is heldwill notbe backedup to stablestorageuntil sometimeafter the
lock is released.A transaction'schangesareguaranteedtobebackedupbeforeit commits.

2.2.1. The Queue Representation
Figure2-7showsthatinformationaboutenq invocationsisrecordedina st;=-uct;.The £t;_mcomponentisthe

enqueueditem,theenq= componentisa trans_idgeneratedbytheenqueuingtransaction,andthelastcomponent
definesaconstructoroperationforinitializingthestruct.Informationaboutdaq invocationsisrecordedsimilarlyin

de(_=.=_ec's.

The queueisrepresentedasfollows:Thede¢_:lcomponentisa stackof_=ec's usedtoundoaborted
operations.Theenqd componentisapartiallyorderedheapofenqL.=ec's,orderedby theirenqL..t£¢$fields.A

partially orderedheap provides operations to enqueue an enq..=ec, to test whether there exists a unique oldest

enq..=ec, to dequeueit if it exists,and to keepanddiscardall encLzec's committedwith respectto a particular
transactionidentifier.

Our implementationsatisfiesthe followingrepresentationinvariant:First,assumingall enqueueditemsaredistinct,
an item is either "enqueued' or "dequeued," but not both: if an encL=eC containing [£tem, enq=] is in the

• enqd component,then there is nodeq..=eo containing[£tem, enqr, daq=] in the deqd component,and
vice.versa.Second,the stackorderof two immsmirrorsboth their enqueuingorderandtheir dequeuingorder: if
ctl is below d2 in the deqd stack, then d.1.->enq_ < d2->enqr and dZ->deq= < d2->d=q=. Finally, any

dequeued item mustpreviously have been enqueued: forall deq_rec's d, cl->enqr < d->deqr.

2.2.2. The Queue Operations
znq andcteq operations(Figure2-8)mayproceedunderthefollowingconditions:A transactionAmaydequeue
an item if (1) the most recent dequcuing transaction is committed with respect to A, and (2) there exists a unique

oldest element in the queue whose cnqucuing transaction is committed with respect to A. The first condition ensures
thatA willnothavede,queuedthewrongitemifthecarlicrdequeueraborts,andthesecondconditionensuresthat

14

scrucc eaqr_r-ia (
£nc item; // Item enq_.iu.id.
C:ans £d enqr; // Who .inqu.iued £C.
.inq c.i--a(£nt £, tzan8 £dS C) (4Cem = £; onqT - C;)

);

scrua'c deq_:.ia (
£nt, £Cem; II Ztem disqu.iumd.
C_a,ns_4d .inq:; // Who enqu.iued 45:.
t::ans.£ct cteq:; II Who dequ.iued tO.
4oq_rea(£nC £tm, Ccans_£da .in0 t:sns £cla de);

(item - £tm; enq: - ea; 4eqr - de;)
);

c_ass atom-'La_£nt qu.ium : publ£c sub.ito_Lc (
4oq_stack deq_t; // Stack o_ deq records.
enqL.heap .incld; // H.iap of enq ceaozds.

pub_ia:
&ComAe £nC_qu.iu-i () (} ; // C:.iat.i empty queue.
vo£d enq(£nC £tem); // gnqu.iu.i an item.
£nt deq(); // Decfu.iu.i an £tem.
vo£d commAt (tzans £d8) ;
vo£d abort (t:ans ._dS) ;
-atemAa Jut_queue () ;

);

Figure _7: Queue Rep_en_ion

there is someth/ng element for A to dequeue. Similarly, A may enqueue an item if the last item doqueued was

enqueued by a transaction B comm/ued with respect to A. This condition ensures that A will not be semlir_ before

B, violating the FIFO orda_g.

vo£d atomAa 4nt_queu.i: :.inq(£nC item) (
tzans £d t£d = tzsuns.__d();
when (--dmqd.:Ls_ea,pty() I I (doqd.top()->enqc < t:Ld))

.inqd. £ns.iz't (item, tad) ;
}

Ant atomAa.£nt_queu.i: :dmq() (
t:ans £d t£d m t:ana £d();
vhen _(dm_t._s__pty() II d_d.top()->_q_ < C_d)

&& enqd.-4n Qx£sts() && (enqd._t _Ln()->.inqr < tid)) (
.inq..x'ea" m.'Ln..ez = .incfd. dm_.ete man () ;
doqr_c.ic 4: (*miner, t£d) ;
4eq_. push (dr) ;
r.iturnm£n .iz->£tem;

)
}

Figure 2-8: Queue O_raLions

Both enq and daq first obtain a new, ,mique trans_id for the calling transaction. The constructor creates and

commits a "dummy" subtransaction, returning the subtransacdon's u-ans_id to the calling transaction (i.e., parent).

Since this constructor call returns a unique trans_id, a parent transaction can thus generate multiple trans_id's

ordered in the serialization order of their creation events. We exploit this property here by using this u-ans_id to tag

the current ,mq (dsq) operation.

15

As for the awmic_int example, the modifications done by enq and d_q must be wrapped in a p_rm:t.ng construct

to ensure persistence (that is, changes are made w stable storage).

We use the whm_ sT_ement to guard against simultaneous access to the queue object itself, lnq checks whether the

item most recently dequeued was enqueued by a transaction committed with respect to the caller. If so, the new

trans_id and the new item are inserted in enqd. Otherwise, the transaction releases the short-term lock and _es

again later. Decl tests whether the most recent dequeuing transaction has committed with respect to the caller, and

whether Qnc/d has a unique oldest item. If the transaction that enqueued this item has commiaed with respect to the

caller, it removes the item from ,nqd and records it in clmqd. Otherwise, the caller releases the short-term lock,

. suspends execution, and tries again later.

2.2.3. Commit and Abort

Avalon lets programmers define type-specific comm_C and abocc operauons for atomic data types inheriting from

class s_bseo:_c. They each take a t_=ans_£d as an argument. The Avalon run-time system automatically calls

an object's abort: operation whenever a transaction that may have modified the object aborts. Whenever a

top-level transaction commits, the s_,;_'n calls the ecnmn&t_operation on all subatomic (and atomic) objects that the

transaction (or any of its descendants) may have modif'_:L We make no guarantee about the arrival times of commit

operations, i.e., when the run-time system is informed of a transaction's commit. In particular, ifTl commits before

I"2, the run-time might execute TTs commit before Tl's. In addition, the order in which commit (abort) operauons

for a given transaction are applied to multiple objects is left unspecified.

Figure 2-9 gives the code for the queue's comm_C and abort: operations. When a top-level transaction commits, it

discards _gto's no longer needed for recovery. The representation invariant ensures that all dmq_=eo's

below the top are _ superfluous (they have all committed with respect to the top), and can be discarded. Abort:
has more work to do. It undoes every operation executed by a transaction committed with respect to the aborting

transaction. It interprets dmqd as an undo log, popping records for aborted operations, and inserting the items back

in enqd. Abort then flushes all items enqueued by the aborted transaction and its descendants.

vo:Ld &t_om:l.a_:Lnt:_c/ueue::corneL1:(t:ra.na :Ld.l;commkt:Cec) {
when ('l_Oil)

:L£ (!deqd.'ts empty() ItS ctescendanC(deqd.t:op()->deqz, co,,-',,4t:Ce=)) (
cteqd.,cleat () ;

}
)

vo:Ld a,tom:Le..:Lnt_cIueue::abort: (tzans ._d_ a.borCec) (
when ('t'I_UZ)(

whkle (_deqd.£s_emjpty() 1;1;descend.L,'tt(deqd.Cop()->deqz, a.borCe=)) (
ct__c.a* ct - cteqct.pop();
enqd. 4nser'c (d->_.1:am, d->mnqc) ;

)
" _. d£sc&zd (a/_orCor) ;

)
)

Figure 2-9: Queue's Commit and Abort

Notice that commkt: and abore for the queue example use the ctescandanC operation of tcans_kd's rather

than the < operation. For example, when we are aborting, we want to remove all items enqueued by transactions

that we know are aborting, i.e., the aborting transaction (aborc's argument) and all of its descendants. If we were

16

to use <, an item enqueuedby a separatetop.level transactionthat committed before the aborting transactionwould
be incorrectly deleted.

2.2.4. Enq and Deq Synchronization Revisited
Let us look more carefully at the synchronizationconditionson imq and daq. Considerwhy qmq must wait for the

enqueuer of the last dequeued item to commit. If it does not wait, then it is possible that a dequeuermay get the

wrong head of the queue as a resultof the commit of some concurrentenqueue. For example, suppose a transaction
A startstwo subtransactionsA1 and A2. A1 enqueues 5 andcommits. A2 does a dequeue (A2 can proceedbecause
A1 has committed with respect to A2), gets a 5, but does not yet cc,mmit. Now suppose another top-level
transacuon B startsand tries to enqueue 7. (B and A2 are both concurrent.) If B does not wait then it proceeds to
put 7 at the head of the queue (A2 has temporarilyclaimed the 5). If B commits before A (the parenttransactionof
A1 and A2), then B is seriafiz_ before A, implying that A2 should get a 7, not a 5. In short, the FIFObehavior of
the queue is violated because B did not wait forA to commit.

The condition on _mq is sufficient as well. In particular,an enqueuing transactiondoes not need to wait for the
dequeuer of the last dequeued item to commit because in some circumstances it can proceed even if the dequener
has not fmishad. For example, suppose transactions A, B, and C are top-level transactions. A enquenes 5 and
commits. B dequeues 5, but remains active. If C wants to enqueue, it should be allowed to proceed even though B
(the dequeuer of the last dequeued item) has not completed. Here, if B commits, it does not matterwhetherB
commits before or after C; B will correctly see 5 as the head of the queue and C will correctly place 7 as the new
head. If B aborts, then C will correctly place 7 after 5, which remainsat the head of thequeue. Thus, C can proceed
without wailing for 13.to complete because there is no way C can be serialized before A and it does not matter in
which orderB and C are serialized.

It is easier to see why a dequeueing transaction,B, must wait for the dequeuer, A, of the last dequeued item to he

committed with respect B. If B proceeds to dequeue without waiting for A to complete, thenit will have dequeued
the wrong item if A aborts.

2.3. Atomic Counters
As our f'mal example, suppose we wish to implement an atomic counter with operations to increment (£nc),
decrement (dec), and test for zero (£s_=:e=o). This counter could be used to represent a joint checking account:
One party might be depositing money at one branch, another patty may be withdrawing money from somewhere

else, and a third party,perhaps an auditor,may be searchingfor depleted accounts. This is not quite realistic since
one could not find out the exact balance of the account (there is no read operation), but adding that function would

complicate ourexample.

By deriving from class atomka, we can easily implement the atomic counter as shown in Figure2-10. (Recall that
class atoml.c provides =tad..._.ock and w=£e.e_.1ock operations.) The counteris represented by a
nonn@gat;kve £nt:, a class supporting all the usual arithmetic operations on integers, with the property that a
non-negative integer can have a value only greaterthan or equal to zero. (The overloaded subtractionoperation is a
"monus" operation.) Again, one can see that building a new atomic class from class atom.l.c is fairly
slraighr.forward:Before performing its real work, an accessing operation("reader") should f'ttstobtain a read lock;
a modifying operation("writers") should first obtaina write lockand then pin the object.

This implementation, however, does not realize the greatest possible concurrency. From the abstractviewpoint of
our atomic counter, incrementing and decrementing transactionscan go on concurrently(i.nc and dec are "blind"

[7

class ato_Le eounte=: publ£e ato_Le (
nocmmgat£_s int count;

p_blia:
ato_Lo ac_ntez() (pXrumLn+()count - 0;) // _nitialize eountez
vot.d J.na() ;
voJ.ct dma() ;
boo]. _s_zero () ;

}

void atomic eounte::: £ne() (

vr:Lce...loc_ () ;
p:l.nn:Lnq () count .- .t;

}

vo:l.d aCom_.a.Gount:er: : dae() (
vzit:e_lock () ;
p£nn£nq () count -- 1; // w_._.l,cecu1"n max o£ count-1 and. 0

}

boo1 is zeco(); (
:ead lock () ;
:etuEn (count ,am O) ;

}

Figure 2-10: Atomic Counter Derived from Class Atomic

writes since they do not return any results); moreover, under certain conditions, it should be possible to return a

result to £8 zero even before all incrementing and decrementing transactions have completed. The.ram

implementation in Figure 2-10 does not support this degree of concurrency since it is based on standard two-phase

read/write locking.

Thus, as for the queue example, we will use trans_id's and subatomic objects as an alternative way to build atomic

objects.

2.3.1. Counter Representation
Let us walk through the representation of the atomic counter by beginning with some auxiliary sinK:rares shown in

Figure 2-11. A counter_range will keep track of the range of possible values of the counter in order to permit

:l.s zero to rcmrn possibly before transactions have completed. We will record in a log information about each

transaction's sequence (op...sect) of :l.nc and dec operations. Each l.og_entry consists of a transaction's

trans:id and the sequence of its operations. Assume we have defined elsewhere (=ecov._so_ed_a_.:l.st. h)

types for a recoverable sorted association list (=ecov_sort:ed_a_.£st), parameterized over the tag type (e.g.,

trans_id) and value type (e.g., pointer to log..enu'y's) of the pairs to be inserted in the list, an equality function (e.g.,

• on u'ans_id's) used for list insertion, lookup, and removal, and a comparison function (e.g., ¢ on trans_id's) used for

ordering the elements in the list. Its iterative version, (:ecov_sorted_aJ.£sC..£Ctr), similar to that used in the

, C++ Manual (p. 183 of [14]), provides a method for looping over all elements in the list, guaranteeing that elements

are yielded in sorted order. Our (recoverable sorted association) list will be sorted by trans_id's partial order < so
that we can iterate over transactions in commit-time order.

Finally, we represent the counter by a non-negative integer (count:) and a transaction log (log...t) (Figure 2-12).

The value of the non-negative integer will be determined by operations of only top-level committing transactions.

18

8 in_£u_Le <_o_at_ve _nt.h>

struat aoun_erjxnqw (
nonnmqati_e £nt Zo:
nonne_r&t£ve £nt h£;
co_toz r_ (noster r_&, op_seq*) ;
cortez :_(a_te: r_& _) (Zo - c:.Zo, h£ = c:.h£; }
countez :angm(Lat Z, in, h) (lo - 1; hi - h;)
countez ranqm(int i) (lo - hi - i;)
counter csnqe() (£niC () ;)
void £r_C() (lo - 1: hi = 0; }
boo1 urine,() (:eCucn (lo s6 !hi);)

counter ranqel opezaCoc+m (inC £) (lo - lo + i; hi = hi + £;
cecum *this; }

counter ranqe& opezatozm (counCec_c_geS cr)
(lo m or.Zo; I_L m at.hi; retucn *this; }

};

sCrucC opneq : p_blia :ecovec_le {
boo1 Co _na;
op_neq_ ops;

op soq(bool b);
-op seq() (del.Cl ops; }
op_slqS oplratoz<< (op s_l*) ;

};

stoat loqr, en_r/ :_£a z_aovQ-_ble (
_zaa8 _d aaron ld;
counCez :sn_ _e_ can_;
op ntqt ops;

loq[en_zy (t:_Lnn £di) ;
log_ ent:z-y (tc_nn :Ld&, boo1) ;
1_ ent_ (C_n £dS, counCec rangeS) ;

-Ioq @ritzy() (dmZete ops;)

_oZ _ritoK(l_ enC_i le) (:et_ (tin Ld < lt.aIn £d); }
_ol _raCo]:> (Z__enC_6 le) (:eCuz'n (cIn..£d > le. coIn_id) ;)
log natal _:atocm(l_ ent_6 le);

};

// Load z_aovez_bZe lint £_om 1_b:&_y
#£n_udm "z_ov so_ad _£sC.b"mm

cecov_so_ -_ £sc_aze (_:ans_id, _%__enC_, Cid_, CidlC) ;

typmdm£ z_zov soz_d_£s_: (_:ans_£d, Plog entry, Cid eq, Cid 1_) loqC;
Cypeclm£ :moor sorted a_lst_£CCc (tcan_ id, Plog enCry, Cid eq, C£d lC) log_CC:;

Figure 2-11: AuxiliaryS_uctu_s forCountc:

t9

i i i

cl&ss &Com:La.aounCez : publJ._ subaCoacLz (
nonnegat_£ve_£nt count;
lof_C 1of;
// .tnCe,rn,_, tmscztl:£ons
aounCer .c_" £s zero .rock (Ccans_£dA;) ;
booZ £a_ze_o ._n ._a.-.scle(counCec_c_aqea) :
boo1 _.l.,.zm:o..vaJ.ua (eounC._.. ca:Lget) ;
voJ, ct _kt op Co_log(boo1) ;
bool sdd op...Co_log_work (_.:s,rm..tdS, boo1, loq...enl:z'y*t) ;

publ_.c:
void £nc() ;
voJ,d dee () ;
boo1 J.a_zm:o() ;

, aCom,ta..=ount:ez () (court1: ,, 0; }
vo£clL =o,-,-4t_ (t::mrss tdS I:) ;
vo£d alDort: (t:cuss ._,dS t:) :

};

Figure 2-12: Atomic CounterDerivedfromClass Subatomic

2.3.2. Counter Operations

// _ £nazement opez:&C£on Co log
vo£d at:om:Le eountez: :£ne() (acki op_Co_log('Cl:L_/l) ; }

// Add dec:cement opecat::Lon Co log
vo£d &Com:La.eou.-tt:er: :dec=() { &dd.op Co loqr (FA.LS2) ; }

Figure 2-13: Counter's Inc and Dec (_)crarions

Implementationsof the £nc and dee operationsare shown in Figure 2-13. They use the internalauxiliary functions

shown in Figure 2-14. Znc and dec attempt to record themselves in the log. _dd_op...eo...log first calls the

t:_:ans...kd constructorwith the value CURRENT to obtain the trans id of the calling wansaction (comparethis to a
different call with no argument in the enq operation of Figure 2-8). If the addition of the operation would not
change the possible view of the courter as seen by other active transactions, the operation proceeds. Otherwise, the
operation is forced to wait until all interfering transactionsterminate(by either committing or aborting).

An example of a blocked case is as follows: Assume a transactiontests for the zero state of the counter and receives
a positive (i.e., TRUE) result. Until that transaction commits (or aborts) no other transaction can increment the
counter, since that would change its state from zero to non-zero. Other transactions are free to decrement the
counter, however, as this does not alter the visible state of the counter.

The add_op...eo_log routine uses a when construct m ensure exclusive access to the log during the operation
• insertion. Prior to that, however, it verifies that the insertion of the operation record is possible by calling

add op..eo..log_wo:]c, which examines the counter from views by all active transactions whose entries are

presentinthelog.The add_op_.Co_1og_.workreturnsFALSE iftheoperationcannotbe addedatthistime,
causingthewhen constructtopauseandbe reactivatedata latertimewhen thesituationchanges.When the

.conditioninthewhen statementsucceeds,add..op_.Co_Zo9'addstheoperationtoanexistinglogrecord(indexed

bythecurrenttrans_id)ifpossible,creatinganew recordotherwise.

Much oftheworkforthe£s_zero predicate(Figure2-15)isdoneby theauxiliaryfunction£s_zero.=.wock

(Figure2-16),whichconstructsa r.x_geofpossiblevaluesforthecounter,giventhecommittedvalueandthelog.

20

// Add (£na/dmo) operat£on to _oq, by add±rig £C to oporat£on sequence (op_soq) o£ ex_st£ng
// loq :mc:ozd, or I_y mAk£ng • hey one. Log ent:£es aze keye_L by cur:eriC t_8_s_cls.
vo£d etom_a_cmmte_: :Addop Co .log(boo£ b) (

C:anm _d c_.cztnt _d - t:ans _ct(CUlqRENT);
loq[eatryt entry - NULL;
boo_ nee entry need_ - IrJLTJB;

vhon (acid op Co lc_7 vork(aurront :Ld, h, ontzT)) (
£f (entry mmI_LL) (

entry m new _o_._t_y (c_c:ent _d, b) ;
loq. £nserC (_zzent__d, entzly) ;

) else (
££ (entzT-)ops) t(entry->OlPS) << new op seq(b);
e_ p4m_Lng (entry) entry-_ops - hem op seq(b);

)
}

)

£_£nm boo_ &tom:La _ounter: :£m_zero_£n r_gm (aoun..ter _ange :_nge)
(return ((_nt) ranqre.lo <- 0),)

£n_:Lne boo_L &tom:Lo counter: :Ca_zero ve_um (countec_canql_& c_nge)
(zeturn ((int) c_nq_.l_ -- 0);)

boo_ &toa"La aounter: :add op Co__og vo_k(trans _d& _d, boo_ to 4no, :Log entry*6 th_s entry) (
o e_y e" entry;
og entz _ £ound_.ent cy;
$oq_Ct: next entry ($og) ;

found entzy - _og._ookup (£d) ;
f (found entz am NULL) (

tills _nt_y m I_L_;
} e_N (

tl_L_ntz_ m *foux_clt entry;
)

for (en_y m next entry(); entry; entry - next entry()) (
J ((*entry)->c_mon _d -m _d) (// We've a_ready seen th£s guy, so £gnore 4t
} e_se £_ (((*entry)-_om_n £d < £d) I I

(descend_nt (£d, (*entry) -)common _d))) (
// aom_tt_ wrC to me, so not & problLem

} e_le (// 13ncz_tts_L_ the tough one. Must ensure there _s no act£vo transacC£on
// vhome te_m£nat£on st&to (coupLe or abort) cou_ change the v£s£h_Le state
// (zero or nonzero) of the counter.
counCe_ range o_d rangu o (*entcy)-:_iuery range;
£_ (! o_d_rango, unset ()) (

counter c_nge osage ((*entry) -:_Ictery__ange,
(_ound_entry) _ (*_ound_encry)->op_ : _m:_);

counte_ range new :8_gu -
couute_ range(r_uge..:o- ((to ins) ? 0 : _),

c_nge.l_ . ((to_nc) ? _ : 0));
£f ((_s zero_v_ue (o:Ld_canqu) !- £s_se_ov_ue (new range)) I I

(4s z_co£n range (o_d range) !- _s zero _n c_ (hem range)))
(

z_tuz_ F_I_: // bad nevs
)

)
}

)
ret_z_ _/_UR;

}

Figure 2-14: C_ntcr's Incand Dec _uxilim_ @l_ons

21

zs zezo f'u_ obu_ the urans_idof the calling transaction. Then _.s zero_wo=k iterates over all log enu-ies,
constructingthe range of countervalues. For each log entry, the logged operations are addedtogether to determine
what the net effect of committing the transactionrepresentedby the trans_idwould be. Then, the net value is added
to the high boundor subtractedfrom the low bound, as appropriate. Operationsof uncommitted transactionsenlarge
the rangeof possible values. If the low end of the range is bounded below by a positive integer, _.s_ze:o returns
-1. If the range startsand ends at zero, then it returns t. In all other cases (the range startsat zero and ends at a
non-zero integer), it returnsO.

// Publ£a _.s_zm:o() precLt.cA_.e
boo], &_,o_Lc: ao_ml:m:: :£s zero () {

co_nte:.:_nget :esPY.;
t::_'m £d _:=ent: £d m t::_ns_£d(CU1_RENT);

when (Eem_l.t m £8 zeEo..work(_.lrrenC £d)) {
log_.enCz',Ztt enC_z m _.og.J.ookup(_urrenC_£d);
J.f (enCzy) (

p£:m£ng(tenC=_,) (*enCrlr)->que__canc;e - *:esuJ.C;
} e].se

log. :Lnse_ (_.lx=enl=_:Lcl, new].og,.entr_, (,=_:=ent :Ld, *rem.l_.t)) ;

££ (£m zoEo :Ln..=a_._i'e (*=exult:))

e_-se
_-et.uzn F&Z,SE;

}
)

Figure 2-15: Counter'sIs_zero Operation

The predicate £s_ze=o uses the result (-I, I, or O) of £s_ze=o..vo:k to determine whether it Can return
immediately (cases -I or I) or not. ft"it cannot, it exits the when block (thereby releasing the short-term lock), waits
for more transactions to commit (or abort), and tries again later. This process repeats indefinitely, until one of the

two cases for returningfrom £s ze=o holds.

2.3.3. Counter's Commit and Abort

The comLkt and aborl:; operations (Figure 2-17) must clean up the log. The comakt: operation additionaJly
updates the value of the counter by going through the log, finding all the entries for transactions committed with
respect to it, applying these in serializationorder,and then applying its own operations. Log entries for transactions
relatively committed to the committing transactioncan be discarded. Notice that we need to use the < operation
because we cannot assume anything about the order in which commit operationsare executed. Suppose A and B are
transactions and the committed value before either transactioncommits is 2. Suppose A does 1 £nc and then 5

chtc's; B does 3 :Lnc's. If A commits, followed by B, the counter's committed value after A's comet: operation
is executed should be 0 (a dec has no effect on the.counter if its value is 0 already); then after B commits, the

counter's value changes to 3. However, if we were to execute B's com_e operation before A's, then B would
update the counter to 5, and A would change it to a final value of 1, which is wrong. By using <, the commi_:
operator makes sure it installs all changes of transactions that have committed with respect to the committing
transaction, not just its descendants.

On the other hand, the abo::_: opcration throws away only transactions that are descendants of the aborting
transaction; it would be incorrect to throw away transactions that are not descendants but have relatively committed

with respect to the aborter.

22

i ii

// l_t_s the z_ge of poss_bZe counts= vaZues as seen by the tr_s Id.
// Coun_tt_ tr_a&_P-£ons o_z&te d_roctly on counts= vaZue,
// whlZe (as yet) unaoz_:Ltted ones £nc=sase =L_ge.
_OUJDtIZ .wKlDq_qit itOS:LQ GOU_ltIE: : 4S ZS:O.WO:k (t',:l.lr_s_id& 4d) (

loqLentry** emt:y;
op_seq_ op;
ZogtCC: next entry (lo9) ;

// Beg_n v£th eoamtCtad v&lue, and a sequence of op_aeqs of uncommitted ape:sCions.
nonneqraCive int eoumtCCod vall:e (count) ;
sCrue¢ op seq seq {op secit ops; op soq soci t next;);
op soq seq* _ncoaunACted op_seqs - now op seq_seq;
op_seqLseqe last uos - uneommAttod op_socls;

£or (entzT m n_ ent_(); entry; entry - next entry()) (
i£ ((Id--- (*ent=I)->co_n Id) I I

(cleseenda_C (id, (*entry) ->eoammn....:l.d)) I I
(id > (*lmtry) ->eomion.,id)) (

.// Znsta_l ¢olat:Lve]-y-eou.m_'Lttod opetations
for (op- (*enc=y)->ops; op; op-op->ops)

coamlCCedvslue +- ((op->to inc) ? 1 : -1) ;
} else (// Cache _mcoumACCedopecation cecil a11 cm_ltted one a:e "in"

i£ (last uos !-unoomm4tt:sd op seqs) { // sac ft:st one
last_os->nmcC - new op_seq sacl;
last _os - last _os->noxC:

}

last uos->ops - (*enCry)->ops;
)

)

// Delete cmco_Atted_op_seqs altoq_Che: if ve haven' 't seen any as yet-
If (uaeo--4tted_op seqs->ops -- NULL) (

dlmlete _commltted_op.,!eqs;
uaeommAtted op seqs - N_,;

)

// Now, ve c_n go through all (if Lny) uneomltted op seqs. IMaAld :az_e of
// poss£blo values from other operations "addlng" it to :sage as appropriate.

eouater =as_jm t¢ange m new counts: :ange(eommAtted value);
Iast uos - unaomm_tted op seqs;
wh_le (last usa) (

countaz range possible =aage(*=angm, last uos->ops) ;
fast->hA - max(range->hL, poss£ble_=ange.hA) ;
=aagm->lo m mAn(=anqm->lo, possible :ange.Zo) ;
op__seq* tamp u last usa; last usa m last uos->next; daZete tamp;

}

// The=e a_e only two ways to pcodu_e a ":asu_t". Zf the :8_gm does not
// include ze:o, then we can safely =at_.-a lrJt.T_l. Zf the tangs includes a
/] single va_ue, then we can detez_lna with eaz_ca£nty whether it £s ze:o.
// Zf ne£thor aond:Ltion is lttaAnod, _ pause (:eleasing the shorC-tsL-m lo_k
// for another transaction), and then Cry the loop :qraAn.

(int _em_t;
if (is ze=e _n :anqm(traaqre))

££ (£_ zero value(*:ange)) :esuAt - 1;
else =esult: m O;

else
z_mslt m -1;

if (:esul_ .,m 0)
etu _anc_e;

else
EetuEn NULL;

}
}

Figure2-16:Courier'sIs_zero_workO_eration

23

II ZnsCa.1.3. (a.nd zemove) a.I.1 descencla_r_Cs from log. They ace LI.I aoas_tteclt,
// by c_f£_l.t£on, s:l.ne_ a.boc'ced ones have been pcsv:Lously deleted by the log.
// (See a.boz'c couC:Lne belov.)

.

vo£d aCom.t.cs..aounCes:: : eeOC (t:cans_J.cti; C) (
1ocT_entry** entry;
op_secle op;

• when (TRUB)
p4n._ng () (

loc;£ctc next_, ent:ry (loq) ;
fez: (enCcy = next:_enCry(); enCcy; enCry = nexc_enCclr()) (

t.f ((("enCcy) ->eommon_t.ct -,- c) I I ((*enCcy) ->eom=on..J.d < t:)) (
foz (ol)m (_ent;ry)->op8; op; op m op->op8)

count +m ((op->t:o_J.n=) ? 1 : -1) :
loq. :emove ((*entry) ->eommon_J.ci) ;
cteleCe *ent:ry;

}
)

}
)

// itemove _.1 ciemr.endant_s £=om loq

vo£cl &Com:l.aaou.nCez: : _=,orC (t:=ans £clS C) (
log enCz'y"" enCz'y;

when (_'RUil)
p:t.nn:t.ng() (

loc_cc: next:..encclr (log) ;
foc (enc=,/ ,, next.entry(); encry; entry - nexC..enczy()) (

L£ (((*enl:ry) ->eoamson :Ld am t:) I I cieseencta_t: ((*enCrlr) ->coamon.:Lcl, t=)) (
log. cemove ((*ent:cy) ->coupon. :Ld):
cblleCe *ent:c_r;

)
)

)
)

Figure 2-17: Counter's Commit and Abort

24

25

3. ReferenceManual

3.1. Lexical Considerations
Avalon nonterminals are in roman face. C++ nonterminalsare in italics, as in Section 14 of the C-_ Reference

Manualin[14].Keywordsareinboldtypeface.C++ extendedBNF isused.E.g.,symbolop¢meansanoptional
symbol.A C+_-nonterminalfollowedby":..."denotesanextensiontothatnonterminal.

Theextendedsetofkeywordsisasfollows:

costa_ p_n_ng sta.b_.e tzansact£on whan
etxcapt procets m st az_ undo wh@nmw_t ch
leave se_z top,eve1 var£ant

3.2.Servers
aggr:...

8@L"Vt_

decl-spec_qer: ...
server-specifier

seaver.spec_er:
class-specter

sc-spec(t_er: ...
stable

An Avalon server object is an instance of a server definition. A _.rver de_mitiOnolike a C++ class definition,
encapsulatesa setofobjects,andexportstoclientsa setofoperationsthatmanipulatetheobjectsanda setof
operationsthatcreatzand_stroyinstancesofservers.A clientinvokesanoperationon a serveaby callinga

memberfunctionofa serverobject.Creatinga new instanceofa servercausesanew serverprocesstobestarted.

When a serverobjectisdeleted,theserveriskilled.

3.2.1.Defining Servers
A server definition conta/ns the following pans:

• Data decks: Dam declared to be stLb_,e in the server are restored following a failure. To be
restoredproperly,stable dam mustbederivedfromoneofAvalon'sthreebaseclasses(Section3.3):

• _cowszab_.e, atone or subato_c. All data must be implemenmd to control concurrent
access.

• A numdaWD,maln. The main memberfunction is executed as a backgroundprocess when the server
' iss_ Thisfunction can be used to provide code which needs to be run independently of the

server's otheroperations. A printerserver, forexample, could use am:l.nfor the code to runthe printer.
Xain must exist, even if empty, because Avalon uses the existence of a nm_,n implementation to
determine that the currentcompilation is fora server,rather thanjust for a client.

• An optional z_covez operation,which is executed whenever the server is restarted after a failure.

• lRxponed (and possibly imemal) operations: The exportedoperations provide the cl/ents the only means
of accessing the server's dam. Communication between clients and servers is through (hidden) remote
procedurecall with call-by-value transmission of data.

• A nonempty set of constructors: A server's constructordefines the parametersthat a client must use
when creatinga new serverandprovidescodetoexecutewhen theserverisstarted.Incontrastto

26

constuctors for classes, a server's constructormust also specify to the run-time system the parameters
needed to startthe server process; these parametersare specified in the declarationin a way similar to
passing parametersto the constructor of a class's parent (see example below). When a client calls a
server's constructor, the specified parametersare passed to theroutines that startthe server,t

Example
Below is a simple server declaration:

server sLmplo(
sta,b],oatom_a _nt, val; // Protected atomic £nt_r ,

public:
s_aple(x s_:_ng p, x sC:_ng n) : (p,n) ; // Constructor
_nt 5_t(); // _ mcpocCed operation
vo£d _t(int £); // Lnother Qxl_ed Ol_rat£on
vo£d z_cover(); // Called upon server recovez7
vo£d m_Ln(); // B&e.kg:ouxsd process

);

The parametersto the right of the colon in the consu'uctorare passed to the run.timeroutines that start the server.
The first parameteris the name of an executable t-de;if the full path name is not given, the user's path is used. The
second parameteris the name of a node on which to start the server, If the value "Ioca]host"_ N'_ is given, local
machine is used; otherwise an x s_ng argument such as "wing.avalon.cs.cmu.edu" can be given to start the server
on some remote machine.

3.2.2. UsingServers
For an Avalon program to make use of a server it must first obtain a reference to an instance of the appropriate
server. As shown below the client may either createa new server object, star_g a new server process:

(1) pr£ntservert p m new pr£nt_erver(...); // State • new pr£nCserver
(2) pr£atserver q (...);

or it may, with the Avalon library J.ocace...serv_: function (see end of Section 4.3), obtain a reference to an

existing server object representinga runningserver process:
(3) pr£ntservezt p - (pr£ntsecver_) t_ocate_server(...); // Locate an ex_Lst£ag pr£ntserver

Calls to 8ez'vm:..=oot functions and server constructors should not be used as initializers for global or static
variablessince the run-time system may beincompletely initialized at the time those variablesare initialized.

Once a server instance is found, operationsare invoked on the object as for any C++ object:
p->lrpoo:L ("myf£1e._.xt"); [/ Znvoke an oper&t£or..

or

q. apoo:L ("myrtle. CxC") ;

Since server objects are really just C++ objects with special operations, they can be manipulated in the same manner
as other C++ objects. In particular, server objects and references to servers can be passed as parameters to and
retm,ned as values from functions.

3.3. Base Classes
There are three base Avalon classes: :ecov_z:able, aCom£o, and subatomka. Users define their own

recoverabletypes by deriving from recoverable. They define their own atomic types by deriving from aCorn.to
or subatonci, c, and are responsible for ensuring that the types they define are indeed atomic. If a tTpe is not
atomic then transactions that use objects of that type are not guaranteed to be atomic. We expect most users to

lUnlike nOamLlC++ usage, the stanup parametersmust be in the declaration seen by the client, rather than with the cormmc_r definition.
Thb informaticxlis useful only to the client, so tt must appearin a place visible to the client, such as the serverdeclaration.

27

derive from class atoa_c, andmore experienced (and demanding) usersto derive h_zn subatc=d,c, especially if
more control over the object's synchronization and recovery is desired. We refer the reader m Chap_r 5, in
pan/cular Sect/on 5.2, for correctusage of base classes, and[16] fora more formal descriptionof their in_ffaces.

3_1.1.Class Recoverable
Class Definition

• c_ass recoverable (
pub1£c:

v£=_uaZ void pin(_t size),
• v:L_-tuaZ vo:Ld unpin(£nCsize);

};

Operations

vo4d pin(:Lnt size)
ensures Subsequent changes to the object will not be recordedto stable storage untila la=r matching

unpinoperation. Multiple pins (and their matching unpins) by the same transactionto the
same object have no effect. If the object is alreadypinnedby a transactiondifferentfromthe
caUingtransacuon,a ran-c/mee_or is signal=L

void unpin(Lnt size)
modifies The value of the object in s_ble storage.
requires The caging trausacdon is currendypinning the object.
ensures If there is exacdy one outs=riding pin operauon, the modifications to the object are logged to

stablestorage.

The p:l.nandunp£n operations,whichshouldbe calledinp_'s.areusedtonotifytherun-limesystemthata
modificationtoanobjectistobemade.Inmostcases,theintegerargumenttopinandunpinshouldbethesizeof

the objectbeingpinned. Afmra crash,a recoverableobjectwill be restoredto a previousstatein whichit wasnot
pinned. The p_uaandunp£n operationsare usuallynot calledexplicidyby pro_'amrners;instead,Avalon/C-,-,-
provides a special control structure,the p£rm£ng block (Section 3.4.7), both for syntactic convenience and as a
safety measure.

3.3.2. Class Atomic
&t:om£a is a subclass of =ecova=abZe, specialized to provide two-phase read/write locking and automatic
recovery. Objects derived from class atond.c should be thought of as containing long-term loc_, used to ensure
seria/izability. Each uznsaction obr_,.s read (write) locks on all objects it accesses (modifies); locks areheld until
the uansaction commits or aborts.

Class Definition

cZass aWm/c:p_Z£c recoverable (
. pubZ£c:

//p_m and unp£n are inherited from recove=ab].e.

v£='r..uaX voLd read_lockO;
v£x'_uaZ vo£d wnte_lockO;

}

Operations

28

void read_IockO
when No _tion other than the calling transactionhas a write lock on the object.
ensuresIfthecallingtransactionalreadyhasa readlockontheobject,thereisnoeffect;otherwise,it

obtainsa readlockontheobject.Many transactionsmay simultaneouslyholdreadlockson
thesameobject.

vo£d write_lock0
when No tnumtctionother thanthe calling transactionhas a reador write lock on the object.
ensures If the calling transactionalreadyhas a write lock on the object, there is no effect; otherwiseit

obtains a write lock on the object, preventing other transactions from gaining any kind of
lock on it.

l_tad_kock and wr£t:e_.lock suspend the calling transaction until the requested lock can be granted (i.e., when
the whlm condition holds); this may involve waiting for other transactionsto complete and release their locks.

The run-time system guarantees that for nested transactions, the following rules are obeyed in obtaining read and
write locks:

• A child can get a read lock if all transactionsholding write locks areancestors.

• A child can get a write lock if all transactions holding reador write locks areancestors.

• When a child commits, locks areml'erited by parents.

• When a child aborts, locks arediscarded.

The run-time system guarantees transaction-consistency of atomic objects, by performingspecial abortprocessing
that "undoes" the effects of abortedtransactions, includingthose abortedby crashes. Thus, implementorsof atomic

types derived from ae.oad.c need not provide explicit commit or abort operations. Finally, persistence is
"inherited" from class =score=able; its pin and unpin operations should be used in the same way as
described in Section 3.3.1.

3.3.3. Class Subatomic
Like atomLc, 8ubatoal.c provides the means for objects of its derived classes to ensure atomicity. While
aeoaL¢ provides a quick and convenient way to det'me new atomic objects, subaeo_Lc provides primitives to

give programmersmore detailed control over theirobjects' synchronizationand recovery mechanisms. This control
can be used to exploit type-specific propertiesof objects to permit higher levels of concurrencyand more efficient
recovery. A subamm/c object must synchronize concurrentaccesses at two levels: short-term synchronization to

ensurethatconcurrentlyinvokedoperationsareexecutedinmutualexclusion,andlong-termsynchronizationto
ensurethattheeffectsoftransactionsme seriafizable.Forshort-termsynchronization,eachobjectderivedfrom

class8ubat_omkcshouldbethoughtofascontainingashort-termlock,muchlikeamonitorlock.

Class Definition

c3.ann subawm/c: pub1£c recoverable [
p_:oteetod:

vo£d seizeO;
vo£dre_;
vo£d pauseO;

p_bl.Lc:
//pin and unpin are public, by inheritance from _:ecove=a_ble.

visual void commit(trans_id& rid);
vix, eual void abort(trans_tid& rid);

}

29

Opm'aflons

vot.d s_0
when No mms_rion holds the short-turinlock on the objecL
ensures The calling u'ans_:tionobtains the short-termlock on the object.

requires The calling transactionholds the short-termlock.
ensures The calling transactionrelinquishes the short-termlock.

.ot.d paus
requires The calling transactionholds the short-termlock.
ensures The calling transactionreleases the lock, waits for some duration, and mar.4uires the lock

beforereturning.

The above operations ensure that only one transactionmay hold the short-termlock at a I_rno,thus allowing
implementors to ensure that transactionshave mutuallyexclusive access to subatomic objects. These operationsare
protected membersof the su_atom._.a class: They arenot provided to clients of derived classes, since it would not
be useful for clients to call them. Like p£n and unp:l.n, the above operations are usually not called explicitly;
instead, Avalo_C++ provides special control structures,the when and whensw£ech statements (Section 3.4.8),
which automatically seize, release, andpause on the short.term lock.

Sinceco_Ltt and abort: areC++ virtualoperations,classesderived fromsu_ato_Lc are allowed(andindeed,

expected)to reimplementtheseoperations.They eachtakea referenceto a _tion identifieras an argument.
(SeetheAvalonclasst_:ane...kd of Section4.1.2.) The typicaleffectsof theseoperationsarespecifiedasfollows:

voLd commit(mms_id&rid)
requires The u'ansacrionridhascommitted.
ensures Non-idempomntundoinformationstoredfor transactionsthathavecommittedwith respect

to ridisdiscarded.

vo:Ld abon(wans_id& rid)
requires The transactionrid has aborted.
ensures The effects of every transactionthathas committed with respect to rid areundone.

Commit operations are called for only transactionsthat commit at the top-level. Whenever a top-level transaction
commits (aborts),the Avalon run.time system calls the comm:Lt:(abort:) operationof all subatomic objects
accessedby thattransactionoritsdescendants._ox'e operationsarealsocalledwhennestedtransactionsabort.
Whenooum_e or abort: is calle_by the system,the mostspecificimplementationfor theobject will becalled.
Thus, sx_aeom:LÜ allows type.specificcommit and abortprocessing,which is useful and often necessaryin

implemen_g user-definedatomictypesefficiently.Noticethatusersneednotcall com_e andabort: explicitly;
thesystemautomaticallycallsthemwhenappropriate.

3.4. Control Structures

3.4.1. Start
stateroom....

st:az'¢ hans-body
tram-body:

warts.tagstatement except-clause o_
trans-tag:

top3.evt3.
t:_:anmaot_£on

30

Sequential tran.utctior_are created by means of a staL'_ statemenL The eopkev.1 qualifier causes the body of
the st_az-t statement to execute as a new top-level (root) transaction. The t:_:ansactAon qualifier causes the

body to execute as a subtransactionof the currenttransaction, if thereis one; otherwise, it too begins a new top-level
transaction. When the body terminates,the transactioneither commits or aborts. Normalcompletion of the body
results in a commit of the transaction. Control flow statements (=et-ura, leave, b=eak, and oone£nue) that
transfercontrol outside the scope of the transactionnormally commit it, unless they state otherwise via an undo

qualifier (Sections 3.4.4, 3.4.3, 3.4.5). The undo leave statementcan be used to pass an abort code that can be
used as a switch value in an except: clause (Section 3.4.6). Got:o statements that transfer control outside a
transaction are cun'ently not supported. Future versions of Avalon will prohibitsuch transfersat compile-time;

presently, the result of such a statement is undefined.

3.4.2. Costart

stateroom....

eost:a:e{coarms}

coarn'_:

coarm coarmsop t

coarm:

nns-body

Concurrent transactions and processes arecreated by means of the cost:a=_: statement. The process executing the

eost:a_.-e, is suspended; it resumes after the cost:are, is finished. Execution of the cost:a_ consists of
executing all the coarms concurrently. No guaranteeis made about order of execution, or of injtinli'atiofL E_h

coarm runs as a _ (lightweight) process. The t:op_.evIJ, or t:2:ansaet:l.on qualifier indicateswhether the

coann is a top-level transactionor subtransaction.

A coarm may terminate without terminating the entire ¢oat:a_t: either by normal completion of its body, or by
executing a _.eav. statement (Section 3.4.3). A coarm may also terminate by transfen'ingcontrol outside the
eost:ax'_ statement. If an outside transferoccurs, the following steps take place:

1. All containing statements are terminated to the outermost level of the coarm, at which point the coarm
becomes the controlling coarm.

2. Every otheractive coann is termht.tted(and aborts if declared as a transaction). The controlling coarm
is suspended until all other coarms terminate.

3. The controlling coarm commits or aborts.

4. The entire ¢ost:ar'¢ terminates. Control flow continues outside the aost:a_¢ statement.

3.4.3. Leave
sfutetnenl:....

leave ;

(e.r.oression)olzleave ;

Executing a leave statement terminates the (innermost) transaction that the leave occurs in. By itself, leave
commits the transaction, but with the undo qualifier, it aborts it. An unqualified leave statement must occur

textually within the scope of a transaction, or a compile-time errorresults. An undo leave statementneed not
occur within the textual scope of a transaction, but it it must occur within the dynamic scope of one, or a run-time
error will occur. The optional integer expression in an undo leave statement can be used to pass a value that can

be used in the except' clause of the aborted transaction (see section 3.4.6.) The value of the expression must be

31

greater than zero, but less than ¢_ equal to the constant Av_,ON..SYS_.USF,_ _lJOItT t4_¢ 2, or a run-time error

will result. If the expression can be evaluated at compile-dine, this restriction will be enforced then.

3.4.4. Return
sf_emcm_....

undo _ z_tuz'n _re,_ono_

The =ttu,-n statementterminates execubonof the containing operation. If no undo qualifier is present,then all

containingu'ansacbons(if any) terminated by this statementare commit_J. If the undo qualifier is present,then all
u:rmina_d transactions are aborted. When a =etuzn statement in a coarm causescontrol W leave the cost:a=_

statement, acuve sibling coarms are aborted. The undo qualifier can only be used within the lexical scope of a

transaction, or a compile.time error will result.

3.4.$. Break and Continue
statement:....

_mdoop t bz_ak ;
undoot x cont_knue ;

Terminating a cycle of a loop (wh:kle, do, fo=), or a sw£_:oh statement may also terminate one or more

transactions within the loop or switch. If no undo qualifier is present, then all these terminated transactions (if any)

are committed. If the undo qualifier is present, then all of the terminated transactions are aborted. When a bzltak

or continue in a coarm causes control to leave the oost:a_¢ statement, active sibling coarms are aborted. The

undo qualifier can only be used within the lexical scope of a transaction, or a compile-time en,or will result.

3.4.6. Except Clauses
except-clause:

except: (identifier)op t statement

An en_ept, clause, which may be appended to a transaction body, is used to handle different cases of an aborting

transaction. After a transaction aborts, it allows some case-specific action to be taken. The statement in the clause

is expected to be one or more case statements. If the transaction was aborted as a result of an undo (expression)

leave statement, then the value of the integer expression (called the abort code) is _ to determine which of the

cases in statement are executed, just as in a sw:kt;ch statement. The Avalon run-time system may abort the

transaction for a variety of other reasons; in this case, the abort code witl be an integer greater then

&VALON..SY$. USER_ABORT_MA_:. Iftheoptional identifier is present, then an integer variable of that name will
be def'med to have the value of the abort code within the scope of the except: clause. The routine

avalon_abo_-t...code..eo...st=£ng may be used to translate system abort codes to strings describing the reason
for the abort:

char* avalon_abort_code_to_string(int ac)
ensures The returned string describes the reason for an underlying system-induced abort according to

the integer abort code ac.

_.=ay eq.,ato('zt_b-t.

32

3.4.7. Pinning
statement:....

p t_x£ng (expressionolx)statement

The ptan£ng statement imficatesthatstatement may modify expression. Statement should not contain a servercall

or anything else that could cause an abort. An abort inside a pinning statement will cause deadlock. Expression
mustevaluatetobetheaddressofa recoverableobject(Section3.3.I);ifitisnotprovided,Ch:Lswillbeused.All

modificationstorecoverableobjectsshouldbe donewithinpXankug statements.Ifa recoverableobjectisnot
"pinned"inmemory whileitisbeingmodified,itmay ceasetobe recoverableand may haveotherserious

consequenceson therun-timesystem.Iftheobjecttobepinnedisofvariablesize,thenexplicitcallstopin and
uapXa arenecessary; the ptanXaq statement cannot be used.

3.4.8. When

statement:...
whan (expression)statement
whtmsw£t:e.h (expression) statement

The whim statement provides short-term synchronization for operations on t:h:i.s, which must be a subatomic
object(Section3.3.3).Aftera short-temp,lockon Ch:Lsisobtained,expressionisevaluated;iftrue,ztatementis
executed.Ifexpressionevaluatestofalse,executionpauses,temporarilyrelinquishingthelock,untilitbecomes
true.Theshort-termlockisreleasedafterstatementisexecuted.

The wh_ statement can also be used to provide operation consistency of implementations of operations of
subatomic objects. The operationsdone in a wh_mstatementare done atomically: either they all happen or none of
them happen. If the implementation of a subatomic operationdoes all of its work in a wtma statement, operation
consistency is guaran_ Wham's can be nested, but the use of more than one (non-nested) wh_mstatements in the

implementation of an operation (e.g., two whtm's in sequence) is stronglydiscouragedand will void this guarantee.

As its name suggests, the wh_msw£t.ah statement is a combination of the wh_m and sw:i.t_e,h statements.
Expression and s:o.:ement are handled just as they would be in a sw£Cch statement, with one difference: the

ctafault: action is to pause execution until the value of expression equals the valueof one of the aasas. Since the

clmfault_ action is provided, it is illegal to includea dmfaulc in statement.

3.5. Transmission of Data
Clients and servers communicate through:'emoteprocedurecall. The argumentsand returnvalues of servermember

functions are passed by value. The only exception is thatreference arguments are passed by value-result, i.e., their
values are copied back to the client when the server function returns. Pointers to objects are not transmissible.

Objects of any otherC.t-0.or Avalon fundamental type are transmissible. An array,slruct, or variant (Section 4.1.4)
is transmissible if and only if all its component types are transmissible. Unions cannot be transmitted, since their
actual type is not known at compile time. The chart in Figure 3-1 summarizes which types are transmissibleand
which are not. Future releases of Avalon/C++ are likely to reducethe restrictions on transmissible types, and allow
pointer indirection in structuresto be transmitted(by copying) between serverand client.

In most cases, users can rely on the Avalon/C++ compiler to determineautomatically how to transmita value as an

argument to a server function. In the cases where the compiler falls to recognize a type as transmissible,or when the
automatically generated transmission functions are inefficient, the user can define his or her own transmission
functions as partof the class definition. Section 5.4.2 explains how this can be accomplished, and should be readon

33

a need-to-knowbasis only.

Types Transmissible N on-Trans missiblt

int, short int. long int, unsigned int,
C++ Fundsmentnl char, float, double, chum, references pointers

Avalon/C+4.Fundamental bool, trans_id,x_string (character strings)

servers,arrays, variants, unions, functions,
C++ Derived (!) classes (-), structs (-) classes (+), streets (+)

Avalon/C++ Derived recoverable,atomic, subatomic

Italics indicates that transmissionof that type is not yet supported by the current implementation.

(!) Provided component types and inherited supertypes, if any, are transmissible.

(+) With union or bitfield component types.

(-) With no union or bitfield component types.

Figure 3-1: Transmissibleand Non-TransmissibleTypes

34

35

4. Library

4.1. Non.atomic Avalon/C++: Types and Type Generators

4.1.1. Bools

Avalon defines a boolean type, boo]., with exactly two values, TKD'¢andr_.L$1, and the usual C++ operationson
booleans: !, &&, II,u, !=, and=.

4.I.2. Transaction Identifiers
The Avalon run-time system guarantees that the serialization order of transactions is the order in which they

commit. The erans..£d class defines operations on Avalon transactionidentifiers to permitrun.time testing of the
_tion serializationorder. There is a trans_id server at each site which keeps trackof all the trans_id'sat that
site and handles sending trans id's to other sites that need them.

Class Definition

class trans_id(
publlc:

uans_id(int =UNIQUE);
-Irans3dO;
trans_id&ol:m_:atox-.,(trans_id& t);
booi opszat:oc==(trans id& t);
bool olm=at:oc<(trans_id& t);
bool ol:m=at:oz>(trans_id& t);
bool doneO;
£_:£and bool both0rans_id& tl, trans id& t2);
fz£and bool deacendant(trans_id&tl, trans id&:t2);

};
Operations

trap.s_id0,trans_id(UNIQUE)
ensures A dummy subtransactioa is created and committed and the subtransaction's identifier is

returned to the calling transaction. Note that UNIQUE is the default argumentto the tmns_id
constructor.

trans_id(CURRENT)
ensures Returnsthe trans_idof an operation'scalling mmsaction.

-tr__idO
ensures The trans_idis deleted.

trans_id&:op@zat:oc=(trans_id& t)
• modifies Ch£s

ensures this becomesidenticaltot.

boolopa_:at:oc-_,(trans_id&t)
ensures tl == t evaluates to TRU¢ if tl andt are equivalent; FALSE, otherwise. Note that trans_id's

created by different operationswithin the same transactionare notequivalent.

bool ope_:at:oz:<(trans_id& t)
ensures If tl < t cv.qluatesto TRU¢, then if both t! and t commit to the top level, tl serializes before

t. Ifthee.,pressionevaluatestoFALSE, eithertl serializesaftert,or t] and t are
incomparable.

36

bool ope:aeo:>(uans_i_ 0
ensures If tl > t evaluates to TRY, then if both tl and t commit to the top level, tl se_ aftert.

If the expression evaluates to rxLsz, either tl serializes before t, or tl and t are
incomparable.

bool doneO
e_u'es l_tun_ _ if th£s is committed to the top level; rxz, n, otherwise.

bool bo_(u'am_id& tl, nns_id& t2)
ensures Returns_ if tl and t2 are committed to theu"least common ancestor',F_SZ, otherwise.

bool descendant(trans_id& tl, Irans_id&t2)
ensures Returns_ if tl is a descendantof t2; FM,SZ, otherwise.

4.1.3. x_string: Transmissible Strings
Strings are nonnaUy declared in C++ in two subtly different ways: (1) as a fixed arrayof chars, whose size is
known at compile time, and (2) as a char pointer, terminated by a _0, whose size is dynamic; its space is allocated at
run-time. Whereas strings as arraysof characterscan be trivially transmitted (Section 3.5), stringsas charpointers

cannot because pointers are not transmissible. The built.m Avalon/C++ class, _..scffiku¢$, provides for
transmissionof dynamically allocated strings.
Class Definition

se_ce x_su'ing {
x_suingO;
x_su'ing(x..su'ing&s);
x_suing(char*c);
-x_swingO;
x_string& ot:_=:at:or=(x_string& s);
x_string& opegaCo='_char* c);
ope=aco= char*O;
£=::Lendostream&otmratoc<<(ostream& o, x_string& s);
f=:Lend istream&ope=at:oc>>(istream& i, x_string&s);
f=kend hool ope=eat:o=-==(x_string&s 1, xstring& s2);
£=:Lemd hool ope=at:oc!=(x_string& sl, x_string&s2);

i;
Operations

x_smngO
ensures Returnsan empty x_su_.ng.

x_suing (x_swing& s)
ensures Returnsan xstring constructed from s.

x_suing (char* c)
ensures Returnsanx_suingconslructedfromc.

-x_su'ing0
ensures The x_string is deleted.

x_s_ring&opegat;o='= (x_string& s)
modifies this
ensures t;h£s becomesequivalent to s.

x_string& ope=aco=ffi (char*c)
modifies this
ensuresCh£s becomesequivalenttoc.

ope%ator char*O
ensuresCoercesanx_stringintoacharacterarray.

37

osuv_m& opmfacoz<< (osucam& o, x_smng& s)
modifies o

ensures s is written to the ouq_ut stream o.

ist_mn& opeffiator>> (ist_un& i, x_string& s)
modifies i. s

ensures s is read f_om the input su_m i.

bool operator== (x_swing& sl, x_suing& s2)
ensures Returns TRUZ if sl and s2 contain the same characten in the same order, r/t_sz otherwise.

Equality is case-sensit/ve.

bool operator!= (x_suing& sl, x_swing& s2)
ensures Returns rKLSB if sl and s2 contain the same characters in the same order, TRUB otherwise.

Example
secvm_ n_mmZ_sC (

publ£a:
add mmmbes:(x_sCc£nqmember haze) ;.am

x..sCcinq pick random mmmbe= () ;
};

ma_n () (
namaliac nl;
r.haZ m Itat_ m new _.,h&E;

nl. &dd mambez ("$CewacC") ;
name - nl. p£_k random_member () ;

)

The constructor from char* to x..at:ring will be automatically called in the case of calls to

namsList: : add_nmmbe=. The coercion operator will transform the result value of

namaList : :pick..candom_nmmber inw a char*.

4.1.4. Variants

ag&r: ...
va=£ant:

decl-spec_ter: ...
variam-specifier

variam.specifier:
clax$-specCier

Avalon/C++ provides an aggregate data type generator, the var£aat, which is declared similarly to a structureor

class. An object of variant type can contain a value from a set of types. A variant differs from a standard C+.4-

structure in that it can be only one of its possible subtypes at any given time; it differs from the standard C++ union

type in that it is transmissible, i.e., can be sent as an argument to or returned as a result from a server member
function.

A variantisa ragged,discriminatedunionand ismade up oftwo peats,a tagand a value.The tagfieldspecifies

which of thepossiblesubtypesisstoredinthevaluefield,whilethevaluefieldcontainssome instanceofthat

specified type.

Operations
A variantdeclarationof the form:

variant_ VT {T l Vl; ... ; Tn Vn;};

automatically defines the following ¢pcral.ions:

38

VT o_=ato_- CVTv)
modifiesth£s
ensures Copiesv into this. The ope_uonaleffect is th_ this's _g field changes_ bev's, and

th£s's value field is assigned v's, using the the assignment opemt_ defined on v's type.

bool oI_zato_'m _ v)
ensuru vl -- v reumm _ if vl and v have the mine tag, and their values am equa_ r_,Sz,

otherwise. Two void instancesof the _ane varianttype areequal.

bool is_void 0
ensures Returns _ if th£s has no value, and is of the special null-valued vo£d type; F_SlL

otherwise. The vo£d type represents the state of a variant instance prior to its f'_t
assignment.

andthefollowingoperationsforeachtypeT i andtagVi:

void set_ViCTi val)
modifies tlx£8
ensures Sets the tag of this to Viand its value to val.

Ti value_Vi0
ensures Returns the value cf tl_J.s if its tag is Vi; returnsa run-timeerrorotherwise.

boolis_vto
ensures Returns_trg if the tag of th:Ls is Vi; FAL$7.,otherwise.

Restrictions

Variants are a special type of class, and can only be declared and defined at the top level, i.e.. variants cannot be
nested within declarations or definitions of other types, including variants. Variantscannot have memberfimcfions.

Example

PI' (F,_ZL, lh_kSS};
v_c:t.6uC ¢/'cadm (

e.hLc lmttmz;
sboz_ pmrcmntsqro;
1_ pass_£a_l;

In the above example, g=ada: : set 1attar (c_affi c} would be defined to set the tag of the variantinstance to

chaz. and its value to c, boo1 grad_: :£s lettaffi () _tun_ TIt_g if the tag of the variantinstance is chaz,
and FALSSeotherwise, and chac gcadm: :vaJ.ua..let:t:ec () returns the chac value of the instance if it
contains a chaz, and produces a run-tim,:errorotherwise. Similar functions for pezcsntacse and pass...ga£1

areprovided as well.

4.2. Atomic Types
Each C++ fundamental type, t, has a derived Avalon atomic type counterpart,acom&c..,_, where C currentlycan

be £nt, char, or £1.oaC. There is also an Avalon atomic type for b0oleans, acom.ta_boo:l., and for
(dynamically-sized) swings, atom£c_sc_:£ng (Section 4.2.1). Each Avalon atomic type has the same sets of
values and operationsas its non-atomiccounterpart. No atomic type is transmissible.

4.2.1. Atomic Strings
The atomic .st_:£ng class is intended to be used in a manner similar to a ¢ha_:*, as used to represent C++
strings. They should be used as components of atomic and subatomic objects to ensure their recoverability. An

atomic stcing can be of arbitrary, varying length.

39

Class Definition

class atomic_suing {
pt_b:l.:Lc:
atomic_string0;
atomic_smng(const char"s_);
atomic_suing(atomic_suing& as_);
void oF_zstox'-(const char"s_);
vo£d ope_atox-_(const atomic_string&as_);

• oF_zatoz char*O;

fz:Lmnd beol opezagox'==(consg atomic_string& astr, consg char*slr);
fz£mnd bool oF_zaCoz-_consC char"s_, consC atomic_suing& ascr);
fz£end ostrearn&oF_zacoz<<(ostream& s, atomic_string&as_);

};
Operations

an_.mic_smng0
ensures Cremes andreturnsa new, empty atomic_stung.

atomic_smng(const char" s_)

awmic_string(consc atomic_suring&astr)
ensures Creamsand returnsa new atomic_string,initialized with the valueof str (astv).

vo£d opm:aCor_consC char* str)

vo£d ope_ator_(consC atomic_string& astr)
modifies eh:Ls
ensures Assigns sir (astr) to all atomic_string, adjusting the amount of storage for the string if

necessary.

opQraCo% char'0
ensures Coerces an atomic_string into a "standard" C string; char', allowing atomic_strings m be

used in standardC routines.

bool opezaco_(cons'c atomic_suing&astr,consC char*sur)

boolopmzmtox-==(constch_'*sur,conmt atomic_string&astr)
ensures Returns TRUI if astv and str contain the same characters in the same order, FALSTM,

otherwise. Equality is case-sensitive.

osuream&oF_=acoc<<(osu'eam&s, awmic_string&asu')
modifiess
ensures usrr is written to the output sucam s.

Restrictions

The chaz* returnedby the coercion cfemwr must only be used as a conmc cha=*, i.e., the contents of the suing
should not be changed. The returnedeha=* is only valid until the next operation on an at:om£c...sC=£ng. Thus,

multiple coercionsmay mmrn differentr.har* addresses.

Example
nx-vec foo (

at_able atm_l.o_stz£ng a_sCc:

};
• aCE m ,,Hello,,;

£f (a.sCr mm "Hello") ...
ulstEc=mp (a_st:=, "heLlo") ;

a....sC= is defined to be an acom.i.c_sccincj. When the server is started,a ..se.= is created tminitialized. The first
statement assigns the value "Hel:l.o" to a_sCz'. The second statement uses the equality operator. The last

statement shows a use of an at:om.i.c_st:r£ncj where a cha_* is expected; this use is only acceptable if the called

4O

routine does not attempt to modify the contents of the char* generated by the coercion. See 5.2 for otherusage

guidelines.

4.3. Catalog Server
The catalog server [9] is partof the Avalon run-time system It maintains a mappingof server attributesto unique

server names, and services lookup requests. The currentimplementationof Avalon has exactly one catalog server
since it is expected to be used relatively infrequently;hence, we do not expect it to be a bottleneck. If experience
shows otherwise, however, we may decide to runone catalog server per node in futureversions of Avalon.

When a server starts, it must check in its attributes. The required attributes(type name (TTITZ),unique name

(UI_QUt__), and node (NODE)),are automatically registeredwhen the server starts. If more attributes are
desired, the server programmercan add them in the constructorcode. For example, a printerserver might add the

identity of the printerit is servicing.

Example
pz£ntseL'vQz: :pJ:int:serveI: (...) (

CaCa3.og$.net.att:ribut:e (avalon_my..aserver_id, "PI_NTE_", "£zon");
);

To avoid boot-strappingproblems, Avalon ensures thatall clients have a reference to the c_t-log server,which has a
fixed unique name, CatalogS. _.avalon_n_._cservel:_id is the unique id remma:l by the ca_log server's

check in function.

When a clientwantstolocatea server,theIoaaCe...se='v_zfunction(seesection4.4)callsthecat_ogoperation
n_ witha listofattributesandreturnsanobjectrepresentingthedescribedserver.

41

ClassDefinition

x_-_z catalog(
pu_).£c:
Lnt check_in(alxr_listalist);
vo£d remove(intid);
voLd set_anributes(int id, am_list new_alist);
vot.d set_attribute(intid, x_string attribute,x_string new_value);
vo£d remove_attribute(intid, x_string attribute);

• attr_list get attributes(intid);
x_string get..attribute(int id, x_string attribute);
L_t find(attr_list alis0;

• x_string name(am_list alist);
vo£d ma£n0;

);
Operations

Lnt check_in(attr_list alist)
modifies catalog server
ensures Creates a new entry in the catalog server with the attributes specified in alist and returns a

unique id to be later used to look at and modify theattributes of the new entry.

vo£d remove(int id)
modifies catalog server
ensures Deletes the entry of the serveridentified as id.

vo£d set_attributes(intid, attr_listnew_alist)
modifies Attributesof/d

ensures Replaces the attributedlist of the server entryid with the new list a//st.

vo£d set_attribute(int id, x_string attribute, x_string new_value)
modifies attribute's value
ensures Replaces the value of attribute with new_va/ue for the serverid in the catalog server.

vo£d remove_attribute(intid, x_string attribute)
modifies Attributesof/d.
ensures The set of attributesfor id no longer contains attribute.

am_list get_attributes(int id)
ensures Returnsa list of attributes for the server id.

x_string get auribute(int id, x_suing attribute)
ensures Returnsthe ,_flue associated with attribute for the server id.

:LnCf'md(attr_tistalist)
ensures Returnsthe unique id of a serverwhose atwibutesmatchalist.

x_string name(attr_I/stalist)
ensures Returns the value of the unique name attributeof a server whose attributes matchalist.

vo£d ma£n0
ensuresNo effect.

4.4. server root
The se=ve=...=oot: classhandlesstarting,killing,andlocatingservers. Allservers whichuse the catalogserver
(this is the default) implicitly inherit from the serve=..=ooC class.

42

Class Definition

class server_mot (
public:
server_root(const char" commandLine,

const char" hostName,
u_int n = I,
heel autoRestart= TRUZ);

void kill_server 0_)ol no_restart=FM,SZ);
f=land server_root& locate_serve.-(char* typename,

attr_list*adist= NULL,
int retry =5);

f=iand server_root& get_server(char*uniqueServerName);
};

Operations

server_root (const char"commandLine, constchar"hostName, u_intn = I, bool autoRestart=_J_l)
ensures Starts and initializes a server on node hostName, using the executable f'de and arguments

givenby comman_ine, and allocatingn (Camelot)chunksof recoverablestorage.
autoRestartspecifieswhetherornottheserveristobe autornaticallyrestartedwhen itis
killed.Ifa fullpathisnotspecified,theexecutablef'deisfoundon theuser'spath,and
"/../<localmac_ne name>" isprependedtothepathforremoteservers.The serveris
startedon thelocalmachineifhostNameisNULL or"Iocalhost".

void kill_server(heelno_restart= r_,.z,Sw-)
modifies catalog server
ensures If no restart is TRUZ or the auto_tst_are, argument to the server's consm_tor was

r_s-E, the server is killed and its entry deleted fxom the catalog serve_, otlm'wise, the
server is restarted.

server_mot& locate_server (char"typename, attr_listaml==NOLL,int retry = 5)
requires Each instance of a type of serversupplies identifyingattributeswhen it is started.
ensures Returns a reference to a server of type typename with attributevalues that match those in

attrl, if such a server exists; returns_ otherwise. For multiple instances of a particular
type of server, a specific instance may be selected by listing its unique attributes in attrl.
1ocaee serve= will make retry attempts to comact the catalog server before giving up.
If retry is'_ero, 2.ocat:e_servm= will keep tryinguntil it f'mdsthe catalog server.

server_mot& get_server (char*unique_server_name)
ensures Returnsa reference to a server object for the namedserver, for those cases where the unique

name and location are fixed or otherwise known. This is useful for servers which do not use
the catalog server.

Note that since 1ocate...sem= is a generic function, the resulting reference must be coerced to the appropriate
type when received.

Example
&t_= list a.].£st; II a new at:1:rl]_ut:e i£sI:

a_£s_.push ("l_JTJrJ_=, "£ron") ; // CMU pr£nt:ars a_e named a£te= _ and minerals

pr£ntsermszg pe - (p:£ntserverg, loaate_sex_er ("pr£ntse:ver", al£st);
if (&pc !-- MD'._) // check for NULL return value

ps. spool (££1ename) ;

This code obtains a reference to the printserverserver object for the printer "iron." If such a server exists, it
invokes the server's spool operation.

43

5. Guidelines for Programmers

5.1. Choosing Identifiers
In most ways, Avalon hides the complexity of its underlying mechanisms. When choosing identifiers, however, it
must be rememberedthat Avalon is a preprocessorthat generates code for the underlying system, Camelot, which in
turn is built on top of Mach. Forumately between Mach, Camelot, Avalon, C++, and C, some valid identifiers
remain.

• Here arc some guidelines:
1. Do not begin your identifiers with " avalon". Except for names documented in this report, all

identifiers inserted into the generated cTxleby Avalon/C-_-begin with this string.

2. Do not end your identifiers with "_.t". All Camelot types end with "...t".

3. Do not end your stzx_ct names with "_st;g-,act". Again, Camelot uses these.

4. Beware of uppercase identifiers. There are many constants (#da££r_, enums, etc.) and macros
which use uppercaseidentifiers.

5.2. Using and Implementing Avalon Types
This section gives some guidelines for correct usage of the two Avalon built-in classes, =eeoTe=ab].e and
at¢_l.c. (Rules for subatomic are forthcoming.) The rules outlined here do not represent the only correct

usage, but rather, a usage which is "guaranteed" to provide correct results. These rules, of course, do not address
standardprogrammingpr_tices such as "Do not free memory twice."

There are threekinds of programmers:

Client programmers:.
These people write programs which invoke operations on servers. Their job is to ensure that the
operationsate called correcdy. There is only one rulefor client programmersto obey:.All server
operation invocations must be made within a transaction.

Type users/Server programmers:.
These people def'meservers, and use built-in or user-defined types. Their job is to declare,
construct,and invoke operations properly on instances of these types.

Type implementora:.These people define new types, Avalon types, derived from built-in or other user-defined types.
Their job is to define and implement the member functions of the type such that, provided it is
used correctly, it will exhibit a desired behavior. Note that, when creating a new Avalon type
that uses another Avalon type, the programmeris both a type implementer (of the new type) and
a type user(of the used type).

In the next four sections, we give rules for users of recoverable types, users of atomic types, implementors of

recoverable types, andfinally, implementorsof atomic types.

5.2.1. Using a RecoverableType
Allocation: All Avalon types are allocated from recoverable memory (a special heap). This is accomplished

through an appropriateconstructorprovidedby either the type implementer or generated by Avalon. Care must still
be taken, however, not to force allocation of an Avalon type from other than recoverable memory (such as the
stack). Thus:

1. Do not declare variablesor functions of an Avalon type. Instead, use referencesor pointers to Avalon
types.

44

2.Do notnew an arrayofAvalonobjects(e.g.,new myatomic[10])3.

3.Do notcoerceanon-Avalontypetoan Avalontypeeitherexplicitly,e.g.,

sir -(&tomLa str£ng) "str£ng";

or implicitly, e.g.,

atmgta..stwknq: :atmctc.stz£ng (e.har* _.8tc) (...) // eonmtr=_o_ cLIO.rig • e.ha=t az_mnC
vo1.d •_tmc_1.on (•toIkc.scr£ng6 s) (...) // ftm_c£on expe_c£ng an &vaXon Clrpe
stun_c_on ("str1.ng=); // _ codm!

The w0uble here is O_ C++ inmrpretsa cons_ucmrof one argumentas a coercionf_m the
argument's type to the class type. In the example, C++ converts the char* "stz .i_g" to an
aComkc..st=£ng reference by creating a mmporary variable on the stack of _pe
• comAe st=£=_.

Use: All usage of an Avalon type should be through member functions provided by the type.

5.2.2. Using an Atomic Type
Constructing Atomic Objects: When consu_cting an atomic object it is important that the creating u'ansactionhas
exclusive accessto the location which will hold the new object. Thus:

c_•ss mystom_c : public atomic (
atomka ._.nC* £;
o.,

vo£d nmw£nt (£nt) ;
);

vo£d myatom:Lo::nmmknt (1.nO n) (
(*t_Ls). wr1.co 1oak () ;
p1.n_Lng () 1. = new •to_Lc__nC (n);

}

Before creating the new atomkc £nt, the function obtains exclusive access to the variable (£) wkich will hold the

ad_ess of the objecL

Destroyin2 Atomic Objects: Similarly, when destroying an atomic object, the transaction must have exclusive

access to all pointers to the object.
c_•ss my•tomka : pubS1.• aCom1.e (

• tolLc _nt t t.;

vo4ct cim_eCe1.nC() ;
);

vo1.d my•tolL•: :de_eCe1.nt () (
(-t:]_Ls). wr4te_lock () ;
clLe_ote:L;
p£x_l.ng {) J. ,, O;

}

5.2.3. Implementing Recoverable Types
Constructorsand Destructors: Storageforall Avalontypesmustbea/locatedfromrecoverablememory.Avalon
rakescareof storageallocationand deallocationfor types with consmsctorswhichdo not makeassignmentsto
eh£s. See the sectionAssignmentto This forspecialrulesconcerningtheproperuse of suchassignments.

Any initializationsmade totheobjcctwi'.hina constructormust be withinap£nn£ng blockor pin and unp£n

statements(seethesectionbelowon Modifications).

3"thisrestrictioashouldbe temporary.

45

Conten_: Avalon types may be constructed from only the following types:

I. In.line basetypes such as int, char, bool, etc.,

2. In-line Avalon types,

3. Pointers to Avalon types.

4. In-line arrays and structs of the preceding types.

" All fields must be either p=£var.e or protected.

Modifications: All modifications must be (dynamically) within a p£nnkag block or a p£n/_mp£n pair. There

must be a matching _mp:i.n caUed for each p£n and umpkn may not be called without a prior call to a matching

pkn.

Coercions: Care should be taken against providing the user with a pointer directly into recoverable memory. MI

changes to a recoverable object should occur within only the object's member functions. For example, an

atom£o .st=kug may have an opera_:oz char* function. This function should ma:lA.oo volatile memory to

hold the string rather than return a pointer to the array in recoverable memory. Otherwise, the user could modify it

outside a pknnke_ block with undefined results. Ideally, C++ would let you def'me an ot:_:ato= coast

char t, but it does noL

Overriding Member Functions: If the type overrides the default pin and unpkn operations, the new

implementations must ensure that, if p_kng, or pkn and unp£n are properly called, all changes will be made
within calls to recover•b3.• : : p£n and recoverable: : unp£n.

Assitmment to This (long section): C++ allows the programmer to manage the allocation of objects through special

code in its conslructors, particularly assignments to the variable th£s. Using assignments to th£s, the

programmer can, for example, implement variable-sized objects, and objects which are allocated from a programmer

maintained memory free store. When using an assignment to this, however, care must be taken not to interfere

with Avalon's managing of the recoverable heap.

In what follows, we will describe the requirements for

• A simple consmictor which explicitly allocates its memory,

• Variable-sized objects, and

• Objects which may be either allocated by the constructor or pre-allocated (such as when the object is an
in-line part of a struct).

A simple consm_tor or destructor could look like this:
,qt:_1m: :ayeTpe() (

Xnt mysise - s£zeo£(myCype);
l:h.t.s- (alrt:lqm*) IULC_ (mysize);

pXnn_ng () {
// Zl_tJ.aZJ.2e _,he f£elds o£ your e.lrpe.

}
)

alrelrpe: : -_Jq=l,pe () {
pim:d.ng () (

// Cleanup the f£elda o_ you]: t_rl:)e.
)

IUIC]rluuI(this) :
th£s - O;

)

46

In the constructor:.

• All execution pa_s must make an assignment to th£s.

• To alloca_ memory for the object you must use R_C NALZ,OCrather than new or ,,_lZoc. If you
havereasontoallocateanotherrecoverableobject,youmay(andshould)usenew. Forexample:

t:h:Ls m (mTCype*) new aCom4.a._.nC;

• You must compute the size correctly (use s£zeof (you=:...eype) so you include any space neededby
the type'sancestors.)

• No memberfunctions(e.g.p:LnandunpJ.n)maybecalledbeforetheassignmentto this.

In the destructor.

• IUiC T]RIr_(ratherthande].et;e or £=ee) mustbeusedto deallocatethememory.

• A/ter deaLlocation,t;h:Ls mustbe assignedthe value0 so that the ancestor'sdestructorswill not be
caged.

• No memberfunctionsmay becagedafterthedeagocationof t:h:l,s.

The most common use of an assignment to t;h;l.s is to implement variable-siz_ objects4. However, any
recoverable type for which s£zeof (yourt;ype) may returnan incorrect value must either call the functionspin
and map:I,'=with the correct size ratherthan use the p_m:l.ng statement, or ovemde these functions so thatthey
use the correctsize, allowing p_nn:i.ng W workproperly(as shown here).

vo£d mytype: :p:I.n(LnC J.gnoze_sJ.ze) (
LaC s£ze - (*t;h.tx) .obJeGC_s£ze;
recove:ab].e: :p£n (eL ze) ;

)

voJ.d myt:ype: :unpJ.n(_.nt: £gnoL-e =_.ze) (
LnC s£ze m (_'CI_Lm). ob_em:_s:l.ze;
l:ec=ove:ab3.e: :unlpJ.n(s£ze) ;

}

These functionsignorethe incorrectsizewhichthep£rmLng statementuseswhen it callspin andunpin and
instead,usesthe real sizeof theobjecL This particularexampleassumesthat the consuuctorstoresthe allocated
size in the field ob:_ect:...s£ze.

It is importantto remembertha_withC.H-,manyusesof a typeforcetheallocationof theobject'smemorypriorto
callingitsconstructor.Theseusesinclude:(1) constructionof a derivedtype,(2) allocationof anarrayof objectsof
thistype,and(3) in-line useof the typein a struct. If a typewhichhandlesits ownalloca:ion(assignmentto t;h:l.s)
is to be used in these situations, the constructormust be wriucnsuch that:

1.Memory isallocatedonlyifChis is0uponentering.

2. If t;h:Ls is not 0, an assignment to t;h£s is still executed. The smmment t;h£s = t;h:l.s; will
suffice.

3. If memory is allocated, the function (*t:h£s). on_heap is caged after the assignment to t:h£s.
This milsthedes_ctor thatthememorywasallocatedandneedsto bedeallocated.

Forexample:
mycype: :=ycype () (

J._ (Oh.tin -- O) (
£nt: mym£ze . m£zeof(myt:ylpe) + <wkat=vevelac>;
Ch_.s = (my'cype_,) RZC__.,OC (mys_.ze);
(*t:h:Ls) . on_heap () ;

Fhelastfield o(a struetisdeclaredasanarrayof size 1. When youconstructaninsumceof die type,however,you]RZC as
much memory asneededforan arrayofthedesiredlength(plustheinitialf'txedsizepomon ofthestructand itsancestors).See[14]for
examples.

47

)
o:_se tilL8 - this;

lp4n_Lng () (
// Zn£C£_£ze the f£eld_ o£ your type.

}
}

The destructor would then deallocate the memory only if the constructor allocated it:

• mycypo: :mycype () (
p:Ln,u:Lng() {

// Cle_up the fields o£ yo_c t_pe.

•)

4£ ((_th£s} .qret healP_b£t () "-- _JRO%)(
I_C irgzz (th_s) ;
th:Lm m O;

)
)

The functions on_heap and get_heap_.b£t are protected member ftinctions exported by class recoverable.

(Since these arc used only in the rare instances in which programmers wish to pre-aUocate objects, they are not

described with the other exported functions.) The function on_heap simply sets a bit in the object which is

checked by the function get:..heap...b£t (returning TRUI_ if it was set and FJLLSTMotherwise).

5.2.4. Implementing an Atomic Type
Types derivedfrom class ar.o,,,_a should follow the requirementsoutlinedabove. In addition,if the type is
expected to exhibit atomic behavior (serializability, transaction-consistency, and persistence), the guidelines in this
section should be followed.

Contents: Pointer fields in the type should point only to types which are atomic (derived from atom.i.c or

subaeoakc), or recoverable provided that concurrent access to a recoverable object is protected by an appropriate

lock on the containing atomic object.

Modifications:

I. =earl :Lock on the object should be called by a member function prior to accessing any data in the
object" w=£te .kock should be called prior to any modification to the data. Pointers to non-atomic
(recoverable) objects should be treated the same as in-line non-atomic objects in that appropriate locks
should be obtained on the enclosing atomic object prior to invoking merv'_er functions on the object.
No locking is required when accessing atomic components (in-line or pointers) since the objects'
member functions should acquire the necessary locks.

2. If it is intended that a non-in-line subcomponent of an object be protected through locks on the

containing object, the subcomponent should be derived from =eco_m=able rather than aConcLc
(i.e., the object is persistent but relies on the caller for concurrency control).

Coercions: An atomic object should not be coerced to a non-atomic type.

Overriding Member Functions: If the type overrides the default =ead_.:Lock and w=£te...lock operations, the

new implementations must ensure that, if the type user properly calls =ead...lock or w=£te...:Lock, the

appropriate calls to atom.Lc • • =ead_lock and atom£c: : w=£te_l.ock are made.

48

5.3. Constructing an Avalon Program

5.3.1. Server Programs
A server program should be brokeninto f'desas follows:

<server>h declares the server and includesany type defmitions requiredby the server.

<server>.av provides the implementation for each of the server's member functions and any support
functions notdeclared or included in <server>.h.

<other>.{av,o} provides the implementation for any functions declared in <server>.h other than the server's
memberfunctions.

A server progrmnshould be linked with the following librariesin order:.

-2_kse -Zava -:].gin -Icam_Lb -isw£tches -:].te_ncap \
-ith_ads -%cam -l_ae-.h - IJa - Lnod_

5.3.2. Client Programs

A client programincludes the <server>.h f'de foreach server it uses. Avalon ensures that implemental/ons for the
server's member functions are included. It is the responsibility of the programmer,however, to include the

implementations of any other functions declared in <server>.handany files it includes. In general a client pmgrmn
must be linked with all of the .o flies for each server it uses except for <_erver>.o. The librariesneeded by the

server should also be linked with the client program.

5.3.3. ExampleTemplates
.... mys_v_.h
#£nelude <avalon.h> // always f£=a_ ££1e £naluded.
#£nc%ud_ <mytylm.h> // def£nes types used bT the serve:.

serve: myoerve: (
:yeylm am;

pub_£c:
:/serve: (...) : (...);
m...opl (...) ;
m,s,.op2 (...) ;

};

.... myswvm'.av --- .-. mycl_t.av ---
#£nc%ude <w/serve=.h> #£nc_.ads <:Zse=ve=.h>

...

£nt p:£vaCe, ug£1£ty () (...)

:/serve:: ::/server (...) (.. •)
:/server: :ms_opl (...) (. • • p:£vaCe ut£1£ty() ; • • •)
:/serve=: :u_ol_ (...) (...)
.... mytype.av.--
#£n_gude <:_l, pe. h>

:/t:ype: :mycype(...) (...)
myt:ype::m:_opl (...) (...)
mytype: :mi:_.op2 (...) (. • •)

.... sm'ver.make client.make
ace -o :/serve= :/servec. o mycype.o \ ace -o :/el£enC :/¢1£enC.o my'cype.o \

-Za£se -lava -lgen -IcangLib \ -im£sc -lava -icsen -ica_1£b \
-lsw£tches -_termcap -Zkth=eads \ -lsw£t:ches -ltermcep -lth=e&cLs \
-loam -Zmach -Im -1node -Icam -imach -lm- lnode

The file myse:'ve=.av provides only the implementations of the server's member functions and the

49

implementationof p=£vate .ut£1£ty which is not defined in mFserv.a:, h and thus,will not be needed by the
client. The object file generatedfora_,s@rvs=, av is linked in with the serverprogrambutnot the client program.

The file myt.ype, av provides implementations of the other functions defined in ,:_,ssrv_=. h through the
#£nc_.uds _yp@. h>. Since the client includes this file, it also needs to be l/nked with :uF_ypI. o.

Finally, both the client and the server need to be linked with the standardset of librariesneeded by Avalon. For
. complete examples, look at the servers, clients and makefiles in/afs/cs/project/avalon/src/avalon/bin/mmples. See

also the acc manpages (Appendix IDfor appropriateflags with which to call acc.

5.4. For Experts Only

5.4.1. Undo and Destructors
When a transaction is aborted usingan undo 1,taro (_:,,turn, ba:eak, aont£aua) statement, control may
be transferreddirectly to the textuai end of the transaction using the C J.ongJmp mechanism. This transferof
control will exit one or more blocks in which automaticvariablesmay have been initialized by a constructor.These

variables may be instances of a class that has a destructor,and, if so, this destructor would normally be called on
these variablesbefore the block was exited. When a transactionis aborted,however, these variableswill not have

destructorsc.alledfor them. (Note thatthis is a problemsharedwith any use of the see :imp/_.ong:Jmp mechanism
in C++.) Normally, the constructorand destructorof a class only modify the object they are invoked on. In this
case, this may not be a serious problem; the only result of not calling the destructoris that space on the free store is
graduallylost. However, some classes are writtenso that the constructorand deslructormodify some external data
structures,andrelyon theassumptionthatboththeconstructorandthedestructorwillbecalledforeachobjectto

maintaintheintegrityofthosedatastructures,Thesekindsofclasseswouldinteractbadlywithundo statements

thatexitmultipleblocks,andshouldprobablybeavoided,FutureversionsofAvalon/C++may attempttohandle
this interactionmore gracefully.

.,t

5.4.2. User.Defined Transmission Functions
Before any class instance can be actually transmittedto another process, it must be translatedinto a special, built-in

class called ..ava..::mssage. The _ava_message abstractrepresentationis that of a queue. Objects are removed
from the queue in the same order in which they were inserted.
Class Definition

c_.ass _ava_message (
_ava_messageO;
_ava_message&opez at oz<<(_ava_message&msg);
_ava_message&ot_tzator<<(_ava_msgfield& msg);
_ava_message&operttor>>(_ava_message& msg);

};
. Operations

_ava_messageO
ensures Createsandreturnsa new instanceof an_ava_message.

_ava_message&ope=ato=<<(_ava_message&msg)

_ava_message&ope=ato=<<(_ava_msgfield& msg)
ensures Appendsmsgto _e endof an_ava_message.

5O

_ava_message& ot:mzato_:>>(..ava_message& msg)
ensures Exwacts built-in base types from the message instance. Higher-order types are extracted

using the class's .recompose function (see below) withthe message instanceas an argument.

To add usez-def'medmmsmission to a user-definedclass, you mustdefine two class memberfunctions in orderto be
able to transmita class imumce:

ops=atog _ava_messageO
ensures Coerces a class insumce into an _ava_message. It will typically need to call the um_smiss/on

functions on other types. For each class, _ava_message instancesare constructedby calling
the class's coercion operator. For each built-in fundamentaltype (int, chars, floats), a special
class, _ava_msgfield, with overloaded constructors, is provided. Since enumerations are
representedin C++ as integer constants, they should be treatedas if they were of type int for
the purpose of transmission.

vo_.d _recompose(_ava_message_ msg)
modifies *th£s (Obscure, but true.)
ensures Constructsa new instanceof the class andoverwrites the old one with the new.

Figure 5-I gives a sample of wansmission functions for a simpleclass.

5.4.3. Processes

Support for 1Pgocessls has not yet been implemented and will not be soon.

A coann of a costag't statementcan also be a regularprocess with no transactionsemantics:
coarm: ...

p_:ocess statement

We make no guaramees as to giving any meaningful semantics to processes that run concurrently with mmsaction
coarms, or processes that run within __ions.

5.4.4. Pragntas
Support for pzacjmas has not yet been implemented and will not be soon.

pragma:
@pragma@pragma-list

pragma-list:
wag
wag, pragrna-list

prag:
identifier
ident_fer= value

A pragmaisusedtoconveyinformationtothecompiler.Useofpragmasisan appropriateescapemechanismto
Camelotfeatures.

For example,Camelotprovidestwo differentkindsof logging,new.value/old-valueand new-valueonlyand

mechanisms to support various commit protocols. Different combinations ate useful depending on the expected
length of a transaction. Thus, we allow the user to specify via a pmgma whether a newly startedtransactionwill be

"short" or "long." The standarddefault is "medium" and the following combinations aredef'medforeach value:

Short new-value only logging
blocking protocol,e.g., two-phase commit

51

sCru_c addzoss (
£nC number;
chaz sCcseC (40] ;
chaz sppC (S] ; .

chsz cACy (20] ;
cha: scats (3] ;

1nO zipeodm;
};

class pecsormel (
char name [40] ;

inC as number;
• float: salaz3,;

enum (WIDr,IELY, iiOUi_Y, MONTHZ,Y} payco_l_Cype;
addA'es s homl addzess;

pezsonnel (isCream); // For data enCry
pe=socme_(cha=* newname, inC new_ss, float new_sal, acLd:ess new a_kl);
operaCoz _ava_messaq_m () ;
vo_ci _cscoaqpose (_ava_mmssage_;) ;

};

// De££n£t£ons of consCrucCocs omitted

pezsostne1: : _ava massage () (
ava_massaqe nag - new _ava mmssacse ();
Ant t.;

II thAs->namm

foz (1 = O; i < 40; i++) *msg << zva _sgfleld(nama[1]);

• =usg << _av__mmgfield(ss. numbec); // Chis->ss_numl:_c
•msq << .ava msg£ield(sal_cy); // ChAs->sala=y

•mscs << ava _sg£1eld((inC) pay:oll type) ; // khAs->pay:oll type
• mag << _ava mesaage (home_addzess) : // t:hil->home acicLress

return (.sag) ;
)

void pezsonnel :ecompose (ava messages :nag) (
inC 1;

£o= (i m O; 1 < 40; 1++) .sacS >> nares[t]; // khis->naam

am(/ >> s.s_numbe=; // khis->ss_num/e=
macs >> saJ.az3,; // khls->salary
{ 1nO kemp; zincs >> kemp; paycoll..Cype = kemp:) // khJ.s->paycoll_Cype
homm adcLcess._cecompose (msg) ; // khis->homs_add:ess

}

Figure 5-I: U_-defined Transm_sion Functions

. Medium new-value/oid-value logging
blocking protocol, e.g., two-phase commit

Long new-value/old-value logging
non-blocking commit protocol

Default The default value is "Medium."

Notice that the combination of new-value only logging and a non.blocking commit protocol is not permitted.

Other pragma values will be determined to incorporate other meaningful combinations, e.g., to indicate using a

"highly optimized" protocol for a local transaction.

52

Restrictions

In general, pragmas me only allowed at any place where the syntax rules allow a declaration. Currently, pragmas
are treatedexactly as comments, and thus, can appearanywhere a comment can appear. No interpretationof pragma
valuesiscurrentlydone.

53

Pendix I
ammar

The language this grammar def'mes is a strict supcrset of that presented in Section 14 of the Reference Manual in
[141. .

1.1. Expressions
expression:

terra

• expression binary-operator expression
expression ? expression : expression
expression-list

expression-list:
expression
expression-list, expression

term:

primary -expression
unary-operator term
term ..
term-..

s£zeo£ expression
st.zeof (type-name)
(type-name) expression
simple-type.name (expression.list)

new type.name initializerop t
new (type-name)
de_.ete expression
dte_.ete [expression] expression

primary-expression:
id

:: identifier
constant.

strin 8
_.h£s
(expression)
primary-expression[expression]

primary-expression (expression.lista_ t)
primary-expression, id
primary-expression-> id

id:

idena#er
operator-function.name
typedef-nan_ :: identifier
typedef-name :: operator-function-name

operator:
. unary-operator

binary-operator
special-operator
free-store-operator

54

Binary operatorshave l_ecedencedecreasingasindicated:

binary-operator:oneof
*/%
+ -

< >

&
A

I
&&
II

assignment-operator

assignment-operator:oneof
= += -= ,= /--%-- ^= &= I= >>- <<=

unary-operator:oneof
*&+--!++-

special-operator:one of
O0

free-store-operator:oneof
new da_ete

type-name:
decl-speciflers abstract-declarator

abstract-dec larator :
empty
* abstract.declarator
abstract-declarator (ar&ument-declaration-list)
abstract-declarator [constant-expressiono_]

simple-type-name:
typedef -name
¢.haz
shoz't
_t
long
unsAgned
£3.oat
double
vo:Ld

rypedef-name:
identifier

1.2. Declarations
declaration:

decl-specifier$ otHdeclarator-list _pt ;
name-declaration
asm-declaration
pragma

name-declaration:
aggr identifier ;
enum identifier ;

aggr:
c_ass
struct

55

union
8@L'_'QE
vaziant

_-ded, v'_on:
asm (so'ing) ;

pragnsc
@pzacpml Pmgma-list

. pragma-lisc
pmg
prag, pragma-fist

prag:
_len_l_er
id_nt_er = value

decl-soec_ers:

dec!-speci_er decl.sgeci_erso _
decl-specifier :

sc-specifler
type-specifier

fct-$pecifler
_ziend
typeda_
server-specifier
varmnt-specifier

type-specC'u_r:
simple-type.name
class-specifier
enum-specOTer
elaborated-type.spedfler
const

sc-$pecifier:
auto

ze_ristez
8t:atAc
8_ble

/ct-specifler:
inIAne
ovezload
visual

server-spec/fier.
clas$-spec "Cier

vatiant-specifi=:.
class-specter

elaborated-type.specifier:
. type,f-na,,,e

keyidentCier

Icey:
GlaSS

struct
union
Qnum

8@EVQE
variant

56

declarator-list:
init-declarator
init-declarator odeclarator.list

init-dec larator :

declarator initialfler o_
declarator:

daame

(declarator)

* aormto_ declarator

& ¢onsC_ declarator
declarator [argun_nt-declarat;.on-list)

declarator [constant-expresxion _t]
dname:

simple_
typedef-name :: simple-clname

simple-dnam¢:
identi/ier
typedef -name
- typedef-name
operator-function-name
conversion-function-name

operator-function-name:
opegato= operator

converaon-func_n-name:
ope=aCo= type

ar&ume nt-de c lar atw n. li_t:

arg'dectaraa°n'list opt "" opt
arg-declaration-list:

arg-declaraaon-list , argument.declaration
argument-declaration

argument-declaration:
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstract-declarator
decl-specifiers abstract-declarator = expression

class-sp¢cOTer:

class-head { member.lister }
class-head:

aggr identijier om
ag&r identifier : publ:i, Co_ typedef-name

rnember-list:

member-cleclarat_n member.listop t
me mber-cle c lar atio n :

decl-specifler$ member-declarator initializer "o_,
function-definitWn ;__

decl-speciflerS opjCt-declarator base-initializer opt
p=ivate:
p=ot:mcted:
public :

member-declarator :
cleclarator

identi_er opt "constant-expression

57

initializer:

= expression
- {initializer-list }
..{initlalizer-list,}
(expression-list)

init_izer-list:

expression
initializer-list, initializer-list
{ initiaUzer-list }

enum-specifu;r:

. _idmntifimrop t {enum-list }
enum-list:

enumerator
chum-list, enumerator

enumerator:

identifier
identifier ,- constant-expression

1.3. Statements
compouLnd-$tatement:

{sta_ment-Ustom}
statement-list:

statement
statementstatement-list

statement-
declaration

compound-statement

exl_esslOnopt ;
££ (expression) statement
££ (expression) statement el.se statement
wh£_.a (expression) statement
do statement wh£Za (expression) ;

f.o_ (statement expressionot x ; ¢.r.pressiOno_) statement
sw:ke, eJa (expression) statement
ease constant-expression : statement
¢la£au_. : statement

uandoc¢t break ;
undo_., cont£nua ;

goe o_dtnrifier ;
identifier : statement
s_.azt. I_a_-body
costa=t (coarms }

undo (expression} opt 3.savm ;
_adoop t _tux_ expressionop t

• p£na£n¢$ (expressionopt) stati:ment
when (expression) statement
whansw£tch (expression) statement
pragma

traas-body:

trans-tag statement except-clause opt
tram-tag:

t:op_.evel

58

tzansact£on

c0a_q_"

co_:

u-dns-lxxly
p_:ocess statement

except-clause:

.xcept (identifier) otxstatement

1.4. External Definitions
program:

external-definition
external-definition program

external-definition:
function-definition
declaration

function-definition:

decl-specifiersoptfct-declarator bo_e-initializero_fct-body
fct-declarator:

declarator (argument-declaration-list)

fct-body:
compound.statement

base-initializer:
: member-initializer-list

member-initializer-list:
member-initializer
member-initializer, member-initializer-list

member-initializer:

identifier ol_ (argument-list opt)

1.5. Preprocessor
#¢_ ££ae identifier token-string
#dtt£Jme identifier(identifier ident_r) token-string
#e2.se

#_.£ _u:presaion

#1nal_ <file_m_>
#1_e constant"filename'"
#uad_Z _clentifier

ACC (I) UNIX Programmer'sManual ACC (I)

NAME
acc- anAvalon/C++compiler

SYNOPSIS

acc [option] ... file ...
o

DESCRIPTION
ace is an Avalon/C++ compi1_. File names thatend with

•C, .C+, .It, .h+, .av
are taken to be Avalon/C++ source files. They arecompiled, producing .o files, as in cc (I).

._ am takentobeas(I)sourcefiles.

.i am ignored.

Fde names thatend withanythingelseam assumedtobe objectfdm or librafi_and am handed
d/reedym cc.

acc uses cpp to pro.process the input, avfront to process the Avalon exmnsions to C++, cpp to pre.
procz_ the avfxom output./u.o'/misc/.c++/iib/cfront to process the C++ extensions to C, cc to compile
the,re.suitingC code, and/uar/mi_c/.c++/lib/mwsch to find global variables with consmctc,rs and des-
tructors, acc defines the macros __STDC._, c_plusplus, and avalon when running cpp the fu_ time,
.STI)C.. and c_plusplns when running cpp the second time. C++ include Rl_ are normally taken
from/usrlmiscl.c++/include.

There are several options which tell ace which programs to run and where to put the output, These
options are all prefixed by +a.

The following options tell ace to run a partialAvalon compile:

+aF., Only ¢ppis run. Theresultis printedon stdout.

+aF Only cpp and avfront are run. The result is printed on stdouL

+aG Only cpp, a_ront, and cpp arc run. The result is prinlP.don stdOUL

+all Only cpp, avfrom, cop, and cfrom arc run. The result is printed on stdo_.

The following options roll ace to run all or partof a C++ compile:

+al Only cpp is run. The result is printed on stdout. The avalon macro is not defined. This option
is equivalentto+aE +aK.

+aJ Only cpp an.d cfront are run. The result is printed on stdout. The avalon macro is not defined.
This option is equivalent to +all +aK.

+aK All passes except avfront and the second pass of cpp are run. The avalon macro is not
defined.

The following options tell acc to generate a list of make/ile dependencies:

+aM cpp is run to generate a list of makefi/e dependencies. The macros __STDC_., c..plusplus,
and avalon are defined. The result is printedon stdOUL

+aN cpp is run to gcncr=te a list of ma/cefiledependencies. The macros __STDC._ and c_plusplus
are defined. The avalon macro is not defined. The result is printed on stdouL This option is
equivalent to +aK +aM.

ACC (I) UNIX Programmer's Manual ACC (1)

The following options tell acc various other things about how to do the compile:

+a.Ju/)Ix
The +aE, +aF, +aG, +oH, +aL +a.L +oK, +aM, +aN and +aP options will send the output
for each file to a corresponding file with the suffix .suffix,rather than to stdout.

+af Flies are used in the preprocessor stage instead of pipes. This may improve performanceon
machines that spend most of their time paging.

.ah Lines berg with #line or #number will be removed from the output pr_uced with the
+atE, +aF, .aG, +oH, +_, +¢z/, .oK, +aM, +aN and .aP options.

+ai The output of c/font for each file is put in a file with the suffix "..c". These files are normaUy
deleted, but the +ai option keeps them around.

+alp cpp and avplai_nare run. The result is printed on stdout, avplain is a version of avfront that
parses but does not actually implement the Avalon extensions. It is useful only for maintainers
of avfront.

+aT acc will print timing information.

+aV acc will print all the details about what it is doing.

The following options are passed on in various forms to the programs that ace runs. This is not an
exhaustive list. Other options not tisted in this man page are assumed to be avfrom and c_,om options
if they begin with '+', c¢ options if they begin with '-', and files if they begin with any0_g else.

+d cfront will generate code that is more suitable for debugging. Inline functiom will not be
expanded.

+llOCatsrv
avfron_ will generate code which does not use the catalog server.

+S Some run-time statistics for avfront and cfront will be printed on stderr.

.V avfront and cfront will accept old-style C declarations. Include files will be taken from
/usr/cs/include rather than/_r/n_c/.c++/include

-2Dname=va/ue
-2Dname

Name is defined for the second pass of the C prepr_essor. If no va/ue is given, name is
defined to be 1.

-2Uname

The definition of name in the second pass of the C preprocessor is removed.

• -Dname-va/ue
-Dnan_

Name is defined for the first pass of the C preprocessor. If no value is given, name is defined
to be 1.

-Idir dir is added to the search path for include files. Directories given in -I options are searched
before /ttsr/misc/.c++/include and the directories in the CPATH environment variable. This
option affects both passes of the C preprocessor.

-Uname

The definition of name in the first pass of the C preprocessor is removed.

-w avfront, cfront, and cc warning messages are not printed.

FILES
<some directory in SLPATH>/cpp

The C preprocessor.

ACC (I) UNIX Programmer's Manual ACC (I)

aw'ront _ Avalon lz'ep_'ocessor,

/usr/misc/,,c++_il_'ctront
The C++ pceptoc(_,or.

/usr/mLqc/.o++/l|b/m unch

Finds global vatmbles with constructorsand desu,uctors.

cc The C compiler.

*..c Output from cfront.

_.ctdt.c
Output h,om munch.

SEE ALSO
as(I),cc(I),/d(I),TheAvalonReport

BUGS

avfront sometzmes prints names twice in its error messages. For example, "foo" might be printed as
"foofoo". This behavior has been observed only when avfront was given inconect code,.

The on'or handling routines in avfront get confused easily, resulting in unintelligible error messages.
This problem may also cause avfront to crash.

The code generated by cfront seems to be morelikelytotriggerbugs and overflow tablea in the C com-
prierthannormalC code.The codegeneratedby avfrontismorelikelytodo tlw.aethingstotheC+-,
compilerthannormalC++ code.

4th Carne_ie-Mellon Uvdate 7/28/87 3

62

References

[1] Joshua J. Bloc_
The Camelot Library.
In AlfredZ. Spector, Kathtyn R. Swedlow (editors), The Guide to the Camelot Distributed Transaction

Facility: Release 1, pages 29-62. CarnegieMellon, 1988.

[2] D.L. Detlefs, M. P. Herlihy, andJ. M. Wing.
Inheritanceof Synchronization and Recovery Propertiesin Avalon/C+4-.
IEEE Computer :57-69, December, 1988.

[3] K.P. Eswaran,J. N. Gray, R. A. Lorie,and I. L. Traiger.
The Notions of Consistency and PredicateLocks in a Database System.
Communications of the ACM 19(11):624-633, November, 1976.

[4] J.V. Guttag, JJ. Homing, and J.M.Wing.
Larch in Five Easy Pieces.
Technical Report 5, DEC Systems ResearchCenter, July, 1985.

[5] M.P. Herlihy and J. M. Wing.

Avalon: Language Supportf_ Reliable DistributedSystems.
In Proceedins$ of the 1ya In: l Symposium on Fault-Toleran: Computing. Pittsburgh,PA, July, 1987.

[6] M.P. Herlihyand J.M. Wing.
Reasoning About Atomic Objects.
In Proceedin&s of the Symposium on Real-Time and Fault-Tolerant Systems. Warwick, England, Sept.,

1988.
Also available as CMU-CS-87-176.

[7] B.W. Kemighan, and D.M. Ritchie.
The C Pro&rammin&Languase.
Prentice-Hall, Englewood Cliffs, NJ, 1978.

[8] L.Lamport.
Tune, clocks, and the orderingof events in a distributedsystem.
Communications of the ACM 21(7):558-565, July, 1978.

[9] Richard Alien Lernm'.
Reliable Servm's:Design and Implementation in Avalon/C++.
In Proceedings International Symposium on Databases in Parallel and Distributed Systems, pages 13-21.

[EKECS TCon Data Engineering, ACM SIG on ComputerArchitecture,rh'_EComputerSociety Press,
Austin, "IX,December, 1988.

Also published as CMU Tech. Report:CMU-CS-88-177.

[10] B. Liskov, M. Day, M. Herlihy, P. Johnson, G. Leavens, R. Scheifler, W. Weihl.
Argus Reference Manual.
Technical Report TR-400, M1TLaboratoryfor ComputerScience, Cambridge,MA, November, 1987.

[11] B. Liskov and R. Scheifler.
Guardiansand Actions: Linguistic Support for Robust,DistributedPrograms.
ACM Transactions on Programming Lansuage and Systems 5(3):382-404, July, 1983.

[12] Alfred Z. Spector, KathrynR. Swedlow, ed.
The Guide to the Camelot Distributed Transaction Facility: Release 1
0.98(51) edition, Carnegie Mellon University, Pittsburgh,PA, 1988.

[13] AlfredZ. Spector, Randy Pausch, and GregoryBruell.
Camelot: A Flexible, Dismbuted TransactionProcessing System.
In Proceedings of Compcon 88. February,1988.

[14] B.Sl;ouslxup.
The C ++ Programming Language.
Addison-Wesley, Reading, Massachusetts, 1986.

63

[15] W._. Wei_L
$1_cO_catWnand Implementation of Atomic Data Types.
Phl) thes_ MIT. 1984.

[16] J.M.Wing.
Specifying Avalon Objects in La_h.
InProccedins$oftheInternatfonalJointConferenceonTheoryandPracticeofSoftwareDevelopment

(TAPSOFI'). B_lor_, Spain, March, 1989.
To appmr, invited paper.

64

65

Index
C.,.,. 1

_ava..jamsap 49
_ava]ea..my_emrver id 40

Abe_ 15,29
Aboe_md= 30
Acc 2
Art_2
ARRAY_SIZE 6
Atomic 1,3,7. 16,26,27,43
Auxnic inlqm. 3

Ammic_boel 38
Atomic_iat 5,6,7
Ammi__mia| 311
AutoRestan 42
Av_ia_ 3
Avalea types 43
Avaloa.h 6
Avalea_abo__cede_to_mia| 10,31
AVALON_SYS_USER..ABORT_MAX 31

Boe_ 35
Break 30

ctu-by.,,tum t,25
C,mael_ 1,43
Cam 31

Catalqsm_ur 2,40

Check_in40
(_ass6
Climstpmllrmmners43
Comms 30
C,mmnit 15,29
Ccmmiaed withmspe_ to 1.12
_ ?._,49

C.omn 30,57

_5

De.a_cwr 49
Do :31

Emma2
Except 9,31

FALSE 3.5
For 31
F,tmdammsaltype 32,38

Goto 30

Heap 43

Identi/'sen43
ILLEGAL_VALUE 6
INDEX_OUT_OF_BOUNDS 6

Jack 3
Jill 3

Keywonl= 25

66

l._ve 9, 30
Lo_e_Jervw 7.6.40. 42
Locks 2'7
Long-wrm kr.ks 27
Lonsjmp 49

)&tch 43
,'Vttin 7,25
Modit'tu 2
Monitor 211
Mutual ezclmioa 28

Nested!

New-value caly 50
New-vslue/old-vldul 50
Non-atomic 1, 47

Operatim _immcy 32
O_ratiom 1
Overlmdai operttors. 7

Persistmce 1.6, 28
Penmmt 3
Pin27
Pinnin$ 8, 15,27,32
Pmteca_ 29

Read lock 28
Rzaf_Iock7, 28, _
Remver 25
l_ver-_hle 1,26,27,43
Recovemtdamemos_ 43, 44, 45

" Remvem_ object 32
Recovery 27
Rzmom procedurecall 1.25,32
_talion invariant 13
_2
Remm 30,31
Run-time system 28, 31.35, 40

Sertalizability 1,27
Serializatiea order 35
Server 6, 23
Server_ea 26
Server det"mitioo 23
Server object 25
Server opemticm 6
Server pmsrmnmers 43
Server_ram 6. 7, 26, 41
Servers 1
Shost-tean lock 13,28. 32
Stable 1,6,25

9.30
Su'ialls 36

3. 13, 26, 28
Su_ object 32
Su_ 4
Switch. 31

Tall 37
32

Threads 3
T'tmestamp 13
Top-levz/ 29, 30
Toplevel 30
Trans..id 3.13, 35
Trans_idserver 33
Transaction9, 30
Transaction_istency I, 28

67

Trsmmaicm 1
TRUZ
_ _x_mS X3

Tn=_ 43

U_ 30,31,49
Undolss_ 9,30
Undommm 9
Uu_n Z7
Usm'_ 6

VMus 37
• Val_m_37

Voim_ 1,6

When 2, 13,15,29,32
W'nmmwiu:h29, 32
Whilm31
Wrimlock 28
',Vrim_lo_ 7, 2S,47

X_sums 36

68

