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1. Overview

L.1. Terminology

A distributed system consists of multiple’ computers (called nodes) that communicate through a network.
Distributed systems are typically subject to several kinds of failures: nodes may crash, perhaps destroying local disk
storage, and communications may fail, via lost messages or network partitions. A widely-accepted technique for
preserving consistency in the presence of failures and concurrency is to organize computations as sequential
processes called transactions. Transactions are atomic, that is, serializable, transaction-consistent, and persistent.
Serializability means that transactions appear to execute in a serial order. Transaction-consistency (*‘all-or-
nothing’’) means that a transaction either succeeds completely and commits, or aborts and has no effect. Persistence
means that the effects of a committed transaction survive failures.

An Avalon/C++ program consists of a set of servers, each of which encapsulates a set of objects and exports a set of
operations and a set of constructors. A server resides at a single physical node, but each node may be home o
multiple servers. An application program may explicitly create a server at a specified node by calling one of its
constructors. Rather than sharing data directly, servers communicate by calling one another’s operations. An
operation call is a remote procedure call with call-by-value transmission of arguments and results. Objects may be
stable or volatile; stable objects survive crashes, while volatile objects do not. Avalon/C++ includes a variety of
primitives for creating transactions in sequence or in parallel, and for aborting and committing transactions. Each
transaction is identified with a process, and is the execution of a sequence of operations. -

Transactions in Avalon/C++ may be nested. A subtransaction’s commit is dependent on that of its parent; aborting a
parent will cause a committed child’s effects to be rolled back. A transaction’s effects become permanent only
when it commits at the top level. We .use standard tree terminology when discussing nested transactions: a
transaction T has a unique parent, a (possibly empty) set of siblings, and sets of ancestors and descendants, A
transaction is considered its own ancestor or descendant. If transaction B is an ancestor of A, then A is committed
with respect to B if every transaction that is both an ancestor of A and a proper descendant of B has commited. If B
is not an ancestor of A, then A is commited with respect to B if A is committed with respect to the least common
ancestor of A and B in the transaction tree.

Avalon/C++ provides transaction semantics via atomic objects. All objects accessed by transactions must be atomic
to ensure their serializability, transaction-consistency, and persistence. Avalon/C++ provides a collection of built-in
atomic types, and users may define their own atomic types by inheriting from the built-in ones.

Sometimes it may be too expensive to guarantee atomicity at all levels of a system. Instead it is often useful to
"implement atomic objects from non-atomic components, called recoverable objects in Avalon; they satisfy certain
weak consistency properties in the Jresence of crashes. Users who define their own atomic types from non-atomic
components are responsible for ensuring that their types are indeed atomic.

1.2, Avalon/C++ Specifics

Avalon/C++ is a superset of C++ [14], itself an extension of C [7]. C++ is designed to combine advantages of C,
such as concise syntax, efficient object code, and portability, with important features of object-oriented
programming, such as abstract data types, inheritance, and generic functions. We assume the reader has some
knowledge of C++ and freely use its terminology; see [14] for more information on C++.

Avalon’s run-time environment relies on the Camelot system [13, 12] to handle operating-system level details of



transaction management, inter-node communication, commit protocols, and automatic crash recovery. We benefited
extensively from the Camelot Library {1], which provides a clean interface between the Avalon and Camelot
implementors. Some of Avalon’s design was influenced by Camelot, in particular those aspects that Camelot
implementors worked hard to make efficient; however, the reader is not expected to know Camelot nor use it
directly.

Much of Avalon’s design has been inspired by Argus (11] and we owe the descriptions of some of Avalon’s control
structures to the Argus Reference Manual [10]. For other papers on Avalon/C++, please see (2, 5, 6, 16].

1.3. A Roadmap to this Document
The rest of this document is divided as follows:

Chapter 2 A tutorial introduction to the language. Detailed walkthroughs of three simple examples.
Chapter 3 gmference manual for the Avalon extensions to C++. Note that it is only about nine pages
ng.
Chapter 4 A library of Avalon built-in classes and the catalog server.
Chapter 5 A list of practical guidelines for novice and expert programmers.
Appendix [ The full grammar for Avalon/C++.
Appendix II The Unix man pages for running acc, the Avalon/C++ preprocessor.
A Note on Specifications

In writing the descriptions of the meanings of operations, in particular a class’s member functions, we use the
following clauses:
« modifles: A list of objects whose values may possibly change as a result of executing the operation.

e requires: A pre-condition on any invocation state of the operation. The caller is responsible for
ensuring it holds; the implementor may assume it holds at the point of invocation.

o when: A condition on the state of the system that must hold before the operation proceeds. This
condition is often necessary to give since the state of the system may change between the point of
invocation and the actual point of execution of an operation.

o ensures: A post-condition on the returning state. The implementor must ensure that it holds; the caller
may assume it holds upon return.

In C++, a pointer to the object for which a member function is invoked is a hidden argument to the function. As
C++ does, we refer to this implicit argument as this in our specifications.

The absence of a requires (when) clause is the same as the predicaté being TRUE. The absence of a modifies
clause indicates that no changes are made to the values of any object. This specification style and notational
conventions are borrowed from Larch [4].



2. A Tutorial Introduction

An Avalon/C++ system consists of a set of programs, each of which is an application or a server. Applications
invoke operations on servers, which may, in turn, invoke operations on other servers.

An Avalon server is very much like 1 C++ class. Just like a class, a server encapsulates some data, and defines the
operations that can be used to manipulate that data. A client invokes an operation on a server object using the same
syntax it would use to invoke an operation on a class object. There are two main differences between classes and
servers. First, a server supports concurrency: more than one client may invoke operations on a server at the same
time. These concurrent operations execute as concurrent threads (or lightweight processes) within the server. The
server must be implemented so that this concurrency makes sense. Second, a server’s data (if the server is
implemented correctly) is persistent, i.e., it will survive crashes in a consistent state.

This chapter describes at length three examples, illustrating all the basic features of Avalon/C++. The first example
shows how to create, commit, and abort transactions; to invoke operations on servers; and to define and use a simple
atomic type derived from the built-in Avalon class atomic. The second and third examples illustrate the use of
two other built-in classes, trans_id and subatomic, to show another way Avalon users can define atomic
types, and to show what makes Avalon especially different from other (fault-tolerant) distributed programming
languages. We hope the reader will see that programming in Avalon/C++ is not much different from ordinary C++
programming,

2.1. Array of Atomic Integers

In this section, we walk through the use and implementation of a simple Avalon server, called *‘Jill,"”* and client,
called *‘Jack,"* (so named for historical reasons). The Jill server encapsulates an array of atomic integers. From the
client’s viewpoint, each of these integers is atomic; they are recovered after a crash to the state observed by the last
committed transaction, and they ensure the serializability of the transactions that access them. Since each of the
elements of the array is atomic, the array as a whole is also atomic. The elements of the Jill array are initially given
the value -1 to represent an uninitialized state, after which the Jill server permits only non-negative values to be
written in the array. ‘

An atomic array of integers might be useful as a representation for a conference room reservation system. The
elements of the array could represent blocks of time, and writing a value into an element could represent reserving
the conference room at that time for the person represented by that value. Or, the array could be used to represent a
set of bank accounts, indexed by account numbers. Applications that wished to transfer money from one account to
another could do so within a transaction, so that no partial transfers would ever happen. These examples are only
meant to be suggestive; in both cases, other representations might be more convenient and/or efficient. Still, they
show that even a very simple server such as Jill is not too far removed from real-world applications.

2.1.1. Using Jack and Jill
Before we show any Avalon code, 'let us first sce how a user might interact with Jack and Jill. We begin by
assuming that the Jill server has been started. To start up Jack on a Unix system (after making sure that the directory
containing the av_Jjack executable is on your search path), type:

S av_jack

The Jack application starts a transaction and responds with:

Type ? for a list of commands.
Jack(1l]

Jack([1] is the prompt. The ‘‘1’’ indicates the current transaction nesting level. If we type “‘?"’, we get the



following list of commands:

Commands are:

Read array element.

Write array element.

Begin nested transacticn.

Commit innarmost transaction.

Abort innermost transaction.

Abort top level transaction.

Abort top level transaction and quit program.

AProvaen

Jack (1]
Let’s say we want to read what is stored at location 7 of the array:

Jack({l] =

Location to read: 7
Location 7 is uninitialized.
Jack(l]

As we can see, we have not yet given location 7 a value. Let’s do so:

Jack(l]) w

Location to write: 7
Value to write: 7

Write succeeded.

Jack(l] =

Location to read: 7
Value at location 7 is 7.
Jack (1]

Now we can begin a subtransaction, using the ‘‘b’* command. In this transaction, we first read the value in location

7, and then give it a new value:

Jack(l] b
Jack(2] =
Location to read: 7
Value at location 7 is 7.
Jack(2] w
Location to write: 7
Value to write: 27
Write succeeded.
Jack(2] =
Location to read: 7
Value at location 7 is 27.
Jack (2]
Note that the prompt has changed to indicate the transaction nesting level. Let’s continue with another nested
transaction:
Jack({2] b
Jack(3] ¢
Location to read: 7
Value at location 7 is 27.
Jack{3] w
Location to write: 7
Value to write: 37
Write succeeded.
Jack({3] =
Location to read: 7
Value at location 7 is 37.
Jack(3]
If we commit this subtransaction, then we return to its parent, with its effects visible:
Jack{3] ¢
Transaction committed.
Jack([2) ©
Location to read: 7
Value at location 7 is 37.
Jack (2]

Now, however, if we abort the second-level transaction, we return to the top-level transaction, but none of the
effects of the aborted transaction (or its children) are visible.



Jack(2] a

Transaction aborted as per request.
Jack(l] ©

Location to read: 7

Value at location 7 is 7.

Jack(1l]

Now, suppose we start up another instance of av_jack (in another window, perhaps). In this Jack, we start a
transaction, and write into location 10. Then we attempt to read the value we have written into location 7.

S av_jack

Type ? for a list of commands.
Jack(l] w

Location to write: 10

Value to write: 10

Write succeeded.

Jack({l]) ¢

Location to read: 7

The other Jack (‘‘Jack B'’) does not immediately return an answer. This is because the first Jack (‘‘Jack A’")
obtained a write lock on location 7. This lock excludes all other transactions from observing the value written there.
This is needed to ensure serializability: Jack A's transaction may either commit or abort. If it commits, then Jack
B’s query should return 7; if it aborts, then Jack B should inform the user that location 7 is still uninitialized. Thus,
Jack B cannot return anything until Jack A’s top-level transaction terminates. Let’s commit Jack A's transaction:

Jack(l] e

Transaction committed.

(Transaction was top level.) Value at location 7 is 7.
Jack(l] Jack (1]

Committing Jack A’s transaction allowed Jack B’s transaction to proceed with the completion of the read operation.
Now let Jack A start a new transaction. If we attempt to write a new value into location 7 in this transaction, we are
also suspended, for similar reasons:

Jack(l] w
Location to write: 7
Value to write: 70

Jack A cannot write into location 7, because Jack B’s transaction has already observed a value there. Jack A must
wait for Jack B’s transaction to tecminate before it can invalidate this observation. Let’s terminate Jack B's
transaction with an abort:

Jack(l] a
Transaction aborted as per request.
Write succeeded. (Transaction was top laevel.)
Jack(l] r Jack({l]

Location to read: 7
Value at location 7 is 70.
Jack (1]

Note that in this particular situation, even if Jack B had committed, Jack A still reads a 70 at location 7 since Jack
A’s write would still be serialized after Jack B’s read. This scenario has shown how the Jack application can
manipulate the atomic integers contained in a Jill server. In doing so, it has demonstrated some of the properties of
transactions, nested transactions, and atomic objects.

The next two sections describe the declaration and definition of the Jill server, all the way down to the level of the
Avalon built-in atemic_int type; then the following section describes the Jack application program.

2.1.2. The Jill Server Declaration

A C++ class has a declaration and a Jdefinition. A class declaration is generally put in an include file, so that all files
that need to use the class can have access to the necessary information. The class definition (the bodies of the class
operations) is put in one or more files, each of which includes the declaration. An Avalon server should be written



av_jilLh:
#include <avalon.b>

// Brror return codes from operation procedures.
const int INDEX_ OUT_OF BOUNDS = 1; // Attempt to access a location out of bounds.
const int ILLEGAL VALUE = 2; // Attempt to insert a negative number.

// System Constants.
const int ARRAY_SIZE = 1000:; // Number of cells in the array.

server 3ill {( .
stable atomic_int data[ARRAY SIZE];
stable atcmic_int generation;

public:
int read(int index)’
void write(int index, int value);
4411 () : ("av_jill", “"localbost”, 3);
void main ():

}y:

Figure 2-1: Declaration of Jill Server

using the same conventions. Thus, we will first examine Figure 2-1, the include file that declares the J ill server.

The first line of this file includes the file avalon.h. All Avalon programs must include this file before all others.
The next three statements in the file declare and initialize constants used in the program. We follow the C++
recommendation against using preprocessor macros whenever possible. The first two constants,
INDEX_OUT_OF_BOUNDS and ILLEGAL VALUE, are used as error codes. The third, ARRAY_SIZE, determines:
the size of the array.

Next, we come to the declaration of the Jill server. This is textually identical to a C++ class declaration, with the
keyword server substituted for class. A Jill server contains one data member, data, and four operations,
which are the only means of accessing the server’s data. A server differs slightly from a class in that all data
members of a server must be private. Here, data is also declared to be stable, which asserts that it is persistent,
i.e., will survive crashes. Avalon guarantees persistence of the built-in atomic data type, atomic_int; in general,
the programmer must correctly implement any user-defined type of stable variables to ensure their persistence.
Though the Jill server does not, a server could also have data members that are volatile, that is, not stable. Volatile
data are often useful for efficiency, but care should be taken to ensure that all important data is stable. For example,
a server might represent a database as set of records, and maintain a volatile index that allows operations to look up
records based on different fields of the record. The index would speed up the server during normal operation, but
could always be reconstructed after a crash.

The four operations of the Jill server come in two categories: user operations and server operations. Read,
write, and the constructor, 3111, are user operations, the ones that clients can invoke. Read returns the integer
stored at the given index, and write writes the given value at the given index. The intent of these should be fairly
clear; we will go over their implementations shortly. The constructor is a special user operation invoked to initialize
the Jill server. A server will not accept any calls to other user operations until it has received a constructor call, and
it will not accept any constructor calls once it has started accepting calls to other user operations. Since all servers
implicitly inherit from the sexver_root class, the colon syntax tells the sarver_zroot constructor where to
find the server executable (first argument), what machine to start it on (second argument), and how many chunks of
recoverable storage to allocate (third argument). See section 4.4 for a more complete description of the



server_root constructor. The remaining operation, main, is invoked automatically by the server. For
implementation reasons, every server must have amain operation, even if it has no body. (The definition of main
serves as a marker, so the Avalon preprocessor can decide where to put the C++ main procedure for the server.) If
the main operation does have a body, it is executed in the background, concurrently with user operations. Another
kind of server operation (not shown here), invoked automatically by the system, is an optional recovexr operation.
If defined, it is executed whenever the server is started after any crash. A typical recover operation might
reinitialize volatile data.

2.1.3. The Jill Server Deﬁniti_on

2.1.3.1. JillI’s Data Member

Jill's data member, data, is a stable array of ARRAY_SIZE atomic_int's. An atomic_int is an atomic
integer, an integer specially implemented so that it ensures the serializability of transactions that access it, and is
recovered after a crash with the value observed by the last committed transaction that accessed it. These properties
are quite easy to achieve in Avalon. Figure 2-2 shows the declaration and definition of the atomic_int class.

atomic_int.h:
// Declares the atomic integer class.

#include <avalon.h>

class atomic_int: public atomic (
int val;

public:

int operators(int rhs)’

operator int()’

|

atomic_int.av:
// Defines the atomic integer class.

#include <avalon.h>

int atomic_int::operator=(int rhs) |
write_lock ()’
pinning () return val = rchs;

}

atomic_int::operator int() {
read_lock()’
return val;

}
Figure 2-2: The atomic_int Class

The file atemic_int.h declares the atomic_int class. This is derived from the class atomic, which
provides operations that are used to make integers appear atomic. In particular, class atomic has two operations,
read_lock and write_lock. which can be used in implementing operations of derived classes.

The class atomic_int has one data member, an integer called val, which holds the value of the atomic integer.
We show two operations of atomic_int's, both of which are C++ overloaded operators. One is the assignment
operator, and the other is the coercion operator that converts an atomic_int into an int. The assignment
operator is the only way o change the value of an atomic_int, and the coercion to int is the only way of using



that value in a program. Thus, these operators mediate all access to the atomic integer.

In the file atcmic_int.av, we see that the implementations of these operations are quite simple. Taking them in
reverse order, we sce that the operator int () simply calls read_lock and returns the current value. The
assignment operator gets 8 write lock on the atomic_int, and then, within a pinning block, it sets the value 1o
a new value, and retumns the new value. The pinning block informs the Camelot system that the change must be
logged permanently (i.c., to stable storage) so that in the event of crash recovery, the value of an atomic integer is
consistent. Modifications to any atomic object should always be made from within a pinning block. The use of read
and write locks guarantees that if a transaction observes the value of an atomic integer, then no other transaction
may change it until the observer terminates. (Note that data type induction is needed to really make this guarantee;
we can prove that this is true only if these two operators are the only ways of accessing atomic_int’s)

2.1.3.2. Jill’s Operations
Now that we understand atomic integers, we can consider the implementation of the operations of the Jill server.
Figure 2-3 shows the contents of the file av_3jill. aw, which contains the definitions.

av_jilLav:
// The body of the "av_3jill" server.

#include "av_jill.h"

int 3ill::read(int index) (
// If index is out of bounds, return an error cede.
if (index < 0 || index >= ARRAY SIZE) undo (INDEX_OUT_OF_BOUNDS) leave;
return data(index}:;

}

void 3ill::write(int index, int value) (
// If indax is out of bounds, return an error code.
if (index < 0 || index >= ARRAY_SIZE) undo (INDRX_OUT_OF_BOUNDS) leave;

// If value is negative, return an erroer code.
if (value < 0) undo (ILLRGAL VALUR) leave;

data{index] = value;
}

3411::39411() (
for (int 1 = 0; 1 < ARRAY_SIZE; i++) data(i] = -1;
}

void jill::main() (}

Figure 2-3: Definition of the Jill Server

Read takes an index, and requrns the value at that index. Raad assumes that it is being invoked by a client that is
executing within a transaction. If the index is not within the array bounds, read executes the statement:
undo (INDEX_OUT_OF BOUNDS) leave:

This aborts the client’s transaction. The abort code INDEX_OUT_OF_BOUNDS can be used in an except clause,
as we will see when we examine the Jack application. If the index passes this test, then we simply return the value
in the data array at the index. Actually this is a little more subtle than that: the elements of data are
atomic_int’s, and read returns an int. Thus, the C++ automatic coercion mechanisms call the coercion
operator on the indexed element before returning it. The coercion operator gets a read lock on the element before
returning its value. Writae is very similar. It checks that the index is within the proper range, and that the value to



be written is not negative; if so, it assigns the new value to the element. Again, the overloaded assignment operator
of atemic_int takes care of getting the write lock on the atomic integer and logging its new value. The
important lesson to learn from the Jill server is how the right implementation of atomic_int made it possible o
treat atomic_int's almost as if they were regular int’s within the bodies of the server’s operations.

The constructor, 3411, sets all the elements of data to -1, as we specified in the description of Jill. Finally, the
server operation main has no body but, as we have explained, every server must have a main operation.

2.1.4. The Jack Application

This section shows the code for the Avalon application, ‘‘Jack,’’ which uses a Jill server. Most Avalon applications
look very similar to Jack so in subsequent examples, we will omit the application-side code. When Jack starts, it
enters a transaction. It then executes user commands until the user enters the command to exit the program. The
user may read or write array elements, start nested transactions, and commit or abort transactions. Figure 2-4 shows
the first part of the code in av_jack. av.

Like all Avalon programs, av_jack.av starts by including avalon.h. It also includes stream.h and
ctype.h from the C++ library, and av_3jill.h to get the declaration of the Jill server. After the includes,
av_3jack.av declares two more constants used as abort codes within this file and declares the two functions
defined in this file so that they can be used before they are defined. The next statement declares a global variable of
the Jill server type. The client program can invoke operations on this server object just as if it were a class object.

The main procedure prints out an initial message and locates the jill server. If it cannot find it, it calls the Ji11
constructor. It then repeatedly calls jill_transaction until the value of quit_£lag indicates that the user
wants to exit the program. Finaily, the print_help procedure prints out a help message.

Now we consider the heart of the Juck application, the 3111_transaction function. jill_transaction
begins (Figure 2-5) by starting a transaction. It then enters a command loop, in which it remains until the
user decides to quit the program, or terminate (commit or abort) the current top-level transaction. It prints out a
prompt (which contains the current transaction nesting level, which it is given as an input) Next, it gets an input
command, and enters a switch statement that processes that input. The ‘r’ and ‘w’ commands should be fairly
self-explanatory. Note that the read and write operations are invoked on the object denoted by the jill srv
variable exactly as if it were a normal class object. The ‘c’ command uses the leave statement to commit and exit
the current transaction. The ‘a’ command aborts the innermost transaction, using the undo leave statement We
pass an abort code that indicates that the user aborted the transaction. The ‘A’ command aborts the current top-level
transaction. This is implemented by first aborting the innermost transaction, using a special abort code. We will see
in a moment how this code is processed. The ‘q’ command exits the program. To do this, we set the quit_¢£lag,
and exit jill_transaction. We use the special undo return statement (O indicate that we not only want
to return from the current procedure, but also to abort any transactions started by that procedure. The ‘b’ command
starts a nested transaction by making a recursive call to §ill_transaction (with level incremented by one.)
An input of ‘2" causes the help message to be printed, and if the input command is none of these, a message to that
effect is printed.

The rest of §111_transaction is shown in Figure 2-6. The first statement in this figure is just after the body of
the loop that waited for the quit_£1ag to be set (by a nested transaction.) If we reach here, we do the same thing
we did when the user entered a 'q’: undo return. The next scope we leave is that of the transaction. This
transaction block has an except clause appended to it. An except clause allows access to the abort codes
provided in undo leave statements. If a transaction with an except clause aborts, the abort code, if there is one,
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av_jack.av:
#include <avalon.h>
#include <stream.h>
#include <ctype.b>
#include "av_jill.h"

// Abort codes.
const int USER_REQUESTED_ABORT = 100;
consat int TOP_LEVEL ARBORT = 101;

// Torward declarations.
void jill_transaction(int, int*);
void print_help()’

// Global server variable.
3111 *3ill_szv:

void main() {
int quit_flag = 0;

cout << "Looking for 3jill...\n";

Jill_sxv = (3111*) &locate_server ("3ill");

if (3i1l_srv == NULL){
cout << "Couldn’t find jill. Starting a new 3jill...\n";
Jill_sxv = new 3jill;

}else cout << "Found 3jill.\n";

cout << "Type ? for a list of commands.\n";
while (quit_flag < 2) {

.quit_flag = 0;

3411 _transaction(l, &quit_flag):

cout << " (Transaction was top level.)\n";

}
exit (0);
}

// print_help ~-- Prints the commands.

void print_belp() (
cout << "\a\
Commands are: \n\
Read array element.\n\
Write array element.\n\
Begin nested transaction.\n\
Commit innermost transaction.\n\
Abort innermost transactioen.\n\
Abort top level transac:ion.\n\
Abort top level transaczion and quit prograa.\a\a";

RAPraoaven

Figure 2-4: First Part of the Jack Application

is assigned to the variable named after the except. The rest of the except statement is exactly like a switch on
this value. In §ill_transaction, the first two cases handle user-requested aborts. In either case, we print out
a message and return. If a top-level abort has been requested, then we set the quit_£1lag to exit all enclosing
jill_transaction calls. The third and fourth cases handle transactions that were aborted by server operations
because of improper inputs. They both print an appropriate message and return from jill transaction.
Finally, if the transaction aborted but the code is none of the above, then the abort must have been caused by the
underlying system. We can find out why by calling the routine avalon_abort_code_to_string, which



// Interactively construct and perform a transaciton utilizing the 3jill
// server. Can be called recursively to construct nested transactions.

void 3ill_transaction(int level, int* quit_flag_ptr) {
start transaction (
char omd;

while (!*quit_flag _ptr)
int index = O0;
int value = 0;

cout << "Jack(" << level << "] ";
while(isspace (cmd = jestchar()))

’

switch(emd) (
case '‘r’: // Read an array element
cout << "Location to read: ";
cin > index;
value = 3ill srv->read(index):
if (value == -1)
cout << "Location " << index << " is uninitialized.\n";

else

cout << "Value at location " << index << " is " << value << ".\n";
break;
case ‘w’: // Write an array elemant

cout << "Location to write: ";
cin >> index;

cout << "Value to write: ";
cin >> value;

3111 _srv->write(index, value);
cout << "Write succeeded.\n";

break:;
case 'c’': // Commit this transaction
leave;
case ‘a’: // Abort this transaction

undo (USER_REQUESTED_ABORT) leave;

case ‘A’: // Abort top-level transaction
undo (TOP_LEVEL_ABORT) leave;

case ‘q’: // Abort to top level transaction and quit.

*quit_flag_ptr = 2;
undo return:

case 'b’: // Begin a subtransaction
3il1_transaction(level+l, quit_flag ptr):
continue;

case '?': // Print short help message
print_help():
break;

default:
cout << "Unknown command. Type ? for a list of commands.\n";

}
} // ...continued...

Figure 2-5: Beginning of the jill_transaction Function
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takes an integer argument (Section 3.4.6). All arms of the except statement retum from 3ill_transaction,
5o if we exit the transaction and reach the last line of the procedure, the transaction must have committed. We print
a message to that effect.

// ...vest of 3ill_transaction...
// Quit_flag from nested transaction is non-zero, so we must undo return.
undo return’
} except (trans_status) (
case TOP_LEVEL_ABORT:
*quit_flag_ptr = 1;
case USER_REQUESTED_ABORT:
cout << "Transaction aborted as per request.\n";
return;
case INDEX_OUT_OF_BOUNDS:
cout << "Transaction aborted: Array index out of bounds.\n";
return;
case ILLEGAL VALUE:
cout << "Transaction aborted: Attempt to write a negative value.\n":
return;
default:
cout << avalon_abort_code_to_string(trans_status) << “\n";
return;

}
// Othezwise, we committed.

cout << "Transaction committed.\n";
}

Figure 2-6: End of the jill_transaction Function

2.2. FIFO Queue

Let us consider how one would implement an atomic first-in-first-out (FIFO) queue. The easiest way to define such
a queue is to inherit from atomic. A limitation of this approach is that enq and deq operations would both be
classified as writers, permitting little concurrency. Instead, we show how a highly concurrent atomic FIFO queue
can be implemented by inheriting from subatomic. Our implementation is interesting for two reasons. First, it
supports more concurrency than commutativity-based concurrency control schemes such as two-phase locking. For
example, it permits concurrent enq operations, even though enq’s do not commute. Second, it supports more
concurrency than any locking-based protocol, because it takes advantage of state information. For example, it
permits concurrent enq and deq operations while the queue is non-empty.

In order to permit such concurrency it is necessary to provide:
1. A way to compare whether one transaction has committed with respect to another. In particular,
suppose A and B are concurrent transactions:
o If it is known that A has committed with respect to transaction B, then B should be allowed to
observe the effects of A’s operations. Thus, B need not wait and may proceed.

o If it is not known that A has committed with respect to B, then B must not do anything that
depends on A’s effects, since A may sull commit or abort. B should also not invalidate any
results that A may have observed, since B may commit before A. Thus, B might have to wait till
A completes.

2. Exclusive access to an objcct per operation. That is, while transactions may go on concurrently, we
need to prevent individual opcrations from interfering with each other.
Fortunately, Avalon provides the first capability with the class trans_id, which gives us a way to test transaction-
commit order, and the second with the class subatomic, which gives us a way to provide mutual exclusion per
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object.

In Avalon when a transaction commits, the run-time system assigns it a timestamp generated by a logical clock (8].
Atomic objects are expected to ensure that all transactions are serializable in the order of their commit timestamps, a
property called hybrid atomicity (15]. This property is automatically ensured by two-phase locking protocols (3],
such as that used for the atomic_int’s in Jill's array. However, additional concurrency can be achieved by taking the
timestamp ordering explicitly into account. The trans_id class provides operations that permit run-time testing
of transaction-commit order, and thus of serialization order. In particular, trans_1id provides a partial-ordering
function <: for transactions with trans_id’s t1 and 2, if t1 < 2 evaluates to true, then if both transactions commit, t1
is serialized before 2. Note that < induces a partial order on trans_id’s; as transactions commit they become
comparable. Section 4.1.2 describes this type in more detail.

Class subatomic provides operations that give transactions exclusive access to objects. Each subatomic object
has a short-term lock, similar to a monitor lock, used to ensure that concurrent operations do not interfere. Avalon’s

special control construct, the when statement, is used as a kind of conditional critical region:

when ( <TEST> ) {

<...BODY...>

}
The calling process atomically acquires the object’s short-term lock, blocks until the condition becomes true
(releasing the lock if it is not), and then executes the body. The lock is released after the body is executed. Any
changes made to the object while the lock is held will not be backed up to stable storage until sometime after the
lock is released. A transaction’s changes are guaranteed to be backed up before it commits.

2.2.1. The Queue Representation

Figure 2-7 shows that information about enq invocations is recorded in a struct. The item component is thc
enqueued item, the engzr component is a trans_id generated by the enqueuing transaction, and the last component
defines a constructor operation for initializing the struct. Information about deq invocations is reoorded similarly in
deq_rec’s.

The queue is represented as follows: The daqd component is a stack of deq_zec’s used to undo aborted deq
operations. The anqd component is a partially ordered heap of anq_rec’s, ordered by their enq_tid fields. A
partially ordered heap provides operations to enqueue an enq_rec, to test whether there exists a unique oldest
enq_rec, to dequeue it if it exists, and to keep and discard all enq_rec’s committed with respect to a particular
transaction identifier.

Our implementation satisfies the following representation invariant: First, assuming all enqueued items are distinct,
an item is either *‘enqueued’ or ‘‘dequeued,” but not both: if an enq_rec containing (item, enqr] isin the
enqd component, then there is no deq_zec containing [item, enqr, deqr] in the deqd component, and
vice-versa. Second, the stack order of two items mirrors both their enqueuing order and their dequeuing order: if
d1 is below d2 in the deqd stack, then d1->enqr < d2->enqr and d1->deqr < d2->deqr. Finally, any
dequeued item must previously have been enqueued: for all deq_rec’'sd, d->enqr < d->deqr.

2.2.2. The Queue Operations

Enq and deq operations (Figure 2-8) may proceed under the following conditions: A transaction A may dequeue
an item if (1) the most recent deque uing transaction is committed with respect to A, and (2) there exists a unique
oldest element in the queue whose enqueuing transaction is committed with respect to A. The first condition ensures
that A will not have dequeued the wrong item if the earlier dequeuer aborts, and the second condition ensures that



14

struct enq_rec (
int item; // Item enqueued.
trans_id enqgr; // Who enqueued it.

enq_rec(int i, trans_id: t) ( item = i; enqr = t; }
}:

struct deq_rea {

int item; // Item dequeued.
trans_id enqr; // Who enqueued it.
trans_id deqr: // Who dequeued it.

deq_rec(int itm, trans_idé en, trans_idé de);
( item = itm; enqr = en; deqr = de; }
}:

class atomic_int_queue : public subatoaic (

deq_stack deqd; // Stack of deq records.
enq_heap enqd; // Beap of enq records.
publia:

atomic_int_queue() {}: // Create empty queue.
void enq(int item): // Eanqueue an item.

int deq(): // Dequeue an item.

void commit (trans_ids):
void abort (trans_ids)’
~atomic_int_queue()’

}:

Figure 2-7: Queue Representation

there is something element for A to dequeue. Similarly, A may enqueue an item if the last item dequeued was
enqueued by a transaction B committed with respect to A. This condition ensures that A will not be serialized before
B, violating the FIFO ordering.

void atomic_int_queue::enq(int item) {
trans_id tid = trans_id()’
when (deqd.is_empty() || (deqd.top()->enqr < tid))
enqd.insert (item, tid):
}

int atomic_int_queue::deq() (
trans_id tid = trans_id()’
when ((deqd.is_empty() || deqd.top()~>deqr < tid)
6% enqd.min_exists() && (enqd.get_min () ->enqr < tid)) {
enq_rec* min_er = enqd.delete_min()’
deq_rec dr(*min_er, tid):
deqd.push(dr); )
return min_er->iteam;
}
}

Figure 2-8: Queue Operations

Both enq and deq first obtain a new, unique trans_id for the calling transaction. The constructor creates and
commits a ‘‘dummy’’ subtransaction, returning the subtransaction’s trans_id to the calling transaction (i.e., parent).
Since this constructor call returns a unique trans_id, a parent transaction can thus generate multiple trans_id’s
ordered in the serialization order of their creation events. We exploit this property here by using this trans_id to tag
the current enq (deq) operation.
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As for the atomic_int example, the modifications done by enq and deq must be wrapped in a pinning construct
to ensure persistence (that is, changes are made to stable storage).

We use the when statement to guard against simultaneous access to the queue object itself. Eng checks whether the
item most recently dequeued was enqueued by a transaction committed with respect to the caller. If so, the new
trans_id and the new item are inserted in enqd. Otherwise, the transaction releases the short-term lock and tries
again later. Deq tests whether the most recent dequeuing transaction has committed with respect to the caller, and
whether enqd has a unique oldest item. If the transaction that enqueued this item has committed with respect to the
caller, it removes the item from enqd and records it in deqd. Otherwise, the caller releases the short-term lock,
suspends execution, and tries again later.

2.2.3. Commit and Abort

Avalon lets programmers define type-specific commit and abozt operations for atomic data types inheriting from
class subatomic. They each take a trans_id as an argument. The Avalon run-time system automatically calls
an object’s abozrt operation whenever a transaction that may have modified the object aborts. Whenever a
top-level transaction commits, the system calls the commit operation on all subatomic (and atomic) objects that the
transaction (or any of its descendants) may have modified. We make no guarantee about the arrival times of commit
operations, i.c., when the run-time system is informed of a transaction’s commit. In particular, if T1 commits before
T2, the run-time might execute T2's commit before T1's. In addition, the order in which commit (abort) operations
for a given transaction are applied to multiple objects is left unspecified.

Figure 2-9 gives the code for the queue’s commit and abort operations. When a top-level transaction commits, it
discards deq_rec’s no longer needed for recovery. The representation invariant ensures that all deq_rec’s
below the top are also superfluous (they have all committed with respect to the top), and can be discarded. Abort
has more work to do. It undoes every operation executed by a transaction committed with respect to the aborting
transaction. It interprets deqd as an undo log, popping records for aborted operations, and inserting the items back
in enqd. Abort then flushes all items enqueued by the aborted transaction and its descendants.

void atomic_int_queue::commit (trans_idé committer) (
when (TRUR)
if (!'deqd.is_empty() && descendant (deqd.top()->deqr, committer)) {
deqd.clear():
}
}

void atomic_int_queue::abort (tzrans_idé aborter) (
when (TRUR) (
while (!deqd.is_empty() && descendant (deqd.top()->deqr, aborter)) {
deq_rec* d = deqd.pop();
enqgd. insert (d->item, d->enqr):
}
engd.discarzd (aborter)’
}
}

Figure 2-9: Queue’s Commit and Abort

Notice that commit and abort for the queue example use the descendant operation of trans_id’s rather
than the < operation. For example, when we are aborting, we want to remove all items enqueued by transactions
that we know are aborting, i.e., the aborting transaction (abort’s argument) and all of its descendants. If we were
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to use <, an item enqueued by a separate top-level transaction that committed before the aborting transaction would
be incorrectly deleted.

2.2.4. Enq and Deq Synchronization Revisited

Let us look more carefully at the synchronization conditions on enq and deq. Consider why enq must wait for the
enqueuer of the last dequeued item to commit. If it does not wait, then it is possible that a dequeuer may get the
wrong head of the queue as a result of the commit of some concurrent enqueue. For example, suppose a transaction
A starts two subtransactions Al and A2. Al enqueues 5 and commits. A2 does a dequeue (A2 can proceed because
Al has committed with respect to A2), gets a 5, but does not yet ccmmit. Now suppose another top-level
transaction B starts and tries to enqueue 7. (B and A2 are both concurrent) If B does not wait then it proceeds to
put 7 at the head of the queue (A2 has temporarily claimed the 5). If B commits before A (the parent transaction of
Al and A2), then B is serialized before A, implying that A2 should get a7, not a 5. In short, the FIFO behavior of
the queue is violated because B did not wait for A to commit.

The condition on engq is sufficient as well. In particular, an enqueuing transaction does not need to wait for the
dequeuer of the last dequeued item to commit because in some circumstances it can proceed even if the dequeuer
has not finished. For example, suppose transactions A, B, and C are top-level transactions. A enqueues 5 and
commits. B dequeues S, but remains active. If C wants to enqueue, it should be allowed to proceed even though B
(the dequeuer of the last dequeued item) has not completed. Here, if B commits, it does not matter whether B
commits before or after C; B will correctly see 5 as the head of the queue and C will correctly place 7 as the new
head. If B aborts, then C will correctly place 7 after 5, which remains at the head of the queue. Thus, C can proceed
without waiting for B. to complete because there is no way C can be serialized before A and it does not matter in
which order B and C are serialized.

It is easier to see why a dequeueing transaction, B, must wait for the dequeuer, A, of the last dequeued item to be
committed with respect B. If B proceeds to dequeue without waiting for A to complete, then it will have dequeued
the wrong item if A aborts.

2.3. Atomic Counters

As our final example, suppose we wish to implement an atomic counter with operations to increment (iac),
decrement (dec), and test for zero (is_zexo). This counter could be used to represent a joint checking account:
One party might be depositing money at one branch, another party may be withdrawing money from somewhere
else, and a third party, perhaps an auditor, may be searching for depleted accounts. This is not quite realistic since
one could not find out the exact balance of the account (there is no read operation), but adding that function would
complicate our example.

By deriving from class atomic, we can easily implement the atomic counter as shown in Figure 2-10. (Recall that
class atomic provides read_lock and write_lock operations.) The counter is represented by a
nonnegative_int, a class supporting all the usual arithmetic operations on integers, with the property that a
non-negative integer can have a value only greater than or equal to zero. (The overloaded subtraction operation is a
“monus’’ operation.) Again, one can see that building a new atomic class from class atomic is fairly
straightforward: Before performing its real work, an accessing operation (‘‘reader’”) should first obtain a read lock;
a modifying operation (*writers’”) should first obtain a write lock and then pin the object.

This implementation, however, does not realize the greatest possible concurrency. From the abstract viewpoint of
our atomic counter, incrementing and decrementing transactions can go on concurrently (inc and dec are “blind”’
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class atomic_counter: public atomic {
nonnegative_int count;
public:
atomia_counter() (pinning() count = 0;} // initialize counter
void inc();
void dea();
bool is_szero();
}

void atomic_counter:: inc()
write_lock():
pianing () count += 1;

}

void atomic_counter:: dec() (
write_lock();

pinning () count -= 1; // will return max of count-l and 0
}
bool is_zero(); (

read_lock():

return (count == 0);
}

Figure 2-10: Atomic Counter Derived from Class Atomic

writes since they do not return any results); moreover, under certain conditions, it should be possible to rewrn a
result to is_zero even before all incrementing and decrementing transactions have completed. The
implementation in Figure 2-10 does not support this degree of concurrency since it is based on standard two-phase
read/write locking.

Thus, as for the queue example, we will use trans_id’s and subatomic objects as an alternative way to build atomic
objects.

2.3.1. Counter Representation

Let us walk through the representation of the atomic counter by beginning with some auxiliary structures shown in
Figure 2-11. A countez_range will keep track of the range of possible values of the counter in order to permit
is_zero to return possibly before transactions have completed. We will record in a log information about each
transaction’s sequence (op_seq) of inc and dec operations. Each log_entzy consists of a transaction’s
trans_id and the sequence of its operations. Assume we have defined elsewhere (recov_sorted_alist.h)
types for a recoverable sorted association list (recov_sorted_alist), parameterized over the tag type (e.g.,
trans_id) and value type (e.g., pointer to log_entry’s) of the pairs to be inserted in the list, an equality function (e.g.,
on trans_id’s) used for list insertion, lookup, and removal, and a comparison function (e.g., < on trans_id’s) used for
ordering the elements in the list. Its iterative version, (recov_sorted_alist_ittr), similar to that used in the
C++ Manual (p. 183 of [14]), provides a method for looping over all elements in the list, guaranteeing that elements
are yielded in sorted order. Our (recoverable sorted association) list will be sorted by trans_id’s partial order < so
that we can iterate over transactions in commit-time order. :

Finally, we represent the counter by a non-negative integer (count) and a transaction log (log_t) (Figure 2-12).
The value of the non-negative integer will be determined by operations of only top-level committing transactions.



#include <nonnegative_int.h>

struct counter_range {
nonnegative_int lo;
nonnegative_int hi; k
counter_ range (counter_rangeg, op_seq*);
counter_range (counter_rangeé cr) { lo = er.lo, hi = cr.hi; }
counter_range(int 1, int h) (lo=1; hi = h; )
counter_range (int 1) {lo=hiwy; )
counter_range () { init(); }
void init() { lom=1; hi = 0; )
bool unset () { return (lo & 'hi); }

counter_rangeé operator+s (int 1) {lo= 1o+ 4i; hi mhi + &;
return *this; )
counter_rangeé operators (counto:_rmqo& cr)
{ lo = ar.lo; hi = cr.hi: return *thias; }

}:

struct op_seq : public recoverable {
bool to_ine:

op_seq* ops;

op_seq(bool b);
~op_seq() { delete ops; )
op_seqé operator<<(op_seqt*);

)}

struct log_eatry :public recovezable (
trans_id commen_id: T
counter_range query_range;
op_seq* ops;

log_entzy (trans_ids);
log_entry(tzans_ids, beel); -
log_entry(trans_ids, counter_rangeé);

~log_entry() { delete ops; }
bool operator<(log_entrys le) { return (common id < le.common_id); )
bool operator>(log_entrys le) { return (commen_id > le.common_id); )

log_entrys operator=(log_entrys la);
}:

// Load recoverable list frem library

#include "recov_sorted_alist.h"

reacov_sorted alistdeclare(trans_id,Plog_entry, tid_eq,tid 1t);
recov_sorted alistittrdecl (trans_id, Plog_entry, tid_eq, tid_lt);

typedef recov_sorted alist (trans_id,Plog_entry,tid_eq, tid_1t) log_t:

typedef :mv_co:tod_niut_iztx:(t:uu_id,?loq__ont:y,cid_oq. tid_lt) logittr;

Figure 2-11: Auxiliary Structures for Counter
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class atomic_counter : public subatomic {
nonnegative_int count;
log_t log:
// internal functions
countaer_range® is_zero_work (trans_ids):
bool is_zero_in_ range (counter_ranges);
bool is_zero_value {counter_ranges) ;
void add_op_to_log(bool);
bool add_op_to_log_work(trans_ids, bool, log_entry+s);
public:
void ine();
void dec():
bool is_zero():;
atomic_counter () { count = 9; )
void commit (trans_ids t);
void abort (trans_id: t);
}:

Figure 2-12: Atomic Counter Derived from Class Subatomic

2.3.2. Counter Operations

// Add increment operation to log
void atomic_counter::inc() { add_op_to_log(TRUR); }

// Add decrement operation to log
void atomic_counter::dec() { add_op_to_log(FALSE); )

Figure 2-13: Counter’s Inc and Dec Operations

Implementations of the inc and dec operations are shown in Figure 2-13. They use the internal auxiliary functions
shown in Figure 2-14. Inc and dec atempt to record themselves in the log. Add op_to_log first calls the
trans_id constructor with the value CURRENT 1o obtain the trans_id of the calling transaction (compare this to a
different call with no argument in the enq operation of Figure 2-8). If the addition of the operation would not
change the possible view of the cour ter as seen by other active transactions, the operation proceeds. Otherwise, the
operation is forced to wait until all interfering transactions terminate (by either committing or aborting).

An example of a blocked case is as follows: Assume a transaction tests for the zero state of the counter and receives
a positive (i.e., TRUE) result. Until that transaction commits (or aborts) no other transaction can increment the
counter, since that would change its state from zero to non-zero. Other transactions are free to decrement the
counter, however, as this does not alter the visible state of the counter.

The add_op_to_log routine uses a when construct to ensure exclusive access to the log during the operation
insertion. Prior to that, however, it verifies that the insertion of the operation record is possible by calling
add_op_to_log_work, which examines the counter from views by all active transactions whose entries are
present in the log. The add_op_to_log_work rctums FALSE if the operation cannot be added at this time,
causing the when construct to pause and be reactivated at a later time when the situation changes. When the
.condition in the when statement succceds, add_op_to_1log adds the operation to an existing log record (indexed
by the current trans_id) if possible, creating a new record otherwise.

Much of the work for the is_zero predicate (Figure 2-15) is done by the auxiliary function is_zero_work
(Figure 2-16), which constructs a r11ge of possible values for the counter, given the committed value and the log.
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// Add (inc/dec) operation to log, by adding it to operation sequence (op_seq) of existing
// loqg record, or by making a new one. Log entries are keyed by current trans_ids.
void atomic_counter::add_op_to_log(bool b) ({

trans_id current_id = trans_id (CURRENT);

log_entry* eatry = NULL;

bool new_entry_needed = FALSE;

when (add_op_to_log_work(curreat_id, b, entry)) {
if (entry == NULL) (
entry = new log_entry(current_id,b): -
log.insert (current_id, eatry);
} else {
if (entry->ops) *(entry->ops) << new op_seq(b):
else pinning (entry) entry->ops = new Op_seq (b):
}
}
}

inline bool atomic_counter: :1a_tzero_in_range (counter_range range)
{ return ((int) range.lo <= 0); } °

inline bool atomic_counter::is_zero_value (counter_rangeé range)
{ return ((int) range.hi == 0); }

bool azo-l.c_cmco:::add_op_to_loq_uo:k(ernnc_ida 1d, bool to_ine, log_entry*& this entry) {
log_entry** entry’
log_entry** found entry;
logittr next_entry(log);

found_entry = log.lookup(id):
i1f (found entry == NULL) (
this_entry = NULL;
} else {
this_entry = *found entry’
}

for (entry = next_entry(); entry; entry = next_entry()) (
1f ((*entry)->common_id == id) ( // We’ve already seen tbhis guy, so ignore it
} else if (((ventry)->common_id < id) ||
(descendant (1d, (*entry)->common_id})) {
// committed wrt to me, so not a problem

} else { // uncommitted, the tough one. MWust ensure there is no active transaction
// whose termination state (commit or abort) could change the visible state
// (zero or nonzezo) of the counter.
counter_range old_range = (*entry) ->query_range;
i1f (lold_range.unset()) {
counter_range range ( (*entzy) ->query_range, .
(found_entry) ? (*found eatry)->ops : NULL) ;
counter_range new_rangs =
counter_range (range..o - ((to_inc) 2 0 : 1),
range.hi + ((to_inec) ? 1 : 0));

if ((is_zero_value(old_range) tm is_gzero_value(new_range)) ||
(is_tero_in_range (old_range) != is_zero_in_range (new_range)))
{
return FALSE; // bad news
}
}
}

Figure 2-14: Counter’s Inc and Dec Auxiliary Operations
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Is_zexro first obtains the trans_id of the calling transaction. Then is_zero_work iterates over all log entries,
constructing the range of counter values. For each log entry, the logged operations are added together to determine
what the net effect of committing the transaction represented by the trans_id would be. Then, the net value is added
to the high bound or subtracted from the low bound, as appropriate. Operations of uncommitted transactions enlarge
the range of possible values. If the low end of the range is bounded below by a positive integer, is_zero retumns
_-1. If the range starts and ends at zero, then it returns 1. In all other cases (the range starts at zero and ends at a
non-zero integer), it returns 0.

// Public is_zero() predicate

bool atomic_counter::is_zero() (
counter_range* result;
trans_id current_id = trains_id(CURRENT);

when (result = is_zero_work(current_id)) {
log_entry** entry = log.lookup(current_id):
1f (entzy) (
pinning(*entry) (*entry)->query_range = *result;
} else
log.insert (current_id, new log_entry(curreat_id, *result))’

if (is_zero_in_range(*result))
return TRUR:

else
return FALSE;

Figure 2-15: Counter’s Is_zero Operation

The predicate is_zero uses the result (-1, 1, or 0) of is_zero_wozrk to determine whether it can return
immediately (cases -1 or 1) or not. (f it cannot, it exits the when block (thereby releasing the short-term lock), waits
for more transactions to commit (or abort), and tries again later. This process repeats indefinitely, until one of the
two cases for returning from is_zero holds.

2.3.3. Counter’s Commit and Abort

The commit and abort operations (Figure 2-17) must clean up the log. The commit operation additionally
updates the value of the counter by going through the log, finding all the entries for transactions committed with
respect to it, applying these in serialization order, and then applying its own operations. Log entries for transactions
relatively committed to the committing transaction can be discarded. Notice that we need to use the < operation
because we cannot assume anything about the order in which commit operations are executed. Suppose A and B are
transactions and the committed value before either transaction commits is 2. Suppose A does 1 inc and then 5
dac’s; B does 3 ine’s. If A commits, followed by B, the counter’s committed value after A’s commit operation
is executed should be O (a dec has no effect on the.counter if its value is O already); then after B commits, the
counter’s value changes to 3. However, if we were to execute B’s commit operation before A's, then B would
update the counter to 5, and A would change it to a final value of 1, which is wrong. By using <, the commit
operator makes sure it installs all changes of transactions that have committed with respect to the committing
transaction, not just its descendants.

On the other hand, the abort opcration throws away only transactions that are descendants of the aborting
transaction; it would be incorrect to throw away transactions that are not descendants but have relatively committed
with respect to the aborter.
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// Raturns the range of possible counter values as seen by the trans_id.
// Committed transactions cperate directly on counter value,
// while (as yet) uncommitted ones increase range.
counter_range” atomic_counter::is_zero_work(trans_ids id) (
log_entry** entry;
op_seq® op;
logittr next_entry(leg):
// Begin with committed value, and a sequence of op_seqs of uncommitted operations.
nonnegative_int committed_value(count);
struct op_seq_seq (op_seq* ops; op_seq_seq* next;};
op_seq_seq* uncommitted_op_seqs = new Op_seq _seq;
op_seq_seq* last_uos = uncommitted op_seqs’

for (entry = next_entry(). entry; entry = next_entry()) {
1f ((id == (*entry)->common_id) ||
(descendant (id, (*entry) ->common_id)) ||
(id > (*entry)->common_id)) (
// Install relatively-committed operations
for (op = (*entry)->ops; op; op = op->ops)
committed_value += ((op->to_inc) ? 1 : -1);
} else ( // Cache uncommitted operation until all committed one are "in"
if (last_uos != uncommitted_op_seqs) { // not first one
last_uos->next = new op_seq_seq;
last_uos = last_uos->next;
}
last_uos->ops = (*entry)->ops:
}
}

// Delete uncommitted op_seqs altogether if we bhaven’'’t seen any as yet -
if (uncommitted_op_seqs->ops == NULL) (
dslete uncommitted op_seqs;
uncommitted op_seqs = NULL;
}

// Mow, we can go through all (if any) uncommitted op_seqs. Build range of
// possible values from other operations "adding” it to range as appropriate.
counter_range *range = new counter_range (committed_value);
last_uocs = uncommitted op_seqs;
while (last_uos) (

counter_range possible_range (*range, last_uocs->ops);

range->hi = max(range->hi, possible_range.hi):;

range->lo = min(range->lo, possible_range.lo);

op_seq_seq* temp = last_uos; last_uos = last_uos->naxt; delete temp;

// Thers are only two ways to produce a "rssult". If the range does not
// include zero, thea we can safely return FALSE. If the range includes a
// single value, then we can determine with certainty whether it is zero.
// If neither condition is attained, we pause (releasing the short-term lock
// for another transaction), and then try the loop again.
{ int result;
1f (is_zero_in_range(*range))
if (is_zero_value(*range)) result = 1;
else result = 0;
else
result = -1;
if (result !'= 0)
return range;
else
return NULL:

Figure 2-16: Counter’s [s_zero_work Operation
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// Install (and remove) all descendants from log. They are all committed,
// by definition, since aborted ones have been previously deleted by the log.
// (See abort routine below.)

void utonic_pountc:::coanit(t:inn_ids L) |
log_entry** entry;
op_seq* op;

when (TRUE)
pinning() (
logittr next_entry(log):
for (entry = next_entry(); entry; entry = next_entry()) {

if (((*entry)->common_id == t) || ((*entry)->common_id < t)) (
for (op = (*entry)->ops; op; Op = op->0ps)
count += ((op->to_inc) 2?2 1 : -1);

log.remove ( (*entry) ->common_id);
delete *entry:
}
}
}
}

// Remove all descendants from log

void atomic_counter::abort (trans_idé t) (
log_entry** entry;

when (TRUR)
pinning() {
logittr next_entry(log):
for (entzxy = next_entry(). entry; entry = next_entry()) {
if (((*entry)->common_id == t) {| descendant ((*entry)->common_id, t)) (
log.remove ( (*entry) ->common_id): T
delete *entry;
) .
)
}

Figure 2-17: Counter’s Commit and Abort
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3. Reference Manual

3.1. Lexical Considerations

Avalon nonterminals are in roman face. C++ nonterminals are in italics, as in Section 14 of the C++ Reference
Manual in {14]. Keywords are in bold typeface. C++ extended BNF is used. E.g., symboly, means an optional
symbol. A C+ nonterminal followed by ‘“:..."" denotes an extension to that nonterminal.

The extended set of keywords is as follows:

costazrt pinning stable transaction when
except process start undo whenswitch
leave server toplevel variant

3.2. Servers

aggr: .-
serve:r
decl-specifier: ...
server-specifier
server-specifier:
class-specifier

sc-specifier: ...
stable

An Avalon server object is an instance of a sezver definition. A server definition, like a C++ class definiton,
encapsulates a set of objects, and exports 0 clients a set of operations that manipulate the objects and a set of
operations that create and destroy instances of servers. A client invokes an operation on 3 server by calling a
member function of a server object. Creating a new instance Of a server causes a new server process to be started.
When a server object is deleted, the server is killed.

3.2.1. Defining Servers
A server definition contains the following parts:

o Data declarations: Data declared to be stable in the server are restored following a failure. To be

restored properly, stable data must be derived from one of Avalon’s three base classes (Section 3.3):

recoverable, atomic of subatomic. All data must be implemented t0 control concurrent
access.

o A mandatory main. The main member function is executed as 3 background process when the server
is started. This function can be used to provide code which needs to be run independently of the
server’s other operations. A printer server, for example, could use main for the code to run the printer.

Main must exist, even if empty, because Avalon uses the existence of a main implementation t0

determine that the current compilation is for a server, rather than just for a client.
e An optional recover operation, which is executed whenever the server is restarted after a failure.

o Exported (and possibly internal) operations: The exported operations provide the clients the only means
of accessing the server’s data. Communication between clients and servers is through (hidden) remote
procedure call with call-by-value wransmission of data.

e A nonempty set of constructors: A server's constructor defines the parameters that a client must use
when creating a new server and provides code to execute when the server is started. In contrast 10
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constuctors for classes, a server’s constructor must also specify to the run-time system the parameters
needed to start the server process; these parameters are specified in the declaration in a way similar to
passing parameters to the constructor of a class’s parent (see example below). When a client calls a
server’s constructor, the specified parameters are passed to the routines that start the server.!
Example '
Below is a simple server declaration:

sexver simple {

stable atomic_int val; // Protected atomic integerz
publie:

simple (x_string p, x_string a) : (p,n):; // Constructor

int get(); // An exported operation

void set(int 1); // RAnother exported operation
void recover():’ // Called upon server recovery
void main(): // Background process

}:
The parameters to the right of the colon in the constructor are passed to the run-time routines that start the server.
The first parameter is the name of an executable file; if the full path name is not given, the user’s path is used. The
second parameter is the name of a node on which to start the server; If the value "locathost” or NULL is given, local
machine is used; otherwise an x_string argument such as "wing.avalon.cs.cmu.edu” can be given to start the server
on some remote machine.

3.2.2. Using Servers
For an Avalon program to make use of a server it must first obtain a reference to an instance of the appropriate

server. As shown below the client may e:ther create a new server object, starting a new server process:

(1) printserver* p = new printuerver(...); // Start a new printserver
(2) perintserver q (...)’ .

or it may, with the Avalon library locate_server function (see end of Section 4.3), obtain a reference to an
existing server object representing a running server process:
(3) printserver* p = (printserver®) &locate_server(...):; // Locate an existing printserver

Calls to server_root functions and server constructors should not be used as initializers for global or static
variables since the run-time system may be incompletely initialized at the time those variables are initialized.

Once a server instance is found, operations are invoked on the object as for any C++ object:
p->spool ("myfile.txt"); // Invoke an operation.
or
q.spool ("myfile.txt"):’

Since server objects are reaily just C++ objects with special operations, they can be manipulated in the same manner
as other C++ objects. In particular, server objects and references to servers can be passed as parameters to and
returned as values from functions.

3.3. Base Classes

There are three base Avalon classes: recoverable, atomic, and subatomic. Users define their own
recoverable types by deriving from recovaerable. They define their own atomic types by deriving from atomic
or subatomic, and are responsible for ensuring that the types they define are indeed atomic. If a type is not
atomic then transactions that use objects of that type are not guaranteed to be atomic. We expect most users to

1Unlike normal C++ usage, the siarup parameters must be in the declaration seen by the client, rather than with the constructor definition.
This information is useful only to the client, so 1t must appear in a place visible to the client, such as the server declaration.
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derive from class atomic, and more experienced (and demanding) users to derive from subateomic, especially if
more control over the object’s synchronization and recovery is desired. We refer the reader to Chapter §, in
particular Section 5.2, for correct usage of base classes, and [16] for a more formal description of their interfaces.

3.3.1. Class Recoverable
Class Definition

class recoverable (
public:
virtual voidpin(int size);
virtual void unpin(int size);
Ji

Operations

void pin(int size) :
ensures Subsequent changes to the object will not be recorded to stable storage until a later matching
unpin operation. Multiple pins (and their matching unpins) by the same transaction to the
same object have no effect. If the object is already pinned by a transaction different from the
calling transaction, a run-time error is signaled.
void unpin(int size)
modifies The value of the object in stable storage.
requires The calling transaction is currently pinning the object.
ensures If there is exactly one outstanding pin operation, the modifications to the object are logged to
stable storags.
The pin and unpin operations, which should be called in pairs, are used to notify the run-time system that a
modification to an object is to be made. In most cases, the integer argument to pin and unpin should be the size of
. the object being pinned. After a crash, a recoverable object will be restored to a previous state in which it was not
pinned. The pin and unpin operations are usually not called explicitly by programmers; instead, Avalon/C++
provides a special control structure, the pinning block (Section 3.4.7), both for syntactic convenience and as a
safety measure.

3.3.2. Class Atomic

Atomic is a subclass of recoverablae, specialized to provide two-phase read/write locking and automatic
recovery. Objects derived from class atomic should be thought of as containing long-term locks, used to ensure
serializability. Each transaction obtains read (write) locks on all objects it accesses (modifies); locks are held until
the transaction commits or aborts. ‘

Class Definition

class atomic: public recoverable {
public:
// pin and unpin are inhented from recoverable.

virtual wvoidread_lock(:
virtual void write_lock(:

}

Operations
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voidread_lock(Q
when  No transaction other than the calling transaction has a write lock on the object.
ensures If th¢_= calling transaction already has a read lock on the object, there is no effect; otherwise, it
obtains a read lock on the object. Many transactions may simultaneously hold read locks on
the same object.
void write_lockQ
when  No transaction other than the calling transaction has a read or write lock on the object.
ensures If the calling transaction already has a write lock on the object, there is no effect; otherwise it
obtains a write lock on the object, preventing other transactions from gaining any kind of
lock on it.
Read_lock and write_lock suspend the calling transaction until the requested lock can be granted (i.e., when
the when condition holds); this may involve waiting for other transactions to complete and release their locks.

The run-time system guarantees that for nested transactions, the following rules are obeyed in obtaining read and
write locks:
o A child can get a read lock if all transactions holding write locks are ancestors.

e A child can get a write lock if all transactions holding read or write locks are ancestors.
o When a child commits, locks are interited by parents.

e When a child aborts, locks are discarded.
The run-time system guarantees transaction-consistency of atomic objects, by performing special abort processing
that “‘undoes’’ the effects of aborted transactions, including those aborted by crashes. Thus, implementors of atomic
types derived from atomic need not provide explicit commit or abort operations. Finally, persistence is
“‘inherited”’ from class recoverablae; its pin and unpin operations should be used in the same way as
described in Section 3.3.1. .

3.3.3. Class Subatomic

Like atomic, subatomic provides the means for objects of its derived classes to ensure atomicity. While
atomic provides a quick and convenient way to define new atomic objects, subatomic provides primitives 0
give programmers more detailed control over their objects’ synchronization and recovery mechanisms. This control
can be used to exploit type-specific properties of objects to permit higher levels of concurrency and more efficient
recovery. A subatomic object must synchronize concurrent accesses at two levels: short-term synchronization to
ensure that concurrently invoked operations are executed in mutual exclusion, and long-term synchronization to
ensure that the effects of transactions ate serializable. For short-term synchronization, each object derived from

class subatomic should be thought of as containing a short-term lock, much like a monitor lock.
Class Definition

class subatomic: public recoverable (
protected:
void seize();
void release();
void pause();
public:
// pin and unpin are public, by inheritance from recoverable.

virtual void commit(trans_id& tid):
virtual void abort(trans_ud& tid);

}
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Operations

void seize()
when  No transaction holds the short-term lock on the object.
ensures The calling transaction obtains the short-term lock on the object.

voidrelease(
requires The calling transaction holds the short-term lock.
ensures The calling transaction relinquishes the short-term lock.

void pauseQ
requires The calling transaction holds the short-term lock.
ensures The calling transaction releases the lock, waits for some duration, and reacquires the lock
before returning.

The above operations ensure that only one transaction may hold the short-term lock at a time, thus allowing type
implementors to ensure that transactions have mutually exclusive access to subatomic objects. These operations are
protected members of the subatomic class: They are not provided to clients of derived classes, since it would not
be useful for clients to call them. Like pin and unpin, the above operations are usually not called explicitly;
instead, Avalon/C++ provides special control structures, the when and whenswitch statements (Section 3.4.8),
which automatically seize, release, and pause on the short-term lock.

Since commit and abort are C++ virtual operations, classes derived from subatomic are allowed (and indeed,
expected) to reimplement these operations. They each take a reference to a transaction identifier as an argument.
(See the Avalon class trans_id of Section 4.1.2.) The typical effects of these operations are specified as follows:
void commit(trans_id& tid) ,
requires The transaction tid has committed.

ensures Non-idempotent undo information stored for transactions that have committed with respect
to tid is discarded.
void abort(trans_id& tid)

requires The transaction tid has aborted.

ensures The effects of every transaction that has committed with respect to tid are undone.
Commit operations are called for only transactions that commit at the top-level. Whenever a top-level transaction
commits (aborts), the Avalon run-time system calls the commit (abort) operation of all subatomic objects
accessed by that transaction or its descendants. Abort operations are also called when nested transactions abort.
When commit or abort is called by the system, the most specific implementation for the object will be called.
Thus, subatomic allows type-specific commit and abort processing, which is useful and often necessary in
implementing user-defined atomic types efficiently. Notice that users need not call commit and abort explicitly;
the system automatically calls them when appropriate.

3.4. Control Structures

3.4.1. Start

statement. ...

start trans-body
trans-body:

trans-tag statement except-clause .o,
trans-tag:

toplevel

transaction
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Sequential transactions are created by means of a start statement. The toplevel qualifier causes the body of
the start statement to execute as a new top-level (root) transaction. The transaction qualifier causes the
body to execute as a subtransaction of the current transaction, if there is one; otherwise, it too begins a new top-level
transaction. When the body terminates, the transaction either commits or aborts. Normal completion of the body
results in a commit of the transaction. Control flow statements (retuzrn, leave, break, and continue) that
wransfer control outside the scope of the transaction normally commit it, unless they state otherwise via an undo
qualifier (Sections 3.4.4, 3.4.3, 3.4.5). The undo leave statement can be used to pass an abort code that can be
used as a switch value in an except clause (Section 3.4.6). Goto statements that transfer control outside a
transaction are currently not supported. Future versions of Avalon will prohibit such transfers at compile-time;
presently, the result of such a statement is undefined.

3.4.2. Costart

statement: ...
costart { coarms }

coarms:
coarm coarmsqx

coarm:
trans-body

Concurrent transactions and processes are created by means of the costart statement. The process executing the
costart is suspended; it resumes after the costart is finished. Execution of the costart consists of
executing all the coarms concurrently. No guarantee is made about order of execution, or of initialization. Each
coarm runs as a separate (lightweight) process. The toplevel or tzansaction qualifier indicates whether the
coarm is a top-level transaction or subtransaction.

A coarm may terminate without terminating the entire costart either by normal completion of its body, or by
executing a leave statement (Section 3.4.3). A coarm may also terminate by transferring control outside the
costacrt statement. If an outside transfer occurs, the following steps take place:
1. All containing statements are terminated to the outermost level of the coarm, at which point the coarm
becomes the controlling coarm.

2. Every other active coarm is terminated (and aborts if declared as a transaction). The controlling coarm
is suspended until all other coarms terminate.

3. The controlling coarm commits or aborts.
4. The entire costacrt terminates. Control flow continues outside the costart statement.

3.4.3. Leave

statement:. ...
leave;
undo (expression)op‘ leave;

Executing 2 leave statement terminates the (innermost) transaction that the leave occurs in. By itself, leave
commits the transaction, but with the undo qualifier, it aborts it. An unqualified leave statement must occur
textually within the scope of a transaction, or a compile-time error results. An undo leave statement need not
occur within the textual scope of a transaction, but it it must occur within the dynamic scope of one, or a run-time
error will occur. The optional integer expression in an undo leave statement can be used to pass a value that can
be used in the except clause of the aborted transaction (see section 3.4.6.) The value of the expression must be
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greater than zero, but less than or equal to the constant AVALON_SYS_USER_ABORT_MAXZ, or a run-time error
will result. If the expression can be evaluated at compile-time, this restriction will be enforced then.

3.4.4. Return

statement. ...
undoq, return expression,,

The zeturn statement terminates execution of the containing operation. If no undo qualifier is present, then all
containing transactions (if any) terminated by this statement are committed. If the undo qualifier is present, then all
terminated transactions are aborted. When a retuzn statement in a coarm causes control to leave the costarzt

statement, active sibling coarms are aborted. The undo qualifier can only be used within the lexical scope of a
transaction, or a compile-time error will resuit.

3.4.5. Break and Continue

statement: ...
undom break;
undom continue;

Terminating a cycle of a loop (wkile, do, fox), or a switch statement may also terminate one or more
transactions within the loop or switch. If no undo qualifier is present, then all these terminated transactions (if any)
are committed. If the undo qualifier is present, then all of the terminated transactions are aborted. When a break
or continue in a coarm causes control to leave the costart statement, active sibling coarms are aborted. The
undo qualifier can only be used within the lexical scope of a transaction, or a compile-time error will resulit.

3.4.6. Except Clauses

except-clause:
except (idemz;ﬁer)opt statement

An except clause, which may be appended to a transaction body, is used to handle different cases of an aborting
transaction. After a transaction aborts, it allows some case-specific action to be taken. The statement in the clause
is expected to be one or more case statements. If the transaction was aborted as a result of an undo (expression)
leave statement, then the value of the integer expression (called the abort code) is used to determine which of the
cases in statement are executed, just as in a switch statement. The Avalon run-time system may abort the
transaction for a variety of other reasons; in this case, the abort code will be an integer greater then
AVALON_SYS_USER_ABORT_MAX. If the optional identifier is present, then an integer variable of that name will
be defined to have the value of the abort code within the scope of the except clause. The routine
avalon_abort_code_to_string may be used to translate system abort codes to strings describing the reason
for the abort:
char* avalon_abort_code_to_string(int ac)

ensures The returned string describes the reason for an underlying system-induced abort according t0
the integer abort code ac.

2Currently equal to (2!%)-1.
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3.4.7. Pinning

statement: ...
pinning (axprem‘ano“) statement

The pinning statement indicates that statement may modify expression. Statement should not contain a server call
or anything else that could cause an abort. An abort inside a pinning statement will cause deadlock. Expression
must evaluate to be the address of a recoverable object (Section 3.3.1); if it is not provided, this will be used. All
modifications to recoverable objects should be done within pinning statements. If a recoverable object is not
“‘pinned’’ in memory while it is being modified, it may cease to be recoverable and may have other serious
consequences on the run-time system. If the object to be pinned is of variable size, then explicit calls to pin and
unpdin are necessary; the pinning statement cannot be used.

3.4.8. When

statement: ...
when (expression) statement
whenswitch (expression) statement

The when statement provides short-term synchronization for operations on this, which must be a subatomic
object (Section 3.3.3). After a short-term lock on this is obtained, expression is evaluated; if true, statement is
executed. If expression evaluates to false, execution pauses, temporarily relinquishing the lock, until it becomes
true. The short-term lock is released after statement is executed.

The when statement can also be used to provide operation consistency of implementations of operations of
subatomic objects. The operations done in a when statement are done atomically: either they all happen or none of
them happen. If the implementation of a subatomic operation does all of its work in a when statement, operation
consistency is guaranteed. Whaen’s can be nested, but the use of more than one (non-nested) when statements in the
implementation of an operation (e.g., two when’s in sequence) is strongly discouraged and will void this guarantee.

As its name suggests, the whenswitch statement is a combination of the when and switch statements.
Expression and statement are handled just as they would be in a switch statement, with one difference: the
default action is to pause execution until the value of expression equals the value of one of the cases. Since the
default action is provided, it is illegal to include a default in statemens.

3.5. Transmission of Data

Clients and servers communicate through “emote procedure call. The arguments and return values of server member
functions are passed by value. The only exception is that reference arguments are passed by value-result, i.e., their
values are copied back to the client when the server function returns. Pointers to objects are not transmissible.
Objects of any other C++ or Avalon fundamental type are transmissible. An array, struct, or variant (Section 4.1.4)
is transmissible if and only if all its component types are transmissible. Unions cannot be transmitted, since their
actual type is not known at compile time. The chart in Figure 3-1 summarizes which types are transmissible and
which are not. Future releases of Avalon/C++ are likely to reduce the restrictions on transmissible types, and allow
pointer indirection in structures to be transmitted (by copying) between server and client

In most cases, users can rely on the Avalon/C++ compiler to determine automatically how to transmit a value as an
argument to a server function. In the cases where the compiler fails to recognize a type as transmissible, or when the
automatically generated transmission functions are inefficient, the user can define his or her own transmission
functions as part of the class definition. Section 5.4.2 explains how this can be accomplished, and should be read on



a need-to-know basis only.
Types Transmissible Non-Transmissible
int, short int, long int, unsigned int,
C++ Fundamental char, float, double, enum, references pointers
Avalon/C++ Fundamental | bool, trans_id, x_string (character strings)
' servers, arrays, variants, ‘ unions, functions,
C++ Derived (!) classes (-), structs (-) classes (+), structs (+)
Avalon/C++ Derived recoverable, atomic, subatomic

Italics indicates that transmission of that type is not yet supported by the current implementation.
(1) Provided component types and inherited supertypes, if any, are transmissible.

(+) With union or bitfield component types.

(-) With no union or bitfield component types.

Figure 3-1: Transmissible and Non-Transmissible Types
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4. Library
4.1. Non-atomic Avalon/C++ Types and Type Generators

4.1.1. Bools
Avalon defines a boolean type, bool, with exactly two values, TRUE and FALSE, and the usual C++ operations on
booleans: !, &&, I, ==, !=,and =.

4.1.2. Transaction Identifiers

The Avalon run-time system guarintees that the serialization order of transactions is the order in which they
commit The tzans_id class defines operations on Avalon transaction identifiers to permit run-time testing of the
transaction serialization order. There is a trans_id server at each site which keeps track of all the trans_id’s at that
site and handles sending trans_id’s to other sites that need them.

Class Definition

class trans_id (
public:

trans_id(int = UNIQUE);

~trans_id(Q;

trans_id& operator=(trans_id& 1)

bool operatoz==(trans_id& t);

bool operator<(trans_id& t);

bool operator>(trans_id& t);

bool done();

£riand bool both(trans_id& tl, trans_id& t2);
£riend bool descendant(trans_id& t1, trans_id& t2);
)i

Operations

trans_idQ, trans_id(UNIQUE)
ensures A dummy subtransaction is created and committed and the subtransaction’s identifier is
returned to the calling transaction. Note that UNIQUE is the default argument to the trans_id

constructor.

trans_id(CURRENT)

ensures Retumns the trans_id of an operation’s calling transaction.
~trans_id0

ensures The trans_id is deleted.
trans_id& operator=(trans_id& f)

modifies this
ensures this becomes identical to ¢.

bool operator==(trans_id& t)
ensures ¢l == ¢ evaluates to TRUE if ¢/ and ¢ are equivalent; FALSE, otherwise. Note that trans_id’s
created by different operations within the same transaction are not equivalent.

bool operator<(trans_id& t)
ensures If t/ < evaluates to TRUE, then if both ¢/ and ¢ commit to the top level, ¢1 serializes before
t. If the expression evaluates 10 FALSE, either ¢l serializes after ¢, or ¢l and ¢ are
incomparable.
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bool operatoxr>(trans_id& t)
ensures If ¢/ > ¢ evaluates to TRUE, then if both ¢ and ¢t commit to the top level, ¢/ serializes after ¢.
If the expression evaluates to FALSE, either ¢/ serializes before ¢, or ¢/ and ¢ are
incomparable.

bool doneQ
ensures Returmns TRUE if this is committed to the top level; FALSE, otherwise.

bool both(trans_id& t1, trans_id& ©2)
ensures Returns TRUR if ¢/ and 2 are committed to their least common ancestor; FALSE, otherwise.

bool descendant(trans_id& tl, trans_id& ©2)
ensures Returns TRUE if ¢/ is a descendant of (2; FALSE, otherwise.

4.1.3. x_string: Transmissible Strings

Strings are normally declared in C++ in two subdy different ways: (1) as a fixed array of chars, whose size is
known at compile time, and (2) as a char pointer, terminated by a\0, whose size is dynamic; its space is allocated at
run-time. Whereas strings as arrays of characters can be trivially transmitted (Section 3.5), strings as char pointers
cannot because pointers are not transmissible. The built-in Avalon/C++ class, x_string, provides for
transmission of dynamically allocated strings.

Class Definition

stzruct x_string (
x_string(:
x_string(x_string& s);
x_string(char* c);
~x_stringQ;
x_string& operator=(x_string& s);
x_string& operatozr=(char* c);
operator char*();
£riend ostream& operator<<(ostream& o, x_string& s);
friend istream& operator>>(istream& i, x_string& s);
£riend bool operator==(x_string& sl, x_string& s2);
£riend bool operator!=(x_string& sl, x_string& s2);
K

Operations

x_string(
ensures Returns an empty x_string.

x_string (x_string& s)
ensures Returns an x_string constructed from s.

x_string (char® ¢)
ensures Returns an x_string constructed from c.

~x_string O

ensures The x_string is deleted.
x_string& operator= (x_string& s)

modifies this

ensures this becomes equivalent to s.
x_string& operator= (char* ¢)

modifies this

ensures this becomes equivalentto c.

operator char*(
ensures Coerces an x_string into a character array.
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ostream& operator<< (ostream& o, x_string& s)
modifies o
ensures s is written to the output stream o.

istream& operator>> (istreamé& i, x_string& s)
modifles i, s
ensures s is read from the input stream i.

bool operator== (x_string& sl, x_string& s2)
ensures Returns TRUE if s/ and s2 contain the same characters in the same order; FALSE otherwise.
Equality is case-sensitive.
bool operator!= (x_string& sl, x_string& s2) :
ensures Returns FALSE if s/ and s2 contain the same characters in the same order; TRUE otherwise.
Example
server namsList (

publiec:
add_member (x_string member name)’
x_string pick_random mamber ()’
}:

main() (
namalist nl;
char* name = new char;

nl.add_member ("Stewart");
name = nl.pick_random member():
}

The constructor from char* to x _string will be automatically called in the case of calls to
nameList: :add mambecr. The coercion operator will transform the result value of
namelList: :pick_random membec into a char*. '

4.1.4. Variants

aggr: ...
variant

decl-specifier: ...
variant-specifier

variant-specifier:
class-specifier

Avalon/C++ provides an aggregate data type generator, the variant, which is declared similarly to a structure or
class. An object of variant type can contain a value from a set of types. A variant differs from a standard C++
structure in that it can be only one of its possible subtypes at any given time; it differs from the standard C++ union
type in that it is transmissible, i.e., can be sent as an argument (o or returned as a result from a server member
function.

A variant is a tagged, discriminated union and is made up of two perts, a tag and a value. The tag field specifies
which of the possible subtypes is stored in the value field, while the value field contains some instance of that
specified type.
Operations
A variant declaration of the form:

variant VT (T, V; ... T, Vil
automatically defines the following cperations:
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VT operator= VTV
modifies this
ensures Copies v into this. The operational effect is that this’s tag field changes to be v's, and
this's value field is assigned v's, using the the assignment operator defined on v's type.

bool opezator== VTv)
ensures vl == v remuums TRUR if vI and v have the same tag, and their values are equal; FALSE,
otherwise. Two void instances of the same variant type are equal.
bool is_void O
ensures Returns TRUE if this has no value, and is of the special npll-valued void type: FALSE,

otherwise. The void type represents the state of a variant instance prior to its first
assignment.

and the following operations for each type T; and tag Vi

is
ensures Sets the tag of this to V;andits value to val.

T, value_V;0
ensures Returns the value cf this if its tag is V; retums a run-time error otherwise.
bool is_V;0
epsures Returns TRUE if the tag of this is V;; FALSE, otherwise.
Restrictions
Variants are a special type of class, and can only be declared and defined at the top level, i.e., variants cannot be
nested within declarations of definitions of other types, including variants. Variants cannot have member functions.
Example ’

enum PP (FAIL, PASS);
variant grade {
char letter;
short percsntage’
b2 4 pass_tfail;
}Y:
In the above example, grade:: set_letter(char c) would be defined to set the tag of the variant instance to
char, and its value to ¢, bool grade::is_letter () returns TRUE if the tag of the variant instance is char,
and FALSE otherwise, and char grade: :value_lettexr () retums the char value of the instance if it
contains a chaz, and produces 2 run-time: error otherwise. Similar functions for pezcentage and pua_ﬁ.tl

are provided as well.

4.2. Atomic Types

Each C++ fundamental type, €. has a derived Avalon atomic type counterpart, atomic_t., where t currently can
be int, char, or £loat. There is also an Avalon atomic type for booleans, atomic_bool, and for
(dynamically-sized) strings, atomic_string (Section 4.2.1). Each Avalon atomic type has the same sets of
values and operations as its non-atomic counterpart. No atomic type is transmissible.

4.2.1. Atomic Strings

The atomic_string class is intended to be used in a manner similar t0 a chaz*, as used to represent C+
strings. They should be used as components of atomic and subatomic objects to ensure their recoverability. An
atomic_stringcan be of arbitrary, varying length.
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Class Deflinition

class atomic_string {

public:
atomic_string(:
atomic_string(const char* str);
atomic_string(atomic_string& astr);
void operator=(const char® str);
void operator=(const atomic_string& astr);
operatorz char*();

£riaend bool operator==(const atomic_suing& astr, const char* str);
£riand bool operator==(const char* str, const atomic_string& astr);
£riend ostream& operator<<(ostreamé& s, atomic_string& astr);

}i
Operations

atomic_string(Q
ensures Creates and returns a new, empty atomic_string.

atomic_string(const char* str)

atomic_string(const atomic_string& astr)
ensures Creates and returns a new atomic_string, initialized with the value of str (astr).

void operator=(const char* su)

void operator=(const atomic_string& astr)
modifies this
ensures Assigns str (astr) to an atomic_string, adjusting the amount of storage for the string if
necessary.
operatoz char*(
ensures Coerces an atomic_string into a ‘‘standard’’ C string; char®, allowing atomic_strings to be
used in standard C routines.

bool operator==(const atomic_string& astr, const char* str)

bool operator==(const char* str, const atomic_string& astr)
ensures Retuns TRUE if asir and str contain the same characters in the same order; FALSE,
otherwise. Equality is case-sensitive.

ostream& operator<<(ostream& s, atomic_string& astr)
modifies s
ensures gstr is written to the output stream s.
Restrictions
The char* returned by the coercion operator must only be used as a const chazr*, i.e., the contents of the string
should not be changed. The returned chaxz* is only valid until the next operation on an atomic_string. Thus,
multiple coercions may return different char* addresses.
Example ’
server foo {
stable atomic_string a_str:
}: .

a_str = "Hello";
if (a_str == "Hello") ...
ulstzremp (a_str, "hello”):

a_str is defined to be an atomic_string. When the server is started, a_str is created uninitialized. The first
statement assigns the value "Hello" to0 a_str. The second statement uses the equality operator. The last
statement shows a use of an atomic_string where a chaz* is expected; this use is only acceptable if the called



40

routine does not attempt to modify the contents of the chaz* generated by the coercion. See 5.2 for other usage
guidelines.

4.3. Catalog Server

The catalog server [9] is part of the Avalon run-time system It maintains a mapping of server attributes to unique -
server names, and services lookup requests. The current implementation of Avalon has exactly one catalog server
since it is expected to be used relatively infrequently; hence, we do not expect it to be a bouleneck. If experience
shows otherwise, however, we may decide to run one catalog server per node in future versions of Avalon.

When a server starts, it must check in its attributes. The required attributes (type name (TYPE), unique name
(UNIQUE_NAME), and node (NODE)), are automatically registered when the server starts. If more attributes are
desired, the server programmer can add them in the constructor code. For example, a printer server might add the
identity of the printer it is servicing.

Example

printserver::printserver (...) {(
Catalogs.set_attribute (_avalon_my_cserver_id, "PRINTER", "irem");
}:

To avoid boot-strapping problems, Avalon ensures that all clients have a reference to the catalog server, which hasa
fixed unique name, CatalogS. _avalon_my_cserver_id is the unique id retuned by the catalog server’s
check_in function.

When a client wants to locate a server, the locate_sexrvaer function (see section 4.4) calls the catalog operation
name with a list of attributes and returns an object representing the described server.
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Class Definition

sexrver catalog {
public:
int check_in(attr_list alist);
void remove(int id); '
void set_attributes(int id, atr_list new_alist);
void set_attribute(int id, x_string attribute, x_string new_value);
void remove_attribute(int id, x_string attribute);
attr_list get_attributes(int id);
x_string get_attribute(int id, x_string attribute);
int find(attr_list alist);
x_string name(attr_list alist);
void main();
|

Operations

int check_in(attr_list alist)
modifies catalog server
ensures Creates a new entry in the catalog server with the auributes specified in alist and returns a
unique id to be later used to look at and modify the attributes of the new entry.
void remove(int id)
modifies catalog server
ensures Deletes the entry of the server identified as id.

void set_attributes(int id, attr_list new_alist)

modifies Atuributes of id

ensures Replaces the attributed list of the server entry id with the new list alist.
void set_attribute(int id, x_string attribute, x_string new_value)

modifies attribute’s value

ensures Replaces the value of attribute with new_value for the server id in the catalog server.
void remove_attribute(int id, x_string attribute)

modifies Attributes of id.

ensures The set of attributes for id no longer contains attribute.

attr_list get_attributes(int id)
ensures Returns a list of attributes for the server id.

x_string get_attribute(int id, x_string auribute)
ensures Returns the 7ilue associated with artribute for the server id.

int find(atur_list alist)
ensures Retums the unique id of a server whose attributes match alist.

x_string name(attr_list alist)
ensures Returns the value of the unique name attribute of a server whose attributes match alist.

void main()
ensures No effect.

4.4. server_root

The sexver_root class handles starting, killing, and locating servers. All servers which use the catalog server
(this is the default) implicitly inhenit from the server_root class.
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Class Deflinition

class server_root {
public:
server_root (const char* commandLme
const char®  hostName,
u_int n=l,
bool autoRestart = TRUE);
void kill_server (bool no_restart = FALSE);
friend server_root& locate_server (char* typename,
attr_list* atlist = NULL,
int retry = 5);
friend server_root& get_server (char* uniqueServerName);

B

Operations

server_root (const char* commandLine, constchar* hostName, u_int n = 1, bool autoRestart = TRUE)
ensures Starts and initializes a server on node hostName, using the executable file and arguments
given by commandLine, and allocating n (Camelot) chunks of recoverable storage.
autoRestart specifies whether or not the server is to be automatically restarted when it is
killed. If a full path is not specified, the executable file is found on the user’s path, and
**/../<local machine name>'’ is prepended to the path for remote servers. The server is
started on the local machine if hostName is NULL or "localhost”.

void kill_server (bool no_restart = FALSE)
modifies catalog server
ensures If no_restart is TRUE or the autoRestart argument to the server’s constructor was
FALSE, the server is killed and ns entry deleted from the catalog server; otherwise, the
server is restarted.

server_root& locate_server (char* typename, attr_list attrl==NULL, int retry = 5)
requires Each instance of a type of server supplies identifying attributes when it is started.
ensures Returns a reference to a server of type rypename with attribute values that match those in
atrl, if such a server exists; returns NULL otherwise. For multiple instances of a particular
type of server, a specific instance may be selected by listing its unique attributes in autrl.
locate_server will make reiry attempts to contact the catalog server before giving up.
If retry is zero, locate_server will keep trying until it finds the catalog server. :

server_root& get_server (char* unique_server_name)
ensures Returns a reference to a server object for the named server, for those cases where the unique

name and location are fixed or otherwise known. This is useful for servers which do not use
the catalog server.

Note that since Locate_server is a generic function, the resulting reference must be coerced to the appropriate
type when received.

Example

attz_list alist; // s new attribute list
alist.push ("PRINTER", “"izoa"); // CMU printers are named after geams and minerals

printservers ps = (printservers, locate_server ("printserver”, alist):;
if (&ps != MULL) // check for NULL return value
ps.spool (filename)’

This code obtains a reference to the printserver server object for the printer ‘‘iron.”” If such a server exists, it
invokes the server’s spool operation.
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5. Guidelines for Programmers

5.1. Choosing Identifiers
In most ways, Avalon hides the complexity of its underlying mechanisms. When choosing identifiers, however, it
must be remembered that Avalon is a preprocessor that generates code for the underlying system, Camelot, which in

turn is built on top of Mach. Fortunately between Mach, Camelot, Avalon, C++, and C, some valid identifiers
remain.

Here are some guidelines:
1. Do not begin your identifiers with *‘_avalon’’. Except for names documented in this report, all
identifiers inserted into the generated code by Avalon/C++ begin with this string.
2. Do not end your identifiers with **_t'*. All Camelot types end with *‘_t"".
3. Do not end your st zuct names with ‘‘_stzuct’’. Again, Camelot uses these.

4. Beware of uppercase identifiers. There are many constants (#define, enums, etc.) and macros
which use uppercase identifiers.

5.2. Using and Implementing Avalon Types

This section gives some guidelines for correct usage of the two Avalon built-in classes, zecoverable and
atomic. (Rules for subatomic are forthcoming.) The rules outlined here do not represent the only correct
usage, but rather, a usage which is ‘‘guaranteed’’ to provide correct results. These rules, of course, do not address
standard programming practices such as ‘‘Do not free memory twice."’

There are three kinds of programmers:

Client programmers:
These people write programs which invoke operations on servers. Their job is to ensure that the
operations are called correctly. There is only one rule for client programmers to obey: All server
operation invocations must be made within a transaction.

Type users/Server programmers:.
These people define servers, and use built-in or user-defined types. Their job is to declare,
construct, and invoke operations properly on instances of these types.

Type implementors: These people define new types, Avalon rypes, derived from built-in or other user-defined types.
Their job is to define and implement the member functions of the type such that, provided it is
used correctly, it will exhibit a desired behavior. Note that, when creating a new Avalon type
that uses another Avalon type, the programmer is both a type implementor (of the new type) and
a type user (of the used type).

In the next four sections, we give rules for users of recoverable types, users of atomic types, implementors of
recoverable types, and finally, implementors of atomic types.

5.2.1. Using a Recoverable Type
Allocation: All Avalon types are allocated from recoverable memory (a special heap). This is accomplished
through an appropriate constructor provided by either the type implementor or generated by Avalon. Care must stll
be taken, however, not to force allocation of an Avalon type from other than recoverable memory (such as the
stack). Thus:
1. Do not declare variables or functions of an Avalon type. Instead, use references or pointers to Avalon
types.



2. Do not new an array of Avalon objects (e.g., new myatomic{10]).

3. Do not coerce a non-Avalon type to an Avalon type either explicitly, e.g.,
str = (atomic_string) "string”;

or implicitly, e.g., :
atemic_string::atomic_string (char* istr) (...} // constructor taking a char* arguament
void afunction (atomic_strings s) (...} // function expecting an Avalon type
afunction ("string®): // BAD code!

The trouble here is that C++ interprets a constructor of one argument as a coercion from the
argument’s type to the class type. In the example, C++ converts the char* "string” to an
atomic_string reference by creating a temporary variable on the stack of type
atomic_string.

Use: All usage of an Avalon type should be through member functions provided by the type.

5.2.2. Using an Atomic Type
Constructing Atomic Objects: When constructing an atomic object it is important that the creating transaction has
exclusive access to the location which will hold the new object. Thus:

class myatomic : public atomic (
atomic_int* 1i;

void newint (int)’
}:

void myatomic::newint (int n) (
(*this) .write_lock()’
pinning () L = new atomic_int (n);
}

Before creating the new atomic_int, the function obtains exclusive access to the variable (1) which will hold the
address of the object.

Destroying Atomic Objects: Similarly, when destroying an atomic object, the transaction must have exclusive
access to all pointers to the object.

class myatomic : public atomic {
atomic_int* 1;

void deleteint ()’
)}

void myatomic::deleteint() {
(*this) .write_lock():
delete &
pinning () 4 = 0O;

}

5.2.3. Implementing Recoverable Types

Constructors and Destructors: Storage for all Avalon types must be allocated from recoverable memory. Avalon
takes care of storage allocation and deallocation for types with constructors which do not make assignments to
this. See the section Assignment to This for special rules conceming the proper use of such assignments.

Any initializations made to the objcct wihin a constructor must be within a pinning block or pin and unpin
statements (see the section below on Modifications).

3This restriction should be temporary.
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Contents: Avalon types may be constructed from only the following types:
1. In-line basetypes such as int, char, bool, etc.,

2. In-line Avalon types,
3. Pointers to Avalon types.
4. In-line arrays and structs of the preceding types.

All fields must be either private or protected.

Modifications: All modifications must be (dynamically) within a pinning block or a pin/unpin pair. There
must be a matching unpin called for each pin and unpin may not be called without a prior call 1o a matching
pin.

Coercions: Care should be taken against providing the user with a pointer directly into recoverable memory. All
changes to a recoverable object should occur within only the object’s member functions. For example, an
atomic_string may have an operator char* function. This function should malloc volatile memory
hold the string rather than return a pointer to the array in recoverable memory. Otherwise, the user could modify it
outside a pinning block with undefined results. Ideally, C++ would let you define an operator const
charx*, but it does not.

Overriding Member Functions: If the type overrides the default pin and unpin operations, the new
implementations must ensure that, if pinning, or pin and unpin are properly called, all changes will be made
within calls to recoverable: :pin and recoverablae: :unpin.

Assignment to This (long section): C++ allows the programmer to manage the allocation of objects through special
code in its constructors, particularly assignments to the variable this. Using assignments to this, the
programmer can, for example, implement variable-sized objects, and objects which are allocated from a programmer
maintained memory free store. When using an assignment to this, however, care must be taken not to interfere
with Avalon’s managing of the recoverable heap. i

In what follows, we will describe the requirements for
* A simple constructor which explicitly allocates its memory,

o Variable-sized objects, and

e Objects which may be either allocated by the constructor or pre-allocated (such as when the object is an
in-line part of a struct).

A simple constructor or destructor could look like this:

mytype: :mytype () ( .
int mysize = sizeof (mytype):
this = (mytype*) REC_MALLOC (mysize):

pinning() {
// Initialize the fields of your type.

}
}

mytype: : ~mytype () {
pianing() (
// Cleanup the fields of your type.

}

REC_FRRE (this);
this = 0;
}
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In the constructor: .
* All execution paths must make an assignment to this.

e To allocate memory for the object you must use REC_MALLOC rather than new or malloc. If you
have reason to allocate another recoverable object, you may (and should) use new. For example:
this = (mytype*) new atomic_int;

* You must compute the size correctly (use sizeof (your_type) so you include any space needed by
the type's ancestors.)

+ No member functions (e.g. pin and unpin) may be called before the assignment to this.

In the destructor:
¢ REC_FREE (rather than delete or £ree) must be used to deallocate the memory.

o After deallocation, this must be assigned the value O so that the ancestor’s destructors will not be
called.

o No member functions may be called after the deallocation of this.

The most common use of an assignment to this is to implement variable-sized objects®. However, any
recoverable type for which sizeof (yourtype) may return an incorrect value must either call the functions pin
and unpin with the correct size rather than use the pinning statement, or override these functions so that they
use the correct size, allowing pinning to work properly (as shown here).

void mytype::pin(int ignore_size) (
int size = (*this).object_size;
recoverable: :pin(size);

}

° wvoid mytype::unpin(int ignore_size) {
int size = (*this).object_size;
recoverable: :unpin(size)’

}

These functions ignore the incorrect size which the pinning statement uses when it calls pin and unpin and
instead, uses the real size of the object. This particular example assumes that the constructor stores the allocated
size in the field object_size.

It is important to remember that, with C++, many uses of a type force the allocation of the object’s memory prior to
calling its constructor. These uses include: (1) construction of a derived type, (2) allocation of an array of objects of
this type, and (3) in-line use of the type in a struct. If a type which handles its own allocation (assignment to this)
is to be used in these situations, the constructor must be written such that:

1. Memory is allocated only if this is 0 upon entering.

2.If this is not 0, an assignment to this is still executed. The statement this = this; will
suffice.

3. If memory is allocated, the function (*this) .on_heap is called after the assignment to this.
This tells the destructor that the memory was allocated and needs to be deallocated.
For example:
mytype: :mytype () {
1f (this == 0) {
int mysize = sizeof (mytype) + <whatleverelse>;
this = (mytype*) REC_MALLOC (mysize):
(*this) .on_heap()

“The last field of a struct is declared as an array of size 1. When you construct an instance of the type, however, you REC_MALLOC as
much memory as needed for an armay of the desired length (plus the initial fixed size portion of the struct and its ancestors). See {14] for
examples.
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}
else this = this;

pinning() (
// Initialize the fields of your type.
}
}

The destructor would then deallocate the memory only if the constructor allocated it:

mytype: :mytype () (
pinning() (
// Cleanup the fields of your type.

}

if ((*this).get_heap_bit() == TRUR) (
REC_FRER (this);
this = 0;
}
}

The functions on_heap and get_heap_bit are protected member functions exported by class recoverable.
(Since these are used only in the rare instances in which programmers wish to pre-allocate objects, they are not
described with the other exported functions.) The function on_haap simply sets a bit in the object which is
checked by the function get_heap_bit (returning TRUE if it was set and FALSE otherwise).

5.2.4. Implementing an Atomic Type

Types derived from class atomic should follow the requirements outlined above. In addition, if the type is
expected to exhibit atomic behavior (serializability, transaction-consistency, and persistence), the guidelines in this
section should be followed. '

Contents: Pointer fields in the type should point only to types which are atomic (derived from atomic or
subatomic), or recoverable provided that concurrent access to a recoverable object is protected by an appropriate
lock on the containing atomic object. .

Modifications:
1. zead lock on the object should be called by a member function prior to accessing any data in the

object. write_lock should be called prior o any modification to the data. Pointers to non-atomic
(recoverable) objects should be treated the same as in-line non-atomic objects in that appropriate locks
should be obtained on the enclosing atomic object prior to invoking mem™er functions on the object.
No locking is required when accessing atomic components (in-line or pointers) since the objects’
member functions should acquire the necessary locks. .

2.1If it is intended that a non-in-line subcomponent of an object be protected through locks on the
containing object, the subcomponent should be derived from recoverable rather than atomic
(ie., the object is persistent but relies on the caller for concurrency control).

Coercions: An atomic object should not be coerced to a non-atomic type.

Overriding Member Functions: If the type overrides the default read_lock and write_lock operations, the
new implementations must ensure that, if the type user properly calls read_lock or write_lock, the
appropriate calls to atomic: : read_lock and atomic: :write_lockare made.
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5.3. Constructing an Avalon Program

5.3.1. Server Programs :
A server program should be broken into files as follows:

<server>.h declares the server and includes any type definitions required by the server.

<server>.av provides the implementation for each of the server’s member functions and any support
functions not declared or included in <server>.h.

<other>.{av,0} provides the implementation for any functions declared in <server>.h other than the server’s
member functions.

A server program should be linked with the following libraries in order:

-lmisc -lava -lgen -lcamlib -lswitches -ltermcap \
-lthreads -lcam -lmach -lm -lnode

§.3.2. Client Programs

A client program includes the <server>.h file for each server it uses. Avalon ensures that implementations for the

server's member functions are included. It is the responsibility of the programmer, however, to include the

implementations of any other functions declared in <server>.h and any files it includes. In general, a client program

must be linked with all of the .o files for each server it uses except for <server>.o. The libraries needed by the
" server should also be linked with the client program.

5.3.3. Example Templates

eeee myserver.h oo
#include <avalon.h> // always first file included.
#include <mytype.h> // defines types used by the server.

server myserver (
mytype mt;
public:
myserver (...) : (...);
ms_opl (...);
ms_op2 (...):
}:

coee MYSECVELAY wo=e esee myclient.ayv «---
#include <myserver.h> #include <myserver.h>

int private_utility () }

{..
..}

}

mysearver: :myserver (... .
private_utility(); ...}

myserver::ms_opl (...)
myserver::ms_op2 (...)

esee MYLYPL.AY voee
#include <mytype.h>

mytype: :mytype(...) (...}

mytype::mt_opl(...) (...}

oytype::mt_op2(...) (...}

veee SEPVEr.MaKE cove eeee client.make «o--

ace -0 myserver myserver.o mytype.o \ ace -o myclient myclient.o mytype.o \
-lmisc -lava -lgen -lcamlib \ -lmisc -lava -lgen -lcamlid \
-lswitches -ltermcap -lthreads \ -lswitches -ltermcap -lthreads \
-lcam -lmach -1lm -lnode -lcam -lmach -lm ~-lnode

{.
)

{.
{.

The file myserver.av provides only the implementations of the server’s member functions and the
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implementation of private_utility which is not defined in myservez. h and thus, will not be needed by the
client. The object file generated for myserver.av is linked in with the server program but not the client program.

The file mytype.av provides implementations of the other functions defined in myservexr.h through the
#include <mytype.h>. Since the client includes this file, it also needs to be linked with mytype.o.

Finally, both the client and the server need to be linked with the standard set of libraries needed by Avalon. For
complete examples, look at the servers, clients and makefiles in /afs/cs/project/avalon/src/avalon/bin/samples. See
also the acc man pages (Appendix II) for appropriate flags with which to call acc.

5.4. For Experts Only

5.4.1. Undo and Destructors _
When a transaction is aborted using an undo leave (return, break, continue) statement, control may
be transferred directly to the textuai end of the transaction using the C longjmp mechanism. This transfer of
control will exit one or more blocks in which automatic variables may have been initialized by a constructor. These
variables may be instances of a class that has a destructor, and, if so, this destructor would normally be called on
these variables before the block was exited. When a transaction is aborted, however, these variables will not have
destructors called for them. (Note that this is a problem shared with any use of the set jmp/longimp mechanism
in C++.) Normally, the constructor and destructor of a class only modify the object they are invoked on. In this
case, this may not be a serious problem; the only result of not calling the destructor is that space on the free store is
gradually lost. However, some classes are written so that the constructor and destructor modify some external data
structures, and rely on the assumption that both the constructor and the destructor will be called for each object to
maintain the integrity of those data structures. These kinds of classes would interact badly with undo statements
that exit multiple blocks, and should probably be avoided. Future versions of Avalon/C++ may attempt to handle
this interaction more gracefully.

-

5.4.2. User-Defined Transmission Functions
Before any class instance can be actually transmitted to another process, it must be translated into a special, built-in
class called _ava_message. The _ava_message abstract representation is that of a queue. Objects are removed
from the queue in the same order in which they were inserted.
Class Definition
class _ava_message {
_ava_message();
_ava_message& operator<<(_ava_message& msg);
' “ava_message& operator<<(_ava_msgfield& msg):
“ava_message& operator>>(_ava_message& msg);

Operations

_ava_message(
ensures Creates and rcturns a new instance of an _ava_message.

_ava_message& operator<<(_ava_message& msg)

_ava_message& operator<<(_ava_msgfield& msg)
ensures Appends msg to the end of an _ava_message.
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_ava_message& operator>>(_ava_message& msg)
ensures Extracts built-in base types from the message instance. Higher-order types are extracted
using the class’s _recompose function (see below) with the message instance as an argument.

To add user-defined transmission to a user-defined class, you must define two class member functions in order to be
able to transmit a class instance:

operator _ava_message(Q
ensures Coerces a class instance into an _ava_message. It will typicaily need to call the transmission
functions on other types. For each class, _ava_message instances are constructed by calling
the class’s coercion operator. For each built-in fundamental type (int, chars, floats), a special
class, _ava_msgfield, with overloaded constructors, is provided. Since enumerations are

represented in C++ as integer constants, they should be treated as if they were of type int for
the purpose of transmission.

void _recompose(_ava_message& msg)
modifies *this (Obscure, but true.)
ensures Constructs a new instance of the class and overwrites the old one with the new,

Figure 5-1 gives a sample of transmission functions for a simple class.

5.4.3. Processes
Support for processes has not yet been implemented and will not be soon.

A coarm of a costart statement can also be a regular process with no transaction semantics:

coarm: ...
process statement

We make no guarantees as to giving any meaningful semantics to processes that run concurrently with transaction
coarms, or processes that run within transactions.

5.4.4. Pragmas
Support for pragmas has not yet been implemented and will not be soon.
pragma:
@pragma@ pragma-list
pragma-list:
prag .
prag , pragma-list
prag:
identifier
identifer = value

A pragma is used to convey information to the compiler. Use of pragmas is an appropriate escape mechanism to
Camelot features.

For example, Camelot provides two different kinds of logging, new-value/old-value and new-value only and
mechanisms to support various commit protocols. Different combinations are useful depending on the expected
length of a transaction. Thus, we allow the user to specify via a pragma whether a newly started transaction will be
“‘short’’ or *‘long.”” The standard default is ‘‘medium’’ and the following combinations are defined for each value:

Short new-value only logging
blocking protocol, e.g., two-phase commit
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struct address (
int number;
char street (40);
char appt (8]’
char city(20];
char state (3]’
int zipcode;

}:

class personnel {
char name (40}’
int ss_number;
float salary’
enum (WERKLY, HOURLY, MONTHLY} payroll_type:
address home_address;

personnel (istrean); // For data entry
personnel (char* new_name, int new_ss, float new_sal, address new_add)’
operator _ava | ull;g.() H
void _recompose(_ava_messageé);
}:

// Definitions of constructors omitted

personnel:: _ava_message() {
_avn__n.-u.qo msg = new _ava _message();
int i;

// this->name
for (L = 0; 1 < 40; i+4+) *msg << _ava_msgfield(name(i]):

*mgg << _avn_mgtiold(n_._numbo:): // this->ss_number
*msg << _ava_msgfield(salary): // this->salary

*msg << _ava uqﬂ.old( (int) payroll_type)’ // this->payroll_type
*msg << _ava_message (home_address): // this->homa_address

return (*msg)’

}

void personnel __roeoupono'(_av:_mlatq.t msg) |

int 4
for (L = 0; 4 < 40; i++) mag >> name(i]); // this->name
msg >> ss_number; // this->ss_number
msg >> cllazy. // this->salary
( int temp: msg >> temp; payroll_type = temp; } // this->payroll_type
home_address._recompose (msg); // this->home_address
}
Figure 5-1: User-defined Transmission Functions
Medium new-value/old-value logging
blocking protocol, ¢.g., two-phase commit
Long new-value/old-value logging
non-blocking commit protocol
Default The default value is ‘‘Medium.”’

Notice that the combination of new-value only logging and a non-blocking commit protocol is not permitted.

Other pragma values will be determined to incorporate other meaningful combinations, e.g., to indicate using a
“*highly optimized’” protocol for a local transaction.
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Restrictions :
In general, pragmas are only allowed at any place where the syntax rules allow a declaration. Currently, pragmas

are treated exactly as comments, and thus, can appear anywhere a comment can appear. No interpretation of pragma
values is currently done. :
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Appendix I
rammar
The language this grammar defines is a strict superset of that presented in Section 14 of the Reference Manual in
(14].

I.1. Expressions

expression:
term
expression binary-operator expression
expression ? expression : expression
expression-list

expression-list:
expression
expression-list , expression
term:
primary-expression
unary-operator term
term ++
term --
sizeof expression
sizeof (type-name)
( type-name ) expression
simple-type-name ( expression-list )
new [ype-name im‘tializerop,
new ( type-name )
delete expression
delete [ expression] expression

primary-expression:
id

: < identifier

constant .

string

this

( expression )

primary-expression| expression ]

primary-expression ( expression-list ,p, )

primary-expression . id

primary-expression -> id
id:

identifier

operator-function-name

typedef-name :: identifier

typedef-name :: operator-function-name
operator:

unary-operator

binary-operator

special-operator

free-store-operator
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Binary operators have precedence decreasing as indicated:
binary-operator: one of
» / %
+ -
<< >>
< >
== =

&

A

I

&&

]
assignment-operator

assignment-operator: one of
= 4m @ = [= %= A= &= |z >>= <<=

unary-operator: one of
* &4~ -

special-operator: one of

[free-store-operator: one of
new delete

type-name:
decl-specifiers abstract-declarator

abstract-declarator:
empty
* abstract-declarator
abstract-declarator ( argument-declaration-list )
abstract-declarator | Constant-expression ]
simple-type-name:
typedef-name
char
shozt
int
long
unsigned
float
double
void
typedef-name:
identifier

1.2. Declarations

declaration:
decl-specifiers_, declarator-list
name-declaration
asm-declaration
pragma
name-declaration:
aggr identifier ;
enum identifier ;
aggr:
class
struct

pt



union
server
variant

asm-declaration:
asm( string ),

pragma.
dpragma@ pragma-list

pragma-list
prag .
prag , pragma-list

prag:

identifier

identifer = value
decl-specifiers:

decl-specifier decl-speciﬁersap,

decl-specifier:
sc-specifier
rype-specifier
fet-specifier
friend
typedef
server-specifier
variant-specifier
type-specifier:
simple-type-name
class-specifier
enum-specifier )
elaborated-type-specifier
const
sc-specifier:
auto
extern
register
static
stable
fct-specifier:
inline
overload
virtual

server-specifier:
class-specifier
variant-specifier:
class-specifier
elaborated-type-specifier:
key typedef-name
key identifier
key:
class
struct
union
enum
saerver
variant
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declarator-list:
init-declarator
init-declarator , declarator-list

init-declarator:
declarator irdnhlizeroﬂ

declarator:

dname

( declarator)

* const,, declarator

& const_ declarator

declaratora(‘argumem-declamtion-list )

declarator [ constant-expression ]
dname:

simple-dname

typedef-name :: simple-dname
simple-dname:

identifier

typedef-name

~ rypedef-name

operator-function-name

conversion-function-name

operator-function-name:
operatozr operator

conversion-function-name:
operator fype

argument-declaration-list:
arg-declaration-list,;, ... 50

arg-declaration-list:
arg-declaration-list , argument-declaration
argument-declaration

argument-declaration.
decl-specifiers declarator
decl-specifiers declarator = expression
decl-specifiers abstraci-declarator
decl-specifiers abstract-declarator = expression

class-specifier:
class-head ( member-listopt }

class-head:
aggr identifier
aggr identifier  public,, typedef-name

member-list:
member-declaration member-lx’stop,

member-declaration:
decl-specifiers member-declarator initializer ,,, ;
function-definition ;
decl-specifiers opt fet-declarator base-initializer
private:
protected:
public:

member-declarator:
declarator
identifier ,,, : constant-expression



initializer:

= expression

= { initializer-list }

= { initializer-list , )

( expression-list )
initializer-list:

expression

initializer-list , initializer-list

{ initializer-list }
enum-specifier:

enum idennﬁerop‘ { enum-list }

enum-list:
enumerator
enum-list , enumerator

enumerator:
identifier
identifier = constant-expression

1.3. Statements

compound-statement:

{ statement-list opt }
statement-list:

statement

statement statement-list

Statement:
declaration
compound-statement
expression opt *
i£ ( expression) statement
i £ (expression ) statement @lsa statement
while ( expression ) statement
do statement while ( expression ) ;
for ( statement expressioum 4 exprcssionop, ) statement
switch ( expression) statement
case constant-expression . statement
default : statement
undom break;
undo_, continue;
goto identifier ;
identifier : statement
start trans-body
costart { coarms }
leave;
undo (expression) opt leave;
undo_,, TetUrn expression,,
pinning (expressionm) statement
when (expression) statement
whenswitch (expression) statement
pragma
trans-body:
trans-tag statement except-clause .o
trans-tag:
toplevel

57
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transaction

coarms:
coarm com'msqx

coarm:
trans-body
process statement

except-clause:
except (identifier) ope Statement

1.4. External Definitions

program:
external-definition
external-definition program
external-definition:
function-definition
declaration
function-definition:
decl-specifiers o, fet-declarator base-initializer ,, fct-body
fct-declarator:
declarator ( argument-declaration-list )

fcr-body:

compound-statement
base-initializer:

: member-initializer-list
member-initializer-list:

member-initializer

member-initializer , member-initializer-list
member-initializer:

identiﬁerom ( argumem-listop, )

L.5. Preprocessor

#define identifier token-string
#define identifier( identifier , ... , identifier ) token-string
#else

#endif

#1£€ expression

#ifdef identifier

#ifndat identifier
#include "filename”
#include <filename>

#line constant “filename”
#undef identifier
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NAME

acc — an Avalon/C++ compiler
SYNOPSIS

acc [ option ] ... file ...
DESCRIPTION

acc is an Avalon/C++ compiler. File names that end with

., C+, by Dty AV
are taken to be Avalon/C++ source files. They are compiled, producing .0 files, as in cc (1).

S are taken to be as (1) source files.

d are ignored.

File names that end with anything else are assumed to be object files or libraries and are handed
directly to cc.

acc uses cpp 1O pre-process the input, avfront (0 process the Avalon extensions to C++, cpp O pre-
process the avfront output, /u:r/misc/.c++lliblcfront to process the C++ extensions 0 C, cc 10 compile
the resulting C code, and lusrlmisc/.c++/lib/munch 1o find global variables with constructors and des-
tructors. acc defines the macros __STDC__, ¢ _plusplus, and avalon when running cpp the first time,
_STDC__ and c_plusplus when running cpp the second time. C++ include files are normally taken
from /usrlmi.s'c/.c++/include. _

There are several options which tell acc whichprogrmnstomnandwhaewpmtheomput. These
options are all prefixed by +a .

The following options tell acc to run a partial Avalon compile:

+aE  Only cpp is run. The result is printed on stdout.

+aF  Only cpp and avfront are run. The result is printed on stdout.

+aG  Only cpp. avfront, and cpp ar® run. The result is printed on stdous.

+aH  Only cpp, avfront, cpp. and cfront are run. The result is printed on stdout.

The following options tell acc to run all or part of a C++ compile:

+al Only cpp is run. The result is printed on stdous. The avalon macro is not defined. This option
is equivalent to +aE +aK.

+al) Only cpp and cfront are run. The result is printed on stdout. The avalon macro is not defined.
This option is equivalent 0 +aH +aK. ‘

+aK  All passes except avfront and the second pass of cpp are run. The agvalon macro is not
defined.

The following options tell acc to generate 2 list of makefile dependencies:

+aM cpp is run 0 generate 3 list of makefile dependencies. The macros _STDC_, ¢ _plusplus,
and avalon are defined. The result is printed on stdout.

+aN cppismunto generate a list of makefile dependencies. The macros __STDC__ and c_plusplus
are defined. The avalon macro is not defined. The result is printed on stdout. This option is
equivalent 0 +aK +aM.
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FILES

The following options tell acc various other things about how to do the compile:

+asuffix
The +aE, +aF. +aG. +aH, +al, +aJ, +ak, +aM, +aN and +aP options will send the output
for each file to a corresponding file with the suffix suffix, rather than to stdout.

+af Files are used in the preprocessor stage instead of pipes. This may improve performance on
machines that spend most of their time paging.

+ah  Lines beginning with #line or #number will be removed from the output produced with the
+aE, +aF, +aG, +aH. +al, +aJ, +aK, +aM, +aN and +aP options.

+ai The output of cfront for each file is put in 2 file with the suffix "..c". These files are normally
deleted, but the +ai option keeps them around

+aP  cpp and avplain are run. The result is printed on stdows. avplain is a version of avfront that
parses but does not actually implement the Avalon extensions. It is useful only for maintainers
of avfront. '

+aT  acc will print timing information.
+aV  acc will print all the details about what it is doing.

The following options ar® passed on in various forms to the programs that acc runs. This is not an

exhaustive list. Other options not listed in this man page ar¢ assumed to be avfront and ¢front options

if they begin with 14, cc options if they begin with *=’, and files if they begin with anything else.

+d cfront will generate code that is more suitable for debugging. Inline functions will not be
expanded.

+nocatsrv
avfront will generate code which does not use the catalog servetr.

+S Some run-time statistics for avfront and cfront will be printed on stderr.

+V avfront and cfront will accept old-style C declarations. Include files will be taken from
Jusr/cs/include rather than /usrlmisc/.c++/include

-2Dname=value

~2Dname
Name is defined for the second pass of the C preprocessor. If no value is given, name is
defined to be 1. :

=2Uname

The definition of name in the second pass of the C preprocessor is removed.

-Dname=value

~Dname
Name is defined for the first pass of the C preprocessor. If no value is given, name is defined
to be 1.

_ldir dir is added 10 the search path for include files. Directories given in -1 options are searched
before /usr/mz'sc/.c++/include and the directories in the CPATH environment variable. This
option affects both passes of the C preprocessor.
~Uname
The definition of name in the first pass of the C preprocessor is removed.

-W avfront, cfront, and cc warning messages are not printed.

<some directory in $LPATH>/cpp
The C preprocessor.
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avfront The Avalon preprocessor.

/usr/misc/.c++/lib/cfront
" The C++ preprocessor.

/usr/misc/.c++/lib/munch
Finds global variables with constructors and destructors.

cc The C compiler.
*.c QOutput from cfront.

__ctdt.c
Output from munch.

SEE ALSO

BUGS

as (1), cc (1), ld (1), The Avalon Report

avfront sometimes prints names twice in its error messages. For example, "foo" might be printed as
"foofoo". This behavior has been observed only when avfront was given incorrect code.

The error handling routines in avfront get confused easily, resulting in unintelligible error messages.
This problem may also cause avfront to crash.

The code generated by ¢front seems to be more likely to trigger bugs and overflow tables in the C com-
piler than normal C code. The code generated by avfront is more likely to do these things to the C++
compiler than normal C++ code. )

4th Camegie-Mellon Update 7/28/87 3
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