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COMMENT--Durra,alsocalled"Indianmillet"and"Guineacorn,"'is • typeof grainsorghum
withslenderstalks,widelygrownin warmdry regions. Durrasoundslike "durable"which
isnl a bad connotation. CarnegieInstitutepe_onnel indicatedthat corn is by far the
la_jestin sQeofallgrains. Werespectfullydeclinedtheir_ for • namedenoting
"largestgrain.'"

1. Introduction
Many computation-intensive, real-time applications require efficient concurrent execution of multiple tasks

devoted to specific pieces of the application. Typical tasks include sensor data collection, obstacle

recognition, and global path planning in robotics and vehicular control applications. Since the speed and

throughput required of each task may vary, these applications can best exploit a computing environment

consisting of multiple special and general purpose processors that are logically, though not necessarily

physically, loosely connected. We call this environment a heterogeneous machine.

During execution time, processes, which are instances of tasks, run on possibly separate processors, and

communicate with each other by sending messages of different types. Since the patterns of

communication can vary over time, and the speed of the individual processors can vary over a wide

range, additional hardware resources, in the form of switching networks and data buffers are required in

the heterogeneous machine.

The application developer is responsible for prescribing a way to manage all of these resources. We call

this prescription a task-level application description. It describes the tasks to be executed, the possible

assignments of processes to processors, the data paths between the processors, and the intermediate

queues required to store the data as they move from source to destination processes. A task-level

description language is a notation in which to write these application descriptions. The problem we are

addressing is the design of a task-level description language.

We are using the term description language rather than programming language to emphasize that a

task-level application description is not translated into object code of some kind of executable "machine

language." Rather, it is to be understood as a description of the structure and behavior of a logical

machine, that will be synthesized into resource allocation and scheduling directives. Thesedirectives are

to be interpreted by a combination of software, firmware, and hardware in a heterogeneous machine.

Although our ultimate goal is to design and implement a task-level description language that can be used

for different machines and for varying applications, our first pass is influenced by both a specific

architecture, HET0 [4], and by a specific application, the Autonomous Land Vehicle (ALV), and more

specifically, the perception components of the ALV [5]. We assume there is a cross-bar switch, intelligent

buffers on the switch sockets, and a scheduler that can communicate with all processors, buffers, and I/O
devices.

1.1. Scenario

Here is a scenario from the user's viewpoint of how the task-level language is used to help develop an

application to run on some target, heterogeneous machine. We see three distinct phases in the process:

1. the creation of a library of tasks,

2. the creation of an application description, and

3. the execution of the application.



Library creation activities
These happen early in the life of an application, when the primitive tasks are defined.

I. The developer breaks the application into spedfic tasks. Typical tasks are sensor
processing,feature recognition,map database management,and route planning. Other
tasksmightbe of a more generalnature,suchas sorting,arrayoperations,etc.

2. The developerwritescode implementingthetasks. Fora giventask, there may be possibly
many implementations,differing in programminglanguage (e.g., one written in C or one
written in W2), processor type (e.g., Motorola 68020 or IBM 1401), performance
characteristics,or other attributes. The writingof a task implementationis more or less
independentof Durra and involvesthe coding, debugging,and testing of programs in
variouslanguagesexecutingon variousmachines.

3. The developerwrites task descriptions and enters themintothe library. This is whereDurra
firstentersthe picture. Durra is used to writespecificationsof each task'sperformanceand
functionality,the types of data it produces or consumes, and the ports it uses to
communicatewith othertasks.

Description creation activities
These happenwhenthe userdecidesto puttogetheran application(say,autonomousland vehicle)using
as buildingblockstasks inthe library.

I. The user writesa task-level application description. Syntactically,a task-levelapplication
descriptionis a singletaskdescriptionand couldbe storedinthe libraryas a new task. This
allowswriting hierarchicaltask-levelapplicationdescriptions.

2. The user compiles the description. During compilation, the compiler retrieves task
descriptionsmatchingthe task selections specified by the user from the library and
generatesa set of resourceallocationand schedulingcommandsto be interpretedby the
scheduler.

3. The user links the output of the compiler with run-time support facilities, obtaininga
scheduler program.

Application execution activities
1.The scheduler downloadsthe task implementations,i.e., code, to the processors and

interpretsthe schedulingcommandsand initializationcode forthe machine.

2. The heterogeneousmachine runs the processes on processors as dictated by the
schedulerprogram.

1.2. Terminology
Durra is used for describingprocessinteractionat a logical, not physical,level, and thusit can be used

independentlyof any physicalconfigurationof an actualheterogeneousmachine. We will use different
terms to distinguish between the physical network (P) of processors, memories, and switches

' implementingthe heterogeneousmachine, and the logical network (L) of processesand data queues
implementingthe application(A). Figures 1 and 2, respectively,illustratethe physical and logical
componentsof the system.

buffers(P) computersactingas inputor outputdevices,interfacingprocessorswith the switch.
Asan optimization,buffersexecute predefinedtaskssuchas merge,deal, broadcast,
anddata transformations.

implementation(A) code written in some programminglanguagefor a specificprocessor,and satisfying
the performance,functional,andotherrequirementsspecifiedina taskdescription.

ports(L) processes'logical input or output devices. Input portsremove data from queues;
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outputportsdepositdata inqueues.

process(L) a uniquelyidentifiableinstanceof a task, runningon a processoof the heterogeneous
system. The same task may be instantiatedany numberof timesto obtainmultiple
processesexecutingthe samecode.

processor(P) a computer in the heterogeneoussystem, not to be confused with the scheduler
processoror the buffers. Each processorin the heterogeneoussystemhas one or
two buffersthat act as interfacesbetween the processorand the switch. Processors
send data to and receive data from buffersas their means of communicationwith
other processors.

queue (L) a uniquelyidentifiablelogicallinkbetween two processes,followinga FIFO discipline.
Queuesserve as intermediariesbetween inputand outputports.

scheduler(P,L) a computer serving as resource allocator and dispatcher in the heterogeneous
system. It controlsthe switch,all processors,and all buffers.

switch(P) an interconnectionnetworkused to tie togetherall processorsin the heterogeneous
system. The switchroutesdata betweenthe buffersattachedto the processors.

task (L, A) an abstractionof a set of implementations,each writtenfor a class of processors,
implementingpartof an application.Tasks are storedinlibraries.

The processesof the systemare implementedbydownloadingand executingtask implementations,i.e.,
programs,onto processorsof the rightkind. The queuesof the system are implementedby allocating
space inthe correspondingbuffers'memories. This is illustratedin Figure3.

1.3. Notes on Syntax
To describe the syntaxof the Task-LevelDescriptionLanguage,we use the standardBackus-Naur-Form

(BNF), with the followingconventions.
1. Commasseparatealternatives.Braces("{" and "}") indicateoptionality.

2. Terminal symbolsare enclosedin quotes(" and "), but the quotesdo not belongto the
terminal.

3. No distinctionis made betweenupperand lowercase lettersinterminalsandnon-terminals,

4. A non-terminalof theformxyz_LiStcomma standsfor a listof one ormore xyz'sseparatedby
commas,i.e., the character",", notthestring"comma."

5. Commentsstartwith the characters"--". Any characters between "--" and the end of the
line are ignored.

6. Identifiersare, in the usual fashion, sequences of letters, digits, and "_" (underscore),
beginningwith a letter.

7. Stringsare arbitrarysequencesof Asciiprintablecharacters,enclosedin doublequotes(').
A doublequoteinsidea stringmustbewrittenas two consecutivedoublequotes:

"Astringwitha doublequote,"', inside"

8. Integer and real numbers are alwaysdecimal, i.e., base 10. A realnumbercan terminate
witha period"." withouta fractionalpart.

1.4. Keywords and Predefined Identifiers
Keywords and predefined identifiersare highlightedin normal text by writing them in bold face, or in
"quotes", respectively. The followingwords are keywords in the language: after, and, array, ast,
attributes, before, behavior, bind, cst, date, days, during, end, ensures, est, gmt, hours, identity, if,
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index, in, iS, local, loop, minutes, months, mst, not, of, or, out, ports, process, psi, queue,
reconfiguration, remove, repeat, requires, reshape, reverse, rotate, seconds, select, signals, size,
structure, task, then, timing, to, transpose, type, union, when, years.

The following words are predefined identifiers in the language: "broadcast", "current_size".
"current.time", "deal", "delay", "get", "implementation","merge", "minus_time", "mode", "plus_time",

"processor","put",

1.5. Literal Values

Each of the non-terminalsIntegerValue,RealValue, StringValue,and TimeValue stands for (a) literals
(constants)of the appropriatekind,or (b)namesof attributes(Section8) whosevalues are literaisof the

appropriatekind, or (c) callsto one of the predefinedfunctionsin the language (Section10.1) returning
valuesof the appropriatekind:

IntegerValue : := IntegerLiteral ,

GlobalAtt rName ,

Funct ionCall

RealValue : := RealLiteral ,

GlobalAtt rName ,

Funct ionCall

StringValue : := StringLiteral ,

GlobalAtt rName ,

Funct ionCa Ii

TimeValue : := TimeLiteral ,

GlobalAtt rName ,

Funct ionCa 11

1.6. How To Read This Manual

This manual is written top-down, so the reader shouldbe aware that there are manyforwardreferences.
One can read this manual from beginningto end to get an overviewof the language,and then read
individualsectionsto understandthe detailsof each languagefeature.



2. Compilation Units
Syntax:
Compilation ::= CompilationUnit_Lista_Ri_o. '';''
Co_gilationUnit ::= TypeDeclaration ,

TaskDescription

Meaning:
There are two kinds of compilation units (i.e., separately compilable structures): type declarations and
task descriptions.

Any number of compilation units can be submitted to the compiler as a group, in a single text file. Each

unit is compiled in order, and if no errors are detected, the unit is entered into the library. It can then be

usedby units compiled later, including units submitted later in the same compilation.



3. Type Declarations
Syntax:
TypeDeclaration ::= ''TYPE' ' TypeName ''IS' ' TypeStructure ,

''TYPE' ' TypeName ''IS' ' UnionStructure

TypeName ::= Identifier

TypeStructure ::= ''SIZE' ' ElementSize ,
''ARRAY' ' ArrayDimension ''OF' ' TypeName

ArrayDimension ::= ,(, integerValue_List_p_e ')' -- Positive integer

ElementSize ::= IntegerValue , -- Positive number of bits

IntegerValue ''TO' ' IntegerValue
-- Non-negative size range

UnionStructure - -= ''UNION' ' '(' TypeName_Listco._ a ')'

Examples:
type packet is size 128 to 1024; -- Packets ace of vaEia_ble lengl:h

type tails is array (5 10) of packet; -- Tails aEe 5 by 10 aEEays of packets
type _ is union (headJ, tail-,); -- Mix data could be heads or tail,

Meaning:
Type declarations are compilation units that define the structure of the data produced or consumed by the

tasks. A type declaration introduces a global name for a data type, or a set of previously declared types,

which can then be used in port declarations.

There are two kinds of type declarations. First, a type declaration can specify the structure of the data

moving through a process port. The basic data type is a sequence of bits of fixed or variable (but bound)

length. More complex types are declared as multi-dimensional arrays of simpler types. Second, a type

can specify the union of a number of previously declared, i.e., named, types where data items moving

through a process port could be one of any of the member.types.
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4. Task Descriptions
Syntax:

TaskDescription ::= ''TASK' ' TaskName
InterfacePart

{ BehaviorPart }

{ AttrDescriptionPart }
{ StructurePart }

_END' ' TaskName

Meaning:

Task descriptionsare compilationunitsusedas buildingblocksfor task-levelapplicationdescriptions.

A task descriptionis dividedintofourcomponents:(1) interfaceinformation,(2) behavioralinformation,(3)
attributes,and (4) structuralinformation.All these componentswill be describedin later sections. Figure
4 showsa templatefor a task description,where the ports and signals clausesconstitutethe interface
information.

task task-name
ports -- REQOZRED

port-declarations
-- Used, £o¢ ¢o_unicatJ.on between • pc'ocees end[ • queue

signals -- OPTZOtLM.
signal-declarations
-- Osed for =cmmzuAication between • pEocegg end. Che mcheduleE

behavior -- OPTIONAL
function-predicates
timing-expressions
-- & des¢cip¢ion of the behavlo¢ of the ta_k

attributes -- OPTIONAL
attribute-value-pairs
-- AdcLition•l pEopertiee of the taak

structure -- OPTZOtO, Z,

process -declarations
queue-declarations
binding-declarations
[econfigurat/on-statements
-- A pcocess-queue g:aph desccibinq the internal s_:uctu:e of • t•Bk

end task-name;

Figure 4: A TemplateforTaskDescriptions
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5. Task Selections

Syntax:
TaskSelection :-= ''TASK' ' TaskName

{ PortDeclarationPart }

{ SignalDeclarationPart }
{ BehaviorPart }

{ AttrSelectionPart }

{ ''END' ' TaskName }

Meaning"
Task selections are templates used to identify and retrieve task descriptions from the library.

A given task, e.g., convolution, might have a number of different implementations that differ along

dimensions such as algorithm used, code version, performance, or processor type. In order to select

among a number of alternative implementations, the user provides a task selection as part of a process

declaration, as described in Section 9.1. This task selection lists the desirable features of a suitable

implementation.

Syntactically, a task selection looks somewhat like a task description without the structure part, and all

other components except for the task name are optional. For example, notice that in the syntax of a task

declaration, the interface part (Section 6) requires the declarations of the ports, whereas in a task

selection, the declaration of the ports is optional. Figure 5 shows a template for a task selection. For

brevity, if only the task name is given, the terminating "end task-name" is optional.

task task-name -- REQUIRED
ports -- OPTIONAL

port-declarations
-- A signature that must match por_ ¢L_re¢tion8 and types of

-- that of a task des=ription in the library.

sJgnaJs -- OPTIONAL

signal-declarations
-- A signature that must match signal directions and names of

-- that of a task description in the library.

behavior -- OPTIONAL

function-predicates

timing-expressions

-- A speoification of the desired fun=tionality and timing beh&vior of

-- that of a task des=ription in the library.

attributes -- OPTIONAL

attribute- value-pairs

-- Named (actual) attribute== used to match (roe'real) attributes of

-- those of • task description in the library.

end task-name -- optional if only the task name is specified

Figure 5: A Template for Task Selections



12

6. Interface Information

Syntax:
IntecfacePart ::= PortDeclarationPart { SignalDeclarationPart }

Meaning:
The interfaceportionof a taskdescriptionor a taskselectionprovidesinformationaboutthe portsof the
processesinstantiatedfromthe task and the signalsused by the processesinstantiatedfrom the taskto
communicatewith thescheduler.

6.1. Port Declarations

Syntax:
n...Li '' ''_PorCDeclarationPart • := ' 'PORTS' ' PortDeclaratio stsGmieoZo n ;

PortDeclaration •:= PortName_Listc_ ....... IN' ' TypeName

PortName_Listco.m a ....... OUT' ' TypeName

PortName ••= Identifier

GlobalPortName • -= { ProcessName .... } PortName

Examples:
ports

inl : in heada;
outl, ou¢2: OUt Calla;

Meaning"

A port declarationspecifiesthe directionof the data movementand the type of data movingthroughthe
port.

Port names must be uniquewithina task. Outsidethe task,portsare identifiedby theirglobal name,

obtainedbyprefixingthe nameof a process(instanceof a task)to the nameof the port, e.g., pl .out2.

6.2. Signal Declarations

Syntax:
SignalDeclaraticnPart • -= ' 'SIGNALS' '

SignalDeclaration_Listm_aioolon , ,;, ,

ign S ig ....... IN' ' ,S alDeclaration •:= na IName_Listcom_

SignalName List ....... OUT' '-- COJ_4m •

S ig na iName_Li StcomB a ....... IN .... OUT' '

S ignalName : := Identifier

GlobalSignalName -.= { ProcessName .... } SignalName

Examples:
signals

Stop, Stare, Resume: in;
RangcdCEro¢, rormatError: OUt;
_ad: in out;
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Meaning" _

Signals are specialmessages exchangedbetween a process and the scheduler. A signaldeclaration
specifies the directionof the signal. An in signal is a message that a process can receive from the
scheduler;an out signal is a messagethat a processcan sendto the scheduler;an in out signalis used
forboth directionsof communication.

Allsignalnamesmustbe uniquewithina task. Outsidethe task, a signalis identifiedbycompoundingthe
name of a process(instanceof a task)withthe name of the signal,e.g., pl .Restart.

6.3. Rules for Matching Selections with Descriptions
If a task selection providesa port declarationclause, the port names provided in the task selection
overridethe port names providedin the task declaration. The port declarationlists mustotherwise be
identical,i.e., the number,the order,thedirections,andthe typesmustbe identical.

If a task selectionprovidesa signaldeclarationclause,theclausemustbe identical to that providedinthe
task description,i.e., the names, number,and directionsmustbe identical.
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7. Behavioral Information

Syntax:
Behavio=Part : := ' 'BEHAVIOR' ' FunctionPart TimingPart

FunctionPart ::= { ''REQUIRES'' '"' predicate '"" '';'' }

{ ''ENSURES'' '"' predicate '"' '';'' }

TimingPart • := { ' 'TIMING' ' TimingExpression ' '; ' ' }

predicate •• LarchPredicatez

Meaning:
The behavioral information part specifies functional and timing information about the task.

The functional information part of a task description consists of a pre.condition (requires) on what is

required to be true of the data coming through the input ports, and a post-condition (ensures) on what is

guaranteed to be true of the data going out on the output ports.

The timing information part of a task description consists of a timing expression following the keyword

timing. The timing expression describes the behavior of the task in terms of the operations it performs on
its input and output ports.

The formal meaning of the behavioral information is essentially based on first-order logic. In what follows,

we give only an informal meaning of the individual parts and their combination. See [1] for the formal

meaning.

7.1. Function Part
The functional information of a task description describes the behavior of the task in terms of predicates
about the data in the queues, before and after each execution cycle of the task. The Larch Shared

Language is used as the assertion language in the predicates of these clauses. We restrict this section to
a very brief outline of Larch's approach. '_

Larch [2, 3] uses a two-tiered approach to specifying program modules: a trait defines state-independent

properties, and an interface specification defines state-dependent properties of a program. A trait is

written in the Larch Shared Language (LSL), and it provides the assertion language used to express and

define the meaning of the predicates of an interface specification.

For a program module such as a procedure, a Larch interface specification is written in a Larch Interface

Language and contains predicates about the states before and after the execution of the procedure. The

Larch Interface Language (LIL) to be used is specific to the programming language in which the

procedure is written (e.g., C, CommonLisp, or Ada.)

1Essentially, a first-order assertion, [2].
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7.1.1. Larch Traits and Specifications

Figure6 depictsa Larch(two-tiered)specificationof queueswith"put" and "get" operations.The top part
of the spedficatlon (Figure 6.a) is a trait written in LSL used to describe values of queues. A set of

operatorsand their signaturesfollowingintroduces definesa vocabularyof termsto denotevalues of a
type. For example,Emptyand Insert(Empty,5) denote two differentqueue values. The set of equations

followingthe constrains clausedefinesa meaning for the terms;more precisely,an equivalencerelation
on the terms,and hence on the values they denote. For example, from the above trait, one couldprove
that First(Rest(Insert(Insert(Empty,5), 6))) = 6.

The bottom part of the specification(Figure 6.b) containstwo interfaceswritten in a "generic" Larch
interface language. They describethe functionalbehaviorof two queue operations,"put" and "get"
(queueoperationnamesare used to write timingexpressions,which are describedin Section7.2.3.) A
requires is a pre-conditionon the state of an operation'sinputdata that must be true upon operation
invocation;an ensures is a post-conditionon the state of an operation's input and output data that is
guaranteed to be true upon operationtermination. An omitted predicate is taken to be true. The

specificationfor "get" states that "get" mustbe called with a non-emptyqueue and that it modifiesthe
originalqueue by removingits firstelementandreturningit.

QVals : trait
introduces

empty: --) Q
Inset't: Q, E ---) Q
First: Q --) E
Peat: Q _ Q
isCmpty: Q ,-_ Boo3.
isZn: Q, F. --_ Bool

constrains Q so that
Q generated by [ Empty, Znse='¢. ]
for all q: Q, e, el.: E

First (Insert (Fmqpty), e) ) = •
First(Insert(q, e)) =. If isEmpty(q) then • else First(q)

Rest(Insert(q, e)) -J| isE_pty(q) then Empty else Inse¢C(Rest(q), e)
isE_pty (Empty) = true

isEmpty(Insert(q, e)) = false
isln(Empty, e) = false
isIn (Insert (q, e), el) J (e J el} I isln(q, el)

a. A Trait for Queue Values

Put- operation (q: queue, e: element)

ensures _ - Insert(q, e)

Get m ¢_peEation (q: @sue) returns (e: element)

requires -is¢=pty (q)

ensures a.pe_ m Rest(q) & • - First(q)

b. InterfacesforQueue Operations

Figure 6: A LarchTwo-TieredSpecificationfor Queues
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7.1.2.Functional Specification of a Task
We use a similar approachas Latch's for the specificationof the functionalbehaviorof a task. That is,we
view the task as a procedurewhoseinputand output "parameters"are defined by the ports of the task.

A requires dause states what is requiredto be true of the data coming throughthe input ports; an
ensures clausestateswhat isguaranteedto be trueof the data goingout throughthe outputports.

If one were to vieweachcycleof a task as oneexeculk)nof a procedure,the requires and ensures are

exactlythe pro- and post-conditionson the functionalityof thatcycle. An omittedpredicateis takento be
true.

These are not assertionsaboutthe queues connectedto the ports. For instance,an assertioncouldbe
madethat a datumof some typewas sentto anoutputport. It cannotbe assertedthatthe datumis in the

associatedoutput queue,at theendof the taskexecution,becauseit couldhavebeen removedbythen.

It is up to the implementorof a taskto verify that the functionalityof the task satisfiesthe requires and
ensures predicates. A task descriptionwriteranduser may assumethat thetask implementorperformed
suchverificationeither formallyor informally.

For example, considerthe matrixmultiplicationtask in Figure7. The task takes input matricesfromtwo
queues and outputsthe result matrixon an output queue. The requires clause states that the task
implementormayassume that the numberof rows of the matrixenteringthroughthe port in1 equals the
number of columns of the matrix entering throughin2. The ensures clause states that the result of
multiplyingthe two inputmatricesis outputthroughthe outputport.

task multiply
ports

in1, £n2: in mat:ix;
ot;t=1: out mat_:£x;

behavior
requires "row,, (]ri_it: (in1)) -- ¢olJ (l'i=Jl: (in2)) ";
ensures "ZnsQrt(outl, ¥is:it:(£nl) * F£cat:(in2))";

end multipZy; ':_

Figure 7: A MatrixMultiplicationTask

7.2.Timing Part
Processes remove data from their inputqueuesand storedata into their outputqueuesfollowinga task-
specificpatternprovidedby a timingexpression. A timingexpressiondescribesthe behaviorof the task
in terms of the operationsit performson its inputand outputports;this is the behaviorof the task seen
fromthe outside.

7.2.1. Time Literals
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Syntax:
Tim•Literal ::= { Date ''@'' } TimeOfDay { Tim•Zone }

IndeterminateTime

Date ::= years ''/'' months ''/'' days

years :-= IntegerValue

months "-= IntegerValue -- range is i..12

days "-= IntegerValue -- range is 1..31

TimeOfDay • : { { hours ''-'' } minutes ''-'' } seconds ,

RealValue Tim•Unit ,

IntegerValue Tim•Unit ,

hours • = IntegerValue -- range is 0..23

minutes "-= IntegerValue -- range is 0..59

seconds ""= IntegerValue ,
RealValue

Tim•Unit :-= ''YEARS' ' ,

''MONTHS' ' ,
''DAYS' ' l

''HOURS' ' ,

''MINUTES' ' ,

''SECONDS' '

Tim•Zone •"= ''EST'' , -- Eastern Standard Time

''CST'' , -- Central Standard Time

''MST'' , -- Mountain Standard Time

''PST' ' , -- Pacific Standard Time

''GMT' ' , - -- Greenwich Meridian Time

''LOCAL' ' , -- Local Time

''AST .... Application Start Time

IndeterminateTime "•= ''*''

Examples:
5:15:00 est -- An absolute time: $ hours 15 mlnutel Eastern Standard Time.

15.5 hours •st --An &ppli=ation Eel•tire time: 15 hours and 30 minutes

-- after the staEt Of the applic&tion.

2 :i0 -- An event relative time: 2 minutes I0 s_oncLm

-- •free .ome base ovont.

2.1667 minutes "- Approximately the same event =olatlvo time am above

-- I0 mecond_ is I/6th of • minute.

• -- An indeteEminate point in time.

Meaning:
Time values are used to specify points in time. These can be either (1) absolute, i.e., independent of the

application, in which case they must be followed by the name of a time zone; (2) relative to the application

start time, in which case they must be followed by the fictitious time zone "ast"; or (3) relative to some

prior event in the application, in which case neither a date nor a time zone is allowed.

The notation allows for alternative ways of denoting time of day or time elapsed between events. Time

can be expressed in the familiar formats "HH:MM:SS", "MM:SS", or just "SS". Thus, a plain number

represents a number of seconds. Time can also be expressed as a multiple of other time units by writing
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a numberfollowedbya unitname suchas seconds, minutes, hours, days, months, oryears. The use

of seconds as a time unit is redundant,but allowedfor completeness'sake. The format adopted by a
user might depend on the nature of the application, on any standard conventionsin the application
domain,on the magnitudeof the time scale,on the predsionrequired,or simplyon aesthetic,personal

preferences.

7.2.2.EventExpresSionsand TimeWindows

Syntax:
EventExpression : := GlobalPortName

{ '' .'' QueueOperation }

{ Tim•Window }

' 'DELAY' ' Tim•Window

Tim•Window • := ''['' Tim•Value '','' Tim•Value '']''

QueueOperation -'= Identifier -- Configuration dependent

Examples:
Inl -- An opeEat£on (get, by de£ault) on the queue feeding port inl.

Inl.get -- An opeEation takklng • system default time to =omplete.

Inl.get[5, 15] -- An _peEation taking between 5 and 15 •_onde to (_plete.

del&T[10 , 15] -- A delay inteEv&l lasting between I0 and 15 second•.

delay[*, i0] -- & delay inteEval taking at most I0 second•.

del&y[10, e] -- A delay inteEval taking at leaat I0 second•.

Meaning:
Queue operaSonspedo_ed by theprocessesconstit_ethebasiceventsofan applicationdescription.

An eventexpressionrepresentsa queue operationon a queue aHachedto a spedficpo_,takinga

vanableamount of timeto complete.A pseudo-operation,"delay",isused to representthetime

consumedbytheprocessbe_Neen(real)queueoperations.

The name of the queue operation is optional. If the name is not given, a default queue operation is
assumed: "get" for input ports, "put" for output ports. The complete list of queue operations is
configurationdependent,as describedinSection10.4.

Time windows are used to describe the duration of a queue operation or the delay between two

operations.Time windowsaredenoted bya pair of time values[Tmin,Trnax ] defining the boundaries of the
interval.

The time window associatedwith a queue operationdescribesthe minimumand maximumtime needed

to performthe operation. This time windowis optional,and if it is missing,a configurationdependent,
defaultwindowis assumed,as describedin Section10.4. Intervalsoftime between queueoperationsare
denoted by a "delay" operation whose time window describes the minimum and maximum time
consumedbythe processinbetweenqueue operations.
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7.2.3. Timing Expressions

Syntax:
TimingExpression • := { ' 'LOOP' ' } CyclicTimingExpression

CyclicTimingExpression : := ParallelEventExpression_List_p_e s

ParallelEventExpres s ion • •= Ba s icEvent Exp re s s ion_List do=b_e_ve_ic_1_baz

BasicEventExpr_ssion " •= EventExpression ,

{ Guard ' '=>' ' } ' (' CyclicTimingExpression ') '

Guard - .= ' _REPEAT' ' IntegerValue ,

' 'BEFORE' ' TimeValue , -- Absolute time

' 'AFTER' ' TimeValue , -- Absolute time

' 'DURING'' TimeWindow , -- Tn/. is Absolute time

''WHEN'' '"' predicate _"'

predicate •• LarchPredicate2

Examples:
Inl II 1.2110,1S] -- Two p_all.l input operatlons, 8taxiing ainul,tan_ualy.

Inl[0,5] delay[10,15] outl -- Two sequential inputs operations with an intez_ening delay.

repeat 5 s> (inl[0,5] delay(10,15] outl) -- Same am above but am a cy=le rope&ted five timee.

before 18:00:00 local -> ( . . . ) -- A mequenre constrained to stax_ before 6 1_n.

afire 18:00:00 local n> ( . . . ) -- A sequence ¢onltr_Zted tO iteE_ after 6 pro.

during [18:00:00 local, 12 hours] => ( .... ) -- A lequence conitEeined to tatar1: at night.

when-empty(in1) and ~empty(in2) -> ((inl.get II in2.get) outl.put);
-- A lequenco oonitrained to mtart after both input queues have data.

Ioop when-empty(inl) and-empty(in2) -> ((inl.get lJ in2.get) outl.put);
-- The same sequence &m above but repeated indefinetely.

Meaning"
A timing expression is a regular expression describing the patterns of execution of operationson the input
and output ports of a task. The keyword loop can be used to indicatethat the patternof operationsis
repeated indefinitely.

A timingexpressionis a sequenceof paralleleventexpressions. Each parallelevent expressionconsists
of oneor more eventexpressionsseparatedbythe symbol"11"to indicatethat theirexecutionsoverlap.

Since the expressionsmighttake differentamountsof time to complete,nothingcan be said about their
comloletion,other thana paralleleventexpressionterminateswhenthe lasteventterminates.

Parallel events start simultaneouslybut are not necessarily completed at the same time. In the

expression "(in1 II in2110,15])", the duration of the input operation on port in1 defaults to some
configuration-dependent value (See Section 10.4) and might be shorter or longer than the explicit
durationof the inputoperationon port in2, i.e., between 10 and 15 seconds.

A basicevent expressionis eithera queue operation(including"delay") or a timingexpressionenclosed

in parentheses. The latterform alsoallowsfor the specificationof a guard,an expressionspecifyingthe
conditionsunderwhicha sequenceof operationsis allowedto startor repeatitsexecution.

2Essentially, a first-order assertion, [2].



2O

Guard Description.

repeat This guardindicatesrepetitions.ofa timingexpression. The numberof repetitionsis
a non-negativeintegervalue.

before This guardis followedby an absolute time value representingthe latest start time
allowed. If the deadlinedoes not includea date, i.e., it is just a time of day, and the
deadline has passed, then the sequence is blockedat most until midnightof the
current date and will unbiock at "00:00:00" of the followingday. The task is
terminatedif a dated deadlinehas passed.

after This guardis followedby an absolutetime value representing the earlieststarttime
allowed. If necessary,the sequence is blockeduntil the deadline. If the deadline
does notincludea date, i.e., it is justa time of day, then the sequenceis blockedat
most 24 hours. For example, if it is "00:00:00.000" and the deadline is
"23:59:59.999" the sequencewill unblockat the endof the day.

during This guard is followed by a time windowduringwhich the sequenceis allowedto
start. The firstvalue is the earlieststarttime allowedand must be an absolutetime
value;the secondvalue is the lateststart time allowedand can be an absolutetime
valueor a timevalue relativeto the former.

_ when This guarddescribeswhat is requiredto be true of the state of the system(i.e., time
and queues,see Section 10.1) before the sequence is allowedto start. It is a pre-
conditionforstartingthe sequence.

7.2.4. Restrictions on Time Values and Time Windows

Although the syntax allows both absolute and relative time values to appear in either of the two
boundariesin a time window,notall ofthe possiblecombinationsmake sense:

1. A date in a timevaluethat usesthe "ast" time zoneis meaningless.

2. In the time windowattachedto a queue operation,including"delay", the time valuesmust
be relative(i.e., no datesor time zones allowed)and are interpretedrelativeto the start of
the operation.

3. In the time windowof a during guard, the first time value (Trnin) must be absolute. The
second time value (Tmax) can be absoluteor relative. In the latter case, the time value is
relative to Tmin. "" _'_

7.3. Rules for Matching Selections with Descriptions

The meaningof the behavioralinformationis a predicate,Mr(R, T) => [vlf(E,T), where R is the requires

predicate, E is the ensures predicate, T is the timing expression,and Mf is the meaning function
mappinga predicateandtimingexpressionintoa boolean[1].

A taskdescriptionmatchesa task selectionif the predicateassociatedwith the behavioralinformationof
the task descriptionimpliesthat of the task selection. If no timingexpressionappears, the predicate

simplifiesto R => E, andthatof a taskdescriptionmustimplythatof the task selection.

Currentlythere are no facilitiesto check these implicationsand timingexpressions,sofor the time being
the behavioralinformationpart of a task descriptionis treated as commentaryinformation. However,

timingexpressionsare used to simulatethe behaviorof a taskand are thereforerequiredbythe simulator
[6l.



21

8. Attributes

Syntax:
AttrDescriptionPart : := ' 'ATTRIBUTES' ' AttrDescription_Lists.m_=olo a ' ';' '

AttrDescription • -= AttrName ' '=' ' AttrValue

AttrSelectionPart : := ' 'ATTRIBUTES' ' AttrSelection_Lists.miaolo . ' ';' '

AttrSelection : := AttrName ' '=' ' AttrDisjunction

Art rName : := Identifier

GiobalAttrName • := { ProcessName ' ' ' ' } AttrName

AttrDis junction -:= Att rConjunction ,

AttrDisjunction ' 'OR' ' AttrConjunction

AttrConjunction • := AttrPrimary,

AttrConjunction ' 'AND' ' AttrPrimary

AttrPrimary • := AttrTerm ,
' 'NOT' ' AttrTerm

AttrTerm • := AttrValue ,

' (' AttrDisjunction ') '

AttrValue • := OtherAttrValue ,

, (, OtherAttrValue_Listco.." ,), ,

ModeAtt rValue ,

Implement at ionAt t rVa lue ,

ProcessorAttrValue ,

OtherAttrValue • := IntegerValue ,

RealValue ,

StringValue ,
TimeValue

Examples:
attributes -- Attributes in • task decl•ration

•uthor _ "jmw" ;
color m ("red", "white", "blue");

implem•nt•tion - "/usE/jmw/ILlv/cowc•tche¢. o" ;

Queu6_Size = 25 ;

attributes -- AttEi_utes in • task selection

author m "_mw" or "mEb";
colo¢ m "red" and "blue" and not ('gEeen" o¢ "yellow");

processo¢ ,, W&cpl;

mode m group4K2__by__4;

Meaning-
Attributes specify miscellaneous properties of a task. They are a means of indicating pragmas or hints to

the compiler and/or scheduler. In a task description, the developer of the task lists the possible values of

a property; in a task specification, the user of a task lists the desired values of a properly. All attribute

values used in matching task selections with task descriptions must be constants, computable before

execution time, i.e., tasks and their implementations are static properties of an application.

Example attributes include: author, version number, programming language, file name, and processor

type. There may be as many attributes as desired. Attributes defined in other tasks can be accessed by

prefixing the name of the attribute with the name of a process instantiated from that task, e.g., pt .author.
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The name of an attributecan appear in any contextin which itsvalue can appear. For instance,if the

userdefinesan attribute"Queue_Size"as in b_eexamplesthen"Queue_Size" can appear anywhere an
integervalue is expected. Thispermitsthe userto name say, a queue size and use the name to declare
queues with identicalsize in a numberof task descriptions.Another use is to instantiate"families" of
tasks,i.e., tasks thatshare the samevalue forsomeattribute,as shownin Figure 8.

process
14a_te: _:oceas: task I(a_te: Tamk -- & tuk 8ele_=tJ.onm -,.

attributes

lr,,e¥.__aam - some value;
... other attributes, maybe...

end i_ete¢_Taek;

pl: task f_
attributes

. Key..Bm ,, Maato: I?:ocess.Xey..Hane; -- Same value a,s II(aste: P:ocess
- other attributes, maybe ...

end foo;

p2: task bat:
attributes

Key..._ame -- 14a,st:e:_iP¢c_=oss, lr,ey.._ame; -- Same va.].ue lul l(a_tco¢_P::_=esa
... other attributes, maybe...

end baJ:;

Figure 8: Use of GlobalAttributeNames

The syntaxandsemanticsof the attributevaluesareattributedependent. Ifthe attributeis notpredefined

in the language, the values are treated as uninterpretednumbers,time values, or strings,as the case
may be, and compatibilityis based on value equality, ff the attributeis predefinedin the language,the
syntaxfor the legal valuesis giveninSection10.2, and compatibilityis attributedependent.

The' followingattributesare predeflnedin the language: "mode" (specifiesthe mode of operationfor a
deal or merge predefinedtask); "implementation"(specifiesthe locationof the task implementation);and
"processor"(specifiesthe processortype onwhich the implementationcan run). These are describedin
Section10.2.

8.1. Rules for Matching Selections with Descriptions
If a task selectionspecifiesan attributenot present in a task description,no match occurs, i.e., the
compilerskipsthis descriptionandcontinuessearchingfor a candidate. If a task descriptionprovidesan
attributenot specifiedin a task selection,the attributeis ignored.

If a task selectionprovidesa predicate (a disjunction)for an attribute,a matchingtask descriptionmust
providevaluesthatsatisfy the predicate,i.e., the disjunctionyieldstrue when evaluatedin the contextof
the values declared for the attribute. If a task descriptionprovidesa single value for an attribute, a

matchingtask selectionmustprovideexactly thatvalue.
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9. Structural Information

Syntax:
StructurePart : :- ' ' STRUCTURE' '

St ructureClause_List spaea

{ ReconfigurationClause-List_p_e }
" _ _ f I

StructureClause '"= ''PROCESS' ' ProcessDeclaration_List_..4celo . ; ,

QUEUE Q n_Li ''-'''' ' ' ueueDeclaratio stHnico_on , ,

g_Li '_ '''_BIND' ' PortBindin sta_aolo n ;

ReconfigurationClause :-= •''RECONFIGURATION' '

figu n_Li '';' 'Recon ratio st •_=olon

Meaning:
Process and queue declarations appear under the keyword structure in a task description. These
declarationsdefine a graphin whichprocesses are the nodes,and queuesare the links. These graphs

depict the internalstructureof a compoundtask. The structure part of a task descriptionprovidesthe
meansfordevelopinghierarchicaltaskdescriptions.

9.1. Process Declarations

Syntax-

ProcessDeclaration • := Proces sName_LiStcomm a ..... TaskSelection
o

Examples:
pl: task obstacla.finder;
p2: task obstacle_.finder ports foo: in, bar: out end obmt&=lo findLer;
p3, p4: task obst&cle_findor attributes author,,'nucb" end ob,,t:&cle_finder;

Meaning:
An instance of a task is bound to each process'sname. The name of a taskis the minimalpart of a task
selection. Local, actual names (e.g., ports "foo" and "bar" in the example) can be introducedby

providinga portdeclaration,providedthat the typesof portsspecifiedinthe task declarationare identical
to thoseprovidedin the task selection. If they are leftout, the formalnamesused in the taskdescription
are used instead.

9.2. Queue Declarations

Syntax:
QueueDeclaration ::= QueueName { QueueSize } ..... QueueDefinition

QueueDefinition ::= GlobalPortName
''>'' ProcessName ''>''

Globa IP ort Name

GlobalPo rtName

''>' ' TransformExpression ''>''
GlobalPortName

QueueName ::= Identifier

QueueSize •:= ''['' IntegerValue '']''

GlobalQueueName ::= { ProcessName .... } QueueName
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Examples:
ql : pl > > p2 ; -- 1_o po_s so:metred th¢ough am unbo_md_d queue.

-- The two ipo_-Ca amet haTQ the s_ type.

ql: pl > (2 1) transpose > p2 ; -- Two poe-Ca connected th::ough an mLbo_nded queue.
-- _e clara e.cl:eym ace tclmsposed la the ¢Eueue.

q11100] : pl > :yz > p2 ; -- T_o poc'ts aonnm=ted th=ouqh a bounded (size - 100) queue.
-- Data ave t:ansfovmed in the queue by a p:ocess _ _xyz''

Meaning:
A queue definition establishes a logical link between two ports that communicate by passing data from the
first port (source)to the secondport (destination). The queue name must be uniquewithinthe task
descriptiondefiningthe process-queuegraph. The (optional)queue bound declares the maximum

numberof elementsthat will be stored in the queue at any one time. If a queue is full when a "put"
operationis attempted,the processtryingto store the data waitsuntil the queue has spacefor the new
item. If thequeue boundis not provided,a configurationdependent,defaultqueue length is assumed,as
describedinSection 10.4.

When establishinga logicalconnection,the portsare checkedfortype compatibility.Non-uniontypes are
compatibleif they have the same name. Uniontypes are compatibleif the sourceset is a subsetof the
destinationset. A non-unionsource type is compatiblewith a uniondestinationtype if the sourcetype
nameis a memberof the destinationset.

If the types are not compatible,the user must providea data transformationoperationthat will convert
objectsof one type intoihe otheras describedbelow.

9.3. Data Transformations
Data transformations are operations applied to data comingfrom a sourceport in order to make them
acceptableto a destinationport.

i

A data transformationis required if the input and output port types are not compatible. Suc_)
transformationsare needed if, for instance,the types have the same structurebut the data are in the
wrongformat, e.g., turninga squarearray on itssideor convertingbetweenfloating-pointformats.

Complicatedtransformationscan be writtenas separatetasks, inwhichcase an appropriatetaskmustbe

selectedand instantiatedas a process,andthe processname mustbe specifiedin the queuedeclaration.
Simpletransformationscanbe specifieddirectlyin thequeue declaration.

9.3.1. Off-Line Data Transformations
Complex data transformationscan be specified as regular tasks by writing a procedure in some
programminglanguage suitablefor either the buffersor one of the heterogeneousprocessors and
enteringan appropriatetask descriptionin the library. These data transformationtasks mustdeclare

exactlyone inputportandoneoutputport.
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task corse: turning
ports

Inl: in lmsclma:k_cow_-L-_Or;
out].: OUt l&ndmaxk.col.unn m-Jot;

attributes

implmNntation m "lusrlmcblscreetch.o" ;

procasso¢ m buffer.processor;
end co:nee turning;

9.3.2. In-Line Data Transformations

Syntax:

TransformExpression • := TransformOp_Listspac a

TransformOp • := ReshapeOp ,

SelectOp ,

T ranspo seOp,

RotateOp,

ReverseOp,

DataOp

ReshapeOp • "= VectorArgument ' 'RESHAPE' '

SelectOp • -= ArrayArgument ' 'SELECT' '

TransposeOp • "= VectorArgument ' 'TRANSPOSE' '

RotateOp • -= ArrayArgument ''ROTATE' '

ReverseOp • "= IntegerValue ''REVERSE' '

DataOp • •= Identifier

VectorArgument • •= ' (' IntegerValue_Listspac e ') ' ,
' (' IntegerValue ' 'IDENTITY' ' ') ' ,

' (' IntegerValue ' 'INDEX' ' ') ' ,

'(' ''*'' ')' -- Empty vector

ArrayArgument • •= VectorArgument ,

, (, ArrayArgument_Listspac e ') '

Examples:

If the input is a 2x2x3 3-dimensionalarray:
(3 4) reshape -- reshapes the input array inca a 3x4 2-dimensional array.

(12) reshape -- unravels the array.

If the input is a 2-dimensionalarray:
((5 2 3) (*)) s_ect -- generates an array consisting of rows 5 2 and 3, in that order.

((*) (5 2 3)) S_eCt -- generates an array consisting of columns 5 2 and 3, in ChaC order.

(2 1) transpose -- Transposes the axray in the normal manner.

(1 -2) rotate -- Rotates etch row left 1 position and than rotates
-- each column of the result down 2 positions.

Additional examples:
(5 identity) -- Generates the vector (1 1 1 1 1).

(5 index) -- Generates the vector (1 2 3 4 5).

2 reverse -- Reverses the elements along the 2nd coordinate of an input array.
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Meaning-.
The most common cases of data transformations are expected to be n-dimensional array manipulations.

For these operations, the language provides a short-cut: it is not necessary to write task implementations,

i.e., program code, and task descriptions and to enter them in the library. It suffices to specify the
transformations as part of the queue declaration.

In-line data transformations are specified in post-fix notation, inteq)reted left-to-right, with arguments

preceding the operators, and with the input port providing the initial argument. In general, the arguments
are multi-dimensional arrays (nested vectors) of scalar data values.

Operator Description

integer identity generates the vector (1 1 ... 1 1).

integer index generates the vector (1 2 ... N).

vector reshape unravels an array (i.e., linearizes it) and then reshapes into an array with the
dimensionality of the argument vector. The input array is linearized in row order, i.e.,
by scanning all of the positions varying the highest dimension first. This operation
must be specified if the input and output array do not have the same shape but the
array elements are in the right order when the arrays are unraveled.

array select extracts (slices) pieces of a data array. If the input is a vector, (5) select represents
the 5th element, and (5 2 3) select is a new vector consisting of the 5th, 2nd, and 3rd
elements in that order. A vector of the form "(°)" selects all components along one
dimension.

vector transpose permutes the dimensions of a data array according to the argument vector (V). The
ith coordinate of the input array becomes coordinate Vii] of the result.

scalar or vector rotate
specifies rotations of n-dimensional data arrays. The operator is preceded by an
argument which must be either a scalar (signed) integer value or a parenthesized
array of (signed) integer values. The magnitude of the values specify the number of
positions to rotate the input data, and the sign of the values specify the direction of
the rotation: a positive amount indicates rotation towards lower indices.

A scalar argument specifies how to rotate an input vector. An n-length vector of
scalars specifies how to rotate an n-dimensional input array along each dimension
(one element per dimension). An n-length vector of vectors argument specifies how
to rotate an n-dimensional input array along each dimension (one top level vector per
dimension) and within each dimension, how to rotate each "row" (one element of a
second level vector per row.)

For example, consider the transformation "((1 2 0) (-3 -4)) rotate" applied to a 2-
dimensional 3x2 input array. The vector (1 2 0) specifies how to rotate the rows; the
vector (-3 -4) specifies how to rotate the columns. The first row is rotated left 1
position, the second row is rotated left 2 positions, the third row is left unchanged.
Then the first column is rotated down 3 positions, and finally, the second column is
rotated down 4 positions.

integer reverse reverses the order of the elements of an array along an arbitrary coordinate specified
by the integer argument. If the input is a vector, the argument must be "1". In the
transformation "2 reverse", if the input is a 2-dimensional array, this operation
shuffles columns; if the input is a 3-dimensional array, this operation shuffles planes.

Data Operations scalar operations applied to each element of an input array. The set of operations is
configuration dependent. The initial set will include operations to round, truncate, or
otherwise convert between various integer and floating-point formats, as described in
the configuration tile, Section 10.4.

This is a first attempt at defining the set of the operations a user is likely to perform on n-dimensional
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arrays. The guiding principle is to keep the notation simple; more complex transformations should
I

probably be specified as off-line transformations.
i
.... A data transformation operation is more than just a way to achieve type compatibility between ports. It

also serves to specify operations that would be inappropriate or inefficient if written as part of one of the
• tasks. For example, consider an application that requires scanning an array in different directions (e.g.,

first by rows, then by columns) and performing some operation on each element (e.g., computing the

average of the neighbors). Rather than writing several versions of the task, one for each traversal

pattern, one could simply write one version of the task, and then instantiate it as many times as
necessary. Each process so instantiated could then take its input arrays from queues that perform the

appropriatetransposition, as in "ql:pl>(2 1) transpose>p2". Arrays produced by pl are transposed
while in the queue, before they are delivered to p2.

9.4. Binding Port Names

Syntax:
PortBinding • .= ExtPortName ' '=' ' IntPortName

ExtPortName --= PortName -- External port

IntPortName • •= GlobalPortName -- Internal port

Example:
bind

p_deal, inl m obstacle_finde¢.inl;

p_merge, ouCl - obmta¢le_finde¢, outl;

Meaning"
A port binding maps a port of the process-queue graph defining the internal structure of a task to a port

defining the external interface of a task.

9.5. Process-Queue Graph Reconfiguration

Syntax"
Reconfiguration • -= ''IF'' RecPredicate ''THEN' '

{ ProcessTermination-LiStapac . }

St ructure_Listspa¢ .
''END'' ''IF''

% , . , i

ProcessTerminaCion : := ' 'REMOVE' ' GlobalProcessName_Listco_a ,

RecPredicate " "= RecDisjunction ,

RecPredicate ' 'OR' ' RecDisjunction

RecDis junction -:= RecConjunction ,

RecDisjunction ' 'AND' ' RecConjunction

RecConjunction • "= RecRelation ,
' 'NOT'' ' (' RecPredicate ')'
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RecRelation • := RecTerm ''=' ' RecTem , -- Equal

RecTerm ''/='' RecTerm , -- Not equal

RecTerm _ '>' ' RecTerm , -- Greater

RecTerm _ _>='' RecTerm , -- Greater than or equal

RecTerm _ _<' ' RecTerm , -- Less

RecTerm ' '<='' RecTerm , -- Less than or equal

RecTerm " "= IntegerValue ,

RealValue ,

StringValue ,
TimeValue

Examples:
if Cu¢¢ent .TLm* >,, 6 :O0 :O0 local and Cur=ent..CLm, < 18 :O0 : O0 local
then

_,_ process
i p_vision: task vision attributes p:ocesso: - wa_p2;
i queue
_ q_vision_coad: p deal.out3 > > p._vision.inl;
i q_obstacles: pvision.ouCl > > p_mecge.in3;

end if;
i

Meaning:
A reconfiguration statement is a directive to the scheduler. It is used to specifychanges in the current
structure,i.e., process-queuegraph, of the applicationand the conditionsunder whichthese changes
take effect. Typically,a numberof existingprocessesand queuesare substitutedby new processesand

queueswhichare thenconnectedto the remainderof the originalgraph. The reconfigurationpredicateis
a booleanexpressioninvolvingtime values.,queue sizes,and otherinformationavailableto the scheduler
at run time.

Noticethat nothingis beingsaidaboutthe internalrepresentationof time yalues. They are definitelynot

like integeror realvalues-- time valuescannotbe mixedwithregularnumericvalues inan expression. In
addition,currentlythe languagedoes not provideany arithmeticoperatorsfor time values. However, a

fewpredefinedsystemfunctionsprovidefor thecomputationof pastor futuretime values,as describedin
Section10.1,
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i 10. Predefined Language Facilities

10.1 Functions
P

_ Syntax"
: FunctionCall ::= FunctionName { FunctionParameters }

FunctionName : "= _ _CURRENT TIME' ' ,

' _MINUS TIME'' ,

' 'PLUS TIME' ' ,

_CURRENT SIZE' '

FunctionParameters " := ' (' Parameter_LiStco.. . ') ' -- Function dependent

Parameter • := IntegerValue ,

RealValue ,

St ringValue ,

TimeValue

Examples:
Plue._Time(Cuc:ent: Time, 2.5 hours) -- 2.5 hous:8 £:om the =u==ent: time
Cucrent_$ize(MasteE..PEocemm.Dsta..PoEt) -- the size of • q_eue feeding • po¢'l:

Meaning-
The followingfunctionsarepredefinedinthelanguage:"current_time","minus_Use","plus_time",and
"current size".

The functioncall "Current_Time"returnsthe currenttime as an absolutedate in the localtime zone.

The functioncall "Minus_Time(TimeValue1,TimeValue2)''returnsthe time value obtainedby subtracting
TimeValue2 fromTimeValue1. The followingcasesare allowed:

1. If both parameters are absolute times, the result is a relative time, i.e., a duration.
TimeValue1 mustbe later than TimeValue2.

2. If TimeValue1 is an absolute time and TimeValue2 is a relative time, the result is an
absolutetime inthe same time zone as TimeValue_.

3. If both parametersare relative times, the resultis a relativetime. TimeValue1 must be
largerthan TimeValue2.

The function call "Plus_Time(TimeValuel,TimeValue2)" returns the time value obtained by adding
TimeValue2 to TimeValue1. The followingcases are allowed:

1. If one parameteris an absolutetime andthe otherparameteris a relativetime,the resultis
an absolutetime inthe same time zone.

2. If bothparametersare relativetimes,the resultis a relativetime, i.e., a duration.

The functioncall "Current_Size(GlobalPortName)"returnsthe current numberof elementsstoredin the
queueassociatedwitha givenport.

Callsto these functionscan appear anywherea value of the same kind as the returnvalue can appear.
That is, a call to a functionreturningan integer,a real, a string,or a time value can appear insteadof an
integer,a real, a string,or a time value,respectively.
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10.2. Attributes

The followingattributesare predefinedinthe language:"mode", "implementation",and "processor".

10.2.1 Mode Attribute

Syntax:
ModeAttr " "= ' 'MODE .... =' ' ModeAttrValue

ModeAttrValue . • •= Identifier

Meaning:
The values of the "mode" attributeare identifiersdenotingthe operation performed by one of the
predefinedtasks:"broadcast","merge", and "deal", as describedin Section10.3.

The formal specificationof the operationis given by the behavioralpart of the task description, The
identifiersused as values for the "mode" attributeare just a convenientshorthandto select what are
expected to be frequentlyused tasks. Users are more likelyto select predefinedtasks by specifyinga

modevalue (i.e., an identifier)thanbyspecifyinga timingexpressionor a functionpredicate.

The followingidentifiersare representativeof typicalvalues for the "mode" attribute:"random", "fifo",
"round_robin", "by_type", "balanced", "grouped_by_2". The actual values are implementation
dependent.

10.2,2. Implementation Attribute

Syntax"

ImplementationAttr • -= ' 'IMPLEMENTATION .... =' ' ImplementationAttrValue

ImplementationAttrValue • •= StringValue

Examples:
imp1omentation = "/usrlcbwlhet0/demo.o" ;

Meaning"

The value of the implementation attributeis the name of the file containingthe actual objectcode. The
formatof a file name may varywiththe hostoperatingsystem.

10.2.3. Processor Attribute

Syntax:
ProcessorAttr - "= ' 'PROCESSOR'' ' '='' ProcessorAttrValue

ProcessorAttrValue • •= Identifier ,

Identifier '(' Identifier_LiStcomn a ') '

Examples:
processor m m68000(m68020, m68032);

processor = m68020(pl, p2, p3) ;

processor _ m68032(p4, p5) ;

processor m ibBLl401;

processor = wlrp(warpl, warp2);

processor m buffer_processor;
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Meaning:
The configuration of the heterogeneous machine specifies the different values for the "processor"

attribute, including names of classes of processors as well as names of individual processors, as
illustrated above. See SeclJon 10.4 for details about specifying the configuration of the heterogeneous
machine.

The value of the "processor" attribute can vary in specificity by using a processor class name or an

individual processor name. For example, WARP means any Warp processor; WARP1 means that Warp

processor.

If the user specifies the name of a class of processors as the value of the "processor" attribute, any one
of the members of the class can be used to execute the task. If the user specifies a class name and a set

of members (in parentheses), any one of the members of this set can be used to execute the task. The

members of the set must be a subset of the class as defined by the configuration.

10.3. Tasks

The following tasks are predefined in the language: "broadcast", "merge", and "deal".

10.3.1. Broadcast
"broadcast" is a task with one input port and as many output ports as needed. Input data are replicated

and sent to all the output ports. Port names are in l for the input port and out1, out2, .... outN for the

output ports.

10.3.2. Merge
"merge" is a task with one output port and as many input ports as needed. The type of the output port is
the union of all the input types. Input data items are merged and sent to the output port. Port names are

in I, in2 ..... inN for N input ports and out1 for the output port.

A merge discipline must be provided as a value to the "mode" attribute, as described in Section 10.2.1.
Possible values include "random" (unordered), "fifo" (ordered by time of arrival to the merge process),

and "round_robin" (one from each input port and repeating.) Because of transmission delays, the order

of arrival of the data might differ from the order in which the data were sent out. A FIFO merge process
uses time of arrival, not time of creation, to order the data.

10.3.3. Deal

"deal" is a task with one input port and as many output ports as needed. The type of the input port is the

union of all the output types. Input data items are sent to one output port. Port names are in 1 for the

input port and out1, out2, .... outN for the output ports.

A deal discipline must be provided as a value to the "mode" attribute, as described in Section 10.2.1.
Possible values include "random" (unordered), "round_robin" (one to each output port and repeating),

"by_type", "grouped_by_2", and "balanced". If dealing by type, the output port must be uniquely

identifiable (i.e., there is exactly one output port of the right type for each possible type accepted by the

input port.) This is the only kind of "deal" process in which multiple output types make sense. Other

kinds of "deal" processes require compatible output types.
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10.3.4. Illustrative Task Descriptions
Figure 9 illustrates typical task descriptions for the predefined tasks. The task description in F'cjure 9.a

depicts a 2-output broadcast task that handles items of some type "packet" in parallel. The task

description in Figure 9.b depicts a 2-input merge task that handles items of type packet in round robin

fashion. Finally, the task description in Figure 9.c depicts a 2-output deal task that handles items of type

packet in round robin fashion.

task brozd_ut
ports

in1: in packet;
out1, out2 : OUt p_aket;

behavior

ensures "insert (out1, fi:st (inZ)) & £nsec't (out2, ££:Jt (£nl)) ";
timing loop (in1 (out1 i i out2))

attributes
mode . paraZIal;

end b:oadca_t;

a. Parallel Broadcast

task me=_a
ports

in1, in,?. : in packet;
out1: out packet;

behavior

ensures "inlar¢ (inlert (insert:(outl, fiElt (inl)), first (in2)), fiEst (in3)) ";
liming loop ( (inl in2 in3) (:epeat 3 -.> outl) ) ;

attributes

mode = sequential_=ound_cc_bin;
end mecge;

b. Round-Robin Merge

task deaZ

ports
in1: in packet;
outl, out2: Out packet;

behavior

ensures "insert(outl, ficst(inl) ) & insazC(out2, se¢ond(inl))";

timing loop (inl outl inl out2);
attributes

mode = sequential_round_robin;
end deal ;

c. Round-Robin Deal

Figure 9: Predefined Task Descriptions

These descriptions do not really exist in the library. The compiler generates them on demand to satisfy

process declarations of the form:
pb: task bcoadcast attributes mode = ident#ier; end bcoadcast;
pro: task merge attributes mode = identifier end me_ja;
pal: task deal attributes mode = identdier end deal;

where identifier is "parallel", "sequential_roundrobin", etc., as defined by the implementation.
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10.4. Configuration File
Informationabout the configurationof the heterogeneousmachine, the location of system files and
libraries,and other random informationrequired by the compiler, library, and scheduler appears in a

configurationfile.

p=ocuao= = wacip (wa..-"p...1, w=._2) ;
p=ocuao= ,,, eun(a_m_l, stm..2, mtm_3);
J.mplemanCaC:i.on - " ]ua¢/cbw/hotlCb/" ;
default £nput olpe:at£on m ('get', 0.01 seconds, 0.02 seconds);
dsfault output opecat£on-('put", 0.0"5 seconds, 0.10 seconds);
cbsf&ult clueul..Xen_t:h m 100;
dLata opecat£on m ("fix", "flx.o');
dlAta operat£on : ('float", ,float.o");
cLata_opera¢£on m (':ound_float', ":ound.o') ;
dLAtA opecaC£on = ('truncate float', "tcun¢.o');

Figure 10: ConfigurationFile

The configurationfile in Figure 10 illustratesthe definitionof the hardware configuration(valuesfor the
"processor"attribute),the locationof the systemtask implementations,and variouspiecesof information
aboutqueuesandqueue operations.

In the ,'processor"-attribute,the meaningof a classname is understoodby the scheduleras standingfor
any of the specificvaluesinthe class(i.e., a run-timechoiceof processors). Notice that this choicecan
be restrictedby the user in a taskdescriptionby specifyinga subset of the class, and restrictedeven
furtherin a task selectionbyspecifyinganeven smallersubsetof allowableprocessors.

The example configuration file also specifies the location of system files, in particular, the
implementationsof system tasks. Additional informationin the file would descdbe default queue
operations,data transformations,etc.

Keep in mind that the configurationfile is not written in the task descriptionlanguage. The example
shownis justan illustrationof the kindsof informationthatare likelyto be containedinthefile -- formand
contentof the fileare implementationdependent.
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11. Appendix-- An Extended Example
This appendix illustrates a task-leveldescriptionof a fictionalapplication. A process-queuegraphof the

applicationappears in Figure11.

11.1. Data Transformation Tasks
task corner turning

ports
in1 : in landRack_=ow ma_lO=;

out1: out landma=k_column major;

atttLbutas

t.mpllmsntat:i.on m "/US r/mcb/sctaatch, o" ;

]processor m bufflE_jprocelsor;
•.. oth_ atU/butesun/que/yidentdyingan i_p/ementat/on. ..

end ¢ornar_tuEning;

11.2. Type Declarations
type ampdatabase is ......

type destination is ......

type l_al_path ks ......

tylpe rlcocjni z m<L_coad ks ......

type road selection is ......

type vehicle_position is ......

type vehicle motion is ......

typQ wheel motion ks ......

type landmark ks ......

type landma=k_list is .....

type land--atk_rov._ajor is .....

type landam=k column major is ..... ;

type vision road[ is ..... ;

type sons= road is ..... ;

type lase= road is ..... ;

type road[ is ..... ;

type obstacles is ..... ;

11.3. Task Descriptions '_
task navigator

ports

inl : in map_database;
in2 : in destination;

outl : out road seleotion;

out2 : out landmark list ;

attrLbutes

author = " jmw" ;
version m "1.0";

processor == "m68020";

end[ navigator;

task =oad_jp ¢ecL_cto¢

ports

inl: An m_p_d[atabasa;
in2: An toad selection;

_n3 : An vehicle_position;
outl: out road;

end[ road[ p L'ecLict o r;

task landmark jp =IKiictor

ports
inl : in landmark last ;

in2 : in vehicle_position;

outl: out lancbnark row major;

end[ landmarkpredictor;
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tsJk road findav

po_s
lnl : in road;

outl: out recogn£sod roa_;
and. road finclsz;

tuk lJuldwbzk_c_og_izea:
ports

inl: in landmack tel.usa majoc;
outl : out landmack_colunn major;

and 1 _ndm,uk_cecogni z• ]:;

tuk vision

pacts
£n't : in vision...road;
outl : out obstacles;

attributes
pEocammor _ warp;

end vision;

task sonar

po_s
inl: in sonar road;
outl: out obstacles;

attzibutam

processor m warp;
end morsaE;

ta_k lasec

ports
inl : in lasaE_coad;
outl : out c_staoles;

attributes

p¢ocasmo¢ -- waEp;
and laeac;

task position_computation
ports

inl : in landmack_column_majoc;
in2: in vehicle motion;

outl, out2 : out vehicle__Dosition;

end poreition_=o_utation;
t

task local path planner
ports _

inl: in wheel motion;
in2: in obstacles;

outl: out local path;
out2 : out vehicle motion;

end Io=_i path__lannaE;

task vehicle contEol

ports
inl : An Iocal__ath;
outl : out wheel_motion;

end vehicle contEol;
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task obstacle finder

po_:

in1: in ceG¢_nized co&d;
out1: out obmt_=lem;

behavio:

loo1= (lnl[lO, 15] out1[3, 4]);
at:uatuz.e

pz_cemm

p_deal : task deal att:ibutel mode m by_tFpe end deal;

p me:gas task mm:ge attEibutem mode m £ifo end mezVe;

p sons:: taJk mon=:;

p_la:e:: tuk la_m= att:_butes p:_=eamoz, m wazp1 end la_e=;
bind

p_. Inl - _stacle-fln_mz. inl;

p _=ge.outl = _ltacle. £1n_=.outl;

queue

ql: p_monac.outl > > p mez.ge.inl;

q2: p_lamer.outl > > p mmcqm.in2;

q3: p deal.out1 > > p_sonar.inl;

q4: p_deal.outl > > p_lasez..inl;

--£0= dylr_aal_c reconfi_uration

if _EEent TimQ >_ 6:00:00 local and _z.Eent Time < IS'00:00 loc_l

then

pz.ocemm

p_vimion: task vision attributes p¢oclsso: m wa_'p2; end vision;
queue

q5 : p_deal.out3 > > p_vision, inl;

q6: p_vimion.outl > > p_mez.ge.in3;
and if;

end obsta¢le fin_E;

11.4. Application Description
talk ALV

ate EiJDUtel

version m "Fall 1986";

pz.ocesmoz, m HT0;

speed : fast;
st 1"uQtuz.a

pz.ocelm

navigatoz.: task navigator att=i_utem autho: _ "jmw" end navigatoz.;

road__pz.e_ictoz. : task road pz.e_ictoz.;

landmark__z.e_ictoz. : talk landmaz.k pradictoz.;

road_finder: task z.oad_fin_z.;

landma=k_c_:ognize=: task landmark_c_:ognizez.;

obstacle finder : task obmtacle_findez.;

polition_co_utation :task position_oomputation;

local__ath__lannez. : task local path plannez.;

vehicle_control : task vehicle_control;

¢t_DEo_:elm : task corner_turning;

queue

ql : navlgatoE, outl > > z.oad pz.e_iotoz., in2;

q2 : navigator, out2 > > landmaz.k_pz.adiotoz., inl;

q3 : road _Eedi¢toz.. outl > > z.oad_fin_z., inl;

q4 : road_findmr.outl > > o_mtacle_finde:, in1;

q5 : o_mta¢le_findez..outl > > local_path plannez., in2;

q6: local path__lannez..outl > > vahicle_control.inl;

qT: local__path_Dl_nnaz..out2 > > position.coa_uCation.in2;

q8 : vehicle_contz.ol, outl > > local /:ath_plannaz.. inl;

qg: lan_maz.k pz.edictor.outl > ct pz.ocamm > landmaz.k_z.e_o_nizaz..inl;

-- requiz.al _sta tE4U_l£o_tion between EOW._m,II._OE and ¢olmm_ mlXjOZ " landmaz.ks

ql0 :lan_rk recognizez..outl > > pomition_co::putation, in1;

qll :pomition ¢oa_gutation. outl> > roa_1_.p¢e_ictoz., in2 ;

q12 :position confutation, out2> > lan_n_z.k pz.ecli=toz., in2 ;
end ALV;
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