
_86-168

A Larch Specification of the Library Problem

Jeannette M. Wing

Department.of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213-3890

22 December 1986

Abstract

A claim made by many in the formal specification community is that forcing precision in the early
stages of program development can greatly clarify the understanding of a client's problem
requirements. We help justify this claim via an example by firstwalking through a Larch specification
of Kemmerer's library problem and then discussing the questions that arose in our process of
formalization. Following this process helped reveal mistakes, premature design decisions,
ambiguities, and incompletenesses in the informal requirements. We also discuss how Larch's two.
tiered specification method influenced our modificationsto and extrapolations from the requirements.

This paper will appear inthe Proceedings of the 4th International Workshop on Software Specification
and Design, Monterey, CA, April 1987.

This research was sponsored in part by the Defense Advanced Research Projects Agency (DOD),
ARPA Order No. 4976, monitored by the Air Force Avionics Laboratory Under Contract F33615-84-
K-1520, and in part by the National Science Foundation under grant DMC-8519254. The views and
conclusions contained in this document are those of the authors and should not be intted as
representing the official policies, either expressed or implied, of the Defense Advanced Research
ProjectsAgency or the US Government.

Table of Contents

1 Motivation and Contributions 1
2 Overview of Larch 1

2.1 Larch Shared Language 2
2.2 The Larch/CLU Interface Language 3

:3The LibraryProblem 4
3.1 Informal Requirements of the Problem 4
3.2 A Formal Specification in Larch/CLU 5

3.2.1 Traits 6
3.2.2 Interfaces 7

4 Discussion 9
4.1 Modificationsto the Requirements 9
4.2 Extrapolationsfrom the Requirements 10
4.3 Influence of Specification Method 11

5 Related Work 12
5.1 Comparisonto Ina Jo 12
5.2 Other LangUages 13

6 Concluding Remarks 13

I. Larch Specification 15
I.1 Traits 15
1.2Library Interface 16
1.3Other Interfaces 17

References 18

List of Figures

Figure 1 : Statechart of People and Booka 5

1

1 Motivation and Contributions

A claim made by many in the formal specification community is that forcing precision in the eady

stages of program development can greatly clarify the understanding of a client's problem

requirements. We help justifythis claim by presenting a specification of Kemmerer's library database

example.1

With this paper, we also contribute an example of a Larch two,tiered specification [7]. This

contribution is significant because only a few formal specifications, let alone ones in Larch, have

been published. In order to persuade people in the software community that formal specifications

can be usefuland need not be intimidating,it is importantthat more examples be given. Furthermore,

we also use this opportunity to discuss how Larch's two-tiered specification method helps to guide

the process of formalizingan informal problem statement.

In Section 2, we briefly review Larch; in Section 3, we present the informally stated requirements and

our Larchspecification of the libraryexample; in Section 4, we discuss questions that arose in the

process of writing our specification, the resulting modifications made in our response to the

questions,and the influence ourchoice in specification methods.hadon our solution; in Section 5, we

mentionrelated work. We state some concluding remarks in Section 6.

2 Overview of Larch

What follows is enough of a review of Larch to understandthe library example. We refer the reader to

other publications(e.g., [7], [8], [17]) for more details.

A Larch specification has components written in two languages. A Larch interface language, e.g.,

Larch/CLU, is used to describe the observable behavior of program modules written in a particular

programming language, e.g., CLU [12]. The Larch Shared Language is used to write traits that define

the assertion language used in interface components. Essentially, interface specifications use

predicates (pre- and post-conditions) to describe state transformations;traits use equational axioms

to describe fundamental abstractions that are independent of state, and thus, of any programming

tanguage. Below, we illustrate the salient features of the Larch Shared Language and the Larch/CLU

interface language through a simpleexample, which we revisit inthe library example.

1We emphasize that we do not mean to criticize Kemmerer's problem statement,but merely to use it as a vehicle withwhich
to support the claim, This example appeared in Kommerer's paper [11] and was listed as one of the problems of the 4th
International Workshop on Soltware Specilication and Design [15].

2.1 Larch Shared Language

Here isa trait useful for describing values for setsof elements.

Set: trait
assumes Equality with [E for T]
includes Integer
introduces

{}:--,S
add:S, E --, S
rein: S, E --, S
#E#: E, S--+ Bool
isEmpty:S ---,Bool
I# I: S --, Integer
#U#:S.S--+ S

constrains [S] so that
S generated by.[{}, add]
for all [s, sl: S, e, el: E] •
rem({}, e) = {}
rem(add(s,e), el) =

if e = el then rem(s, el) else add(rein(s, el), e)
e E {} = false
elEadd(s,e) = (e = el)YelEs
isEmpty({}) = true
isEmpty(add(s, e)) = false
I{]1= o
ladd(s,e)l = if e E s then Islelse 1 + Isl
{}Us = s
add(s, e) U sl = add((s U sl), e)
S U sl = sl U s

• .

It contains a set of operator declarations, which follows the keyword introduces, and a set of

equational axioms, which follows the constrains clause. An operator is declared by giving its name,

e.g., add and rem, along with itssignature (the sorts, e.g., S and E, of itsdomain and range). These

signatures are used to sort-check terms (expressions) in much the same way as function Calls are

type-checked in programming languages. The constrains list indicates which of the operators that

the immediately following axioms are intended to constrain. In the Set trait, the constrains list

informs us that the axioms are not to put any constraints on the properties of if then else, false, 0,

and +, despite their occurrence in the axioms. The set of equations following the constrains cluase

defines a meaning for the terms, more precisely, an equivalence relation on the terms, and hence, on

the valuesthey denote. For example, from Set, we could prove that rem(add(add({}, 7), 7), 7) = 0.

A trait denotes atheory of typed first-order predicate calculus with equality. Each equation appearing

in a trait is a formula in the trait's theory. A generated by clause adds an inductive rule of inference

to a trait's theory, In the Set example, all values of sets of integers can be denoted by terms using

only the operators, {} and add.

The Larch Shared Language also provides ways of putting traits together. A trait that Includes

another trait is textually expanded to contain all operator declarations, constrains clauses,

generated by clauses, and axioms of the included trait. The meaning of the including trait is the

meaning of the textually expanded trait. In the Set example, the signature and meaning of + comes

from the Integer trait. Assumptions about operators appearing in a trait can be recorded in a trait

assumed by another. For example, the equality symbol used between e and el in the second and

fourth equations above, is assumed to satisfy the properties of _ equivalence relation as specified in

the Equalitytrait (see the Larch Libraryin [7]).

Renaming sort and operator identifiers is done through a with clause. In Set, we rename the sort T of

Equality with E.

2.2 The Larch/CLU Interface Language

A Larch interface language is used to describe the behavior of program modules, in particular

operations and abstract data types. Here is a Larch interface specification of a CLU operation that

chooses}and deletes an element from a set and returnsthe element:

choose = proc (a: set) returns (x: elem)
requires _isEmpty(a)
modifies at most [a]

ensures apo= = ram(a, x) A (x E a)

The requires clause states a precondition that must hold when an operation is invoked. An omitted

requires clause is interpreted as equivalent to requires true. In the above example, the caller of

choose is required to pass a non-empty set argument; the implementor is allowed to rely on the

pre.condition being met by the caller. A modifies at most clause identifies objects that the

operation is allowed to change, e.g., choose shrinks its set argument. The ensures clause states a

post-condition that the operation must establish upon termination. An unsubscripted argument

formal, e.g., a, in a predicate stands for the value in the pre state. A return formal or a formal

subscripted bYpost, e.g., apost,stands for the value associatedwith the formal in the post state.

Since CLU allows for multiple termination conditions (normal and exceptional), Larch/CLU providesa

way to specify exceptional termination. Instead of placing a pre-condition on the use of the choose

operation, one would more typically specify it to return an exceptional condition:

choose = proc (a: set) returns (x: elem) signals (empty)
modifies at most [a]
ensures normally a.... = tern(a, x) A (x E a) except

_voi

signals empty when isEmpty(a)

An interface specification of an abstract data type, T, consists of a set of interface specifications of

the operations of T, a trait name, and a mapping between a sort name appearing in the trait and the

type name T. The trait defines the meaning of the predicates in the body of an interface specification.

For example, the meaning of rem, E, and = in the post-condition of choose comes from the Set trait.

The sort-to.type name mappingdefines what set of (sorted) termsdenote the values of objects of the

type. A typical header for an interface specification of the set type would be:

set mutable type exports create, insert, delete, size
based on sort S from Set

where the based on clause indicates a mapping from Sto set.

3 The Library Problem

3.1 Informal Requirements of the Problem

The problem as stated in the ACM Software EngineeringNotes (K-SIG) [15] is as follows: "Consider;a

small librarydatabase with the followingtransactions:

1. Checkout a copy of a book. Return a copy of a book.

2. Add a copy of a book to the library. Remove a copy of a book from the library.

3. Get the list of books by a particular author or in a particular subject area.

4. Find out the list of books currently checked out by a particular borrower.

5. Find out what borrower lastchecked out a particular copy of a book.

There are two types of users: staff users and ordinary borrowers. Transactions 1, 2, 4, and 5 are

restricted to staff users, except that ordinary borrowers can perform transaction 4 to find out the list

of books currently borrowed bythemselves. The database mustalsosatisfy the following constraints:

1. Allcopies inthe library mustbe available for checkout or be checked out.

2. No copy of the book may be both available and checked out at the same time.

3. A borrower may not have more than a predefined number of books checked out at one
time."

A fourth constraint stated in Kemmerer's IEEE Transactions of Software Engineering paper (K-TSE)

[11] was probably left out inthe SIGSOFT version;since we refer to it later, we include it below:

4. A borrower may not have more than one copy of the same book checked out at one time.

3.2 A Formal Specification in Larch/CLU

We begin witha visualizationof our model of the library depicted bythe statechart [9] of Figure 1.

people books

users non-users .I library non-library

multiset__-'-_ J

...

Figu re 1: Stateohart of People and Books

There are two universes: people and books. Of the people, there are users and non-users of the

library. Of users, there are regular and staff members. Of the books, there are library books and

non-library books. Of the library books, there are those that are available for checking out and those

that have been checked out. The set of users partition those books that are checked out. The

diagram indicates whether a region within the library books denotes a set or multiset of elements.

The traits of the followingformal specification capture these relationships. The interfaces ensure that

the required constraints are maintained as a book movesfrom one region to another, e.g., from being

checked out to being available.

The presentation of our specification differs from itsactualdevelopment. For pedagogical purposes,

we walk through the pieces bottom-up, beginning with traits and then interfaces. The appendix

containsthe specification in its entirety.

3.2.1 Traits

A book hasa title, author, and subject:

Book:trait
B record of [title: T, author: A, subject: S]

A user is regular or staff:

Status:trait
St enumeration of [regular, staff]

Each user has a name, a status, and an associatedset of books. We leave unspecified how a user's

name is uniquely given, but assume that names satisfy the properties of an equivalence relation. A

user is responsible for any book in his or her associatedset of books.

User: trait
assumes Equality with [N for T]
includes Status, Book, Set with [BS for S, B for E]
U record of [name:N, status:St, books:BS]
Introduces

notStaff: U ---,Bool
responsible:B, U ---, Bool

constrains U so that for all [n: N, be:BS, b: B, u: U]
notStaff(<n,.regular, bs>) = true
notStaff(<n, staff, los;>)= false
responsible(b, u) = b E u.books

A library is a pair of a set of users and a multiset (bag) of available books. Thus, a library can have

multipleCOlliesof the same book, but users can have only a single copy of a book.

Library:trait
includes User,

Integer,
Set with [US for S, U for E],
Bag with [LBS for S, B for E],

L record of [users: US, books:LBS]
introduces

ailBooks:L --+ LBS
usersBooks:US _ LBS
available: L, B _ Bool
checkedOut: L, B _ Bool
limit:L _ Integer

constrains L so that for all [h L, u: U, us: us, b: B]
allBooks(I) = I.books U usersBooks(I.users)
usersBooks({}) = {}
usersBooks(add(us, u)) = if u E us

then setToBag(u.books) U usersBooks(us)
else usersBooks(us)

available(I, b) = b E I.books
checkedOut(I, b) = b E allBooks(I) A b E I.books

limit(I) = aNumber % could tailor this to type of user

3.2.2 Interfaces

The previous set of traits is sufficient for us to write the interface specifications for the library

transactions. The header for the librarydata type is:

library mutable type exports check_out, return, add, remove,
titles_by_author,titles_by_subject,checked_out_what, last_responsible

based on sort L from Library
with [user for U, bookfor B, title for T, author for A, subject for S]

•

where in the based on clause, we provide the sort-to-type name mappings, e.g., L to library, U to

user,which identify the set of possible (sorted) valuesfor each set of (typed) objects.

We now explain each of the operationsof the library in turn. For a user to check out a book from the

library,the book should be available, the user should not exceed the book limit, and the user should

not have a copy of that book already. By checking out the book, the states of the library and the user

may change. In thenormal case, the user is responsible for another book and the library makes it

unavailable for check out.

check_out = proc (h library, u: user, b: book) signals (notAvail, overLimit, hasCopy)
modifies [I, u]
ensures normally responsible(b, u_st) A checkedOut(I..._,, b) except

signals notAvail when b E allBoo_s('l)V checkedOut(_'_
signals overLimit when size(u.books) = limit(I)
signals hasCopy when responsible(b, u)

A user can return a book to the library if he or she was responsible for it; if so, the book is now

availablefor check out and the user is no longer responsiblefor it.

return = proc (h library, u: user, b: book) signals (notResponsible)
modifies [I, u]

ensures normally available(I..o.,,b) A _responsible(b, Upoet)except
signals notResponsiblewh_n'_responsible(b, u)

A user can add.a book to the library,if the user is a staff person. No check is made to see if the book is

inthe library already since multiple copies of the same book are allowed.

add = proc (h library, u: user, b: book)signals (notAuthorized)
modifies [I]
ensures normaUy available(I...t' b) except

sign als notAuthorized w he_'notStaff(u)

A user can remove a book from the library if the user is a staff person and if the book is not checked

out by any user, i.e., available.

remove = proc (h library, u: user, b: book) signals (notAuthorized, notAvailable)

modifies [I]
ensures normally b (_ailBooks(l) except• . po

signals notAuthorlzed when not_aff(u)
signals notAvailable when _available(I, b)

The set of titles of library books returned may be by author or subject.

titles_by_author = proc (h library, a: author) returns (ts:Set[title])
modifies nothing
ensuresV b: B [(b E adlBooks(I)A b.author = a) => b.title E ts]

titles_by_subject = proc (h library, s:subject) returns (ts:set[title])
modifies nothing
ensures V b: B [(b E allBooks(I) A b.subject = s) ==>b.title E ts]

,

The set of titles of books currently checked out by some user, who, is returned only if the asker is a

staff person or is the same as who.

checked_out_what = proc (who, asker: user) returns (ts: set[title]) signals (notAuthorized)
modifies nothing
ensures

normally V b: B [b E who.books ==>b.title E ts] except
signals notAuthorized when _[asker.status = staff Y who = asker]

The user last responsible for a book is returned only if the asker is a staff person, the book is a library

book, and the book is currently checked out.

last_responsible : proc (h library, asker: user, b: book) returns (u: user)
signals (notAuthorized, notABook, notCheckedOut)

modifies nothing
ensures normally responsible(b, u) except

signals notAuthorized when notStaff(asker)
signals notABook when b _ allBooks(I)
signals notCheckedOut when available(I, b)

From the traits and the interface specifications together, one can show that the requirements of the

problem statement are satisfied. Other properties are also provable. For example, the followingthree

theorems are provable from the Library trait.

1. If a book is not checked out and is not available, then it is not a library book at all:

[_checkedOut(I, b) A _available(I, b)] => b E allBooks(I)

2. A library book is available if and only if it is not checked out:

b E allBooks(I) => [available(I, b) 4= _checkedOut(I, b)]

3. If a book is checked out, then some user must have it:

checkedOut(I, b) ==>3 u: U [u E I.usersA respons!ble(b, u)]

4 Discussion

In the course of formalizingthe libraryexample, a number of questionsarose whose answers helped

shape our solution. Some questionsare attributable to the informality of the problem requirements

and some to the particular formalspecificationmethod chosen.

4.1 Modifications to the Requirements

Typical problems with informal requirements appeared in the library example; we modified the

requirementsaccordingly.

Unintentional mistake: That Transaction 1 be restricted to only staff users is probably an

unintentional mistake in the problem requirements. Checking out and returning books should be

made available to ordinary borrowersas well as library staff. This modification to the requirements is

consistentwith Kemmerer's statementof K.TSE.

Overspecification: Returning setsof books is less restrictive than returning lists of books. Sets allow

for the possibility of non-linearly formatted, and possibly unordered output, e.g., tables, charts, or

pictures. Multisets would allow formultiple copies to be returned as well.

Ambiguity: What is the distinctionbetween a book and a copy of a book? Without Kemmerer's fourth

functional requirement of K.TSE, there seems to be no reason for the distinction. For example, the

second requirement says "No copyof the book may be.both available and checked out at the same

time.'" 'Surely no book, let alone a copy of one, may be both available and checked out at the same

time.

The fourth requirement makes the problem more interesting, so the Larch specification allows the

library to maintain multiplecopies of a book, but any one user to haveonly one copy. Here, "copy" is

taken to mean a book object with the same title, author, and subject (akin to equality on a record•

type). Hence, we model the books in a library as a bag (to allow for multiple copies) and the books

associated with individualusers as a set (to disallow for multiple copies). Notice that two different

users may havedifferent copiesof the same book and the library maystill have available for check out

other copies of a checked out book.

Inconsistencies or contradictions are another common problem with informally stated requirements.

None were detected in K.SIG.

10

4.2 Extrapolations from the Requirements

Incompletenesses of the requirements led to the followingextrapolations:

Exceptional conditions: Many possible "error" cases that could reasonablyarise in a realistic library

are not addressed explicitly by the requirements. Larch/CLU provides a useful mechanism to

demarcate and handle exceptional cases; thus the Larch/CLU interface handles some of them to

make the problem more realistic. For example, if a book is not checked out, the last_.responsible

procedure will terminate signalling notCheckedOut to indicate that the book is still available. The
,

specification Still does not handle all cases, e.g., none of the library operations specify behavior for

when a user argument is not a member of the library's set of users.

Initialization: A create operation for the libraw data type is an obvious omission. To make the

specification more complete,we Would add the followingoperation:

create_library = proc () returns (h library)
ensures normally I = <{}, 0> A new [I]

Adequacy: The set of library operations does not include ways to add and remove users. For

example, for a staff personto add a user (by name), we would add the followingtwo operations:

add_regular =-proc (h library, asker: user, n: name) signals (notAuthorized, alreadylsUser)
modifies [I.users]

ensures normally I.users os = add(I.users, <n, regular, {}_>)except• p t
signals notAuthonzed when notStaff(asker)
signals alreadyisUser when 3 u':user [u'.narne = n A u' E I.users]

add_staff = proc (h library, asker: user, n: name) signals (notAuthorized, alreadylsUser)
modifies [I.users]
ensures normally I.users_.os. = add(I.users, <n,staff, {}:>)except
• signals notAuthorized w_'h(_nnotStaff(asker)

signals alreadylsUser when 3 u':user [u'.name = n A u' E I.users]

Notice that the assumption that names are unique is used to determine whether or not a user is a

member of the set of library users.

For removing a user,we would add:

remove_user = proc (h library, asker: user, u: user) signals (notAuthorized, hasBooks)
modifies [I.users]
ensures normally I.userSoost= rem(I.users, u) except

signals notAuthorized When notSb=_rt(asker)
signals hasBookswhen _isEmpty(u.books)

11

4.3 Influence of Specification Method

Latch's two-tiered specification method encourages specifiers to identify appropriate specification

modules and abstractions when attacking a given problem. Larch/CLU also encourages specifiers to

considerexplicitlywhat exceptional situations may arise and how tOtreat them.

Traits are pieces of specifications that use other specifications (witness the use of the Set, Bag, and

Record traits in the Librarytrait). Larch provides manyways to put traits together, thus encouraging a

style of writing small specifications and reusing them for different purposes. The Larch library

specification illustratestwo of the more common reuses Of traits: inclusion of traits into another and

renaming identifiersof one trait by another. Furthermore, each interface specification usestraits and

is itself a modular unit of specification.

Writing Larch interface specificationsforces one to focus on choosing appropriate data abstractions

for a system, thus encouraging a modular decompOsitionbased on what data is being manipulated.

For the library data type, we needed to answer "What are the properties of a library that we want to

maintain?" and "What is an appropriate set of operations for a library?" Answering the first question

helped determine what to write in the traits. Answering the second helped reveal the

incompleteneeses mentioned in the previous section as well as raise the issue that perhaps some

operations, e.g., what_Checked_out, more properly belong outside the type.

Larch's two-tiered method allows the specifier to separate out the functions to be implemented, i.e,,

the operations, and functions used to help define program behavior, i.e., operators in traits. Trait
I

i

operators can be viewed as hidden or auxiliary functions not intended to be implemented. A

consequence of this separation is that operators are often introduced into traits to make interface

predicatessimpler and often more concise. For example, the "notStaff" operator of the User trait and

the "responsible" operator of the Library trait are strictly not needed since they can be expressed

using previously defined operators. In writing the interfaces for the library operations, however,

instead of writing "_(u.status = staff)," we found it more convenient to write and easier to read the

predicate "notStaff(u)," which appears in six of the library operations (including the three for adding

and removing users).

Finally, there is a subtlety in the Larch/CLU specification that reflects the subtle difference between

an object and its valuein CLU. A typed object has a value denoted by a sorted term. CLU objects are

defined by interface specifications of data types; their values are defined by traits. Thus, no trait is

introduced to define values for copies of books, only values for books. We introduced a book type

(whose specification is omitted here for brevity) so that distinct book objects with the same value (as

12

defined in the trait Book) are copies of one another.2 We could have removed th is subtlety at the trait

level by defining a way to uniquely identify each book copy (version number, UPC code, etc.) and

including that unique identifier as part of the value of the book (in addition to author, subject, and

title).

5 Related Work

Since Kemmerer uses Ina Jo of the Formal Development Methodology (FDM)3 to specify the library

example, we begin by comparing Ina Jo and Larch, and then follow with a comparison of Larch and

other widely-known specification languages,

5.1 Comparison to Ina Jo

Ina Jo and Larch have some similarities. Constant, variable, and function variables in Ina Jo are

analogous to Larch trait operators. Axiomsin Ina Joare analogous to trait equations. Transforms are

analogous to interfaces. The tradeoff between refcond/effect and requires/ensures is similar: an

effort to place no pre.condition on any of the procedures is made in both specification methods.

Ina Jo has specific clauses for stating initialconditions, invariants over states, and invariants over

pairs of states. Larch has no explicit means for stating initialconditions nor for stating invariants over

pairs of states. Invariants over states must be either written in traits or proven from Larch trait and

interface specifications. Thus, whereas an Ina Jo specifier will naturally consider the initial state, a

Larch specifier may overlook this case; whereas an Ina Jo specifier will naturally record state

invariants,a Larch specifier may neglect to include them explicitly in the equations or consequences

of a trait.

The three most notable differences between Larch and Ina Jo are in the treatment of modularity,

abstraction, and exceptions. In Ina Jo, one writes a single top-level specification that describes in

toto the behavior of an entire system. Within such a specification, one focuses more on state

transitions and not on the semantics of the objects that make up a state. It provides a means to

introduce types, but they remain uninterpreted unlessaxioms are given to describe the types' values.

Finally, no mechanismexists for exceptions in Ina Jo.

2CLU provides equal and similar operations on objects that are used to check whether two objects are identical or whether
justtheir values are identical.

31naJo and FDM are trademarks of System Development Corporation, formerlya Burroughs Company, now UNISYa;

13

5.2 Other Languages

Some formal specification languages that are similar to Larch are CLEAR [4], ACT-ONE [5], and

SPECIAL [14]. Other specification languages, e.g., lota [13], Z [1, 16], VDM's Meta.IV [3], and Gypsy

[6] are based on different, often richer, semantic models.

One important difference between CLEAR and Larch is that specifications written in CLEAR have no

simplQway of specifying side effects and error handling of procedures. We use a Larch interface

language to deal with issues like side effects anderrors. One difference between the two languages_

CLEAR and ACT.ONE, and Larch is that their semantics are described in terms of models, e.g., initial

algebras, whereas ours are described interms of theories, e.g., sets of first-order formulae. Unlike in

Larch, none of CLEAR, Iota, and ACT-ONE attempts tO separate specifying programming language

issues like side effects, modularization, and parameterization from specifying fundamental

abstractions.

SPECIAL separates an "assertion" part, analogous to our Shared Language component, from a

"specification" part, analogous to our interface language component. A major difference between

SPECIAL and our work is that in SPECIAL, types used in the specification part are defined in the

assertion part, whereas we define types in interface language components ("specification" parts).

Also, in SPECIAL a type is restric{ed to be either a primitive type, a subtype, or a structured type, each

of which comes with a set of pre-defined functions. Larch does not restrict the assertion language to

be based on a fixed Set of primitives,and allows the specifier to use the Shared Language component

to define exactly the assertion language desired. Since the assertion language in SPECIAL is

restricted, most of the work of writing a specification is done in the specification part. We take the

opposite viewpoint and expect most of the work of writing a specification to be done in the Shared

Language component ("assertion" part).

6 Concluding Remarks

Larch is ideally suited to specify problems such as the library or formatter problems of [15]. It never

was originally intended to be used to specify concurrent systems, and thus would not be suited to

specify the liveness properties of the lift problem. Since it focuses more on data than control,

specifying the control requirements of either the lift or heating system problems would be less

straightforward than specifying the data invariants of the library and formatter problems. It is easier in

Larch to assert what properties of data must hold than to assert that a sequence (or interleaving) of
• .

state transitions must (or must not) occur.

More recently, however, people have applied Larch to the domain of concurrency. The language as it

14

is currently defined is used as a formal specification language for characterizing execution

sequences of concurrent histories that are linearizable [10]. Others have extended the language with

when conditions to handle the explicit specification of synchronization conditions [2]. In both cases,

the two.tiered method has been natural to apply and useful for separating between different levelsof

abstraction.

15 ,,

!. Larch Specification

I. 1 T raits

Book: trait
B record of [title: T, author: A, subject: S]

Status: t rait
St enumeration of [regular,staff] ..

User: trait
assumes Equality-with [N for T]
includes Status, Book, Set with [BS for S, B for E]
U record of [name:N, status:St, books: BS]
Introduces

notStaff: U --, Bool
responsible: B, U _ Bool

constrains U so that for all [n: N, bs: BS, b: B, u: U]
notStaff(<n,regular, bs>) = true
notStsff(<n,staff,bs)) = false
responsible(b,u) = b E u.books

Library: trait
includes User,

Integer,
Set with [US for S, U for E],
Bag with [LBS for S, B for E],

L record of [users: US, books:LBS]
,introduces

allBooks:L --+LBS
usersBooks:US _ LBS
available: L, B --. Bool
checkedOut: L, B --+Bool
limit:L --+ Integer

constrains L so that for all [h L, u: U, us: US, b: 13]
ailBooks(I) = I.booksU usersBooks(l.users)
usersBooks({}) = (}
usersBooks(add(us,u)) = if u E us

then setToBag(u.books) LJusersBooks(us)
else usersBooks(us)

available(I, b). = b E I.books
checkedOut(I, b) = b E allBooks(I) A b (EI.books
limit(l) = aNumber %.could tailor this to type of user

16

1.2 Library Interface

library mutable type exports create, check_out, return, add, remove,
add_regular, add_staff, remove_user,
titles_by_author,titles_by_subject,

based on sort L from Library
with [user for U; book for B, title for T, author for A, subject for S]

create_library = proc () returns (h library)
ensures normally t= <0, {};>A new [I]

check_out = proc (1:library, u: user, b: book) signals (notAvail,overLimit, hasCopy).
modifies [I, u]
ensures normally responsible(b, u._._) A checkedOut(I.... , b) except

signals notAvail when b (_aJlBoo_s_l)V checkedOut(K_) '
signals overLimit when size(u.books) = limit(I)
signals hasCopy when responsible(b, u)

return = proc (h library, u: user, b: book) signals (notResponsible)
modifies [I, u]

ensures normally available(I.. ,,.t, b) A _responsible(b, Upost)except
signals notResponsible when _responsible(b, u)

add = proc (h library, u: user, b: book) signals (notAuthorized)
modifies [I]
ensures normally available(I..ost, b) except

signals notAuthorized whe_"notStaff(u)

remove = proc (h library, u: user, b: book) signals (notAuthorized, notAvailable)
modifies [I]
ensures normally b E allBooks(Ioost)except

signals notAuthorized when n0tStaff(u)
signals notAvailable when _available(I, b)

add_regular = proc (h library, asker: user, n: name) signals (notAuthorized, alreadylsUser)
modifies [I.users]
ensures normally I.users..ost = add(I.users, <n, regular, 0>)except

signals notAuthorized w'hen notStaff(asker)
signals alreadylsUser when 3 u':user [u'.name = n A u' E I.users]

add_staff = proc (h library, asker: user, n: name) signals (notAuthorized, alreadylsUser)
modifies [l.users]
ensures normallyl.users os = add(l.users, <n,.staff, {};>)except• p t

signals notAuthonzed when notStaff(asker)
signals alreadylsUser when 3 u':user [u'.name = n A u' E I.users]

remove_user = proc (h library, asker: user, u: user) signals (notAuthorized, hasBook8)
modifies [I.users]

ensures normally I.userso0st = rem(I.users, u) except
signals notAuthorized v_hen notStaff(asker)
signals hasBookswhen _isEmpty(u.books)

17 ,,

titles_by_author = proc (1:library, a: author) retur:ns (ts: set[title])
modifies nothing
ensures V b: B [(b E allBooks(I)A b.author = a) ==_b.title E ts]

titles_by_subject = proc (1:library, s:subject) returns (ts: set[title])
modifies nothing
ensures V b: B [(b E allBooks(I)A b.subject = s) ==_b.title E ts]

1.3 Other Interfaces

checked_out_what = proc (who, asker: user) returns (ts: set[title]) signals (notAuthorized)
modifies nothing
ensures normally V b: B [b E who.books ==_b.titleE ts] except

signals notAuthorized when _[asker.status = staff Y who = asker]

lastresponsible = proc (1:library, asker: user, b: book)returns (u: user)
signals (notAuthorized, notABook, notCheckedOut)

modifies nothing
ensures normally resPonsible(b, u) except

signals notAuthorized when notStaff(asker)
signals notABook when b E allBooks(I)
signals notChe_kedOut when available(I, b)

18

References

[1] J.R. Abrial. The Specification Language Z: Syntax and Semantics. Technical Report,
Programming Research Group, Oxford University,1980.

[2] A. Birrell, J.V. Guttag, J.J. Homing, and R. Levin. The Threads Synchronization Primitives.
1986.private communication.

[3] D. Bjornerand C.G. Jones (Eds.). Lecture Notes in Computer Science. Volume 81: The
Vienna Development Method: the Meta-language. Springer-Verlag, Berlin-Heidelberg-New York,
1978.

[4] R.M. Burstall and J.A. Goguen. An Informal Introduction to Specifications Using CLEAR. In
Boyer and Moore (editors), The Correctness Problem in Computer Science. Academic Pre_, 1981.

[5] H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1. Springer-Vedag, Berlin,
1985.

[6] D.I. Good, R.M. Cohen, C.G. Hoch, L.W. Hunter, and D.F. Hare. Report on the Language
Gypsy, Version 2.0. Technical Report ICSCA.CMP-IO, Certifiable Minicomputer Project, The
University of Texas at Austin, September, 1978.

[7] J.V, Guttag, J.J. Homing, and J.M. Wing. Larch in Five Easy Pieces. Technical Report 5, DEC
SystemsResearch Center, July, 1985.

[8] J.V. Guttag, J.J. Homing, and J.M. Wing. The Larch Familyof Specification Languages. IEEE
Software 2(5):24-36, September, 1985.

[9] D. Harel. Statecharts: A Visual Formalismfor Complex Systems. Science of Computer
Programming 8, 1987. to appear.

[10] M.P. Herlihy and J.M. Wing. Axioms for Concurrent Objects. In Proc. Fourteenth ACM Symp.
on Principles of Programming Languages. Munich, W. Germany, January, 1987.

[11] R.A. Kemmerer. Testing Formal Specifications to Detect Design Errors. IEEE Transactions on
Software Engineering SE-11(1):32-43, January, 1985.

[12] B.H. Liskov,et ai. Lecture Notes in Computer Science. Volume 114: CLU Reference Manual.
Springer-Verlag, 1981.

[13] R. Nakajima,M. Honda, and H. Nakahara, H. Hierarchical Program Specification and
Verification-- A Many-sorted Logical Approach. Acta informatica 14:135-155, 1980.

[14] L. Robinson and O. Roubine. SPECIAL. A Specification and Assertion Language. Technical
Report CSL.46, Stanford Research Institute, Menlo Park, Ca., January, 1977.

[15] Call for Papers. Problem Set for the 4th International Workshop on Software Specification and
Design. ACM Software Engineering Notes, April, 1986.

[16] B. Sufrin, C. Morgan, I. Sorensen, and I. Hayes. Notes for a Z Handbook: Part I..The
Mathematical Language. Technical Report, Programming Research Group, Oxford University
Computing Laboratory, August, 1984.

[17] J.M. Wing. A Two.Tiered Approach to Specifying Programs. Technical Report MIT.LCS.
TR-299, MIT Laboratory for Computer Science, Cambridge, Mass., June, 1983.

