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ABSTRACT

Existing approaches to geometric modeling use rigid, static data structures, often tuned for one

specific application. This inflexibilityrestricts users to inadequate means of manipulating geometric

models. Our alternative approach, Geometric Reasoning, applies deductive reasoning to manipulate

geometric information at an abstract level. Geometric reasoning is finding attributes of geometric

objects using their intrinsic properties, their relationships with other objects, and the inference rules

that bind such properties together in a geometric space. Instead of using data structures tailored for

numerical computation, we use an inference mechanism that understands the semantics of geometric

objects and allows dynamic definition of abstractions, e.g., shapes and relationships.
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I.Motivation

/'

Recent advances in computer graphics have stimulated an interest in using

visual techniques as a means of communication between people and machines.

Computer graphics activity can be divided roughly into picture rendering and

geometric modeling. Geometric modeling refers to the construction and manipulation

of data structures to represent geometric information;.picture rendering is production

of visual images from a geometric model. The most dramatic advances in computer

graphics have occurred in picture rendering. Problems of picture rendering are by
now well understood to the extent that commercial black-box hardware and software

packages for production of life-like images are available. Consequently, application

programs no longer need to carry the burden of rendering, but can focus on modeling.

Modeling, and more generally, processing of geometric information is a

prime concern in not only graphics, but also in applications like computer-aided design

of mechanical parts, computer-aided process planning, computer-aided manufacturing,

programming of industrial robots, and computer vision. The increasing interest and

activity in all these areas indicate the growing importance of geometric information

processing in future computing. Historically, the focus of most such activity has been

on individual applications, e.g., computer-aided drafting, in isolation from other

related applications, e.g., manufacturing process planning. Recently, because of the

recognition that geometric information is common to many of these applications, e.g.,

CAD and CAM, there has been a move towards using unified schemes, e.g.,

CAD/CAM databases, to represent this common information. This trend that leads

to databases for geometric information is analogous to the evolution and use of

databases in other disciplines.

Today, several standards exist for representation and manipulation of

geometric information. Some, e.g. CORE _ and GKS _, are procedural in nature andrely on a rather sophisticated underlying model of computation for their semantics.
Because much of the semantics is implicit in the sequence of procedure calls,

application programs that use these standards usually must keep another less-
procedural, more-explicit representation of the geometry they deal with. The Initial

Graphics Exchange Specification (IGES)l_ developed by the US National Bureau of
Standards is an example of a non-procedural representation model for geometric

-2-



|
|

information• The primary purpose of IGES is to facilitate the exchange of information

I between different CAD/CAM systems. As such, an IGES specification is meant to be
an explicit and complete representation of the geometry it conveys. The intention of

an IGES specification (as opposed to its extension which is a flat file of ASCIIcharacters) is based on a conceptual model that represents individual geometric

entities through parameter values. This model is representative of the popular

| ,schemes used in databases of existing systems. They are heavily dependent on the

metric properties of entities and more abstract concepts, even such important

topological properties as connectivity of entities, can be lost or misinterpreted due to

precision errors.

We argue that using conventional data models is inadequate for geometric

problem solving because it restricts users to fixed schemas for representing and

viewing of data. Such models are incarnations of a single view of their information

contents, generally tuned for a single application• Typically, entities can be defined

only through assignment of concrete values to the fields of data structures that

represent them. Algorithms using such models cannot tolerate incomplete

information that represent partially defined objects. An exception to such inflexible

models is variational geometry _. Here, a model is first constructed using primarily,

the non-metric properties of a shape through a hand-sketch. A set of dimensional and

geometric constraints can later be imposed on such an abstract model, resulting in a

system of simultaneous equations. Sufficiency and consistency of the constraints can

then be verified by solving this system.

A A /X

a b c d e

Figure 1. A House
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Geometric information, however, is inherently multifaceted. For example,

the geometric information in Figure l:a can be interpreted as a triangle, a square, and
a cross, as in Figure 1.b; three triangles and two line segments as in Figure 1.c; five

triangles as in 1.d; or eight line segments as in 1.e; to name but a few. Furthermore,

one interpretation of geometric information may be more appropriate than others for

some applications. Consider the following two examples.

QQ i.J.i
a b c

Figure 2. A U-Shaped Block
O

(I) A polygon can be viewed as a set of edges, each represented by the equation of

a line segment, or as an ordered list of vertices, each represented by its

coordinates.Some algorithmsmay preferthe edge-setview of polygons

becauseitdirectlyprovidesthe coefficientsof the equationsdefiningtheir

, edges. On the other hand, a plotting algorithm would prefer the vertex-list

view of a polygon because it must "walk" the pen from vertex to vertex in

proper order to draw the perimeter of the polygon. The information about the

vertices of a polygon and their traversal order is not explicitly available in the

edge-set view.

(2) The object in Figure 2.a can be viewed as the combination of three blocks as in

Figure 2.b or as a block with a piece removed as in Figure 2.c. A design

engineer who is interested in finite element analysis of such a model, may

prefer the view in Figure 2.b. On the other hand, a manufacturer who is
interested in the volumes that must be removed from stock material to

fabricate this object may prefer the view in Figure 2.c.
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Not only may there be multiple views of the same geometric enti_', as the

• above examples demonstrate, but the number and nature of potentially useful

interpretations of more complex geometric information is, in general, hard to predict.

We contend that it is both highly desirable and conceivable to support the automatic,

dynamic derivation of different interpretations of geometric information.

Traditional methods of geometric information processing use highly datadependent programs that deal with geometry mostly through direct manipulation and

interpretation of numbers. Numerically-oriented computation also encourages

I decomposition of a problem into a multitude of narrowly specialized subproblems,

each of which must be solved explicitly and separately. For example, finding a line

I sufficient number of its is into several isolatedgiven properties partitioned speciala

cases, e.g., when it is tangent to two circles, when it connects two points, when its

slope and intercept are given, etc. This breakdown spreads the knowledge about
properties of shapes, relationships, and geometric rules across many pieces of

programs and data structures. Consequently, existing geometric modelers have no

explicit understanding of such fundamental concepts as coincidence, parallel, tangent,

intersection, etc. s.4.a.0._0These systems are not extensible in the sense that they do not

allow users to specify their solutions to new problems in terms of the fundamental

concept of geometry.

We propose a new paradigm for processing geometric information:

geometric reasoning. The prime motivation for our proposal is to accommodate the

inherent multifaceted nature of geometric information. A secondary motivation is to

accommodate this dynamically, e.g., as users' views change or as designs become

more complete. Significant features of geometric reasoning include its descriptive

(definitional) versus prescriptive (operational) nature, the focus on information

abstraction versus data representation, and the support for dynamic redefinition and

processing of data.

Section 2 describes the basic formal concepts underlying our notion of

geometric reasoning; Section 3 pursues further the aforementioned features of our

approach; Section 4 contains numerous examples; Section 5 contrasts geometric

reasoning with other trends in computing, and Section 6 indicates our future plans.
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I
I 2. What is Geometric ReMonlng.*

I Informally, geometric reasoning is the process of defining and deducing the
properties of a geometric entity using the intrinsic properties of that entity, its

relationships with other geometric entities, and the rules of inference that bind such
properties together in a geometric (Euclidean) space. Thus, the two prime activities in

I geometric reasoning are defining Properties and defining classes of objects. We perform
both activities within the same formal system, which a user may extend using the

r same language as that of the formal system.

More formally, let there be a unh,erse of objects. The formal system

underlying geometric reasoning is based on first-order predicate calculus with equality

on these objects (FOPCE). This FOPCE logical system includes: the usual logical

symbols, i.e., negation, connectives, and quantifiers; the eqt_ality symbol (-_--);

variable symbols; and well-formed formulae (wffs), logical axioms, and rules of

inference (e.g., modus ponens) written in terms of the symbols. A user of a

geometric reasoning system extends FOPCE with nonlogical symbols, in particular

constant and predicate symbols, and wffs, axioms, and rules of inference written with

thesenew symbols.'

This simple basis supports the activities of defining properties and defining

classes of objects as follows. First, all properties of objects and relationships among

objects are defined in terms of predicates on objects, which are written in terms of the

nonlogical predicate symbols in a user-extended FOPCE. Note that by taking a

uniform view toward properties and relationships, no function symbols of non-zero

degree need ever be added to FOPCE by a user. The decision to allow users tO define

only predicates and not also functions is motivated by recognizing that the distinction

between properties and relationships is not appropriate for geometric information. For

• example, a line segment as an object is just as well defined in terms of what may be

considered its properties (e.g., end-points, or length, slope, and intercept), as in terms

• of its relationships with other objects (e.g., parallel to a line, tangent to a circle, and

connecting two other lines).
ii

• Strictly speaking, it is the responsibility of the user to show that any axiom or rule added to
FOPCE does not lead to an inconsistent deductive system. In practice, however, such am .
inconsistency may be discovered in the course of a "proof" in the system, thus notifying
the user that an inconsistent axiom or unsound rule w_s added.
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Second,classesof objectsare definedthroughinstantiatingfreevariables

appearinginpredicates.The setof allobjectswhose substitutionforthesame free

variableof a givenpredicatemake thatpredicatetrueiscalleda classofobjects.Each

constantsymbol,e.g.,theinteger5,appearingina predicateisinitsown class.V,'e

furtherdefinean Inheritrelationover theseclasses.For classes,¢I and C2,

<el, C2> is in Inherit if for all properties P: C2 x 7'1 ... x Tn.-. Bool, for all z: C2, if

P(z,vl, .... vn) holds for some vl: T1,...,vn: Tn, then there exists some property

P_: C1 ×T1 --" ×Tn-.* Bool such that for all u: ¢1, P'(y,wl,...,um) holds for some

wl: T1 .... ,wn: Tn. We require that Inherit be a partial-order. For convenience, P and P'

are usually given the same name. We use the expressions "¢1 is a subclass of C'2" or

"C] inherits all properlies of C2" if <Cl, C2> is in Inherit. From our partial-order

restriction on Inherit, notice that (1) if <¢1, C2> and <C2, c']> are both in Inherit,

then C1 and c2 are the same class, and (2) multiple inheritance is allowed since

<Cl, C2> and "<C], C3> may both be in the Inherit relation where C2 _ c3.

An Inherit relation induces a class hierarchy on the classes of objects. This

hierarchy provides another way --a very convenient way-- of defining properties of

objects: through inheritance for subclasses in terms of previously defined classes.

That is, a user is freed from explicitly (and laboriously) introducing predicate symbols,

axioms, and rules defining properties of objects in a subclass for those properties that

would otherwise automatically be inherited from their parent classes through a

hierarchy. For geometric objects, which "naturally" can be categorized into classes

(e.g., points, lines, polygons), this convenience is extremely useful because of

similarity among the kinds of properties they have (e.g., number of angles, number of

equal sides).

3. Significant Features of Our Approach

Inthissection,we pursuetheimplicationsofthreefeaturesofourapproach"

the descriptiveversusprescriptivenatureof geometricreasoning;the emphasison

abstractionversusrepresentation;and the dynamic manner of viewinggeometric

information.

Geometric reasoning is descriptive, not prescriptive, in nature. *" Properties
i

n This descriptiveversus prescriptive contrast is similarto that seen in other fields, e.g.,
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of objects are either defined as axioms or derivable from the axioms and inference

rules of a user-extended FOPCE. It is the capability of deduction in first-order logic

that allows the user to infer properties of objects not explicitly stated in any given

axiom. The axioms and rules allow users to acquire the information they need,

independent of how it was given to or stored by the system. Consequently, users

have access to both explicit and implicit information. This is important in geometry

because in complex shapes, implicit information can be just as significant as explicitly
defined information. For example, polygons not only result from explicitly defining

polygon objects, but also from coincidence of the vertices of other polygons, and also
from intersection of independent lines.

Additionally, with deductive reasoning, users do not specify algorithms that

prescribe how data items should bemanipulated. Instead, through definitions and

inference rules, users describe the desired properties of datg and relationships they

wish to see. As a consequence, users can do "proofs" about their data and possibly

gain knowledge implicitly contained in their definitions and rules.

A second feature of our approach is that in reasoning about geometric

objects in terms of their properties, we support information abstraction. Modern

high-level programming languages, e.g., CLU _, MesaS, Ada _, that have linguistic

support for data abstraction allow users to define abstract data types by defining a set

of operations that can be performed on their values. The underlying representation is

hidden from users of abstract data types. We also reason about geometric information

at. an abstract level, e.g., we reason about lines in terms of lines and not necessarily in

terms of slopes and y-intercepts or end-points. Consequently, we are not bound to a

single predetermined model of information. Instead, as many models as desired can

be supported, which means no one particular model serves to bias any user's

viewpoint of information. /

What is unusual about our approach to information abstraction is our notion

of class versus the more standard notion of "class" in the Smalltalk sense Is or "type"

in the Ada sense. For us, classes of objects are defined implicitly as side-effects of

defining predicates on objects. In our approach, an object can possess any set of

applicativeversusimperativeprogramming,definitionalversusoperationalsemantics.
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I
i properties,independentofany classstructure(e.g.,classortypehierarchy),provided

i that its properties are consistent, i.e., the conjunction of the predicates defining its
properties does not lead to a contradiction in the extended FOPCE.

Finally, geometric reasoning is a dynamic process in two senses. First, userscan dynamically change the knowledge database of a geometric reasoning system by

I incrementally adding new axioms and rules to define properties and relationships andthus extend those built-in or previously added. Second, the addition of new

I information by users may change their previous view and thus some previously
established properties and relationships may no longer hold or new properties and

i relationships may be (unexpectedly) deduced by the system.

Notice that because of our unusual notion of classes of objects, i.e., that

I classes are implicitly defined through satisfying predicates, we are not bound to a

single, statically-defined class hierarchy, but allow for a set of class hierarchies, each of

I supports a particular user may same geometric
which view. One describe the

information in terms of a different set of predicates from another user. Each different

I set of predicates describing the same information imposes a possibly different class
hierarchy. Thus, many hierarchies may simultaneously exist reflecting different views

I that, different users may have of the same information, where the nature and numberof these views may change over time. See Section 4.2 for examples of object class

hierarchies.
g:...

4. Examples

In this section we give some simple examples of how one can use a i
geometric reasoning system. We distinguish between the deductive reasoning _:

implemented in a system needed to support deduction in first-order logic, versus the "_;_
reasoning performed by users in order to express their problems of interest. Our _

problem solving paradigm encompasses both kinds of reasoning, but our examples
focus on the latter. Thus, we assume the existence of a system (complete with an

inference mechanism and a user language) that supports geometric reasoning, but we i

stress that geometric reasoning itself is independent of any implementation. ;i



In our examples, we use a Prolog-like e notation for defining predicates and

stating queries. Definition of a predicate is akin to adding a rule of inference to

FOPCE. Th'e definition of a predicate is given by writing on the left-hand side of a

":-" symbol, a predicate name and a list of variables and constant symbols, and on

the right-hand side, a wff involving the variables introduced on the left. Response to

. a query is akin to (implicit) definition of classes of objects. A query is a Wff containing

variables and constant symbols. Free variables appearing in a query can be

• instantiated by previously declared (named) objects, or by creating new objects that

satisfy the properties required by the query. By convention, we use an initial

lowercase letter (e.g., p and z) for variables, and an initial uppercase letter (e.g., 1='1

and C1) for constants, e.g., previously declared objects.

4.1. Defining and Deducing Objects and Properties

Let us begin by considering a simple universe of points, lines, circles,
/

numbers, and booleans. We assume numbers and booleans and predicates describing

their properties are built-in. For points, we define predicates such as abs(p, c), which

is true if the coordinate c is the abscissa of the point p, and ord(p, c), which is true if c

is the ordinate of p. For example, abs(P1, _) is true if the abscissa of the previously

defined object (point) PI is 2, and since p is a free variable, abs(p, f.)requires any

instantiation of p to be an object whose abscissa is 2. Given abs and ord, we can

define equality of points in terms of their Cartesian coordinates:
\

equal(pl, p_.) :- abs(pl, a) _ ord(pl, o) _ abs(p_, a) el ord(p_, o)

We emphasize that no specific representation for points, e.g., the existence of an

underlying Cartesian coordinate system, is necessarily assumed.

Additionally, we can define the following predicates on points, lines, and

circles• (The names of the predicates were chosen to be indicative of their meaning

so we leave off the righbhand sides of their definitions.) For all p, pl, p_. point, I, 11,

I_.. line (segment), r. circle, _ number, we have:
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lines points and lines points, lines, ud circles

y-intercept(l, p) intersed(p, I1, 19) tangent(l, e, p)

z-intercept(l, p)

end-points(l, pl, p_) lxdnts and circles

parallel(ll, lg)

length(l, n) coincide(p, c)

equal(ll, 12)

The nextsevenpredicatesaresimpleexamplequeries.For eachpredicate,

the system instantiatesitsfreevariablesto allobjects_hose substitutionin the

predicatewouldmake ittrue.Note thatthisprocessisnota searchthroughpreviously

definedobjectstofindthosethatsatisfythequery(asinthecaseofa tTpicaldatabase

query);objectsare"created"by thesystem,ifnecessary,tosatisfya query.

1. abs(pl, e) 6" ord(pl, 3)6"abs(p_, 8)6"ord(p°., 6)8'equal(p1, p_)

Here, the system uses the definition of equal on two points to deduce that. this

predicate is false, i.e., there are no instantiations of pl and p_ that make them

equal. To satisfy th_ predicate, pl and p_ must be instantiated to two objects

with the following properties: the abscissa and ordinate of pl must be 2 and 3,

respectively (hence pl must be instantiated to a point), the abscissa and

ordinate of pf must be 3 and 6, respectively (hence pe must be a point also),

and pl and p9 must be equal. The definition of equal states that two objects

(points) are equal if they.have the same abscissa and ordinate. Clearly, this

contradicts the other properties of pl and pe stated above, therefore the

predicate fails.

2. ab,(pl, _) 8f ord(pl, 8) 8Sequal(p1, p_) _ abs(p_, z) 8J ord(p_, y)

This predicate is satisfied by (simultaneously) instantiating pl to s point with

the given coordinates, pf to a point equal to fl, and z and y to the abscissa and

ordinate of p_, 2 and 3, respectively. Note that this predicate implicitly defines

a class of objects containing all pairs of points pl and p_,that satisfy equal.
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3. z-intercept(I, 4) _ parallel(L1, I]

This predicate is s_tisfied by instantiating I to the line that intersects the x-axis
at x = 4 and is parallel to the given line L1. This query corresponds to

creating a line parallel to a given line, passing through the point with Cartesian

coordinates (4,0).

4. y-intercept(l, 5) _ z-intercept(I, ,l] if'parallel(L1, I)

. This predicate is satisfied if line ! whose x- and y-intercepts are 4 and 5,

happens to be parallel to line L1. This query corresponds to verifying whethera given line is parallel to the line passing through the points (0,5) and (4,0).

I 5. coincides(P1, l) _ coincides(P2, l)

This predicate is satisfied by instantiating I to the line that passes through the

I P1 and P2. If the two not distinct, i.e. equal(P1,
two given points points are

P2) is true, then I is only partially defined. In this case I gets instantiated to a

partially constrained variable which represents the family of lines that pass
through the given common point. This query corresponds to constructing a

line passing through two given points.

Note that each coincide in the above predicate implicitly defines a class of line

objects, e.g., coincides(P1, I) binds I to the family of lines that pass through the

point P1. The conjunction of the two classes is either a class containing the

unique line object that is a member of both, or identical to the two classes if P1

and P_ are equal.

6. coincides(p, L1) _ coinddes(p, Le)

This predicate is satisfied by instantiating p to the point that is the intersection
of the two lines L1 and L_, if such intersection exists. The above predicate is

. false if the two lines do not intersect. This query corresponds to finding (i.e.,

computing) the intersection point of two given lines.
!

7. length(I, n) f_ tangent(l, C1, P1)

This predicate is satisfied by instantiating n to be the length of one of the

tangents to a given circle from a given point. Since i can be instantiated to

either of two tangents in order to satisfy the predicate, the response to the

query would be both the (unique) distance and the set of two tangents

comprising the class of objects that satisfy the predicate. If we were interested
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in only the length of a tangent, the fact that two lines happen to satisfy the

predicate would be incidental knowledge to us. _ However, we can further use

this incidental knowledge and reason about the two tangents. For example,

knowing that there are two tangents, we may want to define lines parallel to

one of them.

The predicates used in these examples could be user-defined or built-in,

depending on the sophistication of the implementation of a geometric reasoning

system. In either case, predicates introduced by a user would be given in the same

language as those built in the system. So for example, if neither of the intersect

predicates were built-in, a user could define them as follows:

intersect(p,tl, t.o):-coi.ciae(p,tl) coinciae(p,
i.tersect(l,c, pl, :- coinciae(pI,t) coi.cide(p, t)

coincide(p1, c) _ ¢oincide(p£, c)

-.,equal(p1, pe)

Recall the examples mentioned in Section 1. To reason About these

examples, we need to extrapolate from the properties given about points, lines, and

circles, and imagine having a richer set of defined properties. For the example of

Figure 1, we would need such concepts as squares, triangles, ontop, and inside, and

for the polygon example, we need concepts such as edge-set, vertex-list, and polygons.

For the example of Figure 2, we need to extrapolate further into three dimensions

and imagine having definitions of blocks, solids, etc.

Since we support multiple views of any geometric entity, all of the potential

views would be supported by our system. If one is not explicitly supported, then a

user would be allowed to Add enough definitions (e.g., predicates defining properties

of a square and relationships between lines and squares) to add this view to the logical

system. No explicit algorithms are required of users to define the transformation of

one view to another. To be more concrete, let us look at our edge-set and vertex-list

polygon example more carefully. To support both views of a polygon, we provide the

t If we were originally interested in finding all lines tangent from PI to CI, we would need
only state the predicate tanoent(l, CI, PI) and the same set of lines would result as the
answer. This merely points out that there may be more than one way to specify a problem

in terms of the predicatesdefined.
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following predicates: polygon(p, n] is true if p is an n-sided polygon; rertez-of(v, i, p) is

true if point v is the ith vertex of polygon p in some arbitrary (but fixed) order; edge-

of(e, pJ is true if line segment e is an edge of the polygon p. Thus, vertez-of(v, 5, PJ

instantiates v to the fifth vertex of a previously defined polygon P (if such a vertex

exists), and vertex-of(v, i, PJ returns every vertex of P together with its index. The

predicate vertex-of(V, i, PJ is true if V is any vertex of polygon P, in which case i will

be instantiated to its index. The predicate edge-of(L,P_ is true if L is a line segment

and it is an edge of the polygon P. On the other hand, edge-of(e, PJ instantiates e to

the members of the set of edges of the polygon P, in no particular order.

The predicates edge-of and vertez-of are flexible enough to support the edge-

set and the vertex-list views of polygons, respectively. In particular, if one is not

provided by the system, it can be defined by a user, using the other one. For

example, edge-of can be defined as:

where ne:ct-to(i,j, n) is true if either i or j follows the other in the circular list of

i integers 1 to n. This rule states that e is an edge of p if e is an object (line segment)

with end-points pl and p_, pl is the ith vertex of (polygon) p, p_ is the jth vertex of p,

, p isan n-sidedpolygon,and i and j are next to each other in an n-cycle-- an

intuitivelyclearsetof conditionsfora linesegment tobe an edge of s polygon.

To define vert_.of given edge-of, we must decide on a vertex traversal order

and some means of "marking" the first vertex of each polygon. _ Suppose we desire

the traversal order to be clockwise, starting from a distinguished vertex for each

i_ polygon. We can assume the predicate disting_ished(v, p) is defined such that it is trueif v is the distinguished (i.e., "marked") vertex of polygon p. We define dockwise(pl,

p_, p3) to be true for three arbitrary points pl, p_, and p$, if the traversal from pl to

I p_ to p8 is in clockwise direction. The predicate vertez-of can be defined as:

J tt For example, we could decide that the first vertex of every polygon is the one that k closestto the origin of a Cartesian coordinate system, the one with the smallest ankle to the x-xxis
if several vertices are st the same distance from the origin.

l -14-
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vertex-of(v. 1, p) :- distinguished(v, p)

ve_ex-of/_,,i, p):- edge-o/(el,p) _ end-point(el,z, v) e_edge-of(e_, p)8_ end-point_(e_, v, y)

clockwise(x, v, y) _ vertez(z, j, p)

i sum(j,1, 0

i where sum(k, l, m) is true for integers k, I, and m if k+ I ----nL The first predicate in
the definition of vertez-of simply states that v is the vertex with index 1 for polygon p

I 'if it is the distinguished vertex p. z, v, It
of The second predicate states that if and are

the end-points of two edges of polygon p connected at v, and v follows z in clockwise

I direction, then the index of vertex v is one higher than the index of vertex z.

1 " b
_ ._

-- -,-[ .... f ...... .-- .........

i ¢ d "
/

I
I •
I 3. Polygon ClippingFigure

I As an example of how solutions of geometric problems can be stated in

terms of relationships between geometric objects, consider the problem of clipping of

I line boundarg. The result of a clipping is anotherpolygon against (directed)g P &

polygon q that bounds the portion of the axes of p which falls on the inside of

I boundary. (Since bound_r;I is s directed line, we can distinguish its "left" and "right"
sides and designate one as the "inside.") Figure 3.a shows a polygon and s clipping

I boundary, with the resulting polygon in Figure 3.e. The following rules show one

-15-

l



solutiontothisproblem,statedintermsof relationshipsbetweentheedgesofp and

q, and bounda_.

dip-polygon(p, boundary, q) :-

V e (inside-portion-edge(e, p, boundary)*, edge-of(e, q))

inside.portion-edge(e,p,boundary) :-

edge-of(e, p)8/i_ide(e,boundary)

inside.portion-edge(e,p,boundary):-

edge-of(f,p)8 intersect(:,f,boundary)8

end-points(f, z, y) 8 inside(x, boundary.) _ end-pointe(e, z, z)

inside.portion-edge(e, p,boundary) :-

intersection-list(l, p, boundary) f# rank(z, I, rz) fd

rank(y, I, ry) 8_rz ----_,k+ 1 _ ry _ _*k+ f

end-points(e, z, y)

The two main predicates are dip.polygon and inside-portion-edge. The

predicate indde-portion-edge(e, p, boundary) is true if e is an edge of the inside portion

of polygon p with respect to boundary. The predicate dip-polygon(p, boundary, q)is

true if q is the polygon resulting from the clipping of p against boundary. This

predicate is true if for all objects e, e is an edge in the inside portion of polygon p

(bounded by boundary) iff e is an edge of polygon q. The predicate inside.portion-edge
is defined with three rules. The first rule simply states that any edge of p which is on

the inside of boundary, is an edge of the inside portion of p with respect to boundary.

The edges of the polygon in Figure 3.a that are accepted by this rule are shown in

Figure 3.b. The second rule states that if there is an edge f of polygon p that I

intersects boundary at point z, then z and the end-point of f, z, that is on the inside of

boundary, are the end-points of an edge e for the inside portion of p. The (segments

of the) edges of the polygon in Figure 3.a that are accepted by this rule are shown in

Figure 3.c. The first two rules define the (segments of the) edges of p that also bound

its inside portion. The third rule is responsible for defining new edges (all overlapping

boundary) that "close the gaps." The predicate intersection-list(I, p, b)binds I to a list

of intersection points of the edges of the polygon p with the directed line b, ordered in

the direction of b. The predicate rank(z, I, n), binds n to the rank (i.e., index) of z in

list l. The third rule states that e is an edge of the inside portion of p with respect to

boundary, if the end-points of e are successive members of the list of intersection i
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points of p and bounda_ with ranks 2 ,, k + 1 and 2 • t + 2, for some integer t >_o.

Thus a new edge is defined by this rule between the intersection points 1 and 2, 3 and

4, 5 and 6, etc., but not between 2 and 3, 4 and 5, etc. The edges (introduced and)
accepted by this rule for the polygon in Figure 3.a are shown in Figure 3.d.

• 4.2. Class Hierarchies

To illustrate the notions of a class hierarchy, multiple class hierarchies, and

multiple inheritance, consider how one might use a class hierarchy to define properties

of different kinds of closely related polygons. Figure 4 depicts a hierarchy for

polygons with two immediate subclasses, triangle and quadrilateral. Triangle has two

immediate subclasses, scalene and isosceles, and isosceles has one subclass,

equilateral. Quadrilateral has a chain of subclasses, from trapezoid to square. If a
property sides(p, n) is defined for polygons (to stand for the number of sides of a

polygon), then the triangle (quadrilateral) subclass would inherit the 8ides predicate

and redefine it such that. for all triangles (quadrilaterals), p, sides(p, 8) (rides(p, 4))
holds. Notice that the sides property is inherited all the way down to the square
subclass, i.e., all squares have 4 sides.

polygon

7_ quadrilateralI
scalene bcxcelm trapexoid

I I
equilateral pandJeJot,ram

I
rbombm ""

Figure 4. Polygon Class Hierarchy 1
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rilbl-ulle _ee _ _iuilaleral trlpesoid two-rigbt._ll_ p_'sllelolp'lm_

,- \/ /\
rilht.b_eel_ rigbt-trspezoid i_eelu-U'_i_zoid _,¢tugle _omboid

I I
square rhombus

Figure 5. Polygon Class Hierarchy 2

As mentioned in Section 3, we do not impose a fixed hierarchy on classes of

objects. A different user may reD" well have defined a different set of properties of

polygons, triangles, and quadrilaterals such that the class hierarchy depicted in Figure

5 results. Here, triangle has three immediate subclasses, right-angle, isosceles, and

equilateral, whereas in Figure 4 it has only two. The class hierarchy rooted at the

quadrilateral class is considerably more complicated in Figure 5 than in Figure 4. To

illustrate multiple inheritance, consider the rectangle class. Rectangle is a subclass of

two classes, two-right-angles and parallelogram. If the sides property is defined (and

inherited) &_before for polygons, triangles, and quadrilaterals, then again, rectangle

inherits the sides property. It also inherits the properties of both its immediate parent

classes, e.g., has.two-right-angles from the two-right-angles class and has.two-pairs-of-

parallel-sides from the parallelogram class. An additional property defined for objects in

_" the square subclass of the rectangle class would be all-equal-sides (to stand for whether

all sides of a quadrilateral are of equal length). Notice that objects of the rhombus '

class would also have a .all-equal-sides property, but would not have the bas-two-right-

angles property, thus distinguishing rhombuses from squares.
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S. Relationship to Other Trends

Geometric reasoning can be seen as a focal point of many related trends:

deductive databases, expert systems, logic programming, object-oriented

programming, and executable specifications. Two main differences between geometric

reasoning and other trends is that we are interested in a specific, but rich, domain of

discourse, namely geometry, and that this domain has a universal, formal semantics.

. We believe geometry is an interesting domain for investigation in all above

areas because the semantics of concepts in this domain are weU-defined. For instance,

objects such as points, lines, and planes, and relationships like intersects, tangent-to,

parallel-to, etc., all have properly defined mathematical meanings. Therefore, there is

no ambiguity in what "line L is tangent to circle C" can mean. In contrast, the
semantics of such concepts as "employee," "manager," "department," and "is-

employed-by" in a typical databases are often ambiguous and highly dependent on the

application, query at hand, or a user's intuition.

I Previous work on using databases for processing of geometric informationhas concentrated on "implementing" geometric models on top of conventional

i record-oriented databases _'='_""_. We argue that because of the rigidity of theirschemas _s._6conventional data models are poor mechanisms for representing the rich

semantics of geometric information. Recent object-oriented semantic data

I models _,1_._, which have not yet been seriously considered for geometric modeling,
are also inappropriate for the domain of geometry because of some of their underlying

I assumptions, the static distinction between and instances and the primacye.g., types

of schema. Deductive databases, a more recent trend in logic programming and

I database research, do not impose such restrictive assumptions and agree with our '
motivation for geometric reasoning t_o. Like deductive databases, we are interested in

i using deductive reasoning to derive non-explicit information that is collectively 'implied by other pieces of information in a database. Unlike generalized deductive

I databases, however, we deal with a specific domain of discourse.

Like expert systems, we are interested in specializing in a particular problem

domain, systems, deal with domains whoseTypicalexpert however, problem concepts

are not (and cannot be) formally well-defined and rely on heuristic rules. In contrast,

the well-defined semantics of our geometric domain can be expressed in the form of
algebraic equations. A geometric reasoning system can then translate geometric
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conceptsinto a system of simultaneousequations.Such systems of equationscan

then be manipulatedby'an equationsolvertoverifytheirconsistencyor toderivethe

valuesof theirunbound variables.

We borrow ideas from two trends in programming languages,object.

orientedprogramming and logicprogramming, in the sense thatwe are interestedin

identifyingand manipulating(geometric)objectsand reasoningabout them in a

" formal logicMsystem. Also, we observethatthe definitional,yet processable,nature

of geometric reasoningis relatedto the trend of executablespecifications,where

formalspecificationsof programs can be eithersymbolicallytestedor run through a

theorem prover.

Finally, there is little similarity between geometric reasoning and classical

geometric theorem-proving 1_. We are not interested in proving theorems in general

or in Euclidean geometry, but in deriving properties of specific geometric entities.

6. Future Plans

We purport that our approach to processing geometric information, in

particular for CAD/CAM applications, is novel. Instead of prematurely drawing any

conclusions about the practical use of geometric reasoning for geometric modeling, we

would like to build a prototype of a system that supports our approach. Our interest

in implementing a geometric reasoning system is in conjunction with both designing a

user-level language for the system, and understanding better the deductive reasoning

needed for geometric problem solving applications.
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