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Abstract

Privacy policies often place restrictions on the purposes for which a governed entity may use personal
information. For example, regulations, such as the Health Insurance Portability and Accountability
Act (HIPAA), require that hospital employees use medical information for only certain purposes,
such as treatment, but not for others, such as gossip. Thus, using formal or automated methods
for enforcing privacy policies requires a semantics of purpose restrictions to determine whether an
action is for a purpose or not. We provide such a semantics using a formalism based on planning.
We model planning using a modified version of Markov Decision Processes (MDPs), which exclude
redundant actions for a formal definition of redundant. We argue that an action is for a purpose
if and only if the action is part of a plan for optimizing the satisfaction of that purpose under the
MDP model. We use this formalization to define when a sequence of actions is only for or not for a
purpose. This semantics enables us to create and implement an algorithm for automating auditing,
and to describe formally and compare rigorously previous enforcement methods. To validate our
semantics, we conduct a survey to compare our semantics to how people commonly understand the
word “purpose”.





1 Introduction

Purpose is a key concept for privacy policies. For example, the European Union requires that [69]:

Member States shall provide that personal data must be [. . .] collected for specified,
explicit and legitimate purposes and not further processed in a way incompatible with
those purposes.

The United States also has laws placing purpose restrictions on information in some domains such
as the Health Insurance Portability and Accountability Act (HIPAA) [54] for medical information
and the Gramm-Leach-Bliley Act [73] for financial records. These laws and best practices motivate
organizations to discuss in their privacy policies the purposes for which they will use information.

Some privacy policies warn users that the policy provider may use certain information for certain
purposes. For example, the privacy policy of a medical provider states, “We may disclose your
[protected health information] for public health activities and purposes [. . .]” [74]. Such warnings
do not constrain the behavior of the policy provider.

Other policies that prohibit using certain information for a purpose do constrain the behavior
of the policy provider. Examples include the privacy policy of Yahoo! Email, which states that
“Yahoo!’s practice is not to use the content of messages stored in your Yahoo! Mail account for
marketing purposes” [78, emphasis added].

Some policies even limit the use of certain information to an explicit list of purposes. The
privacy policy of The Bank of America states, “Employees are authorized to access Customer
Information for business purposes only.” [9, emphasis added]. The HIPAA Privacy Rule requires
that health care providers only use protected health information about a patient with that patient’s
authorization or for a fixed list of allowed purposes, such as treatment and billing [54].

These examples show that verifying that an organization obeys a privacy policy requires a
semantics of purpose restrictions. In particular, enforcement requires the ability to determine
that the organization obeys at least two classes of purpose restrictions. Yahoo!’s privacy policy
shows an example of the first class: a rule requiring that an organization does not use certain
information for a purpose. HIPAA provides an example of the second class: a rule requiring that
an organization use certain information only for a given list of purposes. We call the first class of
restrictions prohibitive rules (not-for) and the second class exclusivity rules (only-for). A prohibitive
rule disallows an action for a particular purpose. An exclusivity rule disallows an action for every
purpose other than the exceptions the rule lists. Each class of rule requires determining whether
the organization’s behavior is for a purpose, but they differ in whether this determination indicates
a violation or compliance.

Manual enforcement of privacy policies is labor intensive and error prone [30]. Thus, to reduce
costs and build trust, organizations should automate the enforcement of their privacy policies; tool
support for this activity is emerging in the market. For example, Fair Warning sells automated
services to hospitals for detecting privacy breaches [30]. Meanwhile, previous research has proposed
formal methods to enforce purpose restrictions [2, 20, 37, 3, 57, 38, 53, 29].

However, each of these endeavors starts by assuming that actions or sequences of actions are
labeled with the purposes they are for. They avoid analyzing the meaning of purpose and provide
no method of performing this labeling other than through intuition alone. The absence of a formal
semantics to guide this determination has hampered the development of methods for ensuring
policy compliance. Such a definition would provide insights into how to develop tools that identify
suspicious accesses in need of detailed auditing and algorithms for determining whether an action
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could be for a purpose. It would also show which enforcement methods are most accurate. More
fundamentally, it could frame the scientific basis of a societal and legal understanding of purpose
and of privacy policies. Such a foundation can, for example, guide implementers as they codify in
software an organization’s privacy policies.

The goal of this work is to study the meaning of purpose in the context of enforcing privacy
policies. We aim to provide formal definitions suitable for automating the enforcement of purpose
restrictions. We focus on automated auditing since we find that post-hoc auditing by a trusted
auditor provides the perspective often required to determine the purpose of an action. However, we
believe our semantics is applicable to other enforcement mechanisms and may also clarify informal
reasoning. For example, in Section 5.3, we use it to create an operating procedure that encourages
compliance with a purpose restriction.

We find that planning is central to the meaning of purpose. We see the role of planning in the
definition of the sense of the word “purpose” most relevant to our work [1]:

The object for which anything is done or made, or for which it exists; the result or effect
intended or sought; end, aim.

Similarly, work on cognitive psychology calls purpose “the central determinant of behavior” [27, p.
19]. In Section 2, we present an example making this relationship between planning and purpose
explicit. We (as have philosophers [68]) conclude that if an auditee (the person or organization
being audited) chooses to perform an action a while planning to achieve the purpose p, then the
auditee’s action a is for the purpose p. Our goal is to make these notions formal in a manner useful
for the automation of auditing.

In Section 3, we present a formalism based upon these intuitions. We formalize planning using
Markov Decision Processes (MDPs) and provide semantics to purpose restrictions based upon
planning with MDPs. Section 4 provides an auditing method and discusses the ramifications of
the auditor observing only the behaviors of the auditee and not the underlying planning process of
the auditee that resulted in these behaviors. We characterize circumstances in which the auditor
can still acquire enough information to determine that the auditee violated the privacy policy. To
do so, the auditor must first use our MDP model to construct all the possible behaviors that the
privacy policy allows and then compare it with all the behaviors of the auditee that could have
resulted in the observed auditing log. Section 5 presents an implemented algorithm for auditing
based on our formal definitions and also shows how to use it to create an operating procedure that
encourages compliance with a purpose restriction.

To validate our semantics, we perform an empirical study. In Section 6, we present the results
of a survey testing how people understand the word “purpose”. The survey compares our planning
based method to the prior method based on whether an action improves the satisfaction of a
purpose. We find that our method matches the survey participants’ responses much more closely
than the prior method.

In Section 7, we use our formalism to discuss the strengths and weaknesses of each previous
method. In particular, we find that each method enforces the policy given the set of all possible
allowed behaviors, which is a set that our method can construct. We also compare the previous
auditing methods, which differ in their trade-offs between auditing complexity and accuracy of
representing this set of behaviors. Section 8 discusses other related work.

Our work makes the following contributions:

1. The first semantic formalism of when a sequence of actions is for a purpose;
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2. Empirical validation that our formalism closely corresponds to how people understand the
word “purpose”;

3. An algorithm employing our formalism and its implementation for auditing; and

4. The characterization of previous policy enforcement methods in our formalism and a com-
parative study of their expressiveness.

The first two contributions illustrate that planning can formalize purpose restrictions. The next two
illustrate that our formalism may aid automated auditing and analysis. While we view these results
as a significant step towards enforcement of practical privacy policies with purpose restrictions, we
recognize that further work is needed before we will have audit tools that are ready for use in
organizations that must comply with complex policies. We outline concrete directions for future
work towards this goal in Section 9.

Although motivated by our goal to formalize the notions of use and purpose prevalently found
in privacy policies, our work is more generally applicable to a broad range of policies, such as fiscal
policies governing travel reimbursement or statements of ethics proscribing conflicts of interest.

2 Motivation of Our Approach

We start with an informal example that suggests that an action is for a purpose if the action
is part of a plan for achieving that purpose. Consider a physician working at a hospital who, as
a specialist, also owns a private practice that tests for bone damage using a novel technique for
extracting information from X-ray images. After seeing a patient and taking an X-ray, the physician
forwards the patient’s medical record including the X-ray to his private practice to apply this new
technology. As this action entails the transmission of protected health information, the physician
will have violated HIPAA if this transmission is not for one of the purposes HIPAA allows. The
physician would also run afoul of the hospital’s own policies governing when outside consultations
are permissible unless this action was for a legitimate purpose. Finally, the patient’s insurance will
only reimburse the costs associated with this consultation if a medical reason (purpose) exists for
them. The physician claims that this consultation was for reaching a diagnosis. As such, it is for
the purpose of treatment and, therefore, allowed under each of these policies. The hospital auditor,
however, has selected this action for investigation since the physician’s making a referral to his own
private practice makes possible the alternate motivation of profit.

Whether or not the physician violated these policies depends upon details not presented in the
above description. For example, we would expect the auditor to ask questions such as:

1. Was the test relevant to the patient’s condition?

2. Did the patient benefit medically from having the test?

3. Was this test the best option for the patient?

We will introduce these details as we introduce each of the factors relevant to the purposes behind
the physician’s actions.
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States and Actions. Sometimes the purposes for which an agent takes an action depend upon
the previous actions and the state of the system. In the above example, whether or not the test is
relevant depends upon the condition of the patient, that is, the state that the patient is in.

While an auditor could model the act of transmitting the record as two (or more) different
actions based upon the state of the patient, modeling two concepts with one formalism could
introduce errors. A better approach is to model the state of the system. The state captures the
context in which the physician takes an action and allows for the purposes of an action to depend
upon the actions that precede it.

The physician’s own actions also affect the state of the system and, thus, the purposes for which
his actions are. For example, had the physician transmitted the patient’s medical record before
taking the X-ray, then the transmission could not have been for treatment since the physician’s
private practice only operates on X-rays and would have no use for the record without the X-ray.

The above example illustrates that when an action is for a purpose, the action is part of a
sequence of actions that can lead to a state in which some goal associated with the purpose is
achieved. In the example, the goal is reaching a diagnosis. Only when the X-ray is first added to
the record is this goal reached.

Non-redundancy. Some actions, however, may be part of such a sequence without actually being
for the purpose. For example, suppose that the patient’s X-ray clearly shows the patient’s problem.
Then, the physician can reach a diagnosis without sending the record to the private practice. Thus,
while both taking the X-ray and sending the medical record might be part of a sequence of actions
that leads to achieving a diagnosis, the transmission does not actually contribute to achieving the
diagnosis: the physician could omit it and the diagnosis could still be reached.

From this example, it may be tempting to conclude that an action is for a purpose only if
that action is necessary to achieve that purpose. However, consider a physician who, to reach a
diagnosis, must either send the medical record to a specialist or take an MRI. In this scenario,
the physician’s sending the record to the specialist is not necessary since he could take an MRI.
Likewise, taking the MRI is not necessary. Yet, the physician must do one or the other and that
action will be for the purpose of diagnosis. Thus, an action may be for a purpose without being
necessary for achieving the purpose.

Rather than necessity, we use the weaker notion of non-redundancy found in work on the
semantics of causation (e.g., [48]). Given a sequence of actions that achieves a goal, an action in
it is redundant if that sequence with that action removed (and otherwise unchanged) also achieves
the goal. An action is non-redundant if removing that action from the sequence would result in
the goal no longer being achieved. Thus, non-redundancy may be viewed as necessity under an
otherwise fixed sequence of actions.

For example, suppose the physician decides to send the medical record to the specialist. Then,
the sequence of actions modified by removing this action would not lead to a state in which a
diagnosis is reached. Thus, the transmission of the medical record to the specialist is non-redundant.
However, had the X-ray revealed to the physician the diagnosis without needing to send it to a
specialist, the sequence of actions that results from removing the transmission from the original
sequence would still result in a diagnosis. Thus, the transmission would be redundant.

Quantitative Purposes. Above we implicitly presumed that the diagnosis from either the spe-
cialist or an MRI had equal quality. This need not be the case. Indeed, many purposes are actually
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fulfilled to varying degrees. For example, the purpose of marketing is never completely achieved
since there is always more marketing to do. Thus, we model a purpose by assigning to each state-
action pair a number that describes how well that action fulfills that purpose when performed in
that state. We require that the physician selects the test that maximizes the quality of the diagnosis
as determined by the total purpose score accumulated over all his actions.

We must adjust our notion of non-redundancy accordingly. An action is non-redundant if
removing that action from the sequence would result in the purpose being satisfied less. Now,
even if the physician can make a diagnosis himself, sending the record to a specialist would be
non-redundant if getting a second opinion improves the quality of the diagnosis.

Probabilistic Systems. The success of many medical tests and procedures is probabilistic. For
example, with some probability the physician’s test may fail to reach a diagnosis. The physician
would still have transmitted the medical record for the purpose of diagnosis even if the test failed
to reach one. This possibility affects our semantics of purpose: now an action may be for a purpose
even if that purpose is never achieved.

To account for such probabilistic events, we model the outcome of the physician’s actions as
probabilistic. For an action to be for a purpose, we require that there be a non-zero probability
of the purpose being achieved and that the physician attempts to maximize the expected reward.
In essence, we require that the physician attempts to achieve a diagnosis. Thus, the auditee’s plan
determines the purposes behind his actions.

3 Planning for a Purpose

In this section, we present a formalism for planning that accounts for quantitative purposes, prob-
abilistic systems and non-redundancy. We first review Markov Decision Processes (MDPs)—a
natural model for planning with probabilistic systems. In general, an agent planning for some
purpose constructs an MDP to help select its actions. The MDP models the agent’s environment
and how the agent’s actions affect the environment’s state. We use the reward function of the
MDP to quantify the degree of satisfaction of a purpose upon taking an action from a state. The
agent selects a plan that determines for each state, the action that the agent will perform if the
agent reaches that state. The plan the agent selects optimizes the expected total discounted reward
(degree of purpose satisfaction) under the MDP.

We then develop a stricter definition of optimal than used with standard MDPs. We use this
definition to create models we call “NMDPs” for Non-redundant MDPs. In addition to requiring
that strategies optimize the expected total discounted reward, NMDPs exclude strategies that
employ redundant actions that neither decrease nor increase the total reward. We end with an
example illustrating the use of an NMDP to model an audited environment.

3.1 Markov Decision Processes

An MDP may be thought of as a probabilistic automaton where each transition is labeled with
a reward in addition to an action. Rather than having accepting or goal states, the “goal” of an
MDP is to maximize the total reward over time. Furthermore, we distinguish between the MDP,
which is a model of an environment, and the agent, which is an entity using the model to select its
actions. Thus, while it is convenient to speak informally of actions arising from an MDP, strictly
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speaking actions are performed by an agent because of the agent’s use of the MDP model to select
these actions.

To define partially observable MDPs, let Dist(X) denote the space of all distributions over the
set X. That is, f ∈ Dist(X) is a function from X to the reals between 0 and 1 that obeys the
standard of axioms of probability theory making it a distribution over X. An MDP is a tuple
m = 〈S,A, t, r, γ〉 where

• S is a set of states;

• A is a set of actions;

• t : S × A → Dist(S), a transition function from a state and an action to a distribution over
states;

• r : S ×A → R, a reward function; and

• γ, a discount factor such that 0 < γ < 1.

where R is the set of real numbers. For each state s in S, the agent using the MDP to plan selects
an action a from A to perform. Upon performing the action a in the state s, the agent receives the
reward r(s, a). The environment then transitions to a new state s′ with probability µ(s′) where µ
is the distribution provided by t(s, a). The goal of the agent is to select actions to maximize its
expected total discounted reward E

[
∑∞

i=0
γiρi

]

where i ∈ N (the set of natural numbers) ranges
over time modeled as discrete steps, ρi is the reward at time i, and the expectation is taken over
the probabilistic transitions. The discount factor γ accounts for the preference of people to receive
rewards sooner than later. It may be thought of as similar to inflation. We require that γ < 1 to
ensure that the expected total discounted reward is bounded.

We formalize the agent’s plan as a stationary strategy (commonly called a “policy”, but we
reserve that word for privacy policies). A stationary strategy is a function σ from the state space
S to the set A of actions (i.e., σ : S → A) such that at a state s in S, the agent always selects to
perform the action σ(s). The value of a state s under a strategy σ is

Vm(σ, s) = E

[

∞
∑

i=0

γir(si, σ(si))

]

The Bellman equation [11] shows that

Vm(σ, s) = r(s, σ(s)) + γ
∑

s′∈S

t(s, σ(s))(s′) ∗ Vm(σ, s′)

A strategy σ∗ is optimal if and only if for all states s, Vm(σ∗, s) = maxσ Vm(σ, s). At least one
optimal policy always exists (see, e.g., [62]). Furthermore, if σ∗ is optimal, then

σ∗(s) ∈ argmax
a∈A

[

r(s, a) + γ
∑

s′∈S

t(s, σ(s))(s′) ∗ Vm(σ, s′)

]

We denote this set of optimal strategies as opt(〈S,A, t, r, γ〉), or when the transition system is
clear from context, as opt(r). Such strategies are sufficient to maximize the agent’s expected total
discounted reward despite only depending upon the current state of the MDP.
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Under this formalism, the auditee plays the role of the agent optimizing the MDP to plan. We
presume that each purpose may be modeled as a reward function. That is, we assume the degree
to which a purpose is satisfied may be captured by a function from states and actions to a real
number. The higher the number, the higher the degree to which that purpose is satisfied. When the
auditee wants to plan for a purpose p, it uses a reward function, rp, such that rp(s, a) is the degree
to which taking the action a from state s aids the purpose p. We also assume that the expected
total discounted reward can capture the degree to which a purpose is satisfied over time. We say
that the auditee plans for the purpose p when the auditee adopts a strategy σ that is optimal for
the MDP 〈S,A, t, rp, γ〉.

Executions and Behaviors. Given the strategy σ and the actual results of the probabilistic
transitions yielded by t, the agent exhibits an execution. We represent this execution as an infinite
sequence e = [s1, a1, s2, a2, . . .] of alternating states and actions starting with a state, where si is
the ith state that the agent was in and ai is the ith action the agent took, for all i in N. We call a
finite prefix b of an execution e a behavior.

Not every sequence of states and actions is a possible execution of the agent under an MDP.
For an execution to be possible under an MDP, it must be consistent with some strategy and the
transitions relation t. We say an execution e is consistent with a strategy σ if and only if ai = σ(si)
for all i in N where ai is the ith action in e and si is the ith state in e. A behavior is consistent
with a strategy if it can be extended to an execution consistent with that strategy.

To determine whether an execution is possible under t, let a contingency κ be a function from
S × A × N to S such that κ(s, a, i) is the state that results from taking the action a in the state
s as the ith action. We say that a contingency κ is consistent with an MDP if and only if κ only
picks states to which the transition function t of the MDP assigns a non-zero probability to (i.e.,
for all s in S, a in A, and i in N, t(s, a)(κ(s, a, i)) > 0).

Given an MDP m, let m(s, κ) be the possibly infinite state model that results of having κ
resolve all the probabilistic choices in m and having the model start in state s. Let m(s, κ, σ)
denote the execution that results from using the strategy σ and state s in the non-probabilistic
model m(s, κ). Formally, m(s, κ, σ) = [s1, a1, s2, a2, . . .] where s1 = s and for all i ∈ N, ai = σ(si)
and si+1 = κ(si, ai, i).

Consistent contingencies capture the idea of possible executions. Formally, we say that an
execution e = [s1, a1, s2, a2, . . .] is possible for m if and only if there exists a state s of m, a
contingency κ consistent with m, and a strategy σ for m such that e = m(s, κ, σ) Similarly, we say
that a behavior b = [s1, a1, . . . , sn, an] is possible for m if and only if there exists a state s of m, a
contingency κ consistent with m, and a strategy σ for m such that b ⊏ m(s, κ, σ) where ⊏ denotes
the proper-prefix relation. The following lemma reduces the global property of a behavior being
possible for an MDP to local properties of the MDP.

Lemma 1. For all MDPs m and behaviors b = [s1, a1, . . . , sn, an] ∈ (S × A)∗, b is possible for m
if and only if for all i < n, t(si, ai)(si+1) > 0 and for all i ≤ n and j ≤ n, si = sj implies that
ai = aj .

Proof. Suppose that b is possible for m. Then, there exists a state s of m, a contingency κ
consistent with m, and a strategy σ for m such that b ⊏ m(s, κ, σ). Since b ⊏ m(s, κ, σ), for all
i < n, κ(si, ai, i) = si+1. Since κ is consistent with m, for all i < n, t(si, ai)(si+1) > 0. Since σ is
stationary, ai = σ(si) = σ(sj) = aj for all i, j ≤ n such that si = sj.
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Suppose that for all i < n, t(si, ai)(si+1) > 0 and for all i ≤ n and j ≤ n, si = sj implies that
ai = aj. Let s = s1. Let σ be some strategy such σ(si) = ai for all i ≤ n. Such a σ exists since
si = sj implies that ai = aj for all i ≤ n and j ≤ n. Let κ be some contingency consistent with
m such that for all i < n, κ(si, ai, i) = si+1. Such a κ exists since for all i < n, t(si, ai)(si+1) > 0.
b ⊏ m(s, κ, σ).

3.2 Non-redundancy

MDPs do not require that strategies be non-redundant. Even given that the auditee had an
execution e from using a strategy σ in opt(rp), some actions in e might not be for the purpose p.
The reason is that some actions may be redundant despite being costless. The MDP optimization
criterion behind opt prevents redundant actions from delaying the achievement of a goal as the
reward associated with that goal would be further discounted making such redundant actions
sub-optimal. However, the optimization criterion is not affected by redundant actions when they
appear after all actions that provide non-zero rewards. Intuitively, the hypothetical agent planning
only for the purpose in question would not perform such unneeded actions even if they have zero
reward. Thus, to create our formalism of non-redundant MDPs (NMDPs), we replace opt with a
new optimization criterion nopt that prevents these redundant actions while maintaining the same
transition structure as a standard MDP.

To account for redundant actions, we must first contrast such actions with doing nothing. Thus,
we introduce a distinguished action stop that stands for stopping and doing nothing. For all states s,
stop labels a transition with zero reward (i.e., r(s, stop) = 0) that is a self-loop (i.e., t(s, stop)(s) =
1). (We could put stop on only the subset of states that represent possible stopping points by
slightly complicating our formalism.) Since we only allow deterministic stationary strategies and
stop only labels self-loops, this decision is irrevocable: once the agent stops and does nothing, the
agent does nothing forever. As selecting to do nothing results in only zero rewards henceforth, it
may be viewed as stopping with the previously acquired total discounted reward.

Lemma 2. For all NMDPs m, strategies σ for m, and states s, if σ(s) = stop, then Vm(σ, s) = 0.

Proof.

Vm(σ, s) = E

[

∞
∑

i=0

γir(si, σ(si))

]

where si is the ith state that the environment modeled by the NMDP enters starting with s = s0.
Proof by induction shows that for all i, si = s. The base case follows from the definition of

s0. For the inductive case, the inductive hypothesis shows that si = s. si+1 = s′ with probabil-
ity t(si, σ(si))(s

′) = t(s, σ(s))(s′) = t(s, stop)(s′) = degen(s) by the definition of NMDPs where
degen(s)(s′′) = 1 if and only if s′′ = s and is equal to 0 for all other s′′. Thus, with certainty,
si+1 = s.

Thus,

Vm(σ, s) = E

[

∞
∑

i=0

γir(si, σ(si))

]

= E

[

∞
∑

i=0

γir(s, stop)

]

= E

[

∞
∑

i=0

γi0

]

= 0
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We use the idea of stopping and doing nothing to make formal when one execution contains
more actions than another despite both being of infinite length. Given an execution e, let active(e)
denote the prefix of e before the first instance of stop. active(e) will be equal to e in the case where
e does not contain stop. An execution e1 is a proper sub-execution of an execution e2 if and only if
active(e1) ⊏ active(e2) where ⊏ is the proper prefix relation. (We also use ⊑ for the prefix-or-equal
relation.) Note if e1 does not contain the stop, it cannot be a proper sub-execution of any execution.

We use contingencies to compare strategies. Given two strategies σ and σ′, we write σ′ ≺ σ if
and only if for all contingencies κ and states s, m(s, κ, σ′) is a proper sub-execution of or equal to
m(s, κ, σ), and for at least one contingency κ′ and state s′, m(s′, κ′, σ′) is a proper sub-execution
of m(s′, κ′, σ). Intuitively, σ′ proves that σ produces a redundant execution under κ′ and s′. As we
would expect, ≺ is a strict partial ordering on strategies.

Proposition 1. ≺ is a strict partial order.

Proof. The proper sub-execution relation is a strict partial order. This follows directly from the
proper-prefix relation ⊏ being a strict partial order. We write ⊳ for proper sub-execution and E for
proper sub-execution or equal.

Now, we show that ≺ is also a strict partial ordering.

• Irreflexivity: for no σ is σ ≺ σ. For σ ≺ σ to be true, there would have to exist a σ ∈ opt such
that for at least one contingency κ′ and s′, m(s′, κ′, σ′) is a proper sub-execution of itself.
However, this is impossible since the sub-execution relation is strict partial order.

• Asymmetry: for all σ1 and σ2, if σ1 ≺ σ2, then it is not the case that σ2 ≺ σ1. To show a
contradiction, suppose σ1 ≺ σ2 and σ2 ≺ σ1 are both true. It would have to be the case that
for all contingencies κ and states s, m(s, κ, σ1) E m(s, κ, σ2) and m(s, κ, σ2) E m(s, κ, σ1).
Since ⊳ is a strict partial order, this implies that for all s and κ, m(s, κ, σ1) = m(s, κ, σ2).
Thus, there cannot exist a contingency κ′ and state s′ such that m(s′, κ′, σ2) ⊳ m(s′, κ′, σ1).
Then σ2 ≺ σ1 cannot be true, a contradiction.

• Transitivity: for all σ1, σ2, and σ3, if σ1 ≺ σ2 and σ2 ≺ σ3, then σ1 ≺ σ3. Suppose σ1 ≺ σ2

and σ2 ≺ σ3. Then for all for all contingencies κ and states s, m(s, κ, σ1) E m(s, κ, σ2) and
m(s, κ, σ2) E m(s, κ, σ3). Since E has transitivity, this implies that m(s, κ, σ1) E m(s, κ, σ3)
for all κ and s.

Furthermore, it must be the case that there exists a contingency κ′ and state s′ such that
m(s′, κ′, σ1) ⊳m(s′, κ′, σ2). From above, m(s′, κ′, σ2) E m(s′, κ′, σ3). Thus, by the transitivity
of ⊳, m(s′, κ′, σ1) ⊳ m(s′, κ′, σ3) as needed. This implies that σ1 ≺ σ3.

We define nopt(m) to be the subset of opt(m) holding only strategies σ such that for no σ′ ∈
opt(m) does σ′ ≺ σ. nopt(m) is the set of non-redundant optimal policies.

The next lemma converts the requirements for being non-redundant from being about the
executions of an MDP to being a local property. It uses the definition that Q∗

m(s, a) = r(s, a) +
γ

∑

s′ t(s, a)(s′) ∗ V ∗
m(s′) and the proof uses that Qm(σ, s, a) = r(s, a) + γ

∑

s′ t(s, a)(s′) ∗ Vm(σ, s′).

Lemma 3. For all NMDPs m and σ in opt(m), σ is in nopt(m) if and only if for all states s such
that σ(s) 6= stop, Q∗

m(s, σ(s)) > 0.
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Proof. If Direction. Suppose that for all s such that σ(s) 6= stop, Q∗
m(s, σ(s)) > 0. For the purposes

of showing a contradiction, assume that σ /∈ nopt(m). Then there exists σ′ such that σ′ ∈ opt(m)
and σ′ ≺ σ. This implies that there exists κ′ and s′ such that active(m(s′, κ′, σ′)) is a strict prefix
of active(m(s′, κ′, σ)). m(s′, κ′, σ′) must have the form [s1, a1, s2, . . . , sn, stop, . . .] and m(s′, κ′, σ)
must have the form [s1, a1, s2, . . . , sn, an, . . .] for some n where an 6= stop. Since σ(sn) = an 6= stop,
Q∗

m(s, σ(s)) > 0. Since both σ and σ′ are in opt(m), 0 < Q∗
m(sn, σ(s)) = Q∗

m(sn, σ′(s)) =
Q∗

m(sn, stop) = Qm(σ, sn, stop). However, by Lemma 2, Qm(σ, sn, stop) = Vm(σ, sn) = 0, a contra-
diction. Thus, our assumption that σ /∈ nopt(m) is false and σ is nopt(m).

Only-If Direction. Suppose σ is in nopt(m). Consider a state s such that σ(s) 6= stop. Since
σ is in nopt(m), there exists no σ′ in opt(m) such that σ′ ≺ σ. That is, there exists no σ′ such
that σ′ is in opt(m); for all contingencies κ′ consistent with m, states s′, active(m(s′, κ′, σ′)) ⊑
active(m(s′, κ′, σ)); and there exists a contingency κ′′ and s′′ such that active(m(s′′, κ′′, σ′)) ⊏

active(m(s′′, κ′′, σ)). That is, for all σ′, either (1) σ′ is not in opt(m); (2) it is not the case that for
all contingencies κ′ consistent with m, states s′, active(m(s′, κ′, σ′)) ⊑ active(m(s′, κ′, σ)); or (3) it
is not the case that there exists a contingency κ′′ and a state s′′ such that active(m(s′′, κ′′, σ′)) ⊏

active(m(s′′, κ′′, σ)).
We consider each of those three possibilities for σ′ such that σ′ is equal to σ except σ′(s) = stop.

1. Case: σ′ is not in opt(m). Since σ′ is not in opt(m), there must exist s† such that σ′(s†) /∈
argmaxa Q∗

m(s†, a). Since σ is in opt(m), for all s′ 6= s, σ′(s′) = σ(s′) ∈ argmaxa Q∗
m(s′, a).

Thus, s† must be s. Since σ′(s) /∈ argmaxa Q∗
m(s, a) and Q∗

m(s, σ′(s)) = Q∗
m(s, stop) = 0,

maxa Q∗
m(s, a) = V ∗

m(s) > 0. Since σ is in opt(m), Q∗
m(s, σ(s)) = V ∗

m(s) > 0.

2. Case: It is not the case that for all contingencies κ′ consistent with m, and for all states s′,
active(m(s′, κ′, σ′)) ⊑ active(m(s′, κ′, σ)). For all κ′ and s′, m(s′, κ′, σ) and m(s′, κ′, σ′) only
differ if they reach the state s since σ and σ′ only differ at the state s. If s is never reached,
then active(m(s′, κ′, σ′)) = active(m(s′, κ′, σ)). If s is reached, then m(s′, κ′, σ′) has the form
[s′, a1, s2, a2, . . . , s, stop, . . .] and m(s′, κ′, σ) has the form [s′, a1, s2, a2, . . . , s, σ(s), . . .]. Thus,
either way, active(m(s′, κ′, σ′)) ⊑ active(m(s′, κ′, σ)). Thus, it is the case that for all contin-
gencies κ′ consistent with m, states s′, active(m(s′, κ′, σ′)) ⊑ active(m(s′, κ′, σ)). Since this is
a contradiction, the result trivially holds.

3. Case: There does not exist a contingency κ′′ and a state s′′ such that active(m(s′′, κ′′, σ′)) ⊏

active(m(s′′, κ′′, σ)). Let s′′ be s. Then for all κ′′, m(s′′, κ′′, σ′) = m(s, κ′′, σ′) has the form
[s, stop, . . .]. m(s, κ′′, σ) has the form [s, σ(s), . . .] for some σ(s) 6= stop. Thus, there exists a
contingency κ′′ and s′′ such that active(m(s′′, κ′′, σ′)) ⊏ active(m(s′′, κ′′, σ)). Since this is a
contradiction, the result trivially holds.

Thus, the result holds under all three possible cases.

One of the reasons that the MDP model is useful is that an optimal strategy is guaranteed
to exist. Fortunately, we can prove that nopt(m) is also guaranteed to be non-empty. One way
to prove this result would use reasoning about well-ordered sets, Proposition 1, and the fact that
space of all possible strategies is finite for NMDPs with finite state and action spaces. However, we
provide a proof that depends more upon the structure of NMDPs since it can extend to NMDPs
with infinite state spaces, which becomes important in the next chapter.

Theorem 1. For all MDPs m, nopt(m) is not empty.
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Figure 1: The environment model mex1 that the physician used. Circles represent states, block
arrows denote possible actions, and squiggly arrows denote probabilistic outcomes. Self-loops of
zero reward under all actions, including the special action stop, are not shown.

Proof. opt(m) is non-empty (see, e.g., [62]). Let σ be some element of opt(m). Let σ′ be σ
except whenever Q∗

m(s, σ(s)) ≤ 0, σ′(s) = stop. For any such state s, Q∗
m(s, σ(s)) ≤ 0 =

Vm(σ′, s) = Qm(σ′, s, σ′(s)) by Lemma 2. For all other states Q∗
m(s, σ′(s)) = Q∗

m(s, σ(s)) since
σ′(s) = σ(s). In either case, V ∗

m(s) = Q∗
m(s, σ(s)) since s is optimal. Thus, for all states s,

V ∗
m(s) ≤ Q∗

m(s, σ′(s)). Thus, σ′ is in opt(m). Furthermore, by construction, for all s, σ′(s) 6= stop

implies that Q∗
m(s, σ′(s)) = Q∗

m(s, σ(s)) > 0. Thus, σ′ is in nopt(m) by Lemma 3.

3.3 Example: Modeling the Physician’s Environment

Suppose an auditor is inspecting a hospital and comes across a physician referring a medical record
to his own private practice for analysis of an X-ray as described in Section 2. As physicians may
only make such referrals for the purpose of treatment (treat), the auditor may find the physi-
cian’s behavior suspicious. To investigate, the auditor may formally model the hospital using our
formalism.

After studying the hospital and how the physician’s actions affect it, the auditor would construct
the NMDP mex1 = 〈Sex1,Aex1, tex1, r

treat
ex1 , γex1〉 shown in Figure 1. The figure conveys all components

of the NMDP except γex1. For instance, the block arrow from the state s1 labeled take and the
squiggly arrows leaving it denote that after the agent performs the action take from state s1, the
environment will transition to the state s2 with probability 0.9 and to state s4 with probability
of 0.1 (i.e., tex1(s1, take)(s2) = 0.9 and tex1(s1, take)(s4) = 0.1). The number over the block arrow
further indicates the degree to which the action satisfies the purpose of treat. In this instance,
it shows that rtreat

ex1 (s1, take) = 0. This transition models the physician taking an X-ray. With
probability 0.9, he is able to make a diagnosis right away (from state s2); with probability 0.1, he
must send the X-ray to his practice to make a diagnosis. Similarly, the transition from state s4

models that his practice’s test has a 0.8 success rate of making a diagnosis; with probability 0.2,
no diagnosis is ever reached. For simplicity, we assume that all diagnoses have the same quality of
12 and that second opinions do not improve the quality; the auditor could use a different model if
these assumptions are false.

Using the model, the auditor computes opt(rtreat
ex1 ), which consists of those strategies that max-

imizes the expected total discounted degree of satisfaction of the purpose of treatment where the
expectation is over the probabilistic transitions of the model. opt(rtreat

ex1 ) includes the appropri-
ate strategy σ1 where σ1(s1) = take, σ1(s4) = send, σ1(s2) = σ1(s3) = σ1(s5) = diagnose, and
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σ1(s6) = stop. Furthermore, opt(rtreat
ex1 ) excludes the redundant strategy σ2 that performs a redun-

dant send where σ2 is the same as σ1 except for σ2(s2) = send. Performing the extra action send

delays the reward of 12 for achieving a diagnosis resulting in its discounted reward being γ2
ex1 ∗ 12

instead of γex1 ∗ 12 and, thus, the strategy is not optimal.
However, opt(rtreat

ex1 ) does include the redundant strategy σ3 that is the same as σ1 except
for σ3(s6) = send. opt(rtreat

ex1 ) includes this strategy despite the send actions from state s6 being
redundant since no positive rewards follow the send actions. Fortunately, nopt(rtreat

ex1 ) does not
include σ3 since σ1 is both in opt(rtreat

ex1 ) and σ1 ≺ σ3. To see that σ1 ≺ σ3 note that for every
contingency κ and state s, the mex1(s, κ, σ1) has the form b followed by an finite sequence of stop

(interleaved with the state s6) for some finite prefix b. For the same κ, mex1(s, κ, σ3) has the form
b followed by an infinite sequence of send actions (interleaved with the state s6) for the same b.
Thus, mex1(s, κ, σ1) is a proper sub-execution of mex1(s, κ, σ3).

The above modeling implies that the strategy σ1 can be for the purpose of treatment but σ2

and σ3 cannot be.

4 Auditing

In the above example, the auditor constructed a model of the environment in which the auditee
operates. The auditor must use the model to determine if the auditee obeyed the policy. We
first discuss this process for auditing exclusivity policy rules and revisit the above example. Then,
we discuss the process for prohibitive policy rules. In the next section, we provide an auditing
algorithm that automates comparing the auditee’s behavior, as recorded in a log, to the set of
allowed behaviors.

4.1 Auditing Exclusivity Rules

Suppose that an auditor would like to determine whether an auditee performed some logged actions
only for the purpose p. The auditor can compare the logged behavior to the behavior that a
hypothetical agent would perform when planning for the purpose p. In particular, the hypothetical
agent selects a strategy from nopt(〈S,A, t, rp, γ〉) where S, A, and t models the environment of the
auditee; rp is a reward function modeling the degree to which the purpose p is satisfied; and γ is an
appropriately selected discounting factor. If the logged behavior of the auditee would never have
been performed by the hypothetical agent, then the auditor knows that the auditee violated the
policy.

In particular, the auditor must consider all the possible behaviors the hypothetical agent could
have performed. For a model m, let nbehv(rp) represent this set where a finite prefix b of an
execution is in nbehv(rp) if and only if there exists a strategy σ in nopt(rp), a contingency κ, and
a state s such that b is a prefix of m(s, κ, σ).

The auditor must compare nbehv(rp) to the set of all behaviors that could have caused the
auditor to observe the log that he did. We presume that the log ℓ was created by a process
log that records features of the current behavior. That is, log:B → L where B is the set of
behaviors and L the set of logs, and ℓ = log(b) where b is the prefix of the actual execution of
the environment available at the time of auditing. The auditor must consider all the behaviors in
log−1(ℓ) = { b ∈ B | log(b) = ℓ } as possible where log−1 is the inverse of the logging function. In
the best case for the auditor, the log records the whole prefix b of the execution that transpired
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until the time of auditing, in which case log−1(ℓ) = {ℓ}. However, the log may be incomplete by
missing actions, or may include only partial information about an action such as that it was one
of a set of actions.

If log−1(ℓ) ∩ nbehv(rp) is empty, then the auditor may conclude that the auditee did not plan
for the purpose p, and, thus, violated the rule that auditee must only perform the actions recorded
in ℓ for the purpose p; otherwise, the auditor must consider it possible that the auditee planned for
the purpose p.

If log−1(ℓ) ⊆ nbehv(rp), the auditor might be tempted to conclude that the auditee surely obeyed
the policy rule. However, as illustrated in the second example below, this is not necessarily true.
The problem is that log−1(ℓ) might have a non-empty intersection with nbehv(rp′) for some other
purpose p′. In this case, the auditee might have been actually planning for the purpose p′ instead of
p. Indeed, given the likelihood of such other purposes for non-trivial scenarios, we consider proving
compliance practically impossible. However, this incapability is of little consequence: log−1(ℓ) ⊆
nbehv(rp) does imply that the auditee is behaving as though he is obeying the policy. That is, in
the worse case, the auditee is still doing the right things even if for the wrong reasons.

4.2 Example: Auditing the Physician

Below we revisit the example of Section 3.3. We consider two cases. In the first, the auditor shows
that the physician violated the policy. In the second, auditing is inconclusive.

Violation Found. Suppose after constructing the model as above in Section 3.3, the auditor maps
the actions recorded in the access log ℓ1 to the actions of the model mex1, and finds log−1(ℓ1) holds
only a single behavior: b1 = [s1, take, s2, send, s3, diagnose, s6, stop, s6, stop]. Next, using nopt(rtreat

ex1 ),
as computed above, the auditor constructs the set nbehv(rtreat

ex1 ) of all behaviors an agent planning
for treatment might exhibit. The auditor would find that b1 is not in nbehv(rtreat

ex1 ).
To see this, note that every execution e1 that has b1 as a prefix is generated from a strategy

σ such that σ(s2) = send. The strategy σ2 from Section 3.3 is one such strategy. None of these
strategies are members of opt(rtreat

ex1 ) for the same reason as σ2 is not a member. Thus, b1 cannot be
in nbehv(rtreat

ex1 ). As log−1(ℓ) ∩ nbehv(rtreat
ex1 ) is empty, the audit reveals that the physician violated

the policy.

Inconclusive. Now suppose that the auditor sees a different log ℓ2 such that log−1(ℓ2) = {b2}
where b2 = [s1, take, s4, send, s5, diagnose, s6, stop, s6, stop]. In this case, our formalism would not
find a violation since b2 is in nbehv(rtreat

ex1 ). In particular, the strategy σ1 from above produces the
behavior b2 under the contingency that selects the bottom probabilistic transition from state s1 to
state s4 under the action take.

Nevertheless, the auditor cannot be sure that the physician obeyed the policy. For example,
consider the NMDP m′

ex1 that is mex1 altered to use the reward function rprofit
ex1 instead of rtreat

ex1 .

rprofit
ex1 assigns a reward of zero to all transitions except for the send actions from states s2 and s4,

to which it assigns a reward of 9. σ1 is in nopt(rprofit
ex1 ) meaning that not only the same actions

(those in b2), but even the exact same strategy can be either for the allowed purpose treat or the
disallowed purpose profit. Thus, if the physician did refer the record to his practice for profit, he
cannot be caught as he has tenable deniability of his ulterior motive of profit.
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4.3 Auditing Prohibitive Rules

In the above example, the auditor was enforcing the rule that the physician’s actions be only for
treatment. Now, consider auditing to enforce the rule that the physician’s actions are not for
personal profit. To obey this purpose restriction, the auditee need not have attempted to minimize
the degree of satisfaction of the purpose. Rather the auditee, need merely to have ignored the
prohibited purpose.

To audit for compliance with a rule prohibiting the purpose p, after seeing the log ℓ, the auditor
could check whether log−1(ℓ) ∩ nbehv(rp) is empty. If so, then the auditor knows that the policy
was obeyed because the auditee could not have been planning for the purpose p. If not, then the
auditor cannot prove nor disprove a violation. In the above example, just as the auditor is unsure
whether the actions were for the required purpose of treatment, the auditor is unsure whether the
actions are not for the prohibited purpose of profit.

Leveraging Multiple Purposes. An auditor might decide to investigate some of the cases
where log−1(ℓ) ∩ nbehv(rp) is not empty. In this case, the auditor could limit his attention to
only those possible violations of a prohibitive rule that cannot be explained away by some allowed
purpose. For example, in the inconclusive example above, the physician’s actions can be explained
with the allowed purpose of treatment. As the physician has tenable deniability, it is unlikely
that investigating his actions would be a productive use of the auditor’s time. Thus, the auditor
should limit his attention to those logs ℓ such that both log−1(ℓ) ∩ nbehv(rprofit

ex1 ) is non-empty and
log−1(ℓ) ∩ nbehv(rtreat

ex1 ) is empty.
A similar additional check using disallowed purposes could be applied to enforcing exclusivity

rules. However, for exclusivity rules, this check would identify cases where the auditee’s behavior
could have been either for the allowed purpose or a disallowed purpose. Thus, it would serve
to find additional cases to investigate and increase the auditor’s workload rather than reduce it.
Furthermore, the auditee would have tenable deniability for these possible ulterior motives, making
these investigations a poor use of the auditor’s time.

5 Auditing Algorithm

5.1 Algorithm

We would like to automate the auditing process described above. To this end, we present in
Figure 2 an algorithm AuditNMDP that aids the auditor in comparing the log to the set of
allowed behaviors. Since we are not interested in the details of the logging process and would
like to focus on the planning aspects of our semantics, we limit our attention to the case where
log(b) = b (i.e., the log is simply the behavior of the auditee). However, future work could extend
our algorithm to handle incomplete logs by constructing the set of all possible behaviors that could
give rise to that log.

The algorithm presumes that the MDP m is finite. That is, both S and A are finite. As proved
below (Theorem 2), AuditNMDP(m, b) returns true if and only if log−1(b) ∩ nbehv(m) is empty.
In the case of an exclusivity rule, the auditor may conclude that the policy was violated when
AuditNMDP returns true. In case of a prohibitive rule, the auditor may conclude the policy was
obeyed when AuditNMDP returns true.
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AuditNMDP(m = 〈S,A, t, r, γ〉, b = [s1, a1, s2, a2, . . . , sn, an]):
01 if (ImpossibleMDP(m, b))
02 return true // behavior impossible for NMDP
03 V ∗

m := SolveMDP(m)
04 for (i := 1; i ≤ n; i++):
05 if (Q∗(m,V ∗

m, si, ai) < V ∗
m(si)):

06 return true // action suboptimal
07 if (Q∗(m,V ∗

m, si, ai) ≤ 0 and ai 6= stop):
08 return true // action redundant
09 return false

Figure 2: The algorithm AuditNMDP. SolveMDP may be any MDP solving algorithm. Figure 3
shows ImpossibleMDP.

ImpossibleMDP(m = 〈S,A, t, r, γ〉, b = [s1, a1, s2, a2, . . . , sn, an]):
11 for (i := 1; i ≤ n; i++):
12 if (si /∈ S):
13 return true // si is not a state
14 if (ai /∈ A):
15 return true // ai is not an action
16 for (i := 1; i < n; i++):
17 if (t(si, ai)(si+1) ≤ 0):
18 return true // si+1 unreachable from si

19 for (j := i + 1; j ≤ n; j++):
20 if (si = sj and ai 6= aj):
21 return true // no stationary strategy could have produced the behavior
22 return false

Figure 3: The algorithm ImpossibleMDP. Returns whether the given behavior is possible for the
given MDP.
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The algorithm operates by checking a series of local conditions of the NMDP m and behavior
b that are equivalent to the global property of whether log−1(b) ∩ nbehv(m) is empty (as proved
by Lemma 4). First, AuditNMDP checks whether the behavior b is possible for m using the
sub-routine ImpossibleMDP shown in Figure 3. ImpossibleMDP checks whether every state
and action is valid (Lines 12 and 14), every state is reachable by the state proceeding it (Line 17),
and that the same action is performed from equal states in b (Line 20).

Next, the AuditNMDP checks whether the behavior b is optimal (Line 05) and non-redundant
(Line 07). To do so, AuditNMDP uses a sub-routine SolveMDP to compute V ∗

m, which for
each state s records V ∗

m(s), the optimal value for s. The fact that NMDPs are a type of MDP
allows AuditNMDP to use any MDP optimization algorithm for SolveMDP, such as reducing
the optimization to a system of linear equations [28].

AuditNMDP uses a function Q∗ that computes Q∗ from V ∗:

Q∗(m,V ∗
m, s, a) = r(si, ai) + γ

∑

s′∈S

t(si, ai)(s
′) ∗ V ∗

m(s′)

Thus, Q∗(m,V ∗
m, s, a) is equal to Q∗

m(s, a).
The essence of the algorithm is checking whether log−1(ℓ) ∩ nbehv(m) is empty. For simplicity,

our algorithm presumes that log−1(ℓ) holds only one behavior. This restriction manifests itself in
that each of the local checks (Lines 01, 05, and 07) only considers a single sequence of states and
actions.

If log−1(ℓ) holds more than a single behavior but is a small set, then the auditor may run the
algorithm for each behavior in log−1(ℓ). Alternatively, in some cases the set log−1(ℓ) may have
structure that a modified algorithm could leverage. For example, if log−1(ℓ) is missing what action
is taken at some states of the execution or only narrows down the taken action to a set of possible
alternatives, a conjunction of constraints on the action taken at each state may identify the set.

5.1.1 Correctness

To prove correctness, we use the following lemma that allows us to reduce checking for violations
to local properties of the NMDP and the auditee’s behavior.

Lemma 4. For an NMDP m, the behavior b = [s1, a1, . . . , sn, an] is in nbehv(m) if and only if
b is a possible behavior of m, and for all i ≤ n, Q∗

m(si, ai) = V ∗
m(si) and ai 6= stop implies that

Q∗
m(si, ai) > 0.

Proof. First, for the only-if direction, suppose b ∈ nbehv(m). Since b is in nbehv(m), there exists
a state s, a contingency κ consistent with m, and strategy σ in nopt(m) such that b ⊏ m(s, κ, σ).
Thus, b is possible since κ is consistent with with m. Since b ⊏ m(s, κ, σ), for all i ≤ n, σ(si) = ai.
Since σ is in nopt(m), for all i ≤ n, Q∗

m(si, ai) = Q∗
m(si, σ(si)) = V ∗

m(si). Since σ is in nopt(m),
by Lemma 3, for all s such that σ(s) 6= stop, Q∗

m(s, σ(s)) > 0. Thus, for all i ≤ n, σ(si) 6= stop,
Q∗

m(s, σ(s)) > 0.
Second, for the if direction, suppose b is a possible behavior of m, and for all i ≤ n, Q∗

m(si, ai) =
V ∗

m(si) and ai 6= stop implies that Q∗
m(si, ai) > 0. By Theorem 1, nopt(m) is not empty. Let σ be

some element of nopt(m). Let σ′ be identical to σ except for all i, σ′(si) = ai, which is well defined
since b is possible. For all i, Q∗

m(si, σ
′(si)) = Q∗

m(si, ai) = V ∗
m(si) and σ′(si) = ai 6= stop implies

that Q∗
m(si, σ

′(si)) = Q∗
m(si, ai) > 0. For all other states s, Q∗

m(si, σ
′(s)) = Q∗

m(s, σ(s)) = V ∗
m(s)
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and σ′(s) 6= stop implies that Q∗
m(s, σ′(s)) > 0 by Lemma 3 since σ′(s) = σ(s). Thus, for all s,

Q∗
m(s, σ′(s)) = V ∗

m(s), which implies that σ′ is in opt(m). Furthermore, for all s, σ′(s) 6= stop

implies that Q∗
m(s, σ′(s)) > 0, which implies that σ′ is in nopt(m) by Lemma 3.

By Lemma 1, b being possible implies that for all i < n, t(si, ai)(si+1) > 0. Thus, there exists a
contingency κ that is consistent with m such that κ(si, ai, i) = si+1. Furthermore, b ⊏ m(s, κ, σ′)
for s = s1. Thus, since σ′ is in nopt(m), b is in nbehv(m).

The above lemma combines with reasoning about the actual code of the program to yield its
correctness. First, we prove the correctness of ImpossibleMDP as a lemma.

Lemma 5. For all MDPs m and behaviors b, ImpossibleMDP(m, b) is a decision procedure for
whether b is not a possible behavior of m.

Proof. To show that ImpossibleMDP is a decision procedure, we must show that it always ter-
minates, that b is not possible for m if and only if ImpossibleMDP(m, b) returns true, and that
b is possible for m if and only if ImpossibleMDP(m, b) returns false.

To show that ImpossibleMDP terminates note that all the for loops involve a monotonically
increasing counter (i or j) and that they all terminate after the counter reaches finite number (n
or n + 1).

ImpossibleMDP returns true if and only if one of the following is true: (1) there exists i ≤ n
such that si is not a state of m, (2) there exists i ≤ n such that ai is not an action of m, (3) there
exists i < n such that t(si, ai)(si+1) ≤ 0, (4) there exists i < n and j where i < j ≤ n such that
si = sj and ai 6= aj . ImpossibleMDP returns false if and only if all of the conditions (1), (2), (3),
and (4) are false. Conditions (1) and (2) are both false if and only if b is in (S × A)∗. Condition
(3) is false if and only if for all i < n, t(si, ai)(si+1) > 0. Condition (4) is false if and only if all
i ≤ n and j ≤ n, si = sj implies that ai = aj.

Thus, by Lemma 1, b is possible for m if and only if the conditions (1), (2), (3), and (4) are
all false, which is exactly when ImpossibleMDP returns false. Furthermore, b is not possible
for m if and only if one of the conditions (1), (2), (3), and (4) is true, which is exactly when
ImpossibleMDP returns true.

Theorem 2. For all finite NMDPs m and behaviors b, AuditNMDP is a decision procedure for
whether log−1(b) ∩ nbehv(m) is empty.

Proof. To show that AuditNMDP is a decision procedure, we must show that it always terminates,
that log−1(b)∩nbehv(m) is empty if and only if AuditNMDP(m, b) returns true, and that log−1(b)∩
nbehv(m) is non-empty if and only if AuditNMDP(m, b) returns false.

To show that AuditNMDP terminates, note that SolveMDP is also guaranteed to terminate
because m is finite. Thus, each iteration of the for loop terminates. Furthermore, n is a finite
number and i monotonically increases toward it. Thus, the loop will execute only a finite number
of times. Furthermore Q∗ will terminate since S is finite.

Now, we show that log−1(b)∩nbehv(m) is empty if and only if AuditNMDP(m, b) returns true.
AuditNMDP(m, b) returns true if and only if at least one of the following is true: (1) b is not
possible (see Lemma 5), (2) there exists i ≤ n such that Q∗(m,V ∗

m, si, ai) < V ∗
m(si), (3) there exists

i ≤ n such that Q∗(m,V ∗
m, si, ai) ≤ 0 and ai 6= stop. At least one of the Conditions (1), (2), or (3)

is true if and only if the following is false: b is a possible behavior of m, for all i ≤ n, Q∗
m(si, ai) =

V ∗
m(si) and ai 6= stop implies that Q∗

m(si, ai) > 0. Thus, by Lemma 4, AuditNMDP(m, b) returns
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true if and only if b is not in nbehv(m). Since log−1(b) = {b}, AuditNMDP(m, b) returns true if
and only if log−1(b) ∩ nbehv(m) is empty.

Since AuditNMDP(m, b) always terminates and can only return true or false, and returns
true if and only if log−1(b) ∩ nbehv(m) is empty, AuditNMDP(m, b) returns false if and only if
log−1(b) ∩ nbehv(m) is non-empty.

5.1.2 Running Time

The running time of the algorithm is dominated by the MDP optimization conducted by SolveMDP.
SolveMDP may be done exactly by reducing the optimization to a system of linear equations [28].
Such systems may be solved in polynomial time [43, 41]. However, in practice, large systems are
often difficult to solve. Fortunately, a large number of algorithms for making iterative approxi-
mations exist whose running time depends on the quality of the approximation. (See [47] for a
discussion.) In the next section, we discuss an implementation using such a technique.

5.2 Approximation Algorithm and Implementation

Rather than implement the exact algorithm AuditNMDP found in Section 5, we implemented
an approximation algorithm using the standard value iteration algorithm to solve MDPs (see,
e.g., [62]). The value iteration algorithm starts with an arbitrary guess of an optimal strategy for
an MDP and the value of each state under that policy. With each iteration, the algorithm improves
its estimation of the optimal strategy and its value. It continues to make successively more accurate
estimations until the improvement between one iteration and next is below some threshold ǫ. At
this point, the algorithm returns its estimations. The difference between its estimation of the value
of each state under the optimal policy and the true value is bounded by 2ǫγ/(1 − γ) where γ is
the discount factor of the MDP [76, 77]. Each iteration takes O(|S|2 ∗ |A|) time. The number of
iterations needed to reach convergence grows quickly in γ making the algorithm pseudo-polynomial
time in γ and polynomial time in |A| and |S| [72]. Despite the linear programming approach having
better worst-case complexity, value iteration tends to perform well in practice. Using value iteration
in our algorithm results in it having the same asymptotic running time of pseudo-polynomial in γ.

To maintain soundness, the approximate auditing algorithm differs from the exact algorithm to
account for the approximations made by the value-iteration algorithm. Figure 4 shows a general
framework for auditing with approximation algorithms. SolveMDPapprox is an approximation
algorithm for solving MDPs. It returns lower and upper bounds on the value of V ∗

m(s, a) for each
s and a. AuditNMDPapprox uses these bounds to soundly audit.

For example, the auditor may select to use value iteration for SolveMDPapprox. In this case,
V∗low(s, a) = V∗app(s, a) − 2ǫγ/(1 − γ) and V∗up(s, a) = V∗app(s, a) + 2ǫγ/(1 − γ) where V∗app(s, a) is the
value of the approximation returned by value iteration using ǫ for the accuracy parameter.

With these changes, the approximation algorithm is sound in that it will return true only when
the original algorithm AuditNMDP solving the MDPs exactly would return true.

Theorem 3. For all finite NMDPs m and behaviors b, if AuditNMDPapprox(m, b) returns true,
then log−1(b) ∩ nbehv(m) is empty.

Proof. If AuditNMDPapprox(m, b) returns true, then one of the following is true: (1) the sub-
routine ImpossibleMDP returns true, (2) there exists i ≤ n such that Q∗(m, V∗up, si, ai) < V∗low(si),
or (3) there exists i ≤ n such that Q∗(m, V∗up, si, ai) ≤ 0 and ai 6= stop. If (1) is true, then b is not
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AuditNMDPapprox(m = 〈S,A, t, r, γ〉, b = [s1, a1, s2, a2, . . . , sn, an]):
21 if (ImpossibleMDP(m, b))
22 return true // behavior impossible for NMDP
23 〈V∗low, V∗up〉 := SolveMDPapprox(m)
24 for (i := 1; i ≤ n; i++):
25 if (Q∗(m, V∗up, si, ai) < V∗low(si)):
26 return true // action suboptimal
27 if (Q∗(m, V∗up, si, ai) ≤ 0 and ai 6= stop):
28 return true // action redundant
29 return false

Figure 4: The algorithm AuditNMDPapprox. SolveMDPapprox is an MDP approximation
algorithm. Figure 3 shows ImpossibleMDP.

a possible behavior of m by Lemma 5. If (2) is true, then for that i, Q∗
m(si, ai) 6= V ∗

m(si) since
Q∗

m(si, ai) ≤ Q∗(m, V∗up, si, ai) < V∗low(si) ≤ V ∗
m(si). If (3) is true, then for that i, ai 6= stop does

not imply that Q∗
m(si, ai) > 0 since ai 6= stop and Q∗

m(si, ai) ≤ Q∗(m, V∗up, si, ai) ≤ 0. Thus, under
each of these cases, Lemma 4 shows that b = [s1, a1, s2, a2, . . . , sn, an] is not in nbehv(m). This fact
implies that log−1(b) ∩ nbehv(m) is empty since log−1(b) = {b}.

AuditNMDPapprox is not complete: it may return false in cases where AuditNMDP would
return true. These additional results of false mean that additional violations of exclusivity rules
might go uncaught and additional compliance with prohibitive rules might go unproven. However,
since false indicates an inconclusive audit, they do not alter soundness of the implementation.

When AuditNMDPapprox returns false, the auditor may use a more accurate approximation
algorithm for SolveMDPapprox in hopes that improving accuracy of the approximations will
produce the conclusive response of true. For the value iteration algorithm, the auditor just needs
to rerun the algorithm with a lower value for ǫ. There always exists a value of ǫ small enough to show
that Q∗(m, V∗up, si, ai) < V∗low(si) when it is actually the case that Q∗

m(si, ai) < V ∗
m(si). However,

when Q∗
m(si, ai) = 0, there will be no value of ǫ small enough to make Q∗(m, V∗up, si, ai) ≤ 0 true.

Thus, AuditNMDPapprox using value iteration will never catch when log−1(b) ∩ nbehv(m) is
empty because an action of b is redundant but otherwise optimal (V ∗

m(si) = Q∗
m(si, ai) = 0 but

ai 6= stop for some ai).
We programmed our implementation in the Racket dialect of Scheme [32]. The implementation

is available at:
http://www.cs.cmu.edu/~mtschant/purpose/

The implementation uses an explicit representation of the state and actions spaces. The transition
and reward functions are represented using hash maps. Since we did not optimize the implementa-
tion, we did not benchmark its performance. However, in Section 5.3, we use it to aid understanding
a complex example and report its performance in that section.

5.3 Example: Creating an Operating Procedure

In some environments, an auditee may have difficulty determining whether an action is allowed
under a policy. For example, Regional Health Information Organizations (RHIOs) store and make
available medical records for a region. Since RHIOs are a new technology and do not directly provide
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treatment, arguments may arise over what actions are allowed under the exclusivity restriction that
records may only be used for the purpose of treatment.

A physician considering reading such a record may find the circumstances too complex to
understand without help, but we cannot expect the physician to perform the modeling required
to use our auditing algorithm. However, an RHIO may use our algorithm to audit simulated
logs of possible future uses and determine which actions the restriction allows. The RHIO may
generalize these quantitative results to a qualitative operating procedure, such as the physician
may read records of patients with whom he does not have a current relationship only when seeing
that patient in the future is highly likely. Below, we show an example of reasoning that could lead
to this procedure. After constructing a model of an RHIO, we approach this problem by using the
implementation of AuditNMDPapprox algorithm discussed in Section 5.2.

5.3.1 Modeling

Our model of an RHIO stores the records of various patients. Let pi represent the probability that
the physician will see patient i next. Let p∅ represent the probability that the physician does not
have a next patient. The action readi represents reading the ith patient’s record. The reward ρt

i

is a reward measuring how well the physician treats patient i without seeing that patient’s record
beforehand. (t stands for “treat”.) Let δr

i represent the improvement in how well the physician may
treat patient i with seeing the record beforehand. (r stands for “read”.) The model also includes
the action study. Studying yields an improvement of δs

i in the level of treatment the physician
may provide to patient i. (s stands for “study”.) In general, reading a patient records improves
treatment for that patient whereas studying improves the treatment of all patients.

We assume that the effects of reading a medical record or studying wears off over time. Not
only does this assumption model the limited nature of human memory, but also allows us to model
an infinite number of time steps using a finite model. In particular, we encode the last h actions
(reading, studying, and treating) of the physician in the states of the model. The reward for treating
a patient depends upon this history.

We model this example as a family of NMDPs that depend upon the parameter h, the number
of steps before a physician forgets something. For simplicity, we assume that the number of patients
is equal to h as well. (Having more patients than the physician can remember cannot change his
behavior.) In the case, where more than h patients are stored in an RHIO, we consider the subset
of the RHIO that holds the patients that would benefit the most from having their records read
(those that maximizes pi ∗ δr

i).
Formally, let mh

ex2 be the model for the parameter h (and others introduced below). mh
ex2 =

〈S,A, t, r, γ〉 where the action space A is equal to {stop, treat, study, read1, . . . , readh}. The state
space S is equal to {treat, study, read1, . . . , readh}

h×C where {treat, study, read1, . . . , readh}
h encodes

a h-step history of the physician’s actions and C is the set of possible conditions in which the
physician may currently find himself. The history records, in order, which action the physician
made in each of the h most recent steps before the current step unless the physician has taken the
do-nothing action stop. Once the physician performs stop, the history is frozen at its current value
and does not record the current or future stop actions. The history does not record the stop actions
since they always result in returning to the current state making updating the history impossible.
However, this failure to record the stop action does not alter the optimal strategy of the NMDP
mh

ex2 since stop is of zero reward and results in a self-loop at every state. The set of conditions C
is equal to {∅, o, 1, . . . , h} where ∅ represents no patients currently wanting to see the physician, o
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form of state action reward

〈〈a1, . . . ah〉, c〉 (any state) study 0
〈〈a1, . . . ah〉, c〉 (any state) readi 0
〈〈a1, . . . ah〉, ∅〉 treat 0
〈〈a1, . . . ah〉, o〉 treat ρt

o + n ∗ δs
o

〈〈a1, . . . , readi, . . . ah〉, i〉 treat ρt
o + δr

i + n ∗ δs
i

〈〈a1, . . . ah〉, i〉 where readi is not in 〈a1, . . . ah〉 treat ρt
i + n ∗ δs

i

Table 1: The rewards for mh
ex2. In the last three rows, n stands for the number of instances of study

in 〈a1, . . . ah〉.

(short for “other”) represents a patient not in the RHIO attempting to see the physician, and i in
{1, . . . , h} represents the ith patient of the RHIO attempting to see the physician.

At each time step, the physician chooses whether to treat the current patient (if any), read a
patient’s record, study, or do nothing. This updates his history by replacing the oldest of the h
entries with this choice. The condition also probabilistically updates to a value of C. The transition
function t is such that t(〈〈a1, a2, . . . , ah〉, c〉, a) is equal to a distribution d over these possible next
states. In particular, d depends upon additional parameters pc for each c in C. pc provides the
probability of c being the next condition in which the physician finds the hospital. The distribution
d assigns the probability of pc to the next state 〈〈a2, . . . , ah, a〉, c〉 for each c and the probability of
0 for all other states where a is the current action of the physician.

Table 1 lists the rewards for each state and action. The reward for the actions readi or study is
always 0. The reward for treat depends upon the state. For the state 〈〈a1, . . . ah〉, ∅〉, the reward
is also 0. For the state 〈〈a1, . . . ah〉, o〉, the reward is ρt

o + n ∗ δs
o where ρt

o is the base reward for
treating a patient not in the database, n is the number of instances of study in 〈a1, . . . , ah〉, and δs

o

is the additional reward achieved per studying action. For the state 〈〈a1, . . . ah〉, i〉, if there exists
j in {1, . . . , h} such that aj = readi, the reward will be ρt

i + δr
i + n ∗ δs

i where ρt
i is base reward for

treating patient i, δr
i is the additional reward for having read the patient’s record, and n and δs

i are
as before. For the state 〈〈a1, . . . ah〉, i〉, if there does not exist j in {1, . . . , h} such that aj = readi,
the reward will be ρt

i + n ∗ δs
i . ρt

i, δr
i , δs

i , ρt
o, and δs

o are all additional parameters to the model. We
also treat the discounting factor γ as a parameter.

The number of actions is |{stop, treat, study, read1, . . . , readh}| = 3 + h. The number of states is

|{treat, study, read1, . . . , readh}
h × C| = (2 + h)h ∗ (2 + h) = (h + 2)h+1

For every state s and action a except stop, each of the possible h + 2 conditions in C could arise
in the next state from performing action a in state s. Presuming all the probability parameters pc

are non-zero, the resulting number of non-zero transitions is

|S| ∗ |A−{stop}| ∗ |C|+ |S| = (h+2)h+1 ∗ (h+3−1)∗ (h+2)+(h+2)h+1 = (h+2)h+3 +(h+2)h+1

where the second summand accounts for the self-loop under stop at each state.
Since m2

ex2 has 64 states and 1088 non-zero transitions, we cannot easily represent the whole
model in a diagram. Thus, in Figure 5, we show just part of m2

ex2. It shows only the part of the
NMDP relevant to transitions from the states 〈〈s, 2〉, ∅〉 or 〈〈2, s〉, 2〉. The part of m2

ex2 is sufficient
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to illustrate the possibility of multi-state cycles. In particular, it shows the possibility of executions
of the following form

[〈〈study, read2〉, ∅〉, study, 〈〈read2, study〉, 2〉, read2, 〈〈study, read2〉, ∅〉, . . .]

5.3.2 Methodology

We conducted experiments with our implementation to gain a feel for how the values of the param-
eters affects the allowed behavior. For simplicity, in our experiments, we treat all patients in the
RHIO as identical and use the same rewards in the case of a patient not in the RHIO (i.e., pi = pj ,
ρt

i = ρt
j = ρt

o, δr
i = δr

j, and δs
i = δs

j = δs
o for all i and j in {1, . . . , h}). Thus, we simply write pi in

the place of pi for all i in {1, . . . , h}. We also write δr in the place of δr
i , ρt for ρt

i or ρt
o, and δs for

δs
i or δs

o for all i in {1, . . . , h}.
Our experiments study how large the improvement δr must be compared to the improvement

δs for the obeying the policy means that the physician must read a patient’s record instead of
studying. Given fixed values for all other parameters, we call this lowest value of δr for which the
physician may read the record of a patient without violating the policy the reading threshold.

We use our implementation to estimate the reading threshold using simulations. We call this
estimation the simulatively estimated reading threshold (sert). Each simulation corresponds to
setting the value of δr to some value v and testing with the AuditNMDPapprox implementation
whether reading is allowed at the value v. In particular, we test whether studying (as opposed to
reading a record) at the state 〈〈treat, . . . , treat〉, ∅〉 is a violation of the policy. If so, then v is an
upper bound on the reading threshold; if not, then v is a lower bound. The algorithm establishes
the initial lower bound as 1 and finds an initial upper bound by exponentially increasing the
value of v until AuditNMDPapprox returns true. After establishing initial lower and upper
bounds, the estimation algorithms iteratively uses their average for the next value of v tested by
AuditNMDPapprox to find either a tighter lower or upper bound. The estimation algorithm
continues until the bounds are within 1% of one another and uses their average as the sert. If we
were using AuditNMDP, then this procedure would guarantee that the resulting sert is within
0.5% of the true reading threshold. However, since we use the approximate AuditNMDPapprox,
the sert may be further from the true reading threshold.

We implemented these estimation techniques in the Racket dialect of Scheme to use our imple-
mentation of the AuditNMDPapprox algorithm. They may be downloaded from:

http://www.cs.cmu.edu/~mtschant/purpose/

We ran our implementations on a Lenovo U110 laptop computer with 3GB of memory and a 1.60
GHz Intel Core 2 Duo CPU running the DrRacket interpreter in Windows Vista.

5.3.3 Results

We compare the serts across several models in the family mh
ex2. Table 2 summarizes the results

for each model we studied. The table also reports the running time required to compute the sert

for each model.
For all experiments, we use δs equal to 1. Most of the experiments used h = 2. For each of

these experiments, we used three different values for the discounting factor γ: 0.9, 0.1, and 0.01.
We ran three experiments with h = 3.
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Figure 5: Part of the NMDP m2
ex2. The figure only shows transitions and rewards originating at

either state 〈〈s, 2〉, none〉 or 〈〈2, s〉, 2〉. It only shows states involved in one of these transitions. It
abbreviates the state 〈〈a1, a2〉, c〉 as ā1ā2:c where ā1 and ā2 abbreviations for actions: read1 becomes
1; read2 becomes 2; and treat, t.
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s pi po p∅ ρt γ sert time

2 0.01 0.95 0.03 1000 0.01 97.539 15 sec
2 0.01 0.95 0.03 1000 0.1 97.539 20 sec
2 0.01 0.95 0.03 1000 0.9 98.945 234 sec

2 0.01 0.95 0.03 10000 0.01 97.539 16 sec
2 0.01 0.95 0.03 10000 0.1 97.539 22 sec
2 0.01 0.95 0.03 10000 0.9 98.945 272 sec

2 0.01 0.95 0.03 100 0.01 97.539 16 sec
2 0.01 0.95 0.03 100 0.1 97.539 19 sec
2 0.01 0.95 0.03 100 0.9 98.945 196 sec

2 0.01 0.95 0.03 10 0.01 97.539 15 sec
2 0.01 0.95 0.03 10 0.1 97.539 16 sec
2 0.01 0.95 0.03 10 0.9 98.945 162 sec

2 0.01 0.95 0.03 1 0.01 97.539 13 sec
2 0.01 0.95 0.03 1 0.1 97.539 16 sec
2 0.01 0.95 0.03 1 0.9 74.336 128 sec

2 0.0001 0.9698 0.03 1000 0.01 9753.906 18 sec
2 0.0001 0.9698 0.03 1000 0.1 9753.906 24 sec
2 0.0001 0.9698 0.03 1000 0.9 9894.531 283 sec

2 0.0001 0.9698 0.03 10 0.01 9753.906 18 sec
2 0.0001 0.9698 0.03 10 0.1 9753.906 20 sec
2 0.0001 0.9698 0.03 10 0.9 9894.531 194 sec

2 0.0001 0.9698 0.03 1 0.01 9753.906 16 sec
2 0.0001 0.9698 0.03 1 0.1 9753.906 20 sec
2 0.0001 0.9698 0.03 1 0.9 7363.281 157 sec

2 0.0001 0.95 0.05 1000 0.01 9542.969 18 sec
2 0.0001 0.95 0.05 1000 0.1 9542.969 24 sec
2 0.0001 0.95 0.05 1000 0.9 9683.594 283 sec

2 0.01 0.8 0.18 1000 0.01 82.07 15 sec
2 0.01 0.8 0.18 1000 0.1 82.07 20 sec
2 0.01 0.8 0.18 1000 0.9 84.18 234 sec

3 0.01 0.94 0.03 1000 0.01 97.539 45 min
3 0.01 0.94 0.03 1000 0.1 97.539 63 min
3 0.01 0.94 0.03 1000 0.9 98.242 12 hours

Table 2: Results of experiments on mh
ex2. In all cases δs = 1. The values for the estimations are

rounded to three decimal places. Two outliers are in boldface.
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The table does not report upon the running time for a single call to AuditNMDPapprox. For
the h = 2 cases, the running time for a single call of AuditNMDPapprox varied between 1.3 and
27 seconds. For the h = 3 cases, the running time varied between 261 seconds and 70 minutes.
Each computation of sert took between 10 and 12 calls to AuditNMDPapprox.

Examining Table 2, we see two outliers (in boldface). The outliers use the very low value of
1 for ρt. We compared the optimal strategies for these outliers with similar models. Only in the
case of the outliers does the physician read patient records rather than provide treatment even
when a patient is present. Intuitively, the physician shows this behavior since the reward ρt for
treating a patient without having either read the patient’s record or studying is less than the expect
increase in rewards for studying or reading a record. This effect disappears for lower values of γ
since increases in future rewards become more heavily discounted.

As expected from known complexity results [72], increasing γ increases the running time.

5.3.4 Discussion

The complexity of the above calculations highlights how our model of planning does not correspond
to how humans plan (further discussed in Section 8). We cannot expect physicians to perform
complex modeling and analysis let alone to use computer simulations before deciding whether to
read a record or study. However, compliance officers at hospitals may find these results helpful
while drafting policy manuals.

For example, consider a large hospital where the probability of a physician seeing a typical
patient in the RHIO is less than 1 in 10, 000. At such a hospital, the reading threshold of about
9700 holds across various of values for ρt and γ. Extrapolating from the results for the tests using
h = 3 with pi = 0.01 instead of 0.0001, one may conclude that the value is likely to remain around
9700 for larger values of h. In many settings, managers may find an improvement from reading a
patient’s record of 9700 times the improvement from studying inconceivable. In this case, a policy
manual may quantitatively summarize the quantitative results shown in Table 2 as prohibiting a
physician from reading patient records unless the physician has a reason to believe that the patient
is much more likely than average to be seeking care. Such a prohibition may not make sense at a
small practice where the probability of seeing an average patient is 1 in 100 since reading a record
could conceivably produce an improvement of 97 times the improvement from studying.

6 Empirical Study of Semantics

6.1 Goals

Both previous work and this work offer methods for enforcing privacy policies that feature purpose
restrictions. These methods test whether a sequence of actions violates a clause of a privacy policy
that restricts certain actions to be only for certain purposes. By providing a test for whether the
purpose restriction is violated, these methods implicitly provide a semantics for these restrictions.

To ensure that these methods correctly enforce the privacy policy, one must show that the
semantics employed by a method matches the intended meaning of the policy. Unfortunately,
determining the intended meaning of a policy from its text is often impossible. Furthermore, these
policies often act as agreements among multiple parties who may differ in their interpretation of
the policy. For these reasons, we compare the semantics proposed by these methods of policy
enforcement to the most common interpretations of policies.
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While previous works have not provided a formal semantics, it appears that many works (e.g., [3,
38]) flag actions as a violation if they do not further the purpose in question. (See Section 7 for
a description of past works.) In particular, these works make assumptions about how people
think about purpose in the context of enforcing a privacy policy that restricts an agent to only
performing a certain class of actions for a certain purpose. The following hypothesis characterizes
these assumptions:

H1. The agent obeys the restriction if and only if the action furthered the purpose.

This hypothesis entails the following hypothesis about how people interpret the meaning of purpose:

H1’. An action is for a purpose if and only if that action furthers that purpose.

Our work instead asserts that an action may be for a purpose even if that purpose is never
furthered. In particular, we assert that the action merely has to be part of a plan for furthering
that purpose. Thus, our formalism assumes the following hypothesis (in the same context as above):

H2. The auditee obeys the restriction if and only if the auditee performed that action as part of
a plan for furthering that purpose.

(We do not construct our algorithms directly from Hypothesis H2. Rather they are approximations
using only observable information.) Similarly, this hypothesis entails the following:

H2’. An action is for a purpose if and only if the auditee performed that action as part of a plan
for furthering that purpose.

To show that our work provides a method of enforcing purpose restrictions more faithful to their
common meaning, we would like to disprove Hypotheses H1 and H1’ while proving Hypotheses H2
and H2’.

As Hypothesis H1 is a bi-implication, we can disprove it by disproving either of the following
hypotheses (here and henceforth, in the same context as above):

H1a. If the action furthers a purpose, then the auditee obeys the restriction.

H1b. If the auditee obeys the restriction, then the action furthers a purpose.

We will attempt to disprove both Hypotheses H1a and H1b.
Similarly, Hypothesis H2 breaks into two sub-hypotheses:

H2a. If the auditee performed an action as part of a plan for furthering a purpose, then the auditee
obeyed the restriction.

H2b. If the auditee obeyed the restriction, then the auditee performed the action as part of a plan
for furthering that purpose.

We will test both of these hypotheses by providing example scenarios of an auditee performing
actions with descriptions of his plans. However, these tests will not prove either of these hypotheses
as doing so would require testing them under all scenarios. Indeed, given that some tests could be
carefully crafted to bring about success for reasons unrelated to planning, such testing does not
necessarily provide good evidence in favor of these hypotheses. To provide better evidence for the
truth of Hypothesis H2, we will also test the following related hypothesis:
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Furthered purpose Did not further purpose

Planned for purpose Cpf Cpf̄

Not planned for purpose Cp̄f Cp̄f̄

Table 3: Classes of Scenarios for Survey Questionnaire. Each position in the grid identifies the
scenario class associated with the values of the two factors given on each axis.

H2c. Describing an action as being part of a plan for furthering purpose as opposed to not being
part of such a plan in a scenario causes people to think that the auditee obeyed the restriction.

H2c may be viewed a causal or directional version of H2. Unlike H2a and H2b, which may be tested
with unrelated scenarios, H2c must be tested with scenarios that only differ from one another in
whether or not the action is part of a plan for the purpose in question.

For completeness we also test the causal version of H1:

H1c. Describing an action as furthering a purpose as opposed to not furthering a purpose in a
scenario causes people to think that the auditee obeyed the restriction.

As Hypothesis H1 leads to Hypotheses H1a, H1b, and H1c, Hypothesis H1’ leads to correspond-
ing hypotheses H1a’, H1b’, and H1c’. Similarly, H2’ leads to H2a’, H2b’, H2c’. We also test these
hypotheses to provide additional evidence for our formalism.

6.2 Methodology

Approach. We may disprove Hypothesis H1a by exhibiting a scenario in which an action of an
auditee furthers a purpose, but people feel that the auditee did not obey a purpose restriction
stating that the action may only be performed for that purpose. We may disprove Hypothesis H1b
by exhibiting an scenario in which an action does not further a purpose, but people feel that the
auditee obeyed the restriction. To test Hypothesis H1c, we construct a pair of scenarios that differs
only in whether the action furthered the purpose in question, and show that people’s feelings about
whether the auditee obeyed the restriction is unchanged across the two scenarios.

Testing Hypotheses H2a, H2b, and H2c is similar to testing the corresponding hypothesis for
H1. However, we expect the opposite results. For example, to test Hypothesis H2c, we construct a
pair of scenarios that differs only in whether the auditee performed that action as part of a plan for
furthering that purpose. We expect to show that people feel that the auditee obeyed the restriction
only in the scenario in which the action is part of a plan for furthering that purpose.

To these ends, we use four classes of scenarios: Classes Cpf , Cpf̄ , Cp̄f , and Cp̄f̄ . Each class is
determined by two factors: (1) whether or not the action furthers the purpose in question in the
scenario and (2) whether or not the auditee performs the action as part of a plan for furthering the
purpose. Table 3 identifies these classes along these two axes. (E.g., Cp̄f stands for the scenario
that was not planned (p̄) for the purpose but furthered (f) it.)

Showing that people think the auditee does not obey the restriction in Scenario Class Cp̄f is
sufficient for disproving Hypothesis H1 by disproving Hypothesis H1a. Showing that people think
the auditee obeys the restriction in Class Cpf̄ provides additional evidence that previous approaches
are insufficient by disproving the other direction, H1b, of the bi-implicational Hypothesis H1.
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Spf . A case worker employed by Metropolis General Hospital meets with a patient. The case worker
develops a plan with the sole goal of treating the patient. The plan includes sharing the
patient’s medical record with an outside specialist. Upon receiving the record, the specialist
succeeds in treating the patient.

Spf̄ . A case worker employed by Metropolis General Hospital meets with a patient. The case worker
develops a plan with the sole goal of treating the patient. The plan includes sharing the
patient’s medical record with an outside specialist. Upon receiving the record, the specialist
did not succeed in treating the patient.

Sp̄f. A case worker employed by Metropolis General Hospital meets with a patient. The case
worker develops a plan with the sole goal of reducing costs for the hospital. The plan includes
sharing the patient’s medical record with an outside specialist. Upon receiving the record,
the specialist succeeds in treating the patient.

Sp̄f̄. A case worker employed by Metropolis General Hospital meets with a patient. The case
worker develops a plan with the sole goal of reducing costs for the hospital. The plan includes
sharing the patient’s medical record with an outside specialist. Upon receiving the record,
the specialist did not succeed in treating the patient.

Table 4: Questionnaire Scenarios. For each scenario class, the scenario used on the questionnaire.

Comparing Class Cpf against Cpf̄ tests Hypothesis H1c. Comparing Class Cp̄f against Cp̄f̄ also tests
Hypothesis H1c.

For Hypothesis H2, showing that people think the auditee obeyed the restriction in Classes Cpf

and Cpf̄ each provides evidence for Hypothesis H2a. Showing that people think the auditee does
not obey the restriction in Classes Cp̄f and Cp̄f̄ each provides evidence for Hypothesis H2b by way
of the contrapositive. Comparing Class Cpf against Cp̄f and comparing Class Cpf̄ against Cp̄f̄ test
Hypothesis H2c.

Questionnaire Construction. We constructed a questionnaire with four scenarios, one from
each of the four scenario classes above. The auditee in these four scenarios is subject to a privacy
policy that states that the auditee may only use a type of information for a single purpose. The
policy we used for the questionnaire is as follows:

Metropolis General Hospital and its employees will share a patient’s medical record with
an outside specialist only for the purpose of providing that patient with treatment.

Table 4 presents the scenarios where Scenario Sxy is the scenario in Scenario Class Cxy.
For each scenario, we ask the participant Question Q1: whether the auditee obeyed the policy.

The participant may select among yes, no, and I don’t know. We conjecture that the majority of
participants will answer this question with yes for the scenarios in classes Cpf and Cpf̄ , and with
no for Cp̄f and Cp̄f̄ .

To help determine the reasoning used by the participants, which would be especially useful if
our survey results deviated from the expected, we included the free form Question Q2 asking why
the participant chose the answer he did to the first question. We also asked the closely related
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Q1. Did the case worker obey the above privacy policy?

Q2. Why did you answer Question 4 as you did?

Q3. Did the case worker share the record with the specialist for the purpose of treatment?

Q4. Was the goal of the case worker’s plan to treat the patient?

Q5. Did the specialist succeed in treating the patient?

Table 5: Questionnaire Questions. Note that Question Q1 is numbered as Question 4 on the
questionnaire.

Question Q3 of whether or not the action was for the allowed purpose of treatment. We expected
this question to be answered identically to the first Question Q1. We included it to help determine
whether the questionnaire was well worded and to test the Hypotheses H1’ and H2’.

Lastly, we included two simple questions, Questions Q4 and Q5, about each scenario. These
questions have objectively correct answers that the participant can easily find by reading the
scenarios. Checking that the participant chose the correct answer allowed us to ensure that the
participants actually read the scenario and answered accordingly rather than arbitrarily. Table 5
shows the wording of these questions.

We presented these scenarios and questions as a questionnaire. For each survey participant, we
randomly ordered the scenarios to reduce the effects that scenario ordering may have. For each
scenario, we ordered the questions with the objective questions, Q4 and Q5, first to encourage
the participant to read the scenario before answering the subjective questions in which we are
interested. The subjective questions are ordered as follows: Q3, Q1, and, lastly, Q2. Appendix A
shows a sample questionnaire.

Pilot Study. Before running the main survey we conducted a small scale pilot study of ten
participants. The participants were recruited on Amazon Mechanical Turk (www.mturk.com) using
a small payment of $1.50 (USD). (Appendix A.3 shows the advertisement.) Participants took
the survey online using Mechanical Turk’s survey functionality without randomly ordering the
scenarios.

The goal of this pilot study was to ensure that our recruitment and survey mechanisms worked.
We also closely examined the responses to determine whether the participants were seriously an-
swering the questions or not, and whether Questions Q4 and Q5 identified arbitrary responses. As
the goal of this study was not to collect data on our hypotheses, we did not statistically analyze
the data. However, we will qualitatively describe the results below.

In the pilot study, seven of the ten respondents matched our predictions perfectly. One respon-
dent deviated for a single answer in a manner inconsistent with the other answers provided by the
respondent. Thus, we suspect that his response is most likely an error in selecting the answer.

A second respondent said that the action was not for the purpose of treatment in Scenarios Sp̄f

and Sp̄f̄ , but that, nevertheless, the case worker obeyed the policy since the specialist would try
to provide treatment. This response suggests that Hypotheses H2 and H2’ are more than trivially
different.

The third respondent to deviate from our hypothesis claimed that the action was for the purpose
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of treatment and the case worker obeyed the policy in all of the scenarios including Scenarios Sp̄f

and Sp̄f̄ where goal of the case worker was cost reduction. This respondent’s answer to Question Q2
suggests that the case worker did not violate the policy as the scenarios provide evidence that the
specialist provided treatment whereas they provide no evidence that any of the actions reduced
costs. For example, this respondent provided the following for Question Q2 given Scenario Sp̄f :

Though the case worker’s goal was cost-reduction, the medical records were still pro-
vided for the purpose of treating the patient; simply giving medical records to outside
specialists, with no further actions, would not be a way to reduce costs for a hospital.

This response highlights that our scenarios discuss treatment in more detail than cost reduction,
which could have unintended effects on people’s analysis of them.

Interestingly, while these two deviations do not match our Hypothesis H2, they are consistent
with the approximations our algorithm makes. While these deviations suggest interesting direc-
tions for future studies, we decided that these issues did not warrant rewriting the scenarios to
include more information on cost reduction or to examine more carefully the differences between
Hypotheses H2 and H2’.

None of the respondents said that the policy was violated in Scenario Spf̄ , providing evidence
against Hypothesis H1. None of the respondents answered Questions Q4 or Q5 incorrectly and
none of their responses appeared arbitrary.

Survey Protocol. The main survey consisted of two hundred participants. We conducted the
survey in the same manner as the pilot study but with three changes. First, given the ease with
which we recruited participants for the pilot study, we reduced the payment to $0.50.

Second, while still using Mechanical Turk to recruit and pay participants, we used Survey
Gizmo (www.surveygizmo.com) to conduct the survey. This change allowed us to randomly order
the scenarios for each participant.

Third, given the success of Questions Q4 and Q5, we decided before the survey to exclude from
the results any participants who got more than one of them wrong in total across all four scenarios.
The odds of correctly guessing either all the answers or all but one is less than 4% presuming the
participant knows that I don’t know is never a correct answer.1

We analyzed the survey responses according to the statistical model presented in the next
section.

6.3 Statistical Modeling

In this section, we provide a detailed description of the statistical tests we employ in the next
section. Those with a background in hypothesis testing and statistics may find the following
summary sufficient.

1The odds of guessing correctly one of the questions is 1

2
since there are two possible answers (ruling out I

don’t know). Each of the four scenarios have two questions meaning that seven or eight would have to be correctly
guessed for a guessing participant to avoid rejection. We model these guesses using the binomial distribution,
which has the cumulative distribution function F (x;n, p) = Pr[X ≤ x] =
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Summary. Each of the hypotheses H1a, H1b, H2a, and H2b makes predictions about whether
Question Q1 will be answered with yes or no. We model these answers as a draw from a binomial
distribution and we interpret these predictions as predictions about probability of success for the
binomial distribution. For Hypotheses H1a and H1b, we treat their predictions as the null hy-
potheses about the probability of success and attempt to reject them to disprove H1. We treat the
predictions of H2a and H2b as the alternative hypotheses and attempt to reject their negations as
null hypotheses to provide evidence in favor of H2. Table 7 presents how to convert these predic-
tions in testable hypotheses. In short, we interpret a prediction that a question will be answered
with a certain response as an assertion that the probability of success (seeing that response) is at
least 0.5.

To test Hypothesis H1c, we use McNemar’s Test to test whether or not an action furthering
a purpose has a statistically significant effect on how people answer Question Q1. We test Hy-
pothesis H2c using McNemar’s Test across scenarios that only differ in the goal of the auditee’s
plan.

We test Hypotheses H1’ and H2’ analogously using Question Q3 in the place of Q1. For all
statistical tests, we use α = 0.05 for the threshold of statistical significance.

6.3.1 Hypothesis Testing

An underlying presumption of this work is that purpose has an objective definition on which people
generally agree. However, even under this presumption, we cannot expect that, for each question,
every participant will respond with the same answer. Some participants might misread the question
or hold non-standard views. Thus, we model each response to Question Q1 as a trial of a distribution
over the three possible responses: yes, no, and I don’t know.

The hypotheses H1a, H1b, H2a, and H2b each make predictions about how people will answer
Question Q1 in various scenarios. For example, Hypothesis H1a predicts that people will answer
Question Q1 with yes rather than no when given a scenario of Class Cp̄f . Literally interpreted,
Hypothesis H1a predicts that the probability of answering yes under Scenario Sp̄f , which we denote
as pp̄fy, will be 1. However, as discussed above, we would expect to see the probability pp̄fy being
somewhat less than 1 even if Hypothesis H1a is true. The lower the probability, the more question-
able the truth of the hypothesis becomes. The lower limit at which we reject the hypothesis as false
depends upon how one formalizes the hypothesis. We choose to set this limit at the probability 0.5
since a hypothesis that does not correctly predict the majority of outcomes appears clearly false to
us. Thus, we formalize this prediction as:

H1a0y. pp̄fy ≥ 0.5

As we hope to disprove Hypothesis H1a, we would like to cast doubt on the Hypotheses H1a0y,
which makes it a null hypothesis we hope to reject. Rejecting the null hypothesis provides evidence
in favor of the alternative hypothesis we hope to show:

H1aay. pp̄fy < 0.5

Since H1a0y predicts a large number of yes responses and H1aay predicts a small number, the
smaller the number of yes responses observed among the survey responses, the more likely H1aay

seems relative to H1a0y. That is, seeing a small number y or fewer yes responses is more unlikely
under the assumption of H1a0y than under the assumption H1aay. As this small number y decreases
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the probability of seeing y or fewer yes responses under the assumption of H1a0y decreases. This
probability is called the p-value. It is convenient to represent the p-value as Pr[Y ≤y | H1a0y] where
Y is a random variable over the number of observed yes responses and y is the actual number of
observed yes responses. However, the hypothesis H1a0y is a composite hypothesis asserting that
pp̄fy = p for some p ≥ 0.5. Since we would like to disprove the null hypothesis for all these possible
values of p, we use the upper bound as the p-value: maxp:0.5≤p≤1 Pr[Y ≤y | pp̄fy = p].

If the number y of observed yes responses is small enough, then the p-value may become so
small that we may confidently reject the null hypothesis H1a0y in favor of the alternative H1aay.
Since we are looking for a low value for the number of yes responses to reject the null hypothesis,
we are using a lower-tail rejection region.

We must decide how unlikely the observation must be before we are willing to reject the null
hypothesis. This choice must balance the risk of incorrectly rejecting a null hypothesis that is
actually true (called Type I Error) with the risk of incorrectly accepting a null hypothesis that
is false (called Type II Error). Following convention, we choose the level of Type I Error to be
α = 0.05. That is, we reject H1a0y in favor of H1aay if the p-value (the probability of seeing observed
number of yes responses or fewer under the assumption that H1a0y is true) is less than 0.05.

Hypothesis H1a also produces another prediction: that the number of no responses to Ques-
tion Q1 will be low for Scenario Sp̄f . We can also formalize this prediction as a null hypothesis that
we hope to reject:

H1a0n. pp̄fn ≤ 0.5

The alternative hypothesis we hope to accept in favor of the null hypothesis is

H1aan. pp̄fn > 0.5

In this case, we become more willing to reject the null hypothesis H1a0n as the number of no
responses increases. This creates an upper-tail rejection region in which we are interested in the
probability of seeing the observed number of no responses or more under the assumption that the
null hypothesis is true. As before this quantity is called the p-value. We will again reject if the
p-value is less than α = 0.05.

We can also formalize the predictions made by Hypothesis H2a. However, as we hope to
provide evidence in favor of Hypothesis H2 instead of disproving it, we treat its predictions as
alternative hypotheses rather than null hypotheses. For the null hypotheses we use the negations
of its predictions and attempt to disprove them. For example, Hypothesis H2a predicts that the
number of yes responses to Question Q1 for Scenario Spf̄ will be high. Thus, we attempt to provide
evidence for the following alternative hypothesis:

H2aay. ppf̄y > 0.5

We do so by showing the probability of seeing the observed number of yes responses or more (the
p-value using an upper tail rejection region) is unlikely (less than α = 0.05) under the assumption
that the following null hypothesis is true:

H2a0y. ppf̄y ≤ 0.5

We may similarly, formalize other predictions of Hypotheses H1a and H2a as well as the pre-
dictions of Hypotheses H1b and H2b. We show each of these formalizations in Table 7 in the next
section while presenting the survey results.

32



These formalizations are, however, only useful if we can compute the value of the p-value under
each of them. That is, we must have a formal model of the survey responses that allows us to
compute the probability of seeing the responses we observe under the null hypothesis. We now
turn to describing such a model.

6.3.2 Binomial Model of the Survey

Each null hypotheses that we test is an assertion about the probability of observing either a yes
or a no response. In the case that the null hypothesis is an assertion about the probability of
observing yes, we consider the response of yes to be a success outcome representing successfully
observing the response about which the assertion is. We may collapse the responses of no and I
don’t know into a single failure outcome that represents failure to see yes. Likewise, in the case
where the null hypothesis is an assertion about the probability of observing no, we may treat no
as a success outcome while treating yes and I don’t know, jointly, as a failure outcome.

By using only two outcomes (success and failure), we may model each survey response as a
Bernoulli trial, which models the flipping of a possibly biased coin. The degree of bias determines
the probability of success, which models the probability of a respondent answering the question in
the manner we are testing.

We model all the responses to a single question of our survey collectively as a series of identical
independent Bernoulli trials with each respondent corresponding to one trial. For a given number
of trials and probability of success for each trial, the binomial distribution provides the probability
of seeing each possible number of successes. (As we do not allow the same individual to take the
survey more than once, the assumption of identical independent trials is not completely satisfied
since later responses are from a smaller pool of possible respondents that does not include the
previous respondents. This factor results in the hypergeometric distribution being a more accurate
model. However, since we are drawing our participants from a pool much larger than the sample size,
the binomial distribution provides a good approximation.) In particular, the binomial distribution
has the cumulative distribution function F (x;n, p) = Pr[X ≤ x] =

∑x
i=0

(

n
i

)

pi(1− p)n−i where x is
the number of successes, n the number of trails, and p is the probability of success.

Our null hypotheses are assumptions about the value of the success probability p (not to be
confused with the idea of a p-value). Using the binomial distribution, we may determine the
probability of seeing the responses observed under the null hypothesis. However, we are actually
interested in the p-value: the probability of seeing a set of responses at least as extreme as the
observed one where the meaning of extreme depends upon whether we are using a lower-tail or an
upper-tail rejection region.

For example, consider the null hypothesis H1a0y that pp̄fy ≥ 0.5. We will reject H1a0y using a
lower-tail rejection region if its p-value is less than α = 0.05 where the p-value is the probability
of seeing the observed number of yes responses (success outcomes) or fewer. Under our binomial
model, the p-value for H1a0y is

max
p:0.5≤p≤1

Pr[Y ≤y | pp̄fy = p] = max
p:0.5≤p≤1

Pr[Y ≤y | Y ∼ B(n, p)] = max
p:0.5≤p≤1

F (x;n, p)

where Y ∼ B(n, p) asserts that Y is a random variable obeying the binomial distribution with a
sample size of n and success probability of p.

We may use F (x;n, 0.5) in the place of maxp:0.5≤p≤1 F (x;n, p) since we will reject the null
hypothesis under the first value if and only if we reject it under the second value. The reason for
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this equivalence is that F (x;n, p) is an decreasing function in p and is always maximized at p = 0.5
when 0.5 ≤ p.

For Hypothesis H2a, we are interested in the null hypothesis that ppf̄y ≤ 0.5 using an upper-
tail rejection region. For this null hypothesis, the p-value equals maxp:0≤p≤0.5 1 − F (x;n, p) =
1 −minp:0≤p≤0.5 F (x;n, p). Similar to the case with the lower-tail rejection region, we may replace
minp:0≤p≤0.5 F (x;n, p) with F (x;n, 0.5) since F (x;n, p) is minimized at the largest available value
of p, that is, 0.5.

The ability to use F (x;n, 0.5) in computing the p-value for both lower-tail and upper-tail
rejection regions justifies the convention of writing the null hypotheses using an equality rather
than an inequality relation. Whether or not the equality is short hand for a greater-than-equal
or a less-than-equal relation may be inferred from the alternative hypothesis paired with the null
hypothesis. We will adopt this convention for the remainder of this work.

6.3.3 McNemar’s Test

To test hypotheses H1c and H2c, we must compare the responses across scenarios. These responses
are not independent since the same respondent produces responses for both scenarios. That is,
the responses are produced as matched-pairs. McNemar’s test provides a method of determining
from these matched-pairs the effects of switching between the two scenarios [51]. In particular,
McNemar’s test examines the number of pairs where the response switches either from yes to no or
from no to yes. The test approximates the probability of the number of switches being produced
by two dependent draws from one distribution. If this probability is small, then one may reject
the null hypothesis that switching between the two scenarios had no effect. By rejecting this null
hypothesis, one provides evidence for the alternative hypothesis that the difference between the
two scenarios affected the responses.

For example, for hypothesis H2c, we compare the responses to Question Q1 across the Scenar-
ios Spf and Sp̄f . We use the null hypothesis that whether or not the case worker employed a plan
for treating the patient has no effect on whether or not survey participants think the case worker
violated the policy. If we find that a large number of respondents have different responses across the
two scenarios, then we would reject the null hypothesis and conclude that case worker’s planning
does have an effect.

We test Hypothesis H1a’ in a manner similar to how we test Hypothesis H1a. However, we use
Question Q3 instead of Question Q1. Analogously, we test Hypotheses H1b’, H1c’, H2a’, H2b’,
and H2c’ in a manner similar to Hypotheses H1b, H1c, H2a, H2b, and H2c, respectively, using
Question Q3 in place of Question Q1.

6.4 Results

While we only offered to pay the first 200 respondents, we received 207 completed surveys. The
extra surveys may have resulted from people misunderstanding the instructions and not collecting
payment.

Of these completed surveys, we excluded 20 respondents for missing two or more of the objective
questions. All of the statistics shown in this section are calculated from the remaining 187 respon-
dents. Appendix C shows the same statistics for all 207 respondents. Including the 20 excluded
respondents does not change the significance of any of our hypothesis tests.
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Table 6 shows the distributions of responses for each question. Informally examining the tables
shows that the vast majority of the respondents conform to Hypothesis H2. For example, 177 (95%)
of the respondents answered Question Q1 for Scenario Spf̄ with the answer of yes as predicted by
Hypothesis H2, whereas only eight (4%) answered with no as predicted by Hypothesis H1. However,
the difference is less pronounced for Scenario Sp̄f where 133 (71%) match Hypothesis H2’s prediction
of no and 45 (24%) matches H1’s prediction of yes. Interestingly, 31 (17%) answered yes for
Scenario Sp̄f̄ despite both hypotheses predicting no.

Table 7 shows the hypothesis tests we conducted using the binomial model. The top half of the
table shows tests intended to disprove Hypothesis H1 while the bottom half shows tests attempting
to confirm Hypothesis H2. Every test in favor of Hypothesis H2 obtains statistical significance.
Eight of the 16 tests against Hypothesis H1 obtain statistical significance. The eight that do
not obtain significance are the cases where the two hypotheses agree. In every case where the
two disagree, both the test confirming Hypothesis H2 and the one against Hypothesis H1 obtains
significance.

Since the results of the hypothesis testing where so strongly in favor of Hypothesis H2 using
the probability of 0.5 as the null hypothesis, we decided to calculate the most extreme probabilities
that still obtains significance. For testing that a probability is less than a value (lower tail rejection
region), the most extreme value is the minimal value, whereas it is the maximum value for testing
that a probability is greater than a value (upper tail rejection region). Table 8 shows these proba-
bilities conservatively calculated up to 0.01 away from the true extreme probability. For example,
the bottom row shows p′4y is less than 0.26 with statistical significance but not less than 0.25 with
statistical significance. (This does not imply that p′4y > 0.25 with statistical significance.) As these
probabilities are more extreme for Hypotheses H2a and H2a’ than Hypotheses H2b and H2b’, H2a
and H2a’ appear to be more accurate. However, as we added these statistics to the analysis after
having conducted the survey, they may suffer from confirmation bias.

Table 9 shows the results of using McNemar’s Test to compare the distribution of responses to
one question across two scenarios. For example, the last row compares the distribution producing
responses to Question Q3 for Scenario Spf̄ to that producing responses for Scenario Sp̄f̄ . McNemar’s
Test shows that the differences in the observed responses are statistically significant. This result
indicates that the two distributions differ as predicted by Hypothesis H2c’. On the other hand,
the fourth line of Table 9 shows that the responses for Question Q3 do not differ significantly
across Scenarios Sp̄f and Sp̄f̄ . This result differs from Hypothesis H1, which predicts that people
would answer the question differently across the two scenarios. McNemar’s Test validates all four
predictions of Hypothesis H2. It validates one of the predictions of Hypothesis H1. The statistic
could not be computed in one case as the data was too sparse for the calculation.

We were surprised to see the degree of difference between how people answered Questions Q1
and Q3. For example, for Scenario Sp̄f̄ , 79% of respondents answered Question Q2 with no whereas
only 74% answered Q3 with no despite our belief that both questions should be answered identically
(see Table 6). To test whether these differences are statistically significant, we used McNemar’s
test to compare the responses to these two questions within a single scenario. Table 10 shows the
results. None of the tests showed a statistically significant difference in how the questions were
answered, but two of the tests failed to produce a numeric p-value. (Appendix B shows the matched
pairs used by McNemar’s test for Tables 9 and 10.)
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Scenario Yes I don’t know No

Spf 182 (97%) 2 (01%) 3 (02%)
Spf̄ 177 (95%) 2 (01%) 8 (04%)

Sp̄f 45 (24%) 9 (05%) 133 (71%)
Sp̄f̄ 31 (17%) 9 (05%) 147 (79%)

Q1: Was the policy obeyed?

Scenario Yes I don’t know No

Spf 185 (99%) 2 (01%) 0 (00%)
Spf̄ 183 (98%) 1 (01%) 3 (02%)

Sp̄f 43 (23%) 6 (03%) 138 (74%)
Sp̄f̄ 38 (20%) 10 (05%) 139 (74%)

Q3: Was the action for the purpose?

Scenario Yes I don’t know No

Spf 186 (99%) 0 (00%) 1 (01%)
Spf̄ 184 (98%) 1 (01%) 2 (01%)

Sp̄f 12 (06%) 1 (01%) 174 (93%)
Sp̄f̄ 6 (03%) 0 (00%) 181 (97%)

Q4: Was the goal treatment?

Scenario Yes I don’t know No

Spf 187 (100%) 0 (00%) 0 (00%)
Spf̄ 2 (01%) 0 (00%) 185 (99%)

Sp̄f 179 (96%) 0 (00%) 8 (04%)
Sp̄f̄ 3 (02%) 0 (00%) 184 (98%)

Q5: Was the treatment successful?

Table 6: Survey Responses. In Scenario Spf , the case worker’s goal was treatment and the treatment
was successful; in Spf̄ , the goal was treatment and it failed; in Sp̄f , the goal was cost reduction and
the treatment succeeded; and in Sp̄f̄ , the goal was cost reduction and the treatment failed.
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Testing Alternative Hypothesis Null Hypothesis p-Value Significant?

Against H1a ppfy < 0.5 ppfy = 0.5 1 No
Against H1a ppfn > 0.5 ppfn = 0.5 1 No
Against H1a pp̄fy < 0.5 pp̄fy = 0.5 3.28889e-013 Yes
Against H1a pp̄fn > 0.5 pp̄fn = 0.5 3.527326e-009 Yes

Against H1a’ p′pfy < 0.5 p′pfy = 0.5 1 No

Against H1a’ p′pfn > 0.5 p′pfn = 0.5 1 No

Against H1a’ p′p̄fy < 0.5 p′p̄fy = 0.5 3.08316e-014 Yes

Against H1a’ p′p̄fn > 0.5 p′p̄fn = 0.5 2.662347e-011 Yes

Against H1b ppf̄n < 0.5 ppf̄n = 0.5 1.699463e-043 Yes

Against H1b ppf̄y > 0.5 ppf̄y = 0.5 6.090736e-041 Yes

Against H1b pp̄f̄n < 0.5 pp̄f̄n = 0.5 1 No

Against H1b pp̄f̄y > 0.5 pp̄f̄y = 0.5 1 No

Against H1b’ p′
pf̄n

< 0.5 p′
pf̄n

= 0.5 5.556827e-051 Yes

Against H1b’ p′
pf̄y

> 0.5 p′
pf̄y

= 0.5 2.570485e-049 Yes

Against H1b’ p′
p̄f̄n

< 0.5 p′
p̄f̄n

= 0.5 1 No

Against H1b’ p′
p̄f̄y

> 0.5 p′
p̄f̄y

= 0.5 1 No

For H2a ppfy > 0.5 ppfy = 0.5 9.461645e-048 Yes
For H2a ppfn < 0.5 ppfn = 0.5 5.556827e-051 Yes
For H2a ppf̄y > 0.5 ppf̄y = 0.5 6.090736e-041 Yes

For H2a ppf̄n < 0.5 ppf̄n = 0.5 1.699463e-043 Yes

For H2a’ p′pfy > 0.5 p′pfy = 0.5 8.961588e-053 Yes

For H2a’ p′pfn < 0.5 p′pfn = 0.5 5.097894e-057 Yes

For H2a’ p′
pf̄y

> 0.5 p′
pf̄y

= 0.5 2.570485e-049 Yes

For H2a’ p′
pf̄n

< 0.5 p′
pf̄n

= 0.5 5.556827e-051 Yes

For H2b pp̄fn > 0.5 pp̄fn = 0.5 3.527326e-009 Yes
For H2b pp̄fy < 0.5 pp̄fy = 0.5 3.28889e-013 Yes
For H2b pp̄f̄n > 0.5 pp̄f̄n = 0.5 7.078408e-016 Yes

For H2b pp̄f̄y < 0.5 pp̄f̄y = 0.5 1.479279e-021 Yes

For H2b’ p′p̄fn > 0.5 p′p̄fn = 0.5 2.662347e-011 Yes

For H2b’ p′p̄fy < 0.5 p′p̄fy = 0.5 3.08316e-014 Yes

For H2b’ p′
p̄f̄n

> 0.5 p′
p̄f̄n

= 0.5 9.252051e-012 Yes

For H2b’ p′
p̄f̄y

< 0.5 p′
p̄f̄y

= 0.5 4.896385e-017 Yes

Table 7: Binomial Hypothesis Tests
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Testing Alternative Hypothesis Null Hypothesis

Proving H2a ppfy > 0.94 ppfy = 0.94
Proving H2a ppfn < 0.05 ppfn = 0.05
Proving H2a ppf̄y > 0.91 ppf̄y = 0.91

Proving H2a ppf̄n < 0.08 ppf̄n = 0.08

Proving H2a’ p′pfy > 0.96 p′pfy = 0.96

Proving H2a’ p′pfn < 0.02 p′pfn = 0.02

Proving H2a’ p′
pf̄y

> 0.95 p′
pf̄y

= 0.95

Proving H2a’ p′
pf̄n

< 0.05 p′
pf̄n

= 0.05

Proving H2b pp̄fn > 0.65 pp̄fn = 0.65
Proving H2b pp̄fy < 0.3 pp̄fy = 0.3
Proving H2b pp̄f̄n > 0.73 pp̄f̄n = 0.73

Proving H2b pp̄f̄y < 0.22 pp̄f̄y = 0.22

Proving H2b’ p′p̄fn > 0.67 p′p̄fn = 0.67

Proving H2b’ p′p̄fy < 0.29 p′p̄fy = 0.29

Proving H2b’ p′
p̄f̄n

> 0.68 p′
p̄f̄n

= 0.68

Proving H2b’ p′
p̄f̄y

< 0.26 p′
p̄f̄y

= 0.26

Table 8: Extreme Binomial Hypothesis Tests. This table shows the hypothesis test using the most
extreme probability for which statistical significance is still achieved and is accurate up to two
places after the decimal point.

Testing Question Scenarios p-Value Significant?

For H1c Q1 Spf vs. Spf̄ NaN No

For H1c Q1 Sp̄f vs. Sp̄f̄ 0.02674664 Yes

For H1c’ Q3 Spf vs. Spf̄ 0.3916252 No

For H1c’ Q3 Sp̄f vs. Sp̄f̄ 0.3951831 No

For H2c Q1 Spf vs. Sp̄f 1.020173e-029 Yes
For H2c Q1 Spf̄ vs. Sp̄f̄ 3.112267e-031 Yes

For H2c’ Q3 Spf vs. Sp̄f 5.186851e-031 Yes
For H2c’ Q3 Spf̄ vs. Sp̄f̄ 8.40055e-031 Yes

Table 9: McNemar’s Tests Across Scenarios

Scenario Questions p-Value Significant?

Spf Q1 vs. Q3 NaN No
Spf̄ Q1 vs. Q3 NaN No

Sp̄f Q1 vs. Q3 0.3843414 No
Sp̄f̄ Q1 vs. Q3 0.2239329 No

Table 10: McNemar’s Tests Across Questions
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6.5 Limitations of Study

Various factors affect the validity of our conclusions. We discuss each of them below.
By mentioning whether or not the auditee is performing the action as part of a plan, it forces the

participant to consider the relationship between purposes and plans. It is possible that participants
not primed to think about planning would substantiate H1.

The use of Mechanical Turk raises questions about how representative our population sample
is. Ross et al. look at the demographics of Mechanical Turk workers and find that among U.S.
workers, a disproportionate number are female [60]. However, Berinsky, Huber, and Lenz find
that Mechanical Turk studies are as representative, if not more representative, than convenience
samples commonly used in research [12]. While we attempted to limit our sample to adults in the
United States, Mechanical Turk’s ability to verify the qualification criteria is limited. Even given a
representative pool of Mechanical Turk workers for our sampling frame, our sample may be biased
as the participants selected to take our survey rather than us having randomly selected them from
the pool.

The use of paid but unmonitored participants, also raises concerns that participants might
provide arbitrary answers to speed through the questionnaire. Kittur, Chi, and Suh present ex-
perimental results of using Mechanical Turk for user studies [44]. They conclude that Mechanical
Turk can be useful if one eliminates such spurious submissions by including questions with known
answers and rejecting participants who fail to correctly answer these questions. We follow this
protocol by using Questions Q4 and Q5 to force the participant to read the scenarios and by no-
tifying survey participants that we may withhold payment if they answer arbitrarily. Answering
the remaining questions (Q1, Q2, and Q3) becomes fairly easy after having correctly answered
Questions Q4 and Q5. By making the additional work required for meaningful participation small,
we hope to have reduced arbitrary responses. However, by threatening to withhold payment, we
may have increased the demand effect, the tendency of participants to provide the answers they
believe the surveyor would like to observe as opposed to their honest opinions (see, e.g., [55]).

Some respondents might answer later questions in a manner consistent with their answers to
earlier questions despite having differing opinions. This bias could arise since some of the differences
between questions may appear trivial, especially since we made each question similar to the others
to reduce confounding factors. As no scenario has the same answers to both Questions Q3 and Q4
together as any other scenario, we hope to have reduced this bias.

Nonattitudes occur when a participant arbitrarily selects a response since they do not have an
opinion on a question. To reduce the effect of nonattitudes, we included the option of a I don’t
know response.

We do not claim that the questionnaire tests all relevant factors (i.e., we do not claim high
content validity). Indeed, we did not test some factors that we suspect may affect respondents such
as whether the policy is perceived as good or bad.

Another concern is that respondents may change their opinions over time. We did not perform
a follow-up study to determine how reliable our survey is over time.

It is also possible that our survey questions are not understood by the respondents in a manner
consistent with testing the meaning of purpose. The various forms of validity discussed below
attempt to determine whether our survey actually measured the concepts in which we are interested.

We believe that our survey has face validity. That is, we believe that our questions are, on their
face, well worded for testing our hypotheses.

Including both Questions Q1 and Q3 not only allowed us to compare the truth of Hypothesis H1a
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to H1a’ (and likewise with the other unprimed-primed pairs of hypotheses), but also to see the
effects of the changing the wording of the questions. As the respondents typically answered these
two questions in the same manner, we believe that our results are not overly influenced by the
wording of the questions and pertain to the underlying concepts. That is, we believe our survey
has convergent validity. However, that some respondents varied their responses across Questions Q1
and Q3 within a single scenario deserves further investigation.

As we know of no previous empirical research addressing the issues tested by our study, we
cannot compare our results to those already proved about the meaning of purpose. Thus, we
cannot that argue that our survey has construct validity by showing that it agrees with previous
results.

A survey respondent may confuse the concepts we are testing with related ones reducing the
divergent validity of our survey. For example, rather than actually answer Question Q1, they may
instead provide the answer to the following question: “Was the case worker’s action consistent with
someone seeking treatment for the patient?” Such confusion may explain some of the unexpected
variation in responses between Questions Q1 and Q3.

The ultimate goal of our work is to determine how people think policies involving the concept
of purpose should be enforced. Our survey is detached from any actual enforcement. Respondents
might behave differently than their responses suggest given the task of actually enforcing a policy.
They may also differ from their responses in their feelings if they were actually subject to such a
policy. Our survey is most similar to the respondent acting as a neutral third-party or judge in a
dispute over the meaning of a policy. However, even in such a role, the respondent’s behavior may
differ from that suggested from his responses. Ideally, our survey will predict with a high degree
of accuracy how the respondents would behave in each of these three roles (policy enforcer, policy
subject, or neutral third-party) establishing that our survey actually corresponds to the behavior
we wish to study (i.e., has criterion validity). However, we have not established this form of validity.

6.6 Discussion

The results shown above provide evidence in favor of defining an action to be for a purpose if and
only if an agent performed the action as part of a plan for furthering that purpose (Hypothesis H2).
The binomial tests provide strong evidence against defining an action to be for a purpose if and
only if that action furthered the purpose (Hypothesis H1). McNemar’s test provides some support
for Hypothesis H1. Indeed, informally examining the response distributions (Table 6), it appears
Hypothesis H1 does accurately model a small minority of respondents. However, Hypothesis H2
appears to accurately model a much larger number of respondents. For these reasons, we conclude
that Hypothesis H2 provides a superior model to that of Hypothesis H1.

Nevertheless, the relative strength of Hypothesis H2a compared to Hypothesis H2b suggests
that some people feel that an action being for a purpose is sufficient but not necessary for an action
to be for a purpose. Examining free-form responses to Question Q2 suggests that some people feel
that the action of sharing a record is for the purpose of treatment since it is the same action that
would be taken had the case worker been planning for treatment. This suggests a third class of
hypotheses:

H3 The auditee obeys the (purpose) restriction if and only if the auditee performed an action that
a hypothetical agent would take had it planned for the purpose.
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H3’ An action is for a purpose if and only if that action is the action a hypothetical agent would
take had it planned for the purpose.

These hypotheses place strictly weaker restrictions on the auditee’s behavior consistent with the idea
that H2 is sufficient but not necessary. Interestingly, they match the approximations our algorithm
makes in attempting to enforce Hypothesis H2. Unfortunately, by not mentioning whether the case
worker’s choice to forward the record in Scenarios Sp̄f and Sp̄f̄ is consistent with the actions of a
hypothetical agent planning for treatment, we cannot test these hypotheses using the conducted
survey.

7 Applying our Formalism to Prior Methods

Past methods of enforcing purpose restrictions have not provided a means of assigning purposes
to sequences of actions. Rather, they presume that the auditor (or someone else) already has a
method of determining which behaviors are for a purpose. In essence, these methods presuppose
that the auditor already has the set of allowed behaviors nbehv(rp) for the purpose p that he is en-
forcing. These methods differ in their intensional representations of the set nbehv(rp). Thus, some
may represent a given set exactly while others may only be able to approximate it. These differ-
ences mainly arise from the different mechanisms they use to ensure that the auditee only exhibits
behaviors from nbehv(rp). We use our semantics to study how reasonable these approximations
are.

Byun et al. use role-based access control [63] to present a methodology for organizing privacy
policies and their enforcement [20, 19, 53]. They associate purposes with sensitive resources and
with roles, and their methodology only grants the user access to the resource when the purpose
of the user’s role matches the resource’s purpose. The methodology does not, however, explain
how to determine which purposes to associate with which roles. Furthermore, a user in a role
can perform actions that do not fit the purposes associated with his role allowing him to use the
resource for a purpose other than the intended one. Thus, their method is only capable of enforcing
policies when there exists some subset A of the set of actions A such that nbehv(rp) is equal to
the set of all interleavings of A with S of finite but unbounded length (i.e., nbehv(rp) = (S ×A)∗).
The subset A corresponds to those actions that use a resource with the same purpose as the
auditee’s role. Despite these limitations, their method can implement the run-time enforcement
used at some organizations, such as a hospital that allows physicians access to any record to avoid
denying access in time-critical emergencies. However, it does not allow the fine-grain distinctions
used during post-hoc auditing done at some hospitals to ensure that physicians do not abuse their
privileges. Group-centric access control has similar advantages and limitations [46].

Al-Fedaghi uses the work of Byun et al. as a starting point but concludes that rather than
associating purposes with roles, one should associate purposes with sequences of actions [3]. Influ-
enced by Al-Fedaghi, Jafari et al. adopt a similar position calling these sequences workflows [38].
The set of workflows allowed for a purpose p corresponds to nbehv(rp). They do not provide a
formal method of determining which workflows belong in the allowed set leaving this determination
to the intuition of the auditor. They do not consider probabilistic transitions and the intuition
they supply suggests that they would only include workflows that successfully achieve or improve
the purpose. Thus, our approach appears more lenient by including some behaviors that fail to
improve the purpose. As shown in Chapter 6, this leniency is key to capturing the semantics of
purpose restrictions. An auditor could encode a workflow in the state of the environment to get
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results similar to Al-Fedaghi’s or Jafari et al.’s results while using Contextual Role-Based Access
Control [52] or Situation-Based Access Control [56].

Others have adopted a hybrid approach allowing the roles of an auditee to change based on the
state of the system [57, 29]. These dynamic roles act as a level of indirection assigning an auditee
to a state. This indirection effectively allow role-based access control to simulate the workflow
methods to be just as expressive.

Agrawal et al. propose a methodology called Hippocratic databases for protecting the privacy of
subjects of a database [2]. They propose to use a query intrusion model to enforce privacy polices
governing purposes. Given a request for access and the purpose for which the requester claims
the request is made, the query intrusion model compares the request to previous requests with the
same purpose using an approach similar to intrusion detection. If the request is sufficiently different
from previous ones, it is flagged as a possible violation. While the method may be practical, it
lacks soundness and completeness. Furthermore, by not being semantically motivated, it provides
no insight into the semantics of purpose. To avoid false positives, the set of allowed behaviors
nbehv(rp) would have to be small or have a pattern that the query intrusion model could recognize.

Jif is a language extension to Java designed to enforce requirements on the flows of information
in a program [22]. Hayati and Abadi explain how to reduce purpose restrictions to information flow
properties that Jif can enforce [37]. Their method requires that inputs are labeled with the purposes
for which the policy allows the program to use them and that each unit of code be labeled with the
purposes for which that code operates. If information can flow from an input statement labeled
with one purpose to code labeled for a different purpose, their method produces a compile-time
type error. (For simplicity, we ignore their use of sub-typing to model sub-purposes.) In essence,
their method enforces the rule if information i flows to code c, then i and c must be labeled with
the same purpose. The interesting case is when the code c uses the information i to perform some
observable action ac,i, such as producing output. Under our semantics, we treat the program as
the auditee and view the policy as limiting these actions. By directly labeling code, their method
does not consider the contexts in which these actions occur. Rather the action ac,i is aways either
allowed or not based on the purpose labels of c and i. By not considering context, their method is
subject to the same limitations as the method of Byun et al. with the subset A being equal to the
set of all actions ac,i such that c and i have the same label. However, using more advanced type
systems (e.g., typestate [67]), they might be able extend their method to consider the context in
which code is executed and increase the method’s expressiveness.

8 Related Works

8.1 Related Problems in Policy Enforcement

We have already covered the most closely related work in Section 7. Below we discuss work on
related problems in computer science.

Minimal Disclosure. The works most similar to ours in approach have been on minimal disclo-
sure, which requires that the amount of information used in granting a request for access should
be as little as possible while still achieving the purpose behind the request. Massacci, Mylopoulos,
and Zannone define minimal disclosure for Hippocratic databases [50]. Barth, Mitchell, Datta, and
Sundaram study minimal disclosure in the context of workflows [10]. They model a workflow as
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meeting a utility goal if it satisfies a temporal logic formula. Minimizing the amount of information
disclosed is similar to an agent maximizing his reward and thereby not performing actions that
have costs but no benefits. However, we consider several factors that these works do not, including
quantitative purposes that are satisfied to varying degrees and probabilistic behavior resulting in
actions being for a purpose despite the purpose not being achieved, which is necessary to capture
the semantics of purpose restrictions (Section 6).

Expressing Privacy Policies with Purpose. Work on understanding the components of pri-
vacy policies has shown that purpose is a common component of privacy rules (see, e.g., [15, 16]).

Some languages for specifying access-control policies allow the purpose of an action to partially
determine if access is granted. For example, EPAL is a language in which privacy policies are
expressed by listing all the conditions under which a system should grant a request for access
to sensitive resources [58]. These conditions may depend upon four factors: the identity of the
requester for access, the resource requested, the action the requester would like to perform on the
resource, and the purpose for which the requester would like to perform the action. However,
EPAL lacks a formal semantics that describes when an action is for a purpose and treats purposes
as syntactic labels. Rather, it depends on the system making use of the language to determine
what actions are for what purposes and provides no formal guidance as to how the system should
make this determination.

The Platform for Privacy Preferences (P3P) offers a language for specifying the privacy policies
of websites [25]. These policies must state the purposes for which the website collects information.
The policy may either reference one of the predefined purposes that the language offers or provide a
custom purpose. The specification of the language provides a description of each of the predefined
purposes in natural language [24]. The policy author must provide such a description for any custom
purposes he uses. We hope our work will provide a method of formalizing when information use
meets the requirements of these descriptions.

SPARCLE is a system for authoring and examining privacy policies [17, 18]. The system
consumes policies written in a restricted form of natural language and parses them into standard
components. The system then allows the user to examine the policy by focusing on different
components, edit the policy, and translate the policy into machine readable formats (e.g., EPAL).
One of the standard components SPARCLE considers is purpose. While SPARCLE is capable of
identifying restrictions on purpose in a policy, it does not assign a semantics to these restrictions.

Hanson et al. provide an algebra for tracking the permissible uses of data as it is transferred
from system to system and is combined with other information [36]. However, this work is not
concerned with the meaning of purpose or for.

8.2 Works from Philosophy and Psychology

Philosophy concerns defining the meaning of words. Philosophers typically proceed by iteratively
refining a definition to match their intuitions about each new example of the word’s use. The
experimental methods of psychology (defined broadly to include linguistics and cognitive science)
have given raise to experimental philosophy. This hybrid methodology studies the meaning of the
words by looking at the most common view of a population rather than the intuitions of experts.
Our work uses intuition until Section 6, which presents a survey. Both philosophy and psychology
apply their methodologies to understanding the nature of human planning. We discuss these efforts
below.
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Philosophical Foundations. Philosophical works usually use purpose in the sense of the purpose
of life, which differs from the sense in which privacy policies use the word. These works use desire,
motivation, and intention to refer to notions similar to the sense of purpose we are interested in.
Generally, desires and motivations refer to the reasons that cause an agent to act. That is, in
this sense, motivations are purposes in our formalism. While philosophers disagree more over the
meaning of intention, it typically refers to the modifications the agent hopes to make to the state
of the world. That is, intentions are actions the agent plans to take in our formalism. For example,
then prevention of hunger motivates the intention to go grocery shopping.

The modern philosophical work in this area starts with Anscombe who argues that the intention
of an action is the answer offered to the question Why did you perform that action? [5].

Taylor provides a detailed explanation of the importance of planning to the meaning of purpose,
but does not provide any formalism [68]. Taylor concludes that one must distinguish the purpose
of actions from their effects: the effects are the actual results of the actions whereas the purpose is
merely the desired effects (page 216). Our model formalizes this distinction by allowing an action
to be for a purpose despite that purpose not being achieved.

Bratman builds on Anscombe’s work by emphasizing the importance of agent planning in de-
termining intentions to create the Belief-Desire-Intention (BDI) model [14]. In Bratman’s work, an
intention is an action an agent plans to take where the plan is formed while attempting to maximize
the satisfaction of the agent’s desires. To some extent Section 3 may be viewed a formalization of
a simplification of Bratman’s view. (The plans of Bratman are more complex than our strategies
to account for the limited reasoning abilities of humans.)

Using Bratman’s work as a starting point, Cohen and Levesque present a logical formalization of
when an agent intends to perform an action or intents to bring about a state of affairs [23]. Roughly
speaking, under their formalism, an agent intends to satisfy a predict p over states if and only if the
agent has knowingly performing a sequence of actions that makes p true as a goal that it believes
it can achieve and will continue to attempt to make p true until it believes it is impossible to do so.
These predicates are related to binary purpose scores, and our formalism produces strategies that
roughly correspond to the intentional actions of Cohen and Levesque. However, our formalism also
handles quantitative purposes. Cohen and Levesque comment on the existence of such purposes
and propose to model them as a series of intentions, but do not provide a formalism to do so.

Intentions also affect planning and will become important as we search for more accurate models
of human planning. Roy use logics and game theory to formalize how intentions can affect an agent’s
planning [61]. He uses his formalism to study when an agent’s plan is rational given the agent’s
intentions. Given the auditee’s intentions, we could replace our MDP formalism of planning with
Roy’s intention-driven formalism.

Causality. Our treatment of for in Section 3 is motivated by the counterfactual definition of
causality. This definition requires that for an action to cause an effect that both the effect actually
occurs and that the effect might not have occurred if the action did not occur. For example,
Mackie defines a cause to be insufficient and non-redundant parts of unnecessary but sufficient
causes (INUS conditions) for an effect [48]. Mackie models causes and effects as facts. Working
with sets of causes, this means that a fact c is a cause of an effect e if there exists a set C such that
C is sufficient to entail e (sufficiency) and no subset of C is sufficient to entail e (non-redundancy).

We borrow the notion of non-redundancy from Mackie’s definition of causality. Roughly speak-
ing, we replace the causes with actions and the effect with a purpose.
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Experimental Philosophy. Experimental philosophy has found some inconsistencies in how
people tend to use the word “intent” called the Knobe effect [45]. When it comes to benefits for
purposes that are good, people tend to only say that the actor intended for the benefits if the actor
selected his action taking the purpose into consideration, which agrees with our model. However,
when it comes to bad purposes, people tend to say that the actor intended for the (bad) benefits
even if the actor did not select his action with the goal of achieving the bad purpose in mind, which
disagrees with our model. (See [31] for a survey.)

Human Planning. Psychological studies have produced models of human thought (see, e.g., [4]).
However, these are too low-level and incomplete for our needs [27]. The GOMS (Goals, Operators,
Methods, and Selection rules) formalism provides a higher level model, but is limited to selecting
behavior using simple planning approaches [21, 39]. Simon’s approach of bounded rationality [66]
and related heuristic-based approaches [34] model more complex planning, but with less precise
predictions.

8.3 Related Algorithms

Plan Recognition. Attempting to infer the plan that an agent has while performing an action
is plan recognition [64]. Plan recognition may predict the future actions of agents allowing systems
to anticipate them. Often, plan recognition algorithms model how “low-level” actions contribute to
achieving a “top-level” action that is done for its own sake (see, e.g., [42]). These top-level actions
are similar to purposes. However, out auditing algorithm checks whether a sequence of actions
are consistent with given a purpose rather than attempting to predict the most likely purpose
motivating the actions.

The work most closely related to ours is that of Baker, Saxe, and Tenenbaum [7, 8]. They use
an MDP model similar to ours to predict the most likely explanation for a sequence of actions.
Ramı́rez and Geffner extend this work to partially observable MDPs (POMDPs) for modeling an
agent that cannot directly observe the state it is in [59]. Rather than having a reward function,
under these models, the agent attempts to reduce the costs of reaching a goal state. For each
possible goal state, their algorithms use the degree to which the agent’s actions minimizes the
costs of reaching the goal state to assign a probability to that goal state being the one pursued
by the agent. Our reward functions are similar to the negation of their cost functions, but these
works predict which goal state the agent is pursuing rather than which cost function it is using.
They do not consider non-redundancy. Our algorithm for auditing is similar to their algorithms.
However, to maintain soundness, our algorithm accounts for the error of approximate MDP solving.
Furthermore, their algorithms may assign a non-zero probability to a goal state even if the agent’s
actions are inconsistent with pursuing that goal under our strict definition.

Also related is the work of Mao and Gratch [49]. While it differs from our work in the same
ways as the work of Baker et al., it also differs in that rewards track how much the agent wants to
achieve the goal rather than the degree of satisfaction of the goal.

Most work on plan recognition assumes that the agent is not attempting to mislead the plan
recognizer since they are designed to aid cooperation with the agent. Our work is related to work
on adversarial plan detection [6].

Particularly related is the work of Geib and Goldman, who use adversarial plan recognition to
aid intrusion detection [33]. Similar to standard works, they model plans as a graph that represents
a space of possible plans. Nodes of the graph represent actions and directed edges represent the

45



order in which the adversary must perform the actions. Intrusions are paths in the graph from an
initial node to a goal node. However, unlike most work on plan recognition, owing to the hostile
nature of the actor, they do not assume that all relevant actions are observable. Thus, rather than
simply comparing the observed actions to paths in the graph to determine possible plans, their
recognition algorithm also considers unobserved actions consistent with the state of the system
that the adversary might have performed.

Relatedly, Cuppens, Autrel, Miège, and Benferhat attempt to recognize malicious intentions
for intrusion detection [26]. They model attacks as consisting of multiple actions each with pre-
conditions and post-conditions. An adversary attempts to perform a malicious action by first
performing all the suspicious actions needed to enable the pre-condition of the malicious action.
Their approach is to observe these suspicious actions and predict from their model what other
actions the adversary might have performed or will be performing. In particular, they try to
predict which (if any) malicious action the adversary is attempting to perform using a shortest
path heuristic. The distinction between suspicious and malicious actions does not apply our work
since we consider purposes, not actions, to be malicious. Indeed, in our setting many actions, such
as looking up a medical record, could be either acceptable or malicious depending upon the context.

The models of planning used in both of these works differ from ours in two ways. First, we
model purposes quantitatively instead of qualitatively. Second, our work considers probabilistic
effects of the environment that might cause the agent to fail to achieve its plan.

Automated Planning. Decision-theoretic planning is planning to optimize some criteria, such as
a purpose. (Blythe provides a survey [13].) Optimizing MDPs or POMDPs to create plans are just
two instances of decision-theoretic planning. Other instances may be more accurate, convenient,
or general models of human planning.

For example, due to uncertainty the auditor may have about the model used by the auditee, we
are interested in environment models that are like MDPs but without fixed probabilities assigned to
transitions. Discrete-time Markov chains without fixed probabilities are known as interval-valued
discrete-time Markov chains (IDTMCs). The form of IDTMC most similar to our model is the
Uncertain Markov Chain (UMC) model [40]. We hope the algorithm of Sen et al. [65] for a model
checking problem related to UMCs may shed light on how to generalize our algorithm found in
Section 5.

9 Summary and Future Work

We use planning to create the first formal semantics for determining when a sequence of actions
is for a purpose. In particular, our formalism uses models similar to MDPs for planning, which
allows us to automate auditing for both exclusivity and prohibitive purpose restrictions. We have
provided an auditing algorithm and implementation based on our formalism. We have illustrated
the use of our algorithm to create operating procedures.

We validate that our method based on planning accurately captures the meaning of purpose
restrictions with intuitive examples (Sections 3.3, 4.2, 4.3, and 5.3) and an empirical study of how
people understand the word “purpose” in the context of privacy policy enforcement.

We use our formalism to explain and compare previous methods of policy enforcement in terms
of a formal semantics. Our formalism highlights that an action can be for a purpose even if that
purpose is never achieved, a point present in philosophical work on the subject (e.g., [68]), but
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whose ramifications on policy enforcement had been unexplored. Fundamentally, our work shows
the difficulties of enforcement due to issues such as the tenable deniability of ulterior motives
(Sections 4.2 and 4.3).

However, we recognize the limitations of our formalism. While MDPs are useful for automated
planning, they are not specialized for modeling planning by humans. While this concern does not
apply to creating operating procedures, it holds human auditees to unrealistically high standards
leading to the search for models reflecting the bounded abilities of humans to plan. However, “[a]
comprehensive, coherent theory of bounded rationality is not available” [34, p. 14]. Nevertheless, we
believe the essence of our work is correct: an action is for a purpose if the actor selects to perform
that action while planning for the purpose. Future work will instantiate our semantic framework
with more complete models of human planning.

Additionally, future work will make our formalism easier to use. To use our auditing algorithm,
an auditor must not only log the auditee’s behavior but also know how the auditee could have
behaved with an environment model. Given the difficulty of this task, we desire methods for
finding policy violations that do not require a completely accurate model of the environment.

For example, Experience-Based Access Management (EBAM) is an informal methodology for
managing access-control policies and related models that has the auditor iteratively refine these
models using observations from audit logs [35]. Each iteration uses observations of false positives
and negatives in an effort to improve the accuracy of the models enabling more accurate enforcement
of the policy. To make this methodology formal, which allows for automation, an auditor must
formally define the policies and models. For example, Zhang et al. apply EBAM to Role-Based
Access Control (RBAC) by focusing on RBAC policies and modeling individuals subject to the
policy using a role hierarchy [79]. Using this formalism, Zhang et al. provide an algorithm to refine
the role hierarchy over time.

To apply EBAM to purpose restrictions requires a formal semantics for them, which we provide.
Furthermore, future work will have to provide a refinement algorithm consistent with our semantics.
Reinforcement learning (e.g., Q-learning [75]) provide strategies for optimizing the total reward
using observations of auditee behavior (often available from logs) instead of a single fixed MDP
model. By learning the model from observations, reinforcement learning may provide a means
of refining the environment models used by our auditing algorithm. Combining these methods,
an auditor may use our formal semantics and auditing algorithm to determine when an auditee
violates the policy under the current model of the environment and use reinforcement learning to
improve the model in response to false positives and negatives in a manner consistent with the
EBAM methodology.
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A Questionnaire

Below is the content of the questionnaire. The formatting differed in that it was broken up into
multiple webpages. Initial instructions were shown on Mechanical Turk’s website (Appendix A.1).
The additional instructions, questions, and payment information were shown on Survey Gizmo’s
website (Appendix A.2). Survey Gizmo always showed the additional instructions first and the
payment information last. For each participant, Survey Gizmo presented the scenarios in a random
order and on its own webpage. Survey Gizmo numbers the questions dynamically based upon the
order in which Survey Gizmo presents the scenarios.

A.1 Mechanical Turk

If you choose to participate, you will be asked a series questions [sic] about when an action is for
a purpose. If you fill out the survey reasonably (do not just randomly select answers), you will be
paid for your participation. The risks of taking this survey are equivalent to every day computer
use. Your participation is voluntary.
If you choose to participate, then fill out the survey at SurveyGizmo using the following link:
http://edu.surveygizmo.com/s3/621146/Hospital-Survey

Upon completion enter the last four digits of your phone number here:

We ask for this number so we can track who successfully completed the survey. We will ask you to
enter the same number at SurveyGizmo.
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A.2 Survey Gizmo

Instructions. Metropolis General Hospital has the following privacy policy:

Metropolis General Hospital and its employees will share a patient’s medical record with
an outside specialist only for the purpose of providing that patient with treatment.

For each scenario below, please answer the following questions based on your understanding of
the above policy.

Scenario 1. Metropolis General Hospital has the following privacy policy:

Metropolis General Hospital and its employees will share a patient’s medical record with
an outside specialist only for the purpose of providing that patient with treatment.

Please answer the following questions based on your understanding of the above policy and the
following scenario:
A case worker employed by Metropolis General Hospital meets with a patient. The

case worker develops a plan with the sole goal of treating the patient. The plan includes

sharing the patient’s medical record with an outside specialist. Upon receiving the

record, the specialist succeeds in treating the patient.

1. Was the goal of the case worker’s plan to treat the patient?

(a) Yes

(b) No

(c) I don’t know

2. Did the specialist succeed in treating the patient?

(a) Yes

(b) No

(c) I don’t know

3. Did the case worker share the record with the specialist for the purpose of treatment?

(a) Yes

(b) No

(c) I don’t know

4. Did the case worker obey the above privacy policy?

(a) Yes

(b) No

(c) I don’t know

5. Why did you answer Question 4 as you did?
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Scenario 2. Metropolis General Hospital has the following privacy policy:

Metropolis General Hospital and its employees will share a patient’s medical record with
an outside specialist only for the purpose of providing that patient with treatment.

Please answer the following questions based on your understanding of the above policy and the
following scenario:
A case worker employed by Metropolis General Hospital meets with a patient. The

case worker develops a plan with the sole goal of treating the patient. The plan includes

sharing the patient’s medical record with an outside specialist. Upon receiving the

record, the specialist did not succeed in treating the patient.

1. Was the goal of the case worker’s plan to treat the patient?

(a) Yes

(b) No

(c) I don’t know

2. Did the specialist succeed in treating the patient?

(a) Yes

(b) No

(c) I don’t know

3. Did the case worker share the record with the specialist for the purpose of treatment?

(a) Yes

(b) No

(c) I don’t know

4. Did the case worker obey the above privacy policy?

(a) Yes

(b) No

(c) I don’t know

5. Why did you answer Question 4 as you did?

Scenario 3. Metropolis General Hospital has the following privacy policy:

Metropolis General Hospital and its employees will share a patient’s medical record with
an outside specialist only for the purpose of providing that patient with treatment.

Please answer the following questions based on your understanding of the above policy and the
following scenario:
A case worker employed by Metropolis General Hospital meets with a patient. The

case worker develops a plan with the sole goal of reducing costs for the hospital. The

plan includes sharing the patient’s medical record with an outside specialist. Upon

receiving the record, the specialist succeeds in treating the patient.
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1. Was the goal of the case worker’s plan to treat the patient?

(a) Yes

(b) No

(c) I don’t know

2. Did the specialist succeed in treating the patient?

(a) Yes

(b) No

(c) I don’t know

3. Did the case worker share the record with the specialist for the purpose of treatment?

(a) Yes

(b) No

(c) I don’t know

4. Did the case worker obey the above privacy policy?

(a) Yes

(b) No

(c) I don’t know

5. Why did you answer Question 4 as you did?

Scenario 4. Metropolis General Hospital has the following privacy policy:

Metropolis General Hospital and its employees will share a patient’s medical record with
an outside specialist only for the purpose of providing that patient with treatment.

Please answer the following questions based on your understanding of the above policy and the
following scenario:
A case worker employed by Metropolis General Hospital meets with a patient. The

case worker develops a plan with the sole goal of reducing costs for the hospital. The

plan includes sharing the patient’s medical record with an outside specialist. Upon

receiving the record, the specialist did not succeed in treating the patient.

1. Was the goal of the case worker’s plan to treat the patient?

(a) Yes

(b) No

(c) I don’t know

2. Did the specialist succeed in treating the patient?

(a) Yes
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(b) No

(c) I don’t know

3. Did the case worker share the record with the specialist for the purpose of treatment?

(a) Yes

(b) No

(c) I don’t know

4. Did the case worker obey the above privacy policy?

(a) Yes

(b) No

(c) I don’t know

5. Why did you answer Question 4 as you did?

Payment Information. To receive payment on Mechanical Turk, please enter the last four digits
of your phone number here:

A.3 Mechanical Turk Advertisement
Research survey on the meaning of privacy

Requester: Michael Carl Tschantz HIT Expiration Date: Jul 20, 2011 (2 weeks 5 days) Reward: $0.50

Time Allotted: 10 minutes HITs Available: 200

Description: Take a short survey about how you interpret a privacy policy to help

research on the topic taking place at Carnegie Mellon University.

Keywords: Survey, Research

Qualifications Required:

HIT approval rate (%) is greater than 95

Location is US
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B Tables of Matched Pairs

Question Q1 Spf̄

Yes I don’t know No

Yes 176 0 6
Spf I don’t know 0 2 0

No 1 0 2

Question Q1 Sp̄f̄

Yes I don’t know No

Yes 26 3 16
Sp̄f I don’t know 1 5 3

No 4 1 128

Question Q3 Spf̄

Yes I don’t know No

Yes 182 1 2
Spf I don’t know 1 0 1

No 0 0 0

Question Q3 Sp̄f̄

Yes I don’t know No

Yes 25 2 16
Sp̄f I don’t know 0 4 2

No 13 4 121

Question Q1 Sp̄f

Yes I don’t know No

Yes 45 8 129
Spf I don’t know 0 1 1

No 0 0 3

Question Q1 Sp̄f̄

Yes I don’t know No

Yes 30 8 139
Spf̄ I don’t know 0 1 1

No 1 0 7

Question Q3 Sp̄f

Yes I don’t know No

Yes 43 6 136
Spf I don’t know 0 0 2

No 0 0 0

Question Q3 Sp̄f̄

Yes I don’t know No

Yes 37 9 137
Spf̄ I don’t know 0 0 1

No 1 1 1

Scenario Spf Q3
Yes I don’t know No

Yes 181 1 0
q1 I don’t know 1 1 0

No 3 0 0

Scenario Spf̄ Q3

Yes I don’t know No

Yes 176 1 0
q1 I don’t know 2 0 0

No 5 0 3

Scenario Sp̄f Q3
Yes I don’t know No

Yes 32 2 11
q1 I don’t know 1 3 5

No 10 1 122

Scenario Sp̄f̄ Q3

Yes I don’t know No

Yes 22 0 9
q1 I don’t know 2 5 2

No 14 5 128
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C Results Using All Respondents

Scenario Yes I don’t know No

Spf 201 (97%) 2 (01%) 4 (02%)
Spf̄ 195 (94%) 3 (01%) 9 (04%)

Sp̄f 61 (29%) 11 (05%) 135 (65%)
Sp̄f̄ 44 (21%) 12 (06%) 151 (73%)

Q1: Was the policy obeyed?

Scenario Yes I don’t know No

Spf 205 (99%) 2 (01%) 0 (00%)
Spf̄ 202 (98%) 2 (01%) 3 (01%)

Sp̄f 59 (29%) 9 (04%) 139 (67%)
Sp̄f̄ 51 (25%) 14 (07%) 142 (69%)

Q3: Was the action for the purpose?

Scenario Yes I don’t know No

Spf 205 (99%) 1 (00%) 1 (00%)
Spf̄ 202 (98%) 2 (01%) 3 (01%)

Sp̄f 25 (12%) 5 (02%) 177 (86%)
Sp̄f̄ 18 (09%) 2 (01%) 187 (90%)

Q4: Was the goal treatment?

Scenario Yes I don’t know No

Spf 206 (100%) 1 (00%) 0 (00%)
Spf̄ 3 (01%) 1 (00%) 203 (98%)

Sp̄f 196 (95%) 3 (01%) 8 (04%)
Sp̄f̄ 5 (02%) 0 (00%) 202 (98%)

Q5: Was the treatment successful?

Table 11: Survey Results for All Respondents
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Testing Alternative Hypothesis Null Hypothesis p-Value Significant?

Against H1a ppfy < 0.5 ppfy = 0.5 1 No
Against H1a ppfn > 0.5 ppfn = 0.5 1 No
Against H1a pp̄fy < 0.5 pp̄fy = 0.5 1.59774e-009 Yes
Against H1a pp̄fn > 0.5 pp̄fn = 0.5 7.097797e-006 Yes

Against H1a’ p′pfy < 0.5 p′pfy = 0.5 1 No

Against H1a’ p′pfn > 0.5 p′pfn = 0.5 1 No

Against H1a’ p′p̄fy < 0.5 p′p̄fy = 0.5 2.606856e-010 Yes

Against H1a’ p′p̄fn > 0.5 p′p̄fn = 0.5 4.514694e-007 Yes

Against H1b ppf̄n < 0.5 ppf̄n = 0.5 8.206618e-048 Yes

Against H1b ppf̄y > 0.5 ppf̄y = 0.5 4.833563e-044 Yes

Against H1b pp̄f̄n < 0.5 pp̄f̄n = 0.5 1 No

Against H1b pp̄f̄y > 0.5 pp̄f̄y = 0.5 1 No

Against H1b’ p′
pf̄n

< 0.5 p′
pf̄n

= 0.5 7.187894e-057 Yes

Against H1b’ p′
pf̄y

> 0.5 p′
pf̄y

= 0.5 1.503496e-053 Yes

Against H1b’ p′
p̄f̄n

< 0.5 p′
p̄f̄n

= 0.5 1 No

Against H1b’ p′
p̄f̄y

> 0.5 p′
p̄f̄y

= 0.5 1 No

For H2a ppfy > 0.5 ppfy = 0.5 5.08808e-052 Yes
For H2a ppfn < 0.5 ppfn = 0.5 3.684324e-055 Yes
For H2a ppf̄y > 0.5 ppf̄y = 0.5 4.833563e-044 Yes

For H2a ppf̄n < 0.5 ppf̄n = 0.5 8.206618e-048 Yes

For H2a’ p′pfy > 0.5 p′pfy = 0.5 1.046682e-058 Yes

For H2a’ p′pfn < 0.5 p′pfn = 0.5 4.861731e-063 Yes

For H2a’ p′
pf̄y

> 0.5 p′
pf̄y

= 0.5 1.503496e-053 Yes

For H2a’ p′
pf̄n

< 0.5 p′
pf̄n

= 0.5 7.187894e-057 Yes

For H2b pp̄fn > 0.5 pp̄fn = 0.5 7.097797e-006 Yes
For H2b pp̄fy < 0.5 pp̄fy = 0.5 1.59774e-009 Yes
For H2b pp̄f̄n > 0.5 pp̄f̄n = 0.5 1.443359e-011 Yes

For H2b pp̄f̄y < 0.5 pp̄f̄y = 0.5 1.440142e-017 Yes

For H2b’ p′p̄fn > 0.5 p′p̄fn = 0.5 4.514694e-007 Yes

For H2b’ p′p̄fy < 0.5 p′p̄fy = 0.5 2.606856e-010 Yes

For H2b’ p′
p̄f̄n

> 0.5 p′
p̄f̄n

= 0.5 4.581869e-008 Yes

For H2b’ p′
p̄f̄y

< 0.5 p′
p̄f̄y

= 0.5 7.161858e-014 Yes

Table 12: Binomial Hypothesis Tests for All Respondents
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Testing Alternative Hypothesis Null Hypothesis

Proving H2a ppfy > 0.94 ppfy = 0.94
Proving H2a ppfn < 0.05 ppfn = 0.05
Proving H2a ppf̄y > 0.9 ppf̄y = 0.9

Proving H2a ppf̄n < 0.08 ppf̄n = 0.08

Proving H2a’ p′pfy > 0.96 p′pfy = 0.96

Proving H2a’ p′pfn < 0.02 p′pfn = 0.02

Proving H2a’ p′
pf̄y

> 0.94 p′
pf̄y

= 0.94

Proving H2a’ p′
pf̄n

< 0.04 p′
pf̄n

= 0.04

Proving H2b pp̄fn > 0.59 pp̄fn = 0.59
Proving H2b pp̄fy < 0.36 pp̄fy = 0.36
Proving H2b pp̄f̄n > 0.67 pp̄f̄n = 0.67

Proving H2b pp̄f̄y < 0.27 pp̄f̄y = 0.27

Proving H2b’ p′p̄fn > 0.61 p′p̄fn = 0.61

Proving H2b’ p′p̄fy < 0.35 p′p̄fy = 0.35

Proving H2b’ p′
p̄f̄n

> 0.62 p′
p̄f̄n

= 0.62

Proving H2b’ p′
p̄f̄y

< 0.31 p′
p̄f̄y

= 0.31

Table 13: Extreme Binomial Hypothesis Tests for All Respondents. This table shows the hypothesis
test using the most extreme probability for which statistical significance is still achieved and is
accurate up to two places after the decimal point.
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Question Q1 Spf̄

Yes I don’t know No

Yes 194 1 6
Spf I don’t know 0 2 0

No 1 0 3

Question Q1 Sp̄f̄

Yes I don’t know No

Yes 39 4 18
Sp̄f I don’t know 1 7 3

No 4 1 130

Question Q3 Spf̄

Yes I don’t know No

Yes 201 2 2
Spf I don’t know 1 0 1

No 0 0 0

Question Q3 Sp̄f̄

Yes I don’t know No

Yes 38 3 18
Sp̄f I don’t know 0 7 2

No 13 4 122

Question Q1 Sp̄f

Yes I don’t know No

Yes 61 10 130
Spf I don’t know 0 1 1

No 0 0 4

Question Q1 Sp̄f̄

Yes I don’t know No

Yes 43 10 142
Spf̄ I don’t know 0 2 1

No 1 0 8

Question Q3 Sp̄f

Yes I don’t know No

Yes 59 9 137
Spf I don’t know 0 0 2

No 0 0 0

Question Q3 Sp̄f̄

Yes I don’t know No

Yes 50 12 140
Spf̄ I don’t know 0 1 1

No 1 1 1

Scenario Spf Q3
Yes I don’t know No

Yes 200 1 0
q1 I don’t know 1 1 0

No 4 0 0

Scenario Spf̄ Q3

Yes I don’t know No

Yes 194 1 0
q1 I don’t know 2 1 0

No 6 0 3

Scenario Sp̄f Q3
Yes I don’t know No

Yes 47 3 11
q1 I don’t know 1 5 5

No 11 1 123

Scenario Sp̄f̄ Q3

Yes I don’t know No

Yes 34 1 9
q1 I don’t know 2 8 2

No 15 5 131

Table 14: Matched Pairs for All Respondents

62



Testing Question Scenarios p-Value Significant?

For H1c Q1 Spf vs. Spf̄ NaN No

For H1c Q1 Sp̄f vs. Sp̄f̄ 0.008449127 Yes

For H1c’ Q3 Spf vs. Spf̄ 0.3430301 No

For H1c’ Q3 Sp̄f vs. Sp̄f̄ 0.2147006 No

For H2c Q1 Spf vs. Sp̄f 2.300576e-030 Yes
For H2c Q1 Spf̄ vs. Sp̄f̄ 2.598558e-032 Yes

For H2c’ Q3 Spf vs. Sp̄f 7.115157e-032 Yes
For H2c’ Q3 Spf̄ vs. Sp̄f̄ 4.269341e-032 Yes

Table 15: McNemar’s Test Across Scenarios for All Respondents

Scenario Questions p-Value Significant?

Spf Q1 vs. Q3 NaN No
Spf̄ Q1 vs. Q3 NaN No

Sp̄f Q1 vs. Q3 0.2997806 No
Sp̄f̄ Q1 vs. Q3 0.3736321 No

Table 16: McNemar’s Test Across Questions for All Respondents
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