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Abstract

We present a new protocol to perform non-interactiveverifiable secret redistribution (VSR) for secrets
distributed with Shamir’s secret sharing scheme. We base our VSR protocol on Desmedt and Jajodia’s re-
distribution protocol for linear secret sharing schemes, which we specialize for Shamir’s scheme. We extend
their redistribution protocol with Feldman’s non-interactive verifiable secret sharing scheme to ensure that
a SUBSHARES-VALID condition is true after redistribution. We show that theSUBSHARES-VALID condi-
tion is necessary but not sufficient to guarantee that the new shareholders have valid shares, and present an
additionalSHARES-VALID condition.
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1 Introduction

Suppose we have a system that distributes shares of a secret to a set ofn servers such that the system can
reconstruct the secret, or performs distributed computations, withm of then shares. An example of such
systems is a multiparty signature system [10, 11, 12, 15, 20] in which a dealer distributes shares of a key to
a set of signature servers. The servers can then collaborate to create digital signatures, but none will have
knowledge of the key. Other examples of such systems include survivable storage systems [24, 23] in which
a client stores data objects on remote storage servers. The client can retrieve its objects even if up to(n−m)
servers fail, and adversaries that subvert less thanm servers gain no knowledge about the objects.

If a server fails or is subverted by an adversary, we may wish to redistribute the remaining shares to
a new set ofn′ servers. The dealer may be unavailable for redistribution of the shares, since it may have
gone off-line since distribution. The servers may be available, but they are not trusted with secret. Thus, we
require a protocol for redistribution without reconstruction of the secret. We also require verification that
the new shareholders havevalid shares (ones that can be used to reconstruct the secret).

We present a new protocol to perform non-interactiveverifiable secret redistribution (VSR) for secrets
distributed with Shamir’s secret sharing scheme [22]. Suppose we have distributed shares of a secret to
shareholders in Shamir’s(m,n) threshold scheme(one in which we requirem of n shares to reconstruct
the secret), and wish to redistribute the secret to shareholders in a new(m′, n′) scheme. Furthermore,
suppose we wish to avoid reconstruction of the secret. Our VSR protocol enables the redistribution of the
secret from the old to new shareholders without reconstruction of the secret by any of the shareholders, and
guarantees that the new shareholders have valid shares. Our protocol guards against faulty behavior by up
ton−m of the old shareholders provided thatm > n

2 . Figure 1 shows the application of our VSR protocol.
We base our VSR protocol on Desmedt and Jajodia’s redistribution protocol for linear secret sharing

schemes [8], which we specialize for Shamir’s scheme. In their protocol,m of n old shareholders each
distributen′ subsharesof their shares of a secret, andn′ new shareholders combinem subshares (one from
each old shareholder) to generate new shares.m′ new shares are required to reconstruct the secret. Unlike
our protocol, their protocol assumes non-faulty old shareholders. Thus, faulty old shareholders, without risk
of detection, may cause new shareholders to generate invalid shares by distributing invalid subshares.

We extend Desmedt and Jajodia’s redistribution protocol with Feldman’s non-interactiveverifiable se-
cret sharing (VSS) scheme [9] to ensure that aSUBSHARES-VALID condition is true after redistribution.
With Feldman’s scheme, each old shareholder broadcasts a zero-knowledge proof of the validity of the sub-
shares to the new shareholders. The new shareholders verify the proof without further interaction with the
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Figure 1: Initial distribution of a secretk with Shamir’s(m,n) threshold secret sharing scheme [22], followed by
redistribution to an(m′, n′) scheme. Verifiable secret sharing (VSS) schemes can be used to guarantee that the shares
s1 . . . sn are valid. Our new verifiable secret redistribution (VSR) protocol can be used to guarantee that the shares
s′1 . . . s

′
n′ are valid.

1



old shareholders. Feldman assumes there exist homomorphic encryption functions that are hard to invert, al-
lowing the old shareholder to broadcast encryptions of their share and the subshare generation function with-
out revealing them. Feldman also assumes there exist reliable broadcast communication channels among all
participants and private channels between every pair of participants.

We show that theSUBSHARES-VALID condition is necessary but not sufficient to guarantee that new
shareholders have valid shares, and present an additionalSHARES-VALID condition. The old shareholders
broadcast a zero-knowledge proof of the validity of their shares of the secret to the new shareholders. As
before, the new shareholders verify the proof without further interaction with the old shareholders. The
check of theSHARES-VALID condition also assumes there exist homomorphic encryption functions that are
hard to invert, allowing old shareholders to prove the validity of their shares to new shareholders without
revealing them. We prove that theSUBSHARES-VALID andSHARES-VALID conditions are necessary and
sufficient to guarantee that the new shareholders generate valid shares of the original secret.

2 Related work

Blakley and Shamir invented secret sharing schemes independently. In Blakley’s scheme [2], the intersection
of m of n vector spaces yields a one-dimensional vector that corresponds to the secret. Desmedt presents a
survey of other sharing schemes [7].

Feldman’s VSS scheme [9] is one of several to catch a dealer that attempts to distribute invalid shares.
Choret al present a scheme in which the dealer and shareholders perform an interactive secure distributed
computation [6]. Benaloh [1], Gennaro and Micali [13], Goldreichet al [14], and Rabin and Ben-Or
[21, 19] subsequently propose schemes in which the dealer and shareholders participate in an interac-
tive zero-knowledge proof of validity; the schemes of Gennaro and Micali, and Rabin and Ben-Or, are
information-theoretically secure. Pederson [18] presents a scheme, like Feldman’s, in which the dealer
broadcasts a non-interactive zero-knowledge proof of validity to the shareholders. Our VSR procotol differs
from previous VSS schemes in that the multiple “dealers” of the new shares (the old shareholders) do not
have the original secret, and must use other information to generate a proof for the new shareholders. Also,
unlike in VSS schemes, each new shareholder must perform two checks: one to verify the validity of the
subshares distributed by the old shareholders, and another to verify the validity of the shares generated by
the new shareholders.

Desmedt and Jajodia present the first protocol to alter the access structure of a secret sharing scheme by
physical redistribution of shares between the old and new shareholders [8]. Cachin proposes a secret sharing
scheme thatenrolls (adds) shareholders in the access structure after the initial sharing [5]. Blakleyet al
consider threshold schemes thatdisenroll (remove) shareholders from the access structure with broadcast
messages [3]. For these schemes, the set of new shareholders is not disjoint from the old; rather, it is either
a superset (for Cachin) or a subset (for Blakleyet al). Blundoet al presents a scheme in which the dealer
uses broadcast messages to activate different, possibly disjoint, authorized subsets [4]. Blundo’s scheme
requires shareholders to have a share regardless of whether or not they are in the active authorized subset,
in contrast to Desmedt and Jajodia’s scheme. Our VSR protocol, like Desmedt and Jajodia’s protocol, alters
the access structure of a scheme by physical redistribution of shares, and additionally provides a proof to
the new shareholders that they have valid shares.

Ostrovsky and Yung definemobile adversariesthat subvert storage servers at a constant rate, and pro-
pose a generalproactive secret sharing(PSS) protocol for the periodic redistribution of shares to coun-
teract them [17]. Their protocol redistributes shares to the same access strucutre. Herzberget al specialize
the proactive approach to Shamir’s scheme [16], and other researchers use this work to develop robust and
secure multiparty signature schemes [10, 11, 12, 15, 20]. Zhou, Schneider, and van Renesse propose a PSS
protocol for asynchronous, wide-area networks, and employ it in an on-line certification authority [25]. Our
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VSR procotol, unlike PSS protocols, can redistribute shares to arbitrary access structures. However, we
assume there exist reliable broadcast communication channels among all participants and private channels
between every pair of participants in our protocol, which Zhouet alavoid in their asynchronous protocol.

3 The building blocks for the VSR protocol

In this section, we outline the cryptographic protocols that form the building blocks for our VSR protocol.
We begin with a summary of Desmedt and Jajodia’s secret redistribution protocol [8] for linear secret sharing
schemes, and we show how to specialize its operation to Shamir’s secret sharing scheme [22]. We follow
with a recap of Feldman’s VSS scheme [9], and present an application by Herzberget al [16] of Feldman’s
scheme to Shamir’s scheme.

3.1 Mathematical notation

A linear secret sharing scheme [8] is an algorithm for the distribution of shares of a secret to a group of
shareholders such that the secret is a linear combination of a subset of the shares. We define a secretk to be
in setK of secrets, and each shareholderi to be in the setP of shareholders. To distributek, we generate a
sharesi for eachi in P, wheresi is in the setSi of shares, andSi is in the setS of share sets. To reconstruct
the secret, we combinesi from all i in anauthorized subsetB of P:

k =
∑
i∈B

ψi(si) (1)

ψi is a homomorphism fromSi to K; we aggregateψi into the setψ of homomorphisms. The authorized
subsets are in theaccess structureΓP . We represent a linear sharing scheme as a tuple{ΓP ,K,S, ψ}.

3.2 Shamir’s secret sharing scheme

Shamir presents an(m,n) threshold secret sharing scheme based on polynomial interpolation [22]. The
secretk is in Zp (p prime; p > n), and each shareholderi is in the setP (|P| = n). All mathematical
operations are in the finite fieldZp. To distributek, we select a polynomiala(x) with degreem − 1 and
constant termk, and generate a sharesi for eachi in P with a(x):

si = k + a1i+ . . . am−1i
m−1 (2)

wheresi is also inZp. To reconstructk, we retrievem coordinate pairs(i, si) of all i in B (|B| = m;
B ∈ ΓP ), and use the pairs in the Lagrange interpolation formula:

k =
∑
i∈B

bisi where bi =
∏

j∈B,j 6=i

j

(j − i)
(3)

We represent Shamir’s scheme with the tuple{ΓP , Zp, {Zp}, ψP}, whereψi(si) = bisi andψi ∈ ψP .

3.3 Desmedt and Jajodia’s share redistribution protocol

Desmedt and Jajodia present a protocol for the redistribution of secrets distributed by linear sharing schemes
without reconstruction of the original secret [8]. Suppose we have distributed sharessi of a secretk
to shareholdersi using the scheme(ΓP ,K,S, ψ), and wish to redistribute it using a different scheme
(Γ′P ′ ,K,S ′, ψ′). We achieve this by selecting an authorized subsetB in ΓP and using an intermediate

3



1. There exists a linear sharing scheme(ΓP ,K,S, ψ), and eachi ∈ P has received a sharesi ∈ Si ∈ S
of k ∈ K.

2. For eachi ∈ P there exists an intermediate linear scheme(Γ′P′ ,Si, Ŝi, ψ̂i) for distributing sharessi
into subshareŝsij to eachj ∈ P ′.

3. Addition of elements inK is commutative.

4. For eachi ∈ B ∈ ΓP andj ∈ B′ ∈ Γ′P′ , there exist homomorphismsψi, ψ̂ij , ψ′j , andψ̂′ji such that:

ψi

(
ψ̂ij(ŝij)

)
= ψ′j

(
ψ̂′ji(ŝij)

)
Figure 2: Conditions required for the redistribution of shares from linear sharing schemes [8].

Non-verifiable Secret Redistribution protocol:
To redistribute sharessi of a secretk distributed using the linear sharing scheme(ΓP ,K,S, ψ) into sharess′j
distributed using the linear sharing scheme(Γ′P′ ,K,S ′, ψ′):

1. Select an authorized subsetB in ΓP . Use the intermediate linear scheme(Γ′P′ ,Si, Ŝi, ψ̂i) to distribute
subshareŝsij of each sharesi of i in B to eachj in P ′.

2. For eachj ∈ P ′, compute a new shares′j by treating the subsharesŝij as those distributed by another

intermediate scheme(ΓP ,S ′j , Ŝ ′j , ψ̂′j), and using a variant of Equation (1):

s′j =
∑
i∈B

ψ̂′ji(ŝij)

Figure 3: Redistribution protocol for linear sharing schemes [8].
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scheme(Γ′P ′ ,Si, Ŝi, ψ̂i) to distribute subshareŝsij of eachsi of i in B to each shareholderj in P ′, where
the setŜi of sets of subshares is:

Ŝi =
{
Ŝij : j ∈ B′,B′ ∈ Γ′P ′

}
(4)

and the set̂ψi of homomorphisms from̂Si to Si is:

ψ̂i =
{
ψ̂ij : j ∈ B′,B′ ∈ Γ′P ′

}
(5)

If we treatŝij as being distributed by another intermediate scheme(ΓP ,S ′j , Ŝ ′j , ψ̂′j) (with Ŝj andψ̂j defined

asŜi andψ̂i in Equations (4) and (5)), we can generate a shares′j for eachj. For schemes that satisfy the
conditions in Figure 2, we can can use the protocol in Figure 3 to redistribute shares.

To redistribute secrets from Shamir’s(m,n) threshold secret sharing scheme [22] to an(m′, n′) scheme
using Desmedt and Jajodia’s protocol, we first need to show that the conditions in Figure 2 hold. Desmedt
and Jajodia present a sketch of the specialization of their protocol to Shamir’s scheme, but no details. We
represent the(m,n) and(m′, n′) schemes as(ΓP , Zp, {Zp}, ψP) and(ΓP ′ , Zp, {Zp}, ψP ′) respectively.

1. Reconstruction of the original secret from the sharessi in Equation (3) is a linear recombination in
the form of Equation (1), and so the scheme(ΓP ,Zp, {Zp}, ψP) is linear. Thus, Condition 1 holds.

2. Generation of the subsharesŝij of si for each shareholderj in P ′ can be performed with the new
scheme:(Γ′P ′ , Si, Ŝi, ψ̂i) = (ΓP ′ , Zp, {Zp}, ψP ′). Thus, Condition 2 holds.

3. Addition inZp is commutative. Thus, Condition 3 holds.

4. Given the old scheme(ΓP , Zp, {Zp}, ψP), the new scheme(ΓP ′ , Zp, {Zp}, ψP ′), and the intermedi-
ate scheme(ΓP ′ , Zp, {Zp}, ψP ′) (from Condition 2), the homomorphismsψi, ψ̂ij , andψ′j are:

ψi(si) = bisi

ψ̂ij(ŝij) = b′j ŝij where b′j =
∏

l∈B,l 6=j

l

(l − j)

ψ′j(s
′
j) = b′js

′
j

We need to findψ′ji. We have:

ψi

(
ψ̂ij (ŝij)

)
= bi

(
b′j ŝij

)
(definitions ofψi andψ̂ij)

= b′j (biŝij) (xy = yx; x(yz) = (xy)z = xyz)

= ψ′j (biŝij) (definition ofψ′j)

= ψ′j

(
ψ̂′ji (ŝij)

)
(defineψ̂′ji (ŝij) = biŝij)

Thus, Condition 4 holds by defining:

ψ̂′ji (ŝij) = biŝij

�
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Non-verifiable Secret Redistribution protocol (for Shamir’s scheme):
To redistribute shares from(ΓP , Zp, {Zp}, ψP) to (ΓP′ , Zp, {Zp}, ψP′), using an authorized subsetB ∈ ΓP :

1. For eachi ∈ B, for eachj ∈ P ′, compute subshareŝsij from the polynomialai(x).

2. For eachj ∈ P ′, transfer̂sij .

3. For eachj ∈ P ′, compute the new shares′j using the Lagrange interpolation formula:

s′j =
∑
i∈B

biŝij where bi =
∏

x∈B,x 6=i

x

(x− i)

bi are constant for eachi ∈ B, are independent of the choice ofai(x), and may be precomputed.

Figure 4: Protocol to redistribute shares from Shamir’s(m,n) threshold secret sharing scheme [22] to an(m′, n′)
scheme [8].

Feldman’s Verifiable Secret Sharing scheme (for Shamir’s scheme):
To distribute a secretk ∈ Zp to shareholdersP = {1, . . . , n}:

1. Compute the sharessi for secretk using a polynomiala(x) = k+a1i+. . .+am−1i
m−1, and distribute

the shares to the correspondingi ∈ P over private channels.

2. Sendgk andga1 . . . gam−1 to all i ∈ P over the broadcast channel.

3. For eachi ∈ P, verify that:

gsi ≡ gk(ga1)i . . . (gam−1)i
m−1

If the check passes,i broadcasts a “commit” message. Otherwise,i broadcasts an “abort” message.

Figure 5: Feldman’s verifiable secret sharing scheme [9], as applied to Shamir’s(m,n) threshold secret sharing
scheme [22] by Herzberget al [16].

To perform redistribution, we treat each of the shares generated by Shamir’s(m,n) threshold scheme as
a secret to distribute using the(m′, n′) scheme. We use the scheme(ΓP ′ , Zp, {Zp}, ψP ′) to compute âsij
of si for eachj in P ′, for si of eachi in B; we note that eachi can select its own polynomiala(x) (Equation
(2)). Then, eachj computes a new shares′j from ŝij as described in Figure 3 witĥψ′ji:

s′j =
∑
i∈B

biŝij (6)

A summary of the redistribution protocol for Shamir’s scheme is shown in Figure 4.

3.4 Feldman’s VSS scheme

Feldman presents a VSS scheme that can be used by shareholders of a secret to verify the validity of their
shares [9]. Here, we recap an application by Herzberget al [16] of Feldman’s scheme to Shamir’s secret
sharing scheme [22]. Feldman’s scheme is shown in Figure 5.

The application of Feldman’s VSS scheme to Shamir’s scheme takes advantage of the homomorphic
properties of exponentiation and the assumption that the computation of discrete logs in a finite field is
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intractable. As before, we represent Shamir’s(m,n) threshold scheme with the tuple(ΓP , Zp, {Zp}, ψP).
Supposeg is a generator forZp:

∀b ∈ {1, . . . , p− 1} ∃a ∈ {1, . . . , p− 1} : ga ≡ b mod p

Then, the dealer of the secretk in setZp, in addition to sending sharessi in Zp to eachi in the setP of
shareholders, broadcasts exponentiations ofk and coefficientsa1 . . . am−1 of the polynomial used by the
dealer to generate the shares (gk andga1 . . . g

am−1). Eachi may then verify that theirsi is a valid share ofk
from the following:

gsi ≡ gk(ga1)i . . . (gam−1)i
m−1

(7)

which is the exponentiation of the polynomiala(x) from Shamir’s scheme in Equation (2). Since we have
assumed that the computation of discrete logs is intractable, we assume that none of the shareholders can
learnk (or a1 . . . am−1) from the broadcast ofgk.

4 The non-interactive VSR protocol

We present our non-interactive verifiable secret redistribution protocol for secrets distributed with Shamir’s
secret sharing scheme [22]. We represent the(m,n) and(m′, n′) threshold schemes with{ΓP , Zp, {Zp},
ψP} and{ΓP ′ , Zp, {Zp}, ψP ′} respectively. We assume the computation of discrete logs in a finite field
is intractable, and there exist reliable broadcast communication channels among all participants and pri-
vate channels between every pair of participants. We also assume that there are at mostn −m faulty old
shareholders, thatm > n

2 , and that there aren′ non-faulty new shareholders.
The initial distribution of a secret (INITIALIZE in Figure 6) proceeds as in Feldman’s VSS scheme [9].

The dealer of secretk in Zp distributes sharessi in Zp to each shareholderi in the setP of shareholders,
using the polynomiala(x) (step 1 of INITIALIZE ). The dealer also broadcastsgk andga1 . . . gam−1 , which
eachi uses to verify the validity ofsi (steps 2 and 3 of INITIALIZE ) as in Equation (7). If the check passes,
i storessi andgk (step 4 of INITIALIZE ). For trusted dealers, we can use Shamir’s scheme directly for the
initial distribution.

Redistribution of the secret from old to new shareholders (REDISTRIBUTE in Figure 6) proceeds as in
Desmedt and Jajodia’s protocol [8]. Eachi in an authorized subsetB distributes subshareŝsij in Zp of si
to each shareholderj in the setP ′ of shareholders, using the polynomiala′i(x) (step 1 of REDISTRIBUTE);
a′i(x) for eachi may be distinct. Eachj generates the new shares′j (step 4 of REDISTRIBUTE). We may
redistribute the secret an arbitrary number of times before we reconstruct it.

For the new shareholders to verify that their shares of the secret are valid after redistribution (step 1 of
REDISTRIBUTE in Figure 6), we require that two conditions,SHARES-VALID andSUBSHARES-VALID , are
true. When alli in B (B in ΓP ) redistributesi to eachj in P ′, all sj are valid shares ofk if:

SHARES-VALID :
k =

∑
i∈B bisi

SUBSHARES-VALID :
∀i ∈ B,B′ ∈ ΓP ′ : si =

∑
j∈B′ b

′
j ŝij

We use Feldman’s VSS scheme to verify thatSUBSHARES-VALID is true in our protocol. The distribu-
tion of ŝij from si (step 1 of REDISTRIBUTE in Figure 6) is a simple application of the scheme{ΓP ′ , Zp,
{Zp}, ψP ′}. Thus, eachi in B broadcastsgsi andgai1 . . . gai(m−1) , which eachj uses to verify the validity
of ŝij (step 2 of REDISTRIBUTE). Eachj still needs to check whether allsi of i in B were valid shares ofk.
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Verifiable Secret Redistribution protocol:
INITIALIZE : To distribute a secretk ∈ Zp to shareholdersP = {1, . . . , n}:

1. Compute the sharessi for secretk using a polynomiala(x) = k+a1i+. . .+am−1i
m−1, and distribute

the shares to the correspondingi ∈ P over private channels.

2. Sendgk andga1 . . . gam−1 to all i ∈ P over the broadcast channel.

3. For eachi ∈ P, verify that:

gsi ≡ gk(ga1)i . . . (gam−1)i
m−1

If the check passes,i broadcasts a “commit” message. Otherwise,i broadcasts an “abort” message.

4. If all n i ∈ P agree to commit, eachi storessi andgk. Otherwise, they abort the protocol.

REDISTRIBUTE: To redistributek from shares held by shareholdersi in an authorized subsetB ∈ Γ(m,n) to
shareholdersP ′ = {1, . . . , n′}:

1. For eachi ∈ B, compute the subsharesŝij for sharesi using a polynomiala′i(x) = si + a′i1i+ . . .+
a′i(m′−1)i

m′−1, and distribute the subshares to the correspondingj ∈ P ′ over private channels.

2. For eachi ∈ P, sendgk, gsi , andga
′
i1 . . . ga

′
i(m′−1) to all j ∈ P ′ over the broadcast channel.

3. For eachj ∈ P ′, verify that:

∀i ∈ B : gŝij ≡ gsi(ga
′
i1)j . . . (ga

′
i(m′−1))j

m′−1

and:

gk ≡
∏
i∈B

(gsi)bi where bi =
∏

x∈B,x 6=i

x

(x− i)

If both checks pass,j broadcasts a “commit” message. Otherwise,j broadcasts an “abort” message.

4. If all n′ j ∈ P ′ agree to commit, eachj computess′j :

s′j =
∑
i∈B

biŝij

and storess′j andgk. Otherwise, they abort the protocol.

Figure 6: Verifiable secret redistribution protocol for the redistribution of shares from Shamir’s(m,n) threshold
secret sharing scheme to an(m′, n′) scheme.
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Unfortunately, we cannot use Feldman’s VSS scheme to check ifSHARES-VALID is true. For example,
suppose eachi in P used the scheme to verify the validity ofsi of k. Eachi in P could storegk, gsi , and
ga1 . . . gam−1 , and broadcast them to eachj in P ′ during redistribution. Eachj would use Equation (7) to
verify the validity of eachsi, and generates′j . However, since eachj generatess′j by interpolation (step 4
of REDISTRIBUTE in Figure 6) instead of using a polynomiala′(x), it has no coefficientsa′1 . . . a

′
m′−1 to

broadcast during a subsequent redistribution to another setP ′′ of shareholders. Other VSS schemes (such
as Pederson’s scheme [18]) have similar difficulties.

We can verify thatSHARES-VALID is true by taking advantage of the homomorphic properties of expo-
nentiation. If we exponentiate both sides of Equation (3), we obtain theSHARES-VALID verification check:

gk =
∏
i∈B

(gsi)bi (8)

Thus, if eachj in P ′ receivesgk andgsi from all i in B, they can verify that allsi were valid shares ofk.
Eachj accomplishes verification without learningsi, given our assumption about discrete logs.

4.1 Assumptions about faulty shareholders

When we redistribute the secretk in Zp from the scheme{ΓP , Zp, {Zp}, ψP} to the scheme{ΓP ′ , Zp,
{Zp}, ψP ′} with our VSR protocol, we assume at leastm of the n shareholders inP and alln′ of the
shareholders inP ′ are non-faulty, and up ton −m of the remaining shareholders inP may be faulty. We
denote faulty shareholders, and the values they distribute, with over-bars. A non-faulty shareholderi in P
distributes valid subshareŝsij of its sharesi to all shareholdersj in P ′ and broadcastsgk corresponding to
k. A faulty shareholderi in P may distribute invalid subsharesŝij or broadcastgk not corresponding tok.

We also assume we do not know whichm of then shareholders inP are non-faulty. Suppose we include
a faulty shareholderi in our selection ofB in ΓP to participate in redistribution (REDISTRIBUTE in Figure
6). However, ifi distributesŝij , one of thej will detect the presence ofi since one of the verification

checks in Equations (7) or (8) will fail. Alternatively, ifi broadcastsgk, all j will detect the discrepancy
when non-faulty old shareholders broadcastgk. Thus,i must participate in the protocol without fault or
risk detection. If we detect the presence ofi, we must restart redistribution with another set ofm old
shareholders. Unfortunately, we cannot identifyi with our protocol.

The assumption that we do not know whichm shareholders inP are non-faulty bounds the relative
values ofm andn. We assume we can detect discrepancies betweengk andgk broadcast by faulty and
non-faulty shareholders inP respectively. However, if we were to select a group ofm faulty shareholders
i inadvertently, then we would be unable to detect discrepancies if alli broadcastgk. We therefore require
thatm > n

2 so each authorized subsetB in ΓP has at least one non-faulty shareholder; ifm ≤ n
2 , n −m

faulty shareholders inP could conspire to reconstructk.
The requirement that alln′ shareholders inP ′ are non-faulty is reasonable if we view the purpose of

our VSR protocol as one of detecting faulty behavior by shareholders inP. This is analogous to one of the
assumptions underlying Feldman’s VSS scheme, in which the shareholders are implicitly trusted to store
valid shares (and reject invalid shares) of a secret.

4.2 Correctness

We prove that if theSHARES-VALID andSUBSHARES-VALID conditions are true after the share redistribu-
tion, then the new shareholders have valid shares of the original secret. We also show that Equations (7) and
(8) check that the two conditions are true.
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Lemma 1 If the check in Equation (8) is true, thenSHARES-VALID is true.

PROOF: Assume the check in Equation (8) is true. It then follows thatSHARES-VALID is true from Equation
(3) and the homomorphic properties of exponentiation.�

Lemma 2 If the check in Equation (7) is true, thenSUBSHARES-VALID is true.

PROOF: Proved by Feldman [9].�

Theorem 1 (VSR theorem) For Shamir’s(m,n) threshold secret sharing scheme{ΓP , Zp, {Zp}, ψP} and
the(m′, n′) scheme{ΓP ′ , Zp, {Zp}, ψP ′}, for all secretsk ∈ Zp, and for all authorized subsetsB ∈ ΓP , if
SHARES-VALID and SUBSHARES-VALID are true after the execution of theREDISTRIBUTION step (Figure
6) of the VSR protocol, then all shareholdersj in all authorized subsetsB′ ∈ ΓP ′ hold valid shares ofk.

PROOF: Assume bothSHARES-VALID andSUBSHARES-VALID are true. Then:

k =
∑
i∈B

bisi (SHARES-VALID )

=
∑
i∈B

bi∑
j∈B′

b′j ŝij

 (SUBSHARES-VALID )

=
∑
i∈B

∑
j∈B′

bib
′
j ŝij (x(y + z) = xy + xz)

=
∑
i∈B

∑
j∈B′

b′jbiŝij (xy = yx)

=
∑
j∈B′

∑
i∈B

b′jbiŝij (x+ y = y + x)

=
∑
j∈B′

(
b′j
∑
i∈B

biŝij

)
(xy + xz = x(y + z))

=
∑
j∈B′

b′js
′
j (Equation (3)

�

5 Summary and future work

We have presented a protocol for the verifiable redistribution of secrets distributed with Shamir’s secret
sharing scheme [22]. We have proven that new shareholders have valid shares after redistribution if the
SHARES-VALID and SUBSHARES-VALID conditions are true, and have given the corresponding verifica-
tion checks. We have shown that our protocol guards against faulty behavior by up ton − m of the old
shareholders provided thatm > n

2 . In our presentation, we have assumed that the computation of discrete
logs in a finite field is intractable, and that there exist reliable broadcast communication channels among all
participants and private channels between every pair of participants.

As part of our future work, we will investigate ways to identify faulty old shareholders during redistri-
bution, and to relax the bounds on the number of non-faulty new shareholders. We also plan to implement
our protocol to evaluate its performance costs over non-verifiable redistribution protocols.
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