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Abstract

We present a new protocol to perform non-interactieeifiable secret redistribution (VSR) for secrets
distributed with Shamir’s secret sharing scheme. We base our VSR protocol on Desmedt and Jajodia’s re-
distribution protocol for linear secret sharing schemes, which we specialize for Shamir’'s scheme. We extend
their redistribution protocol with Feldman’s non-interactive verifiable secret sharing scheme to ensure that

a SUBSHARESVALID condition is true after redistribution. We show that #1@BSHARESVALID condi-

tion is necessary but not sufficient to guarantee that the new shareholders have valid shares, and present an
additionalSHARESVALID condition.
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1 Introduction

Suppose we have a system that distributes shares of a secret to avs&treérs such that the system can
reconstruct the secret, or performs distributed computations,with the n shares. An example of such
systems is a multiparty signature systém [10,[T1[T2[15, 20] in which a dealer distributes shares of a key to
a set of signature servers. The servers can then collaborate to create digital signatures, but none will have
knowledge of the key. Other examples of such systems include survivable storage systéms [24, 23] in which
a client stores data objects on remote storage servers. The client can retrieve its objects evgmif-up o

servers fail, and adversaries that subvert less thaervers gain no knowledge about the objects.

If a server fails or is subverted by an adversary, we may wish to redistribute the remaining shares to
a new set ofv’ servers. The dealer may be unavailable for redistribution of the shares, since it may have
gone off-line since distribution. The servers may be available, but they are not trusted with secret. Thus, we
require a protocol for redistribution without reconstruction of the secret. We also require verification that
the new shareholders havalid shares (ones that can be used to reconstruct the secret).

We present a new protocol to perform non-interactiedfiable secret redistribution (VSR) for secrets
distributed with Shamir’'s secret sharing scheme [22]. Suppose we have distributed shares of a secret to
shareholders in Shamir{sn, n) threshold scheme(one in which we requiren of n shares to reconstruct
the secret), and wish to redistribute the secret to shareholders in &mnew’) scheme. Furthermore,
suppose we wish to avoid reconstruction of the secret. Our VSR protocol enables the redistribution of the
secret from the old to new shareholders without reconstruction of the secret by any of the shareholders, and
guarantees that the new shareholders have valid shares. Our protocol guards against faulty behavior by up
ton —m of the old shareholders provided that> 7. Figure[1 shows the application of our VSR protocol.

We base our VSR protocol on Desmedt and Jajodia’s redistribution protocol for linear secret sharing
schemesl[8], which we specialize for Shamir's scheme. In their protecaf » old shareholders each
distributen’ subsharesof their shares of a secret, antinew shareholders combime subshares (one from
each old shareholder) to generate new sharésiew shares are required to reconstruct the secret. Unlike
our protocol, their protocol assumes non-faulty old shareholders. Thus, faulty old shareholders, without risk
of detection, may cause new shareholders to generate invalid shares by distributing invalid subshares.

We extend Desmedt and Jajodia’s redistribution protocol with Feldman’s non-intereetifiable se-
cret sharing (VSS) schemel]9] to ensure thalsa@BSHARESVALID condition is true after redistribution.

With Feldman’s scheme, each old shareholder broadcasts a zero-knowledge proof of the validity of the sub-
shares to the new shareholders. The new shareholders verify the proof without further interaction with the
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Figure 1: Initial distribution of a secrek with Shamir's(m,n) threshold secret sharing scheme [22], followed by
redistribution to ar{m’, n’) scheme. Verifiable secret sharing (VSS) schemes can be used to guarantee that the shares
s1...s, are valid. Our new verifiable secret redistribution (VSR) protocol can be used to guarantee that the shares
sy ...s!, are valid.



old shareholders. Feldman assumes there exist homomorphic encryption functions that are hard to invert, al-

lowing the old shareholder to broadcast encryptions of their share and the subshare generation function with-

out revealing them. Feldman also assumes there exist reliable broadcast communication channels among all
participants and private channels between every pair of participants.

We show that thesUBSHARESVALID condition is necessary but not sufficient to guarantee that new
shareholders have valid shares, and present an addigemaES-VALID condition. The old shareholders
broadcast a zero-knowledge proof of the validity of their shares of the secret to the new shareholders. As
before, the new shareholders verify the proof without further interaction with the old shareholders. The
check of thesHARESVALID condition also assumes there exist homomorphic encryption functions that are
hard to invert, allowing old shareholders to prove the validity of their shares to new shareholders without
revealing them. We prove that tl®/BSHARESVALID and SHARESVALID conditions are necessary and
sufficient to guarantee that the new shareholders generate valid shares of the original secret.

2 Related work

Blakley and Shamir invented secret sharing schemes independently. In Blakley’s scheme [2], the intersection
of m of n vector spaces yields a one-dimensional vector that corresponds to the secret. Desmedt presents a
survey of other sharing schemés [7].

Feldman’s VSS schemé [9] is one of several to catch a dealer that attempts to distribute invalid shares.
Choret al present a scheme in which the dealer and shareholders perform an interactive secure distributed
computation [6]. Benaloh[[1], Gennaro and Micdlil[13], Goldre®thal [L4], and Rabin and Ben-Or
[71, M9] subsequently propose schemes in which the dealer and shareholders participate in an interac-
tive zero-knowledge proof of validity; the schemes of Gennaro and Micali, and Rabin and Ben-Or, are
information-theoretically secure. Pedersanl [18] presents a scheme, like Feldman’s, in which the dealer
broadcasts a non-interactive zero-knowledge proof of validity to the shareholders. Our VSR procotol differs
from previous VSS schemes in that the multiple “dealers” of the new shares (the old shareholders) do not
have the original secret, and must use other information to generate a proof for the new shareholders. Also,
unlike in VSS schemes, each new shareholder must perform two checks: one to verify the validity of the
subshares distributed by the old shareholders, and another to verify the validity of the shares generated by
the new shareholders.

Desmedt and Jajodia present the first protocol to alter the access structure of a secret sharing scheme by
physical redistribution of shares between the old and new sharehdalders [8]. Cachin proposes a secret sharing
scheme thaenrolls (adds) shareholders in the access structure after the initial sharing [5]. Bletkidy
consider threshold schemes tld&enroll (remove) shareholders from the access structure with broadcast
messages]3]. For these schemes, the set of new shareholders is not disjoint from the old; rather, it is either
a superset (for Cachin) or a subset (for Blakédyal). Blundoet al presents a scheme in which the dealer
uses broadcast messages to activate different, possibly disjoint, authorized dlibsets [4]. Blundo’s scheme
requires shareholders to have a share regardless of whether or not they are in the active authorized subset,
in contrast to Desmedt and Jajodia’s scheme. Our VSR protocol, like Desmedt and Jajodia’s protocol, alters
the access structure of a scheme by physical redistribution of shares, and additionally provides a proof to
the new shareholders that they have valid shares.

Ostrovsky and Yung definmobile adversariesthat subvert storage servers at a constant rate, and pro-
pose a genergiroactive secret sharing(PSS) protocol for the periodic redistribution of shares to coun-
teract them([T7]. Their protocol redistributes shares to the same access strucutre. Herabspgcialize
the proactive approach to Shamir’'s scheme [16], and other researchers use this work to develop robust and
secure multiparty signature schemes [T0,[T1[ T2/ 15, 20]. Zhou, Schneider, and van Renesse propose a PSS
protocol for asynchronous, wide-area networks, and employ it in an on-line certification authority [25]. Our
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VSR procotol, unlike PSS protocols, can redistribute shares to arbitrary access structures. However, we
assume there exist reliable broadcast communication channels among all participants and private channels
between every pair of participants in our protocol, which Zbbal avoid in their asynchronous protocol.

3 The building blocks for the VSR protocol

In this section, we outline the cryptographic protocols that form the building blocks for our VSR protocol.
We begin with a summary of Desmedt and Jajodia’s secret redistribution prdfocol [8] for linear secret sharing
schemes, and we show how to specialize its operation to Shamir's secret sharing scheme [22]. We follow
with a recap of Feldman’s VSS schemk [9], and present an application by Heetlz 6] of Feldman’s
scheme to Shamir's scheme.

3.1 Mathematical notation

A linear secret sharing schenie [8] is an algorithm for the distribution of shares of a secret to a group of
shareholders such that the secret is a linear combination of a subset of the shares. We definkg toderret

in setkC of secrets, and each shareholdér be in the seP of shareholders. To distribufe we generate a
shares; for each: in P, wheres; is in the setS; of shares, and; is in the setS of share sets. To reconstruct

the secret, we combing from all 7 in anauthorized subsetB of P:

k=) ti(si) (1)

icB
1; iIs @ homomorphism frons; to X; we aggregate); into the set) of homomorphisms. The authorized
subsets are in theccess structurd’p. We represent a linear sharing scheme as a {ipte K, S, ¢ }.

3.2 Shamir’s secret sharing scheme

Shamir presents afm, n) threshold secret sharing scheme based on polynomial interpolafion [22]. The
secretk is in Z, (p prime; p > n), and each shareholdeis in the setP (|P| = n). All mathematical
operations are in the finite field,. To distributek, we select a polynomial(z) with degreem — 1 and
constant ternk, and generate a shagefor eachi in P with a(z):

si=k+ayi+... am1i"" (2)

wheres; is also inZ,. To reconstruck, we retrievern coordinate pairgi, s;) of all 7 in B (|B] = m;
B € T'p), and use the pairs in the Lagrange interpolation formula:

k= Zbisi where b; = H J (3)
icB JEBL£i (7 —1)
We represent Shamir's scheme with the tuidle, Z,,, {Z,}, ¥p}, wherey;(s;) = b;s; andy; € ¥p.

3.3 Desmedt and Jajodia’s share redistribution protocol

Desmedt and Jajodia present a protocol for the redistribution of secrets distributed by linear sharing schemes
without reconstruction of the original secrét [8]. Suppose we have distributed shaoésa secretk

to shareholders using the schemél'p, K, S, ), and wish to redistribute it using a different scheme
(I'p, K, 8',4"). We achieve this by selecting an authorized sulfsét I'» and using an intermediate
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1. There exists a linear sharing scheffie, K, S, ), and each € P has received ashasg € S; € S
of k € K.

2. For each € P there exists an intermediate linear sche(m%,,si,&,ﬁi) for distributing shares;
into subshares,;; to eachj € P’.

3. Addition of elements iiC is commutative.
4. Foreach € B e I'p andj € B’ € T, there exist homomorphisms, 1/)13 s and@Z;;i such that:

i @z‘j(ézj)) =] @}i(éz‘j)>

Figure 2: Conditions required for the redistribution of shares from linear sharing schémes [8].

Non-verifiable Secret Redistribution protocol:
To redistribute shares of a secret distributed using the linear sharing schefhie, I, S, v) into share$9
distributed using the linear sharing schef®é,, K, S’, ¢’):

1. Select an authorized subdein I'». Use the intermediate linear sche(ig,,, S;, Si qﬁi) to distribute
subshares;; of each share; of i in 5 to eachj in P'.

2. For eacly € P, compute a new shakg by treating the subsharés; as those distributed by anoth
intermediate schem@p, S/, S/, ), and using a variant of Equatiof] (1):

JrSg0 7y
3; = Ziﬁ;z(‘%)

i€B

[1°)

Figure 3: Redistribution protocol for linear sharing schemes [8].



schemgI’,, S;, S‘i, &i) to distribute subshares; of eachs; of i in B to each shareholdegrin P’, where
the setS; of sets of subshares is:

Si:{Sij:jeB’,B’eF’,} (4)
and the seth; of homomorphisms frons; to S; is:

bi={y:jeB.B €T} 5)
If we treats;; as being distributed by another intermediate schéige 8., S, v) (with S; ands); defined

asS; andy); in Equations [(4) and [5)), we can generate a shifer eachj. For schemes that satisfy the
conditions in Figurg]2, we can can use the protocol in Fifure 3 to redistribute shares.

To redistribute secrets from Shamifis, n) threshold secret sharing schern€ [22] tqan, n') scheme
using Desmedt and Jajodia’s protocol, we first need to show that the conditions in [figure 2 hold. Desmedt
and Jajodia present a sketch of the specialization of their protocol to Shamir's scheme, but no details. We
represent thém, n) and(m’, n') schemes af'p, Z,, {Z,}, ¥p) and(Tp/, Zy, {Z,}, Yp:) respectively.

1. Reconstruction of the original secret from the sharda Equation [B) is a linear recombination in
the form of Equation[{1), and so the schefe, Z,, {Z,},¢p) is linear. Thus, Condition 1 holds.

2. Generation of the subshargg of s; for each shareholderin P’ can be performed with the new
scheme(Iy, Si, Si, ¥i) = (Upr, Zp, {Zy}, ¥p). Thus, Condition 2 holds.

3. Addition inZ, is commutative. Thus, Condition 3 holds.

4. Given the old schem@'p, Z,, {Z,}, ¢¥p), the new schem@'p, Z,, {Z,}, ¢p'), and the intermedi-
ate schemél'p/, Zy, {Z,}, ¥p/) (from Condition 2), the homomorphisms, zpm and1/1§- are:

Vi(si) = bisi

iglsy) =Ygy where b= ]] (I —7)
leB,l#]

V() = b

We need to find)’,. We have:

;i <¢U (§Z]>) = b (b;gw) (deflnltlons Of@[)l andvf)”)

= Vi (bisij)  (vy =yx a(yz) = (2y)z = 2y2)
= (bidi) (definition ofg/;;.)

= (9 ) (defined (315) = bisiy)



Non-verifiable Secret Redistribution protocol (for Shamir's scheme):
To redistribute shares frot'», Z,, {Z,}, ¥p) to (U'p, Z,,{Z,}, p:), using an authorized subdetc I'p:

1. For each € B, for eachj € P’, compute subshargs; from the polynomial; ().
2. Foreacly € P/, transfers; ;.
3. For eacly € P’, compute the new shasg using the Lagrange interpolation formula:

S; = Z bigij where b; = H (x l; Z)

i€B rEB,x#£1

b; are constant for eache B, are independent of the choiceqfz), and may be precomputed.

Figure 4: Protocol to redistribute shares from Shamirs, n) threshold secret sharing scheme [22] to(ati, n’)
schemeli8].

Feldman'’s Verifiable Secret Sharing scheme (for Shamir’s scheme):
To distribute a secrét € Z,, to shareholder® = {1,...,n}:

1. Compute the sharesfor secret: using a polynomiad(x) = k+ayi+...+an, 1™}, and distribute
the shares to the corresponding P over private channels.
2. Sendg® andg® ...g% -1 to alli € P over the broadcast channel.

3. For each € P, verify that:

si m—1

gk(gal)i L (gam,l)i

g

If the check passes broadcasts a “commit” message. Otherwidaoadcasts an “abort” message.

Figure 5: Feldman’s verifiable secret sharing scherrie [9], as applied to Shamir's) threshold secret sharing
schemel[22] by Herzbergt al [16].

To perform redistribution, we treat each of the shares generated by Shamirig threshold scheme as
a secret to distribute using tie:’, n’) scheme. We use the schefig, Z,, {Z,}, ¢¥p/) to compute &;;
of s; for eachj in 7', for s; of eachi in B; we note that eachcan select its own polynomialz) (Equation
(Q)) Then, each computes a new shasg from 3;; as described in Flgu@ 3 wmh; :

i€B

A summary of the redistribution protocol for Shamir's scheme is shown in F[gure 4.

3.4 Feldman’s VSS scheme

Feldman presents a VSS scheme that can be used by shareholders of a secret to verify the validity of their
shares[[9]. Here, we recap an application by Herzle¢rgl [16] of Feldman’s scheme to Shamir’s secret
sharing scheme22]. Feldman’s scheme is shown in Figure 5.

The application of Feldman’s VSS scheme to Shamir's scheme takes advantage of the homomorphic
properties of exponentiation and the assumption that the computation of discrete logs in a finite field is
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intractable. As before, we represent Shanir’s n) threshold scheme with the tupl€p, Z,, {Z,}, ¥p).
Supposgy is a generator foZ,:

Voe{l,...,p—1}Jac{l,....,p—1} : g* =bmod p

Then, the dealer of the secretin setZ,, in addition to sending shares in Z, to each: in the setP of
shareholders, broadcasts exponentiations ahd coefficients:; ... a,,_1 of the polynomial used by the
dealer to generate the sharg$ &ndg¢ . .. g*»—1). Eachi may then verify that theis; is a valid share of
from the following:
si — k¢ ai\i Am—1\i™m 1

9% =g"(g")" ... (") (7)
which is the exponentiation of the polynomiglz) from Shamir’'s scheme in Equatiofj (2). Since we have
assumed that the computation of discrete logs is intractable, we assume that none of the shareholders can
learnk (or a; . . . a,,—1) from the broadcast of*.

4 The non-interactive VSR protocol

We present our non-interactive verifiable secret redistribution protocol for secrets distributed with Shamir's
secret sharing scheme[22]. We represent(then) and(m’, n") threshold schemes witfl'p, Z,,, {Z,},
Yp} and{T'p/, Zy,, {Zy}, yp'} respectively. We assume the computation of discrete logs in a finite field
is intractable, and there exist reliable broadcast communication channels among all participants and pri-
vate channels between every pair of participants. We also assume that there arerat-modaulty old
shareholders, that > %, and that there are’ non-faulty new shareholders.

The initial distribution of a secret{liTIALIZE in Figure[$) proceeds as in Feldman’s VSS scheme [9].
The dealer of secrét in Z, distributes shares; in Z, to each shareholdérin the setP of shareholders,
using the polynomiak(x) (step 1 of NITIALIZE ). The dealer also broadcagtsandg® ... g%, which
eachi uses to verify the validity of; (steps 2 and 3 ofNITIALIZE ) as in Equation[{7). If the check passes,
i storess; andg® (step 4 of NITIALIZE). For trusted dealers, we can use Shamir’'s scheme directly for the
initial distribution.

Redistribution of the secret from old to new shareholdesRTRIBUTE in Figure[§) proceeds as in
Desmedt and Jajodia’s protocal [8]. Eacm an authorized subsé distributes subshares; in Z,, of s;
to each shareholdgrin the setP’ of shareholders, using the polynomid(x) (step 1 of REDISTRIBUTE);
al(x) for each: may be distinct. Eaclh generates the new shaa’;(step 4 of REDISTRIBUTE). We may
redistribute the secret an arbitrary number of times before we reconstruct it.

For the new shareholders to verify that their shares of the secret are valid after redistribution (step 1 of
REDISTRIBUTE in Figure[), we require that two conditiorS{ARES VALID andSUBSHARESVALID, are
true. When alk in B (B in I'p) redistributes; to eachj in P’, all s; are valid shares df if:

SHARES-VALID :
k= ZiEB bz‘Si

SUBSHARES-VALID :
Vi € B,B/ elp 5= ZjeB’ b;éw

We use Feldman’s VSS scheme to verify thReBSHARESVALID is true in our protocol. The distribu-
tion of 5;; from s; (step 1 of REDISTRIBUTEin Figure[§) is a simple application of the schefi&, Z,,
{Z,}, ¥p'}. Thus, eachi in B broadcastg®: andg®* ... g*(m-1, which eachj uses to verify the validity
of 5;; (step 2 of REDISTRIBUTE). Eachy still needs to check whether alf of 7 in B were valid shares df.
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Verifiable Secret Redistribution protocol:
INITIALIZE : To distribute a secrét € Z,, to shareholder® = {1,...,n}:

1. Compute the sharesfor secret using a polynomiad(x) = k+ayi+...+a,,_1i™ "}, and distribute
the shares to the corresponding P over private channels.

2. Sendg* andg® ... g%~ to alli € P over the broadcast channel.

3. For each € P, verify that:

Si

Il
Q
o
~
Q
g
<
—~
)
s)
3
|
N

9

If the check passes broadcasts a “commit” message. Otherwidaroadcasts an “abort” message.

4. Ifall ni € P agree to commit, eachstoress; andg®. Otherwise, they abort the protocol.

REDISTRIBUTE: To redistributek from shares held by shareholdéns an authorized subs& € T'(,,, ,,) to
shareholder®’ = {1,...,n'}:

1. For each € B, compute the subshareég for shares; using a polynomiat(z) = s; + aji + ...+
ag(m,_l)z‘mlfl, and distribute the subshares to the correspongliag®’ over private channels.
2. For each € P, sendg”, g%, andg®i1 ...ga;(m’*l) to all j € P’ over the broadcast channel.

3. For eacly € P/, verify that:

/ m/—1

Vi€ B:ghi =gt (ghn) . (g% -n))

and:

k — si\bs o x
g"=[Je)" where b= [] p—

ieB zE€B,x#i

If both checks pasg, broadcasts a “commit” message. Otherwjsbroadcasts an “abort” message.

4. Ifalln' j € P’ agree to commit, eachcomputess’;:

12 N
Sj: E bisij

i€B

and stores’, andg”. Otherwise, they abort the protocol.

Figure 6: Verifiable secret redistribution protocol for the redistribution of shares from Shanir's) threshold
secret sharing scheme to @n’, n’) scheme.



Unfortunately, we cannot use Feldman’s VSS scheme to cheskaRESVALID is true. For example,
suppose eachin P used the scheme to verify the validity ef of k. Eachi in P could storeg®, g%, and
g*...g%m=1, and broadcast them to eaglin P’ during redistribution. Each would use Equation{7) to
verify the validity of eachs;, and generate;. However, since eacjﬁgenerate$;- by interpolation (step 4
of REDISTRIBUTE in Figure[6) instead of using a polynomiel(x), it has no coefficients’ ...a] ,_; to
broadcast during a subsequent redistribution to anothe?’sef shareholders. Other VSS schemes (such
as Pederson’s schenie][18]) have similar difficulties.

We can verify thaBHARESVALID is true by taking advantage of the homomorphic properties of expo-
nentiation. If we exponentiate both sides of Equation (3), we obtaisaMRES VALID verification check:

g" =" (8)

1€eB

Thus, if eachy in P’ receivesy® andg®: from all i in B, they can verify that alk; were valid shares of.
Eachj accomplishes verification without learniag given our assumption about discrete logs.

4.1 Assumptions about faulty shareholders

When we redistribute the secrktin Z,, from the schemdI'p, Z,, {Z,}, ¥p} to the schemgI'p/, Z,,
{Zy}, ¥p'} with our VSR protocol, we assume at leastof the n shareholders irP and alln’ of the
shareholders iP’ are non-faulty, and up ta — m of the remaining shareholders mmay be faulty. We
denote faulty shareholders, and the values they distribute, with over-bars. A non-faulty shareholBer
distributes valid subsharésg; of its shares; to all shareholderg in P’ and broadcastg® corresponding to
k. A faulty shareholder in P may distribute invalid subsharé_% or broadcasi* not corresponding té.

We also assume we do not know whiehof then shareholders i are non-faulty. Suppose we include
a faulty shareholderin our selection of3 in I'p to participate in redistribution (BdISTRIBUTE in Figure
E). However, ifi distributesgj, one of thej will detect the presence afsince one of the verification

checks in Equationsﬂ(?) oH(S) will fail. Alternatively, ffbroadcast@_’f, all 7 will detect the discrepancy
when non-faulty old shareholders broadcgst Thus,7 must participate in the protocol without fault or
risk detection. If we detect the presenceipfve must restart redistribution with another setmefold
shareholders. Unfortunately, we cannot identifyith our protocol.

The assumption that we do not know whigh shareholders irP are non-faulty bounds the relative
values ofm andn. We assume we can detect discrepancies betwkemd ¢* broadcast by faulty and
non-faulty shareholders iR respectively. However, if we were to select a grouprofaulty shareholders
1 inadvertently, then we would be unable to detect discrepanciesiibatladcasy*. We therefore require
thatm > 5 so each authorized subdétn I'» has at least one non-faulty shareholdemif< 5, n —m
faulty shareholders if? could conspire to reconstrukt

The requirement that alt’ shareholders ifP’ are non-faulty is reasonable if we view the purpose of
our VSR protocol as one of detecting faulty behavior by shareholdéPps irhis is analogous to one of the
assumptions underlying Feldman’s VSS scheme, in which the shareholders are implicitly trusted to store
valid shares (and reject invalid shares) of a secret.

4.2 Correctness

We prove that if theSHARESVALID andSUBSHARESVALID conditions are true after the share redistribu-
tion, then the new shareholders have valid shares of the original secret. We also show that Eqations (7) and
(8) check that the two conditions are true.



Lemma 1 If the check in Equatio}8) is true, th&MARES VALID is true.

PrROOF Assume the check in Equation (8) is true. It then follows B@4&RES VALID is true from Equation
(8) and the homomorphic properties of exponentiatian.

Lemma 2 If the check in Equatiorn)7) is true, th&lwBSHARESVALID is true.
PrROOFE Proved by Feldmari[9]]

Theorem 1 (VSR theorem) For Shamir's(m, n) threshold secret sharing schefiep, Z,,, {Z,}, ¢¥p } and
the(m/,n’) schemgT'p/, Z,, {Zy}, v }, for all secretsk € Z,, and for all authorized subset$ € I'p, if

SHARESVALID and SUBSHARESVALID are true after the execution of tiREDISTRIBUTION step (Figure
B) of the VSR protocol, then all shareholdgrs all authorized subset8’ € I'p, hold valid shares ok.

PRoOOE Assume botlsHARESVALID andSUBSHARESVALID are true. Then:

k= sz-si (SHARESVALID)
icB

= Z b; Z b5 (SUBSHARESVALID)
1€B jeB!

= Z Z bib;5:5 (x(y+ 2) = xy + z2)
i€B jeB’

= Z Z Vibidij  (vy = yx)
i€B jeB’

= Zzb}bi%’ (z+y=y+x)

jeB ieB

= Z <b§sz§U> (xy—i—:rz = m(y"i‘z))
jes \ " ieB
= ) bis;  (Equation [B)

jeB’

O

5 Summary and future work

We have presented a protocol for the verifiable redistribution of secrets distributed with Shamir's secret
sharing scheme[22]. We have proven that new shareholders have valid shares after redistribution if the
SHARESVALID and SUBSHARESVALID conditions are true, and have given the corresponding verifica-
tion checks. We have shown that our protocol guards against faulty behavior bynup t@ of the old
shareholders provided that > 7. In our presentation, we have assumed that the computation of discrete
logs in a finite field is intractable, and that there exist reliable broadcast communication channels among alll
participants and private channels between every pair of participants.

As part of our future work, we will investigate ways to identify faulty old shareholders during redistri-
bution, and to relax the bounds on the number of non-faulty new shareholders. We also plan to implement
our protocol to evaluate its performance costs over non-verifiable redistribution protocols.
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