
Developing Applications for
Heterogeneous
Machine Networks:
The Durra Environment

Mario R. Barbacci, Dennis L. Doubleday,

Charles B. Weinstock, and

Jeannette M. Wing

Carnegie Mellon University

ABSTRACT: In this paper we describe Durra, a
language designed to support PMS-level program-
ming, and its runtime environment.

Users of networks of heterogeneous processors are
concerned with allocating specialized resources to
tasks of medium to large size. They need to create
processes, which are instances of tasks, allocate
these processes to processors, and specify the com-
munication patterns between processes. These
activities constitute Processor-Memory-Switch (PMS)
Level Programming, in contrast with traditional
programming activities, which take place at the
Instruction Set Processor (ISP) Level.

ThisworkissponsoredbytheU.S.DepartmentofDefense.The viewsand conclu-
sionscontainedinthisdocumentarcsolelythoseoftheauthor(s)and shouldnotbe
interpretedasrepresentingofficialpolicies,eitherexpressedorimplied,ofCarnegie
MellonUniversity,theU.S.AirForce,theDepartrncntofDefense,orthe
U.S.Government.

©Computing Systems, Vol. 2 • No. 1 • Winter 1989 7

An application or PMS-level program is written ini

! Durra as a set of task descriptions and type declara-
tions that prescribes a way to manage the resources

i of a heterogeneous machine network. The applica-_ tion describes the tasks to be instantiated and exe-
'_ cuted as concurrent processes, the types of data to

be exchanged by the processes, and the intermediate
queues required to store the data as they move from
producer to consumer processes.

The environment consists of three active com-
ponents: the application tasks, the Durra server,
and the Durra scheduler. After compiling the type
declarations, the component task descriptions, and
the application description, the application can be
executed by starting an instance of the server on
each processor, starting an instance of the scheduler
on one of the processors, and downloading the com-
ponent task implementations (i.e., the programs) to
the processors. The scheduler receives as an argu-
ment the name of the file containing the scheduler
program generated by the compilation of the appli-
cation description. This step initiates the execution
of the application.

1. Programming Heterogeneous
Machines

It is becoming commonplace to have a computing environment •
consisting of loosely-connected networks of multiple special- and
general-purpose processors. We call such an environment a
heterogeneous machine. These machines are of special interest to

!i developers of real-time, embedded applications in which many
_, concurrent, large-grained tasks or programs cooperate to process

data obtained from physical sensors, make decisions based on
these data, and send commands to control motors and other

8 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

physical devices. During execution time, these tasks are instan-
tiated as concurrent processes, running on possibly separate pro-
cessors and communicating with each other by sending messages
of different types.

Since the patterns of communication between these processes
can vary over time and the speeds of the individual processors can
differ widely, developers of applications running on a heterogene-
ous machine need to control the allocation of processors to
processes in order to meet throughput requirements. Processors
are not the only critical resource. In addition to special purpose
processors such as systolic arrays, and general-purpose worksta-
tions, the resources that must be allocated include fast switches,
data buffers with processing capabilities, etc., as illustrated in Fig-
ure 1. Currently, users of a heterogeneous machine follow the

fitch

I
Figure 1: A Heterogeneous Machine

The Durra Environment 9

same pattern of program development as users of conventional
processors: users write individual tasks as separate programs, in
the different programming languages (e.g., C, Lisp, Pascal) sup-
ported by the processors, and then hand code the allocation of
resources to their application by explicitly loading specific pro-
grams to run on specific processors at specific times.

We claim that developing software for a heterogeneous
machine is qualitatively different from developing software for
conventional processors. It requires different kinds of languages,
tools, and methodologies; and in this paper we address some of
these issues by presenting a language, Durra, and its support tools
(compiler, runtime environment, and task emulator).

2. Introduction to Durra

Durra [Barbacci & Wing 1986; Barbacci et al. 1988a] is a language

designed to support PMS-level programming. PMS stands for
_ Processor-Memory-Switch, the name of the highest level in the
B hierarchy of digital systems introduced by Bell and Newell [1971].

An application or PMS-level program is written in Durra as a set
i of task descriptions and type declarations that prescribes a way to

manage the resources of a heterogeneous machine network. The

i application describes the tasks to be instantiated and executed as
concurrent processes, the types of data to be exchanged by the
processes, and the intermediate queues required to store the data
as they move from producer to consumer processes. Because
tasks are the primary building blocks, we refer to Durra as a task-
level description language. We use the term "description
language" rather than "programming language" to emphasize that
a Durra application is not translated into object code in some
kind of executable (conventional) "machine language" (the
domain of the Instruction Set Processor or ISP level introduced in

Bell and Newell [1971]). Instead, a Durra application is a
description of the structure and behavior of a logical machine to
be synthesized into resource allocation and scheduling directives,
which are then interpreted by a combination of software,
firmware, and hardware in each of the processors and buffers of a

10 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

heterogeneous machine (the domain of PMS). This is the transla-
tion process depicted in Figure 2a.

\ /
V

]comt_tler]
Schedule

Conectivlty
Task names

Transformations

•]_ Get/Put data']Scheduler Test port

I _ Terminate task
Messages

Start task

Allocate queue
Shutdown

Figure 2a: Compilation of a PMS-Leve| Program Graph

2.1 Scenario for Developing an Application

We see three distinct phases in the process of developing an appli-
cation using Durra: the creation of a library of tasks, the creation
of an application using library tasks, and the execution of the
application. These three phases are illustrated in Figure 2b.

During the first phase, the developer of the application writes
descriptions of the data types (image buffers, map database
queries, etc.) and of the tasks (sensor processing, feature recogni-
tion, map database management, etc.).

The Durra Environment 11

L_ \ Durra \ I \/ Compiler / "L._I / MachineHeter°gene°us

Application _/X_ Scheduler _,_Description "program"

!

I!

Libraryof Task
, Libraryof Task Implementations
Ii_ Descriptions (C,Lisp,Ada,etc.)
I (Durra)
i

i Figure 2b: Developing a Durra Application

il Type declarations are used to specify the format and proper-
ties of the data that will be produced and consumed by the tasks
in the application. As we will see later in this section, tasks corn-

; municate through typed ports; and for each data type in the appli-
'i cation, a type declaration must be written in Durra, compiled, and

entered in the library.
Task descriptions are used to specify the properties of a task

implementation (a program). For a given task, there may be
many implementations, differing in programming language (e,g., C
or assembly language), processor type (e.g., Motorola 68020 or
DEC VAX), performance characteristics, or other attributes. As in
the case of type declaration, for each implementation of a task, a
task description must be written in Durra, compiled, and entered
in the library. A task description includes specifications of a task

12 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

t

implementation's performance and functionality, the types of data
it produces or consumes, the ports it uses to communicate with
other tasks, and other miscellaneous attributes of the implemen-
tation.

During the second phase, the user writes an application
description. Syntactically, an application description is a single
task description and could be stored in the library as a new task.
This allows writing of hierarchical application descriptions. When
the application description is compiled, the compiler generates a
set of resource allocation and scheduling commands or instruc-
tions to be interpreted by the scheduler.

During the last phase, the scheduler loads the task implemen-
tations (i.e., programs corresponding to the component tasks) into
the processors and issues the appropriate commands to execute
the programs. The operation of the scheduler and the other run-
time environment components are described in the following sec-
tion.

2.2 Task Descriptions

Task descriptions are the building blocks for applications. Task
descriptions include the following information (Figure 3): (1) its
interface to other tasks (ports); (2) its attributes; (3) its functional
and timing behavior; and (4) its internal structure, thereby allow-
ing for hierarchical task descriptions.

task task-name
ports -- Used for communicationbetween

-- a process and a queue
port-declarations

attributes-- Usedto speci fy miseet taneous
-- properties of the task

attribute-value-pairs

behavior-- Used to specify functional and
-- timing behavior of the task

requires predicate
ensures predicate
timing timing expression

structure -- A graph describing the
-- internal structure of the task

process-declarations -- Declaration of
-- instances of internal subtasks

TheDurraEnvironment 13

bind-declarations -- Mapping of internat
-- ports to this task's ports

queue-declarations-- Means of
--communication between internal processes

reconfiguration-statements -- Oynami c
-- modifications to the structure

end task-name

Figure 3: A Template for Task Descriptions

Interface information - This portion defines the ports of the
processes instantiated from the task.

ports
in1: in heads;
out1, out2: out taits;

A port declaration specifies the direction and type of data
moving through the port. An in port takes input data from a
queue; an out port deposits data into a queue.

Attribute Information- This portion specifies miscellaneous

properties of a task. Attributes are a means of indicating pragmas
or hints to the compiler and/or scheduler. In a task description,

the developer of the task lists the actual value of a property; in a
task selection, the user of a task lists the desired value of the pro-

perty. Example attributes include author, version number, pro-
gramming language, file name, and processor type:

attributes
author = "jmw";
implementation= "program_name";
Queue_Size = 25;

Behavioral Information - This portion specifies functional and
timing properties about the task. The functional information part

of a task description consists of a pre-condition on what is
required to be true of the data coming through the input ports,

and a post-condition on what is guaranteed to be true of the data
going out through the output ports. The timing expression
describes the behavior of the task in terms of the operations it

performs on its input and output ports. For additional informa-

tion about the syntax and semantics of the functional and timing
behavior description, see the Durra reference manual [Barbacci &
Wing 1986].

14 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

Structural Information - This portion defines a process-queue
graph (e.g., Figure 2a) and possible dynamic reconfiguration of the
graph. Three kinds of declarations and one kind of statement can
appear as structural information. This is illustrated in Figure 4,
which shows the Durra (i.e., textual) version of the example in

Figure 2a.

task ALV

ports
in1, in2: in map_database;
in3: in destination;

structure
process

navigator: task navigator
attributes author = "jmw";
end nav i gator ;

road_predictor: task road_predictor;
landmark_predictor : task

l andmark_pred i ctor ;
• • • • • • • •

ct_process: task corner_turning;
queue

ql: navigator.out1 > > road_predictor.in2;
q2: navigator.outZ > > tandmark_predictor.inl;

q12:position_computation.out2 > >
landmark_predictor, in2;

bind
in1 = road_predictor.in1;
in2 = navigator,in1;
in3 = navigator.in2;

end ALV;

Figure 4: Structural Information

A process declaration of the form

process_name : task task_selection

creates a process as an instance of the specified task. Since a
given task (e.g., convolution) might have a number of different
implementations that differ along different dimensions such as
algorithm used, code version, performance, processor type, the
task selection in a process declaration specifies the desirable
features of a suitable implementation. The presence of task selec-
tions within task descriptions provides direct linguistic support for
hierarchically structured tasks.

The Durra Environment 15

A queue declaration of the form

queuename]queue_size]: port_name_ 1 >
data_transformation > port_name_2

creates a queue through which data flow from an output port of a

process (port_name_l) into the input port of another process
(port_name_2). Data transformations are operations applied to

data coming from a source port before they are delivered to a des-
tination port.

A port binding of the form

task_port = process_port

maps a port on an internal process to a port defining the external
interface of a compound task.

A reconfiguration statement of the form

if condition then
remove process-names
process process-declarations
queues queue-declarations

end if;

is a directive to the scheduler. It is used to specify changes in the

current structure of the application (i.e., process-queue graph) and
the conditions under which these changes take effect. Typically, a
number of existing processes and queues are replaced by new
processes and queues, which are then connected to the remainder

of the original graph. The reconfiguration predicate is a Boolean

expression involvingtime values, queue sizes, and other informa-
tion available to the scheduler at runtime.

, 3. The Durra Runtime Environment
,_.

There are three active components in the Durra runtime environ-

ment: the application tasks, the Durra server, and the Durra

scheduler. Figure 5 shows the relationship among these com-
ponents.

After compiling the type declarations, the component task

descriptions, and the application description, as described

16 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

,

d
scheduler run task /i server

-shutdown "execrestart

/ I"task1\

init processor1
processor3 finish

get_portid
geUypeid
send_port

get_port .,_
testjnput_port server
test_output_port

"exec"
task2

processor2

Figure 5: The Durra Runtime Environment

previously and illustrated in Figure 2, the application can be exe-
cuted by performing the following operations:

1. The component task implementations (section 3.3) must be
stored in the appropriate processors, in some directory
known to the Durra servers and scheduler.

2. An instance of the Durra server (section 3.2) must be started

in each processor.

3. The scheduler (section 3.1) must be started in one of the
processors. The scheduler receives as an argument the name
of the file containing the scheduler program generated by the
compilation of the application description. This step ini-
tiates the execution of the application.

The Durra Environment 17

In the remainder of this section, we sketch the three com-
ponents of the runtime environment: the scheduler, the server,
and the application task. For additional details, see [Barbacci et
al. 1988b].

3.1 The Scheduler

The scheduler is the part of the Durra runtime system responsible
for starting the tasks, establishing communication links, and moni-
toring the execution of the application. In addition, the scheduler
implements the predefined tasks (broadcast, merge, and deal) and
the data transformations described in [Barbacci & Wing 1986].
The scheduler is invoked with the name of the file containing the
scheduler instructions generated by the Durra compiler. These
instructions describe the programs to be executed as concurrent
processes, the ports and queues used for communication between
these processes, the data types exchanged between these tasks, and
the possible reconfigurations to the structure of the application.
These recionfigurations consist of elimination of existing
processes, activitation of new processes, and conection of these
new processes to the remaining network.

In the current implementation, the scheduler runs under UNIX
and the servers and task applications run under UNIX or VMS but
are easily portable to any operating system suporting the TCP/IP
protocol. The scheduler takes advantage of UNIX communication
primitives to allocate sockets for receiving remote procedures calls
from the application tasks, as described in section 3.3.

3.2 The Server

The server is responsible for starting tasks on its corresponding
processor, as directed by the scheduler. One instance of the server
must be running on each processor that is to (potentially) execute
Durra tasks.

When a server begins execution, it listens in on a predeter-
mined socket for messages from the scheduler. Once a communi-
cation channel is open, the scheduler can send to the server
requests to start and kill user tasks.

18 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

3.3 Application Tasks

The component task implementations making up a Durra applica-
tion can be written in any language for which a Durra interface
has been provided. As of this writing, there are Durra interfaces
for both C and Ada (see [Barbacci et al. 1988b] for details).

When a task is started, the scheduler supplies it, via the server,
with the following information: the name of the host on which
the scheduler is executing, the UNIX socket on which the
scheduler is listening for communications from the task, and a
small integer to be used in identifying the task. These parameters
are necessary to establish proper communication with the
scheduler.

Application tasks use the interface to communicate with other
tasks. From the point of view of the task implementation, this
communication is accomplished via procedure calls, which return

only when the operation is completed. The interface provides
remote procedure calls (RPCs) to initialize and terminate com-
munications with the scheduler, to request port identifiers, to send
and receive data on specific ports, and to test the contents of the
queues attached to the task ports.

Using this collection of scheduler calls, application tasks typi-
cally would exhibit the following behavior:

1. Establish communication with the scheduler.

2. Request port identifiers. These are tokens or capabilities
that uniquely identify the ports.

3. Send and receive data.

4. Break communication with the scheduler.

This behavior is illustrated by an example application in the next
section.

4. A Durra Example

This section contains a complete example of a Durra application.
It consists of two type declarations, three component task

The DurraEnvironment 19

descriptions (and their implementations), the application descrip-
tion, and the scheduler instructions produced by the Durra com-
piler.

l+as I
+

Figure 6: Application Structure

The example (Figures 6 and 7) illustrates the use of a
predefined task, broadcast, which is implemented directly by the
scheduler. In this application, one task ("taska") is sending out

strings of data, and the broadcast buffer task is sending it on to
two other tasks ("taskb" and "taskc"). The application descrip-
tion (cements all of the component tasks together.

type byte is size 8;

type string is array of byte;

a - Type Declarations

task taska

ports
out1: out string;

attributes

processor = vax;
implementation = "source_task";

end taska;

task taskb
ports

!i in1: in string;
attributes

ii processor = vax;
+_ implementation = "sink_task";
_+ end taskb;

20 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

task taskc

ports
in1: in string;

attributes

processor = vax;
implementation = "sink_task";

end taskc;

b - Component Task Descriptions

task main
structure

process pl: task taska;
p2: task taskb;
p3: task taskc;
pb: task broadcast

ports in1: in string;
out1, out2: out string;

end broadcast;

queues qlb: pl.outl >> pb. inl;
qb2: pb.outl >> p2.inl;
qb3:pb.out2 >> p3.inl;

end main;

c - Application Description

Figure 7: Durra Type Declarations and Task Descriptions

"Byte" is the basic type (a scalar-type 8 bits long). "String" is
an unbounded sequence of bytes.

"Taska" has a single output port, "out 1," which produces

strings. It can run on any VAX processor and is implemented by
the program "source_task." "Taskb" and "taskc" both have a sin-
gle input port, "in 1," which consume strings. These two tasks are
implemented by the program "sink_task."

Task "main" is the application description. It specifies the
three tasks that make up the application, plus an instance of the
predefined task broadcast. The structure part specifies the inter-
connection of those four tasks.

After all of the above files are compiled, the Durra compiler

generates a file with instructions to the scheduler. See section 3.1
for further information about the scheduler instructions. For this

example application, the compiler produces the scheduler instruc-
tions shown in Figure 8.

The Durra Environment 21

(buffer_task TOP RAIN.PB BROADCAST)
(port_allocate TOP RAIN.P1 OUT1 STRING out)
(port_allocate TOP MAIN.P2 IN1 STRING in)
(port_allocate TOP MAIN.P3 IN1 STRING in)
(port_allocate TOP HAIN.PB IN1 STRING in)
(port_allocate TOP NAIN.PB OUT1 STRING out)
(port_allocate TOP HAIN.PB OUT2 STRING out)
(queue_allocate TOP MAIN Q1B P1 OUT1 PB IN1 O)
(queue_allocate TOP RAIN QB2 PB OUT1 P2 IN1 O)
(queue_allocate TOP MAIN QB3 PB OUT2 P3 IN1 O)
(task_attribute TOP RAIN SOURCE"taskmain.durra.TREE")
(task_attribute TOP RAIN.P1 IMPLEMENTATION "source_task")
(task_attribute TOP MAIN.P1 PROCESSOR"VAX")
(task_attribute TOP MAIN.P1 SOURCE "taska.durra.TREE")
(task_attribute TOP MAIN.P2 IMPLEMENTATION "sink_task")
(task_attribute TOP MAIN.P2 PROCESSOR"VAX")
(task_attribute TOP MAIN.P2 SOURCE"taskb.durra.TREE")
(task_attribute TOP MAIN.P3 IMPLEMENTATION "sink_task")
(task_attribute TOP MAIN.P3 PROCESSOR"VAX")
(task_attribute TOP RAIN.P3 SOURCE "taskc.durra.TREE")
(type BYTE SIZE 8 8)
(type STRING ARRAY BYTE)

Figure 8: Scheduler Instructions

The buffer_task instruction indicates which buffer task to use
as process "pb." Buffer tasks are those tasks predefined in the
language (broadcast, merge, and deal).

The port_allocate instructions set up all the ports in the appli-
cation. Recall that port names are relative to a process and there-
fore do not have to be unique across the application.

The queue_allocate instructions set up all the queues in the
application. For instance one of the instructions allocates the
queue named "Q 1B," taking input from port "OUT2" of process
"MAIN_PI," and outputting to port "INI" of process "MAIN_PB."

The queue has the default queue size.
The task_attribute instructions contain the various attributes

(name/value pairs) specified in the task descriptions.
The task_load instructions associate the program to run (the

task implementation), the processor class, and the process name.
The type instructions define the application data types "BYTE"

and "STRING."

Finally, we complete the example by listing the task implemen-
tations for "source_task" and "sink_task." These are written in
Ada and are shown in Figures 9 and 10. The interesting

22 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

statements are the calls to the procedures defined in package
"interface." This package implements the remote procedure calls
that allow user tasks written in Ada to communicate with the
Durra scheduler.

with System;
with Interface;
procedure source_task is

--I A source task has one output port, "out1".
--I Its behavior is to Loop
--I sending 100 strings to out1.

max_message_size: constant integer := 1000;
message_buffer: string(1..max_message_size) :=

(others => ' ,);
outl_port_id, outl_bound: positive;
outl_type_id, outl_type_size: naturaL;

begin
Interface.lnit;

Interface.Get_PortlD("outl", outl_port_id,

out1_bound, outl_type_size);

Interface.Get_TypeID("string", outl_type_id,

out1_type_size);
for i in I..100

loop

interface.Send_Port(outl_port.id,
message_buffer(1)'address,

max_message_size, --I the real thing

outl_type_id);

end loop;
Interface. Finish;

end source_task;

Figure 9: Ada Task Implementation ofsource_task

with System;
with Interface;
procedure sink_task is

--I A sink task has one input port, "in1".
--I Its behavior is to loop
--I receiving 100 strings from in1.

max_message_size: constant integer := 10000;
message_buffer: string(1..max_message_size);
inl_port_id, inl_bound: positive;
inl_type_id, inl_type_size: natural;
actual_message_type_id, actual_message_size: natural;

The Durra Environment 23

begin
Interface.lnit;
Interface.Get_PortID("inl", in1_port_id, inl_bound,

in1_type_size);
Interface.Get_TypeID("string", inl_type_id,

inl_type_size);
for i in I..100

loop
Interface.Get_Port(inl_port-id,

message_buffer(1)'address,
actual_message_size,
actual_message_type-id);

end loop;
Interface.Finish;

end sink_task;

Figure 10: Ada Task Implementation ofsink_task

5. Debugging Tools

Testing and debugging programs running on a heterogeneous
machine present many of the same problems that are found with
any collection of cooperating processes running asynchronously.
In our initial implementation, the problems are alleviated some-
what by the (logically) central scheduler, which controls the pas-
sage of information between processes. Nevertheless, special-
purpose tools must be provided to facilitate testing and debugging.

The primary debugging facility provided by the Durra run-
time environment is the scheduler itself. It provides input and

output ports, just like the normal processes, but these ports are
used to communicate with the user. Specifically, through the use

of these ports, the user can do the following:

• Watch the flow of data through queues.

• Observe the status of each process.

• Inspect and manipulate data coming into or going out of
specific ports.

• Force reconfiguration (when reconfiguration is implemented)

Of course, Durra tasks will actually do the communication; and
we expect to develop more elaborate debugging facilities using the
scheduler's ports and a flexible window manager, allowing the user
to watch several processes at once.

24 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

In addition to the debugging facilities built into the scheduler,
a program that acts as a "universal" task emulator is available for
building prototypes of applications. This program, MasterTask
[Barbacci 1988], can emulate any task in an application by inter-
preting the timing expression describing the behavior of the task,
performing the input and output port operations in the proper
sequence and at the proper time.

MasterTask is useful to both application developers and task

developers. Application developers can build early prototypes of
an application by using MasterTask as a substitute for task imple-
mentations that have yet to be written. Task developers can
experiment with and evaluate proposed changes in task behavior
or performance by rewriting and reinterpreting the corresponding
timing expression.

A Durra timing expression can contain concurrent events as
well as loops and guards that block execution until some condition
is met (e.g., some amount of time has elapsed since the start of
the application, an input queue has a given number of data ele-
ments). When MasterTask starts, it reads the Durra timing
expression syntax tree for the task it wants to emulate and assigns
a light-weight process (an Ada task object in the current imple-
mentation) to each node of the tree. This process is responsible
for performing one or more node-dependent operations: 1) exe-
cute a queue operation (including 2) evaluate a guard expression
(including 3) direct the execution of the processes responsible for
the subtrees rooted at this node.

Generally, MasterTask exhibits the same behavior as a regular
Durra task implementation, issuing the same type of remote pro-
cedure calls to the scheduler (see [Barbacci et al. 1988b] for a
description of the operations).

6. Related Work

Two other languages/systems, DICON [Lee & Goldwasser 1985]
and CONIC [Magee & Kramer 1983], can be considered as PMS-
level programming languages similar to Durra. Lee and
Goldwasser's DICON is a configuration language used to glue
together a set of sequential programs written in Prolog or C to

The Durra Environment 25

form a distributed program. DICON allows a close coupling of the
processes, including passing of pointers to structured data (lists,
trees, etc.), which are then used by the interprocess communica-
tion servers to retrieve and copy the data. Programs are not as
independent from each other as they are in Durra (e.g., according
to [Lee & Goldwasser 1985], C programs need to know if they are
communicating with a Prolog program and are restricted in the
types of data they can send or receive). A DICON configuration
specification includes process specifications but apparently without
the full flexibility of Durra to use various types of function, tim-
ing, or attribute information to characterize and retrieve library
tasks. The DICON compiler attempts to find a nearly optimal pro-
cess allocation and scheduling strategy for a given configuration
specification. This is in contrast to Durra, in which the allocation
and scheduling strategies are under control of the application
developer, including the possible dynamic reconfiguration of the
logical network.

Magee and Kramer address the problem of dynamic
reconfiguration of real-time systems in the design of the CONIC
language. CONIC restricts tasks to be programmed in a fixed
language (an extension to Pascal with message passing primitives)
running on homogeneous workstations.

Belzile et al. [1986] introduce RNET, a facility for building dis-
tributed real-time programs. An RNET program conzists of a
configuration specification and the procedural code, which is com-
piled, linked with a run-time kernel, and loaded onto the target
system for execution. The language provides facilities for specify-
ing real-time properties, such as deadlines and delays that are used
for monitoring and scheduling the processes. These features place
RNET at a lower level of abstraction, and thus RNET cannot be
compared directly to Durra. Rather, it can be considered as a
suitable language for developing the schedulers required by Durra
and other languages in which the concurrent tasks are treated as
black boxes.

Mamrak et al. [1982] address the need for transforming data
exchanged between heterogeneous processors. They describe a
system based on canonical representations of data used as an
exchange format and the desirable properties of such canonical
representations. Durra is not concerned with specific data

26 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

formats; rather, it provides a mechanism for invoking arbitrary
data transformations as needed. In other words, Durra operates
above the level of the canonical representation, if any, and
assumes only that data comes in blocks of variable length. Code
to transform these blocks has to be provided by the users. How-
ever, Mamrak et al. describe a technique for providing a uniform
frontend to tools in a distributed environment. This and other

similar facilities could be adopted by the application developers
without difficulty as Durra operates at a higher level of
abstraction.

7. A Note on Software Development
Methodologies

A great deal of effort has been devoted to the development of
improved software development process models. As described in
Boehm [1988], models have evolved from the early "code-and-fix"
model, through the "stagewise" and "waterfall" models (which
attempt to bring order to the process by recognizing formal steps
in the process), through the "evolutionary" and "transform"
models (which attempt to address the need for experimentation,
refinement of requirements, and automation of the code genera-
tion phase.) The spiral model of the software process has evolved
over several years at TRW, based on experience on a number of
large software projects and, as indicated by Boehm, accommo-
dates most previous models as special cases.

The spiral model is basically a refinement of the classical
waterfall model, providing for successive applications of the origi-
nal model (requirements, design, development, testing, etc.) to
progressively more concrete versions of the final product.

One of the advantages of this model is that it allows the
identification of areas of uncertainty that are significant sources of
risk. Once these critical areas are identified, the spiral model
allows for the selective application of an appropriate development
strategy to these risk areas first. Thus, while at first sight the
spiral model looks like no better than the waterfall model, a key
difference is that the spiral allows the designers to concentrate in
selected problem areas rather than following a predetermined

The Durra Environment 27

order. Once the higher-risk problem has been taken care off, the
next higher-risk area can be attacked, and so on.

To be successful, any approach based on successive refine-
ments, such as the spiral model, must be supported by tools
appropriate to the task on hand. Users of the spiral model must
be able to selectively identify high-risk components of the product,
establish their requirements, and then carry out the design, cod-
ing, and testing phases. Notice that it is not necessary that this
process be carried out through the testing phase - higher-risk com-
ponents might be identified in the process and these components
must be given higher priority, suspending the development process
of the formerly riskier component.

The PMS-level programming paradigm we have described in
this paper fits very naturally this style of software development.
Although we don't claim to have solved all problems or identified
all the necessary tools, we would like to suggest that a language
like Durra would be of great value in the context of the spiral
model. It would allow the designer to build mock-ups of an appli-
cation, starting with a gross decomposition into tasks described by
templates specified by their interface and behavioral properties.
Once this is completed, the application can be emulated using
MasterTask as a stand-in for the yet-to-be written task implemen-
tations.

The result of the emulation would identify areas of risk in the
form of tasks whose timing expressions suggest are more critical

• or demanding. In other words, the purpose of this initial emula-
tion is to identify the component task more likely to affect the
performance of the entire system. The designers can then experi-
ment by writing alternative behavioral specifications for the
offending task until a satisfactory specification (i.e., template) is
obtained. Once this is achieved, the designers can proceed by
replacing the original task descriptions with more detailed tem-
plates, consisting of internal tasks and queues, using the structure
description features of Durra. These more refined application
descriptions can again be emulated, experimenting with alterna-
tive behavioral specifications of the internal tasks, until a satisfac-
tory internal structure (i.e., decomposition) has been achieved.
This process can be repeated as often as necessary, varying the
degree of refinement of the tasks, and even backtracking if a

28 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

•dead-end is reached. It is not necessary to start coding a task
until later, when its specifications are acceptable, and when it is
decided that it should not be further decomposed.

Of course, it is quite possible that a satisfactory specification
might be impossible to meet and a task implementation might
have to rejected. The designers would then have to backtrack to
an earlier, less detailed design and try alternative specifications, or
even alternative decompositions of a parent subsystem. This is
possible because we are following a strictly top-down approach.
The effect of a change in an inner task would be reflected in its
impact on the behavioral specifications of a "parent"task. The
damage is, in sense, contained and can not spread to other parts
of the design.

8. Conclusions

PMS-level programming, as implemented by Durra, lifts the level
of programming at the code level to programming at the
specification level. What then constitutes a specification (e.g.,
Durra task description) and its satisfaction (e.g., Durra task selec-
tion) determines the power of programming at the specification
level. If a specification is just a list of filenames and their version
numbers, then a "program" is simple, and programming is not
very powerful: selection of programs from a library indexed by
filename is trivial. If a specification includes semantic informa-

tion, e.g., functional behavior of a task, then programming is quite
complex: selection of programs may involve theorem-proving
capability. We designed Durra with the ultimate goal of exploit-
ing the rich semantic information included in a task description.
For our prototype implementation, however, we have sacrificed
semantic complexity in favor of simpler task selection based on
interface and attribute information. We gain the advantage of

being able immediately to instantiate our general idea of PMS-
level programming with a real environment (Durra compiler, run-
time system, and task emulator) that runs on a heterogeneous
machine (various kinds of workstations connected via an Ether-
net). Hence instead of a paper design, we can claim the existence
of a working system.

The Durra Environment 29

Appendix A:
The C Interface Specification

/* Header file defining Durra Interface operations */

/* Define short external names for linker */

#define get_portid getpid
#define get_typeid gettid
#define get_port getprt
#define send_port sndprt
#define test_input_port tstinprt
#define test_output_port tstoutprt

extern void init();
/* Synopsis: (Open a communications channel between the

Durra Scheduler and an application task.)
void init(initname, -- name of the application task

inithost, -- host where scheduler is running
initport, -- address of the socket where the

-- Scheduler will be listening
-- for traffic

initidentity, -- ID by which task is known
-- to Scheduler

initdebug); -- Debugging level
char *initname;
char *inithost;
char *initport;
char *initidentity;
char *initdebug;

extern void finish();
/* Synopsis: (Inform the Scheduler that an application

task is terminating.)

-- No Parameters
*/

extern void get_portid();
/* Synopsis: (Return the unique ID, the associated

queue size bound, and the data size
expected for the specified port.)

void get_portid(name,
id,
bound,
size)

char *name;
int *id, *bound, *size;

*/

30 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

extern void get_typeid();
/* Synopsis: (Return the Scheduler-assigned ID and size

(in bytes) of the specified data type.)
void get_typeid(name,

typeid,
size)

char *name;
int *typeid, *size;

*/

extern void send_port();
/* Synopsis: (Send "count" bytes of data to the port

with the specified ID.
If "ty" is nonzero, then the data is of
the type with typeid "ty",
otherwise the type is unspecified.)

void send_port(id,
data,
count,
ty)

int id,count,ty;
char *data;

*/

extern void get_port();
/* Synopsis: (Get "count" bytes of data (or the actual

number of bytes sent, if it is less)
from the port with the specified ID.
If "ty" is nonzero, then the data is of
the type with typeid "ty", otherwise the
type is unspecified.)

void get_port(id,
data,
count,
ty)

int id;
int *ty,*count;
char *data;

*/

extern int test_input_port();
/* Synopsis: (Return zero if a get_port from the

specified port will block; otherwise
return the positive number indicating
the number of free spaces in the
associated queue. Also return the type
of the next element in next_type,
and it's size in next_size)

int test_input_port(id,next_type,next_size)
int id,*next_type,*next_size;

*/

The Durra Environment 3 1

extern int test_output_port();
/* Synopsis: (Return zero if a send_port to the

specified port will block; otherwise
return the positive number indicating
the number of free spaces in the
associated queue.)

int test_output_port(id)
int id;

*/

! '

32 M.R. Barbacci, D. L. Doubleday, C. B. Weinstock, and J. M. Wing

Appendix B:
The Ada Interface Specification

with system; use system;

package Interface is

-- Durra Scheduler Interface (Low Level)

-- This package provides the interface to the
-- Durra scheduler for tasks written in Ada.
i--

-- The init_* variables are the parameters passed
-- by the server when a task is initialized.
-- The server in turn gets them from the scheduler.

-- REVISION HISTORY

-- 01/03/88 mrb Package spec created.
-- 06/13/88 dd Test_Port expanded to separate
-- routines for

-- input and output ports.
-- 07/5/88 dd Constant environment names
-- changed to function calls.

function User_Task_Name return STRING;
function Scheduler_Host return STRING;
function Scheduler_Port return STRING;
function User_Process_ID return STRING;
function Scheduler_Debug_Level return STRING;
function User_Source_Parameter return STRING;

procedure Finish;

procedure Get_Port (Port_ID : in POSITIVE;
Data : in System.Address;

Data_Size : out NATURAL;

Type_ID : out NATURAL);

procedure Get_Portld (Port_Name : in STRING;
Port_ID : out POSITIVE;

Queue_Bound : out POSITIVE;

Data_Size : out NATURAL);

procedure Get_Typeld (Type_Name : in STRING;
Type_ID : out NATURAL;

Type_Size : out NATURAL);

procedure Init;

The Durra Environment 33

procedure Send_Port (Port_ID : in POSITIVE;
Data : in System.Address;
Data_Size : in NATURAL;
Type_ID : in NATURAL);

procedure Test_Input_Port (Port_ID : in POSITIVE;
Type_of_Next_Input : out NATURAL;
Size_of_Next_Input : out NATURAL;
Inputs_in_Queue : out NATURAL);

procedure Test_Output_Port (PoPt_ID : in POSITIVE;
Spaces_Available : out NATURAL);

procedure Raise_Signal (Signal_Number : in NATURAL);

procedure Safe;

end Interface;

34 M.R. Barbacci,D. L.Doubleday,C. B.Wcinstock,and J.M. Wing

References

M. R. Barbacci, MasterTask: The Durra Task Emulator, Technical
Report CMU/SEI-88-TR-20, Software Engineering Institute, Carne-
gie Mellon University, July, 1988.

M. R. Barbacci, D. L. Doubleday, and C. B. Weinstock, The Durra Run-
time Environment, Technical Report CMU/SEI-88-TR-18, Software
Engineering Institute, Carnegie Mellon University, July, 1988b.

M. R. Barbacci, C. B. Weinstock, and J. M. Wing, Programming at the
Processor-Memory-Switch Level, in Proceedings of the lOth Inter-
national Conference on Software Engineering, Singapore, April,
1988a.

M. R. Barbacci and J. M. Wing, Durra: A Task-Level Description
Language, Technical Report CMU/SEI-86-TR-3, Software Engineer-
ing Institute, Carnegie Mellon University, December, 1986.

C. G. Bell and Allen Newell, Computer Structures: Readings and Exam-
pies, New York: McGraw-Hill Book Company, 1971.

C. Belzile, M. Coulas, G. H. McEwen, and G. Marquis, RNET: A Hard
Real Time Distributed Programming System, in Proceedings of the
1986 Real-Time Systems Symposium, pages 2-13, IEEE Computer
Society Press, December, 1986.

Barry W. Boehm, A Spiral Model of Software Development and
Enhancement, Computer 21(5), May, 1988.

I. Lee and S. M. Goldwasser, A Distributed Testbed for Active Sensory
Processing, in 1985 International Conference on Robotics and Auto-
mation, pages 925-930, IEEE Computer Society Press, March,
1985.

J. Magee and J. Kramer, Dynamic Configuration for Distributed Real-
Time Systems, in Proceedings of the 1983 Real-Time Systems Sym-
posium, pages 277-288, IEEE Computer Society Press, December,
1983.

S. A. Mamrak, H. Kuo, and D. Soni, SuPporting Existing Tools in Distri-
buted Processing Systems: The Conversion Problem, in Proceed-
ings of the 3rd International Conference on Distributed Computing
Systems, pages 847-853, IEEE Computer Society Press, October,
1982.

[submitted Nov. 14, 1988; revisedJan. 19, 1989;accepted Jan. 23, 1989]

The Durra Environment 35

