
STS Infrastructural considerations

Christian Chiarcos

chiarcos@uni-potsdam.de

Infrastructure

• Requirements

• Candidates

– standoff-based architecture (Stede et al. 2006, 2010)

– UiMA (Ferrucci and Lally 2004)

– RDF-based architecture (Hellmann 2010, Hellmann et al. 2012)

• Comparison

Requirements

• Flexibility

– support all necessary data structures, hierarchical,
and relational

• Interoperability

– structural („syntactic“)

• common exchange format for all modules

– conceptual („semantic“)

• well-defined data categories

• clearly specified means to address them

Requirements

• Availability

– Can we build upon an existing architecture ?

• Web Services

– Semantic modules using large knowledge bases
should operate on their own servers

• Efficient interchange format

– Easy to parse, merge and write

• Performance

1. Standoff-based architecture

• e.g., SuMMAR/MOTS (Stede et al. 2006, 2010)

– pipeline architecture for high-quality text
summarization
• syntax, coreference, text structure, causal markers, etc.

– standoff
• output of different modules to be combined

• these may also run in parallel

– exchange format PAULA
• standoff XML, derived from early (2004) drafts for the

LAF

1. Architecture

Layout Structure

and Metadata

Extraction

Text Structure

Extraction

Tokenization and

Sentence Boundary

Detection

Syntactical Analysis

(Connexor)

Structure Weight

Calculation

Discourse Marker

Annotation

Term Weight

Calculation

Treetagger

Topic Segmentation

Number and Time

Annotation

Coreference

Analysis

(Rosana)

Preprocessing

Modules

Flexible Modules

flexible modules can be arranged in any

order in the pipeline or be processed non-

sequentially
 standoff XML as common interchange format

Merging

Summary

Calculation

Graphical

Representation

Final Modules

1. Summarization pipeline

Preprocessing

Modules

Flexible Modules

(selection)

Final Modules

Layout Structure

and Metadata

Extraction

Text Structure

Extraction

Tokenization and

Sentence Boundary

Detection

Syntactic Analysis

(Connexor)

Term Weight

Calculation

Coreference

Analysis

(Rosana)

Merging

Summary

Calculation

Graphical

Representation

Topic Segmentation

Robust

Morphosyntactic

Analysis

(TreeTagger)

1. A fragment

Layout Structure

and Metadata

Extraction

Text Structure

Extraction

Tokenization and

Sentence Boundary

Detection

Term Weight

Calculation

???

Merging

Summary

Calculation

Graphical

Representation

Preprocessing

Modules

Flexible Modules

Final Modules

Topic Segmentation

Robust

Morphosyntactic

Analysis

(TreeTagger)

PAULA

Syntactic Analysis

(Connexor)

Coreference

Analysis

(Rosana)

Transforming Rosana

output to PAULA

PAULA
Transforming relevant PAULA

annotations to Connexor input format

Merging multiple annotation

layers in one PAULA project

one single PAULA project

comprising annotations from

different modules

1. Standoff XML

• advantages

– modularization

– trivial merge and split operations for annotations
of the same document

• add another file to the annotation project

– clear conceptual separation of annotations

• disadvantages

– modules exchange information through XML

• relatively slow

2. UiMA (Ferruci and Lallas 2004)

• Unstructured Information Management
Architecture

• Industry-scale architecture for NLP pipelines

– active community, good support

• Relatively generic data model with different
realizations

– JAVA Objects, XML, others

2. UiMA

• Wrappers for various NLP tools available

• input and output representations of modules
(„CAS consumers“) defined by annotation
types

– e.g., a part-of-speech tag inventory

– different annotation type systems may not be
compatible with each other

=> limited interoperability

2. UiMA

• advantages

– maturity

• rich technological ecosystem, active community

– efficiency

• supports, e.g., information exchange through JAVA
objects

• disadvantages

– limited interoperability only

– how to implement a distributed architecture ?

2. UiMA extensions

• Egner et al. (2007)
– UiMA Grid, distributed large-scale text analysis

• Verspoor et al. (2009)
– Abstracting the types away from a UiMA type system

– Ontologies instead of annotation types
• improved conceptual (`semantic‘) interoperability

• less efficient indexing

• These extensions would have to be
reimplemented for an STS pipeline
– AFAIK, not publicly available

3. RDF-based architecture

• Hellmann (2010), Hellmann et al. (2012)
– NLP Interchange Format (NIF)

• http://nlp2rdf.org/nif-1-0

– NLP2RDF: RDF wrappers for various tools
• http://nlp2rdf.org

• provides NLP analyses for processing with Semantic
Web tools

– applied in a large-scale European research project
(LOD2)
• adopted by several external research groups

3. RDF

• Resource Description Framework

– W3C standard

– formalizes labeled directed multigraphs

(like XML standoff formats)

– sublanguages define specialized vocabularies

• RDF Schema: concept hierarchies

• SKOS: semi-structured terminology bases

• OWL: ontologies

3. RDF

• different linearizations
– XML (verbose), Turtle (compact), others

• rich technological ecosystem
– data bases („triple stores“)

– APIs and (syntactic) validators

– query language SPARQL

• OWL/DL
– despription logics

– defining and checking constraints (axioms)
=> formally defined user-specific data types

3. NLP2RDF

3. RDF

• advantages

– rich ecosystem, large and active community

– native support for distributed processing

– direct integration with LOD resources

• may be relevant for STS

– conceptual interoperability through linking with
terminology repositories

Comparison

standoff XML UiMA NLP2RDF

flexibility + (+) +

flexibility:
+ support for all necessary data structures
(+) UiMA: multiple ways to represent trees

Comparison

standoff XML UiMA NLP2RDF

flexibility + + +

structural
interoperability

+ (+) +

structural („syntactic“) interoperability:
+ same format for all modules
(+) UiMA: multiple ways to define trees

Comparison

standoff XML UiMA NLP2RDF

flexibility + + +

structural
interoperability

+ (+) +

conceptual
interoperability

(-) (+) +

conceptual („semantic“) interoperability:
+ interoperability through reference to a terminology repository
(+) UiMA: interoperability if the same annotation type system is used
(-) standoff: links to terminology repositories can be provided, but no

standard has been established to do so

Comparison

standoff XML UiMA NLP2RDF

flexibility + + +

structural
interoperability

+ (+) +

conceptual
interoperability

(-) (+) +

availability - (SuMMAR) + +

availability:
- unknown/restricted licence
+ open license

Comparison

standoff XML UiMA NLP2RDF

flexibility + + +

structural
interoperability

+ (+) +

conceptual
interoperability

(-) (+) +

availability - (SuMMAR) + +

maturity (-) ++ +

maturity:
++ industry-scale
+ used in multiple research groups
(-) used in one research group

Comparison

standoff XML UiMA NLP2RDF

flexibility + + +

structural
interoperability

+ (+) +

conceptual
interoperability

(-) (+) +

availability - (SuMMAR) + +

maturity (-) ++ +

web services (+) (+) +

support for distributed processing (web services):
+ available
(+) possible

Comparison

standoff XML UiMA NLP2RDF

flexibility + + +

structural
interoperability

+ (+) +

conceptual
interoperability

(-) (+) +

availability - (SuMMAR) + +

maturity (-) ++ +

web services (+) (+) +

performance/
efficiency

- +/(+) (+)

performance/efficiency
+ direct exchange of objects (without serialization) possible
(+) compact serialization
- verbose serialization

Todo: Rank criteria

standoff XML UiMA NLP2RDF

flexibility + + +

structural
interoperability

+ (+) +

conceptual
interoperability

(-) (+) +

availability - (SuMMAR) + +

maturity (-) ++ +

web services (+) (+) +

performance/
efficiency

- +/(+) (+)

Which to chose ?
Combination of multiple architectures ?

