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Infrastructure 

• Requirements 

• Candidates 

– standoff-based architecture (Stede et al. 2006, 2010) 

– UiMA (Ferrucci and Lally 2004) 

– RDF-based architecture (Hellmann 2010, Hellmann et al. 2012) 

• Comparison 



Requirements 

• Flexibility 

– support all necessary data structures, hierarchical, 
and relational 

• Interoperability 

– structural („syntactic“) 

• common exchange format for all modules 

– conceptual („semantic“) 

• well-defined data categories 

• clearly specified means to address them 



Requirements 

• Availability 

– Can we build upon an existing architecture ? 

• Web Services 

– Semantic modules using large knowledge bases 
should operate on their own servers 

• Efficient interchange format 

– Easy to parse, merge and write 

• Performance 

 



1. Standoff-based architecture 

• e.g., SuMMAR/MOTS (Stede et al. 2006, 2010) 

– pipeline architecture for high-quality text 
summarization 
• syntax, coreference, text structure, causal markers, etc. 

– standoff 
• output of different modules to be combined 

• these may also run in parallel 

– exchange format PAULA 
• standoff XML, derived from early (2004) drafts for the 

LAF 
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1. Summarization pipeline 
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1. A fragment 
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1. Standoff XML 

• advantages 

– modularization 

– trivial merge and split operations for annotations 
of the same document 

• add another file to the annotation project 

– clear conceptual separation of annotations 

• disadvantages 

– modules exchange information through XML 

• relatively slow 



2. UiMA (Ferruci and Lallas 2004) 

• Unstructured Information Management 
Architecture 

• Industry-scale architecture for NLP pipelines 

– active community, good support 

• Relatively generic data model with different 
realizations 

– JAVA Objects, XML, others 



2. UiMA 

• Wrappers for various NLP tools available 

• input and output representations of modules 
(„CAS consumers“) defined by annotation 
types 

– e.g., a part-of-speech tag inventory 

– different annotation type systems may not be 
compatible with each other 

=> limited interoperability 



2. UiMA 

• advantages 

– maturity 

• rich technological ecosystem, active community 

– efficiency 

• supports, e.g., information exchange through JAVA 
objects 

• disadvantages 

– limited interoperability only 

– how to implement a distributed architecture ? 



2. UiMA extensions 

• Egner et al. (2007) 
– UiMA Grid, distributed large-scale text analysis 

• Verspoor et al. (2009) 
– Abstracting the types away from a UiMA type system 

– Ontologies instead of annotation types 
• improved conceptual (`semantic‘) interoperability 

• less efficient indexing 

• These extensions would have to be 
reimplemented for an STS pipeline 
– AFAIK, not publicly available 



3. RDF-based architecture 

• Hellmann (2010), Hellmann et al. (2012) 
– NLP Interchange Format (NIF) 

• http://nlp2rdf.org/nif-1-0 

– NLP2RDF: RDF wrappers for various tools 
• http://nlp2rdf.org 

• provides NLP analyses for processing with Semantic 
Web tools 

– applied in a large-scale European research project 
(LOD2) 
• adopted by several external research groups 



3. RDF 

• Resource Description Framework 

– W3C standard  

– formalizes labeled directed multigraphs 

(like XML standoff formats) 

– sublanguages define specialized vocabularies 

• RDF Schema: concept hierarchies 

• SKOS: semi-structured terminology bases 

• OWL: ontologies 



3. RDF 

• different linearizations 
– XML (verbose), Turtle (compact), others 

• rich technological ecosystem 
– data bases („triple stores“) 

– APIs and (syntactic) validators 

– query language SPARQL 

• OWL/DL 
– despription logics 

– defining and checking constraints (axioms)  
=> formally defined user-specific data types 



3. NLP2RDF 



3. RDF 

• advantages 

– rich ecosystem, large and active community 

– native support for distributed processing 

– direct integration with LOD resources 

• may be relevant for STS 

– conceptual interoperability through linking with 
terminology repositories 



Comparison 

standoff XML UiMA NLP2RDF 

flexibility + (+) + 

flexibility: 
+  support for all necessary data structures 
(+) UiMA: multiple ways to represent trees 



Comparison 

standoff XML UiMA NLP2RDF 

flexibility + + + 

structural 
interoperability 

+ (+) + 

structural („syntactic“) interoperability: 
+  same format for all modules 
(+) UiMA: multiple ways to define trees 



Comparison 

standoff XML UiMA NLP2RDF 

flexibility + + + 

structural 
interoperability 

+ (+) + 

conceptual 
interoperability 

(-) (+) + 

conceptual („semantic“) interoperability: 
+  interoperability through reference to a terminology repository 
(+) UiMA: interoperability if the same annotation type system is used 
(-) standoff: links to terminology repositories can be provided, but no 

standard has been established to do so 



Comparison 

standoff XML UiMA NLP2RDF 

flexibility + + + 

structural 
interoperability 

+ (+) + 

conceptual 
interoperability 

(-) (+) + 

availability - (SuMMAR) + + 

availability: 
- unknown/restricted licence 
+ open license 



Comparison 

standoff XML UiMA NLP2RDF 

flexibility + + + 

structural 
interoperability 

+ (+) + 

conceptual 
interoperability 

(-) (+) + 

availability - (SuMMAR) + + 

maturity (-) ++ + 

maturity: 
++ industry-scale 
+ used in multiple research groups 
(-) used in one research group 



Comparison 

standoff XML UiMA NLP2RDF 

flexibility + + + 

structural 
interoperability 

+ (+) + 

conceptual 
interoperability 

(-) (+) + 

availability - (SuMMAR) + + 

maturity (-) ++ + 

web services (+) (+) + 

support for distributed processing (web services): 
+ available 
(+) possible 



Comparison 

standoff XML UiMA NLP2RDF 

flexibility + + + 

structural 
interoperability 

+ (+) + 

conceptual 
interoperability 

(-) (+) + 

availability - (SuMMAR) + + 

maturity (-) ++ + 

web services (+) (+) + 

performance/ 
efficiency 

- +/(+) (+) 

performance/efficiency 
+ direct exchange of objects (without serialization) possible 
(+) compact serialization 
- verbose serialization 



Todo: Rank criteria 

standoff XML UiMA NLP2RDF 

flexibility + + + 

structural 
interoperability 

+ (+) + 

conceptual 
interoperability 

(-) (+) + 

availability - (SuMMAR) + + 

maturity (-) ++ + 

web services (+) (+) + 

performance/ 
efficiency 

- +/(+) (+) 

Which to chose ? 
Combination of multiple architectures ? 


