STS for NLG

Christian Chiarcos
chiarcos@uni-potsdam.de
Natural Language Generation

• Natural Language Generation (NLG) (...) is a subfield of artificial intelligence and computational linguistics that is concerned with building computer software systems that can produce meaningful texts in English or other human languages from some underlying non-linguistic representation of information.

 Reiter & Dale 2000
NLG system pipeline architecture

input

data base

unstructured data-base entries

context model

knowledge bases

user model

communicative goals

content selection
which pieces of information should be uttered?

text structuring
how to arrange propositions?

aggregation
how to combine propositions to utterances?

lexicalization
which lexemes, which grammatical structures to choose?

referring expressions
which type of referring expression to choose?

surface realization
assigning correct morphological markers, etc.

unstructured data-base entries

mapping facts on propositions

text planner

structured propositions

sentence planner

mapping propositions to sentence plans

sentence plans

realiser

mapping sentence plans to sentences

sentences

output

Lorem ipsum dolor sit amet, consectetur adipiscing elit...
NLG applications

• generating text from large bodies of numerical data
 – weather reports (Belz 2008)
• generating text from a large knowledge bases
 – museum guide (O’Donnell et al. 2001)

• interactive hypertext
 • taking the information status of the addressee into account
• user-tailored
 – BabyTalk (Gatt et al. 2009)
 • automatically generated medical reports for nurses/doctors (informative) and parents (affective)

• informative, instructional or persuasive texts
NLG evaluation: human

• task-oriented evaluation
 – measure impact on end user, e.g., mistakes (for an instructional text, Young 1999)

• human ratings and judgements
 – expert ratings according to criteria like coherence and (linguistic) quality (Lester and Porter 1997)

• expensive and time-consuming
NLG evaluation: automated

• evaluation by comparison with human written text
 – i.e., texts written by experts from the same data
 • or (in combination with a parser) corpus regeneration (Cahill and van Genabith 2006)
 – cheap, fast, repeatable (if we have the corpus)
NLG evaluation: automated

- n-gram metrics
 - BLEU (Papineni et al. 2002), from MT
 - ROUGE (Lin and Hovy 2003), from Summarization

- concerns
 - cannot capture higher-level information (e.g., information structure, Scott and Moore 2007)

=> evaluate correlation with human judgements (Reiter and Belz 2009)
NLG evaluation: automated vs. human

• Belz & Reiter (2009)
 – weather reports
 – human: experts and non-experts
 – automated: BLUE, ROGUE
 – criteria
 • „clarity and readability“ (= linguistic quality)
 • „accuracy and appropriateness“ (= content quality)
NLG evaluation: automated vs. human

– Belz & Reiter (2009)
 • significant correlations only with clarity, but not with accuracy
– strong influence on the design of subsequent NLG shared tasks
 • focus on task-based evaluation
 – GIVE, GIVE-2 (Giving Instructions in Virtual Environments)
 – GRUVE (Generating Route descriptions in Virtual Environments)
 • automated metrics mostly for the evaluation of surface realization
 – Surface realization challenge (BLUE, ROUGE, METEOR*)

* METEOR is a simple semantic metric using lexical similarity (synonyms)
NLG evaluation vs. STS

• Automated evaluation would benefit strongly from STS
 – automated, content-sensitive metrics are still an open research question in NLG

• NLG provides particularly strong motivation to include discourse in STS
 – unlike summarization and MT, we cannot just keep an existing structure