UNDERSTANDING
LINE DRAWINGS OF
SGENES WITH SHADOWS

2.1 INTRODUCTION

How do we ascertain the shapes of unfamiliar objects? Why do we so seldom
confuse shadows with real things? How do we “factor out” shadows when
looking at scenes? How are we able to see the world as essentially the same
whether it is a bright sunny day, an overcast day, or a night with only
streetlights for illumination? In the terms of this paper, how can we recognize
the identity of Figs. 2.1 and 2.2? Do we use learning and knowledge to
interpret what we see, or do we somehow automatically see the world as
stable and independent of lighting? What portions of scenes can we
understand from local features alone, and what configurations require the use
of global hypotheses?

19

20 The Psychology of Computer Vision

Fig. 2.1

In this essay I describe a working collection of computer programs
which reconstruct three-dimensional descriptions from line drawings which are
obtained from scenes composed of plane-faced objects under various lighting
conditions. The system identifies shadow lines and regions, groups regions
which belong to the same object, and notices such relations as contact or lack
of contact between the objects, support and in-front-of/behind relations
between the objects as well as information about the spatial orientation of
various regions, all using the description it has generated. '

2.1.1 Descriptions

The overall goal of the system is to provide a precise description of a plausible
scene which could give rise to a particular line drawing. It is therefore

.

J4

i

.\

|

—
e

~—————

Fig. 2.2

Understanding Line Drawings of Scenes with Shadows 21

important to have a good language in which to describe features of scenes.
Since I wish to have the program operate on unfamiliar objects, the language
must be capable of describing such objects. The language I have used is an
expansion of the labeling system developed by Huffman' in the United States
and Clowes? in Great Britain.

The language employs labels which are assigned to line segments and
regions in the scene. These labels describe the edge geometry, the connection
or lack of connection between adjacent regions, the orientation of each region
in three dimensions, and the nature of the illumination for each region
(illuminated, projected shadow region, or region facing away from the light
source). The goal of the program is to assign a single label value to each line
and region in the line drawing, except in cases where humans also find a
feature to be ambiguous.

This language allows precise definitions of such concepts as supported
by, in-front-of, behind, rests-against, is-shadowed-by, is-capable-of-supporting,
leans-on, and others. Thus, if it is possible to label each feature of a scene
uniquely, then it is possible to directly extract these relations from the
description of the scene based on this labeling.

2.1.2 Junction Labels

Much of the program’s power is based on access to lists of possible line label
assignments for each type of junction in a line drawing. Depending on the
amount of computer memory available, it may either be desirable to store the
complete lists as compiled knowledge or to generate the lists when they are
needed. In my current program the lists are for the most part precom-
piled.

The composition of the dictionary is interesting in its own right. While
some junction types require many dictionary entries, others require relatively
few. Moreover, in some cases local information about the relative brightness
of the surrounding regions and about the directions of the lines may severely
limit the number of relevant dictionary entries for any particular junction. In
other cases such information has little effect.

Figure 2.3 shows all the junction types which can occur in the universe
of the program. The dictionary is arranged by junction type, and a standard
ordering is assigned to all the line segments which make up junctions (except
FORKs and MULTIs). There is a considerable amount of local information
which can be used to select a subset of the total number of junction
configurations which are consistent with physical reality. '

For example the program can use local region brightness and line
segment direction to preclude the assignment of certain labels to lines. If it

e

22 The Psychology of Computer Vision

<

ARROW T FORK

PEAK K X MULTH
XX KA KX
Fig. 2.3

knows that one region is brighter than an adjacent region, then the line which
separates the regions can be labeled as a shadow region in only one way.
There are other rules which relate region orientation, light placement and
region illumination as well as rules which limit the number of labels which can
be assigned to line segments which border the support surface for the scene.
The program is able to combine all these types of information in finding a list
of appropriate labels for a single junction.

2.1.3 Combination Rules

Combination rules are used to select the label, or labels, which correctly
describe the scene features that could have produced each junction in the
given line drawing. The simplest type of combination rule merely states that a
label is a possible description for a junction if and only if there is at least one
label which “matches” it assigned to each adjacent junction. Two junction
labels “match” if and only if the line segment which joins the junctions gets
the same interpretation from both of the junctions at its ends.

I thought at the outset of my work that it might be necessary to
construct models of hidden vertexes or features which faced away from the
eye in order to find unique labels for the visible features. The difficulty in
this is that unless a program can find which lines represent obscuring edges, it
cannot know where to construct hidden features, but if it needs the hidden
features to label the lines, it may not be able to decide which lines represent

Understanding Line Drawings of Scenes with Shadows 23

obscuring edges. As it turns out, no such complicated rules and constructions
are necessary in general; most of the labeling problem can be solved by a
scheme which only compares adjacent junctions.

2.1.4 Experimental Results

The program computes the full list of dictionary entries for each junction in
the scene, eliminates from the list those labels which can be precluded on the
basis of local -features, assigns each reduced list to its junction, and then a
filtering program computes the possible labels for each line, using the fact that
a line label is possible if and only if there is at least one junction label at each
end of the line which contains the line label. Thus, the list of possible labels
for a line segment is the intersection of the two lists of possibilities
computed from the junction labels at the ends of the line segment. If any
junction label would assign an interpretation to the line segment which is not
in this intersection list, then that label can be eliminated from consideration.
The filtering program uses a network iteration scheme to systematically
remove all the interpretations which are precluded by the elimination of labels
at a particular junction.

Initially I had intended to have a tree search program follow the
filtering program, but to my amazement I found that in the first few scenes I
tried, this program alone found a unique label for each line. Even when I tried
considerably more complicated scenes, there were only a few lines in general
which were not uniquely specified, and some of these were essentially
ambiguous, i.e. I could not decide exactly what sort of edge gave rise to the
line segment myself. The other ambiguities, i.e. the ones which I could resolve
myself, in general require that the program recognize lines which are parallel
or collinear or recognize regions which meet along more than one line
segment and hence require more global agreement.

I have been able to use this system to investigate a large number of line
drawings, including ones with missing lines and ones with numerous
accidentally aligned junctions. From these investigations I can say with some
certainty which types of scene features can be handled by the filtering
program and which require more complicated processing. Whether or not more
processing is required, the filtering system provides a computationally cheap
method for acquiring a great deal of information. For example, in most scenes
a large percentage of the line segments are unambiguously labeled, and more
complicated processing can be directed to the areas which remain ambiguous.

Figure 2.4 shows some of the scenes which the program is able to
handle. The segments which remain ambiguous after its operation are marked
with stars, and the approximate amount of time the program requires to label
each scene is marked below it. The computer is a PDP-10, and the program is
written partially in MICRO-PLANNER? and partially in compiled LISP.

24 The Psychology of Computer Vision

2>

C——
e—
mpaam
S
=N

(5 seconds) (15 seconds)

]

(15 seconds)

WW

~1

(22 seconds)

{39 seconds)
Fig. 2.4

Understanding Line Drawings of Scenes with Shadows 25

(48 seconds)

Fig. 2.4 (continued)

2.2 LINE LABELS

In what follows I frequently make a distinction between the scene itself
(objects, table, and shadows) and the retinal representation of the scene as a
two-dimensional line drawing. I will use the terms vertex, edge and surface to
refer to the scene features which map into junction, line and region
respectively in a line drawing.

Our first subproblem is to develop a language that allows us to relate
these two worlds. I have done this by assigning names called labels to lines in
the line drawing, after the manner of Huffman' and Clowes.? Thus, in
Fig. 2.5 line segment J1-J2 is labeled as a shadow edge, line J2-J3 is labeled
as a concave edge, line J3-J14 is labled as a convex edge, line J4-J5 is labeled
as an obscuring edge and line J12-J13 is labeled as a crack edge. Thus, these
terms are attached to parts of the drawing, but they designate the kinds of
things found in the three-dimensional scene.

Pay particular attention to the notation used to label the lines. When I
talk of junction labels I refer to the various possible combinations of such line
labels around a junction. Each such combination is thought of as a particular
junction labeling.

When we look at a line drawing of this sort, we usually can easily
understand what the line drawing represents. In terms of a labeling scheme
either (1) we are able to assign labels uniquely to each line, or (2) we can say
that no such scene could exist, or (3) we can say that although it is
impossible to decide unambiguously what the label of an edge should be, it
must be labeled with one member of some specified subset of the total
number of labels. What knowledge is needed to enable the program to
reproduce such labeling assignments?

»

26 The Psychology of Computer Vision

}

T

<

(L)

J
Ja
J7
J9

Fig. 2.5

Shadow edge
Concave edge
Convex edge
Obscuring edge
Crack edge

(ARROW) (m {(FORK) (K)
J2 J6 J14 J13
J3 J1 J15
J5 J12
Jg
J10

2.2.1 System Knowledge

The knowledge of this system is expressed in several distinct forms:

1. A list of possible junction labels for each type of junction geometry

includes the a priori knowledge about the possible three-dimensional
interpretations of a junction.

Selection rules which use junction geometry, knowledge about which
region is the table, and region brightness. These can easily be
extended to use line segment directions to find the subset of the
total list of possible junction labelings which could apply at a
particular junction in a line drawing.

. A program to find the possible labelings; it knows how to

systematically eliminate impossible combinations of labels in a line
drawing and, as such, contains implicit knowledge about topology.

Understanding Line Drawings of Scenes with Shadows 27

4. Optional heuristics which can be invoked to select a single labeling
from among those which remain after-all the other knowledge in the
program has been used. These heuristics find a “plausible interpre-
tation if required. For example, one heuristic eliminates interpre-
tations that involve concave objects in favor of ones that involve
convex objects, and another prefers interpretations which have the
smallest number of objects; this heuristic prefers a shadow interpre-
tation for an ambiguous region to the interpretation of the region as
a piece of an object.

In this section I show how to express the first type of knowledge and
give hints about some of the others. A large proportion of my energy and
thought has gone into the choice of the set of possible line labels and the sets
of possible junction labels. In this I have been guided by experiment with my
program, since there are simply too many labels to hand simulate the
program’s reaction to a scene. The program, the set of edge labels, and the
sets of junction labelings have each gone through an evolution involving
several steps. At each step I noted the ambiguities of interpretation which
remained, and then modified the system appropriately.

The changes have generally involved (1) the subdivision of one or more
edge labels into several new labels embodying finer distinctions and (2) the
recomputation of the junction label lists to include these new distinctions. In
each case 1 have been able to test the new scheme to make sure that it solves
the old problems without creating any unexpected new ones. For example,
the initial data base contained only junctions (1) which represented trihedral
vertexes (i.e., vertexes caused by the intersection of exactly three planes at a
point in space) and (2) which could be constructed using only convex objects.

The present data base has been expanded to include all trihedral
junctions and a number of other junctions caused by vertexes where more
than three planes meet.

Throughout this evolutionary process I have tried to systematically
include in the lists every possibility under the stated assumptions. In this part
of the system I have made only one type of judgement: if a junction can
represent a vertex which is physically possible, include that junction in the
data base.

Each type of junction (L, ARROW, FORK) can only be labeled in a
relatively small number of ways; thus if we can say with certainty what the
label for a particular line must be, we can greatly constrain all other lines
which intersect that line segment. As a specific example, if one branch of an
L junction is labeled as a shadow edge, then the other branch must be labeled
as a shadow edge as well.

Moreover shadows are directional, i.e., in order to specify a shadow
edge, it must not only be labeled ‘“shadow” but must also be marked to
indicate which’ side of the edge is shadowed and which side is illuminated.

28 The Psychology of Computer Vision

Therefore, not only the type of edge but the nature of the regions on each
side can be constrained.

2.2.2 Better Edge Description

So far I have classified edges on the basis of geometry (concave, convex,
obscuring, or planar) and have subdivided the planar class into crack and
shadow subclasses. Suppose that I further break down each class according to
whether or not each edge can be the bounding edge of an object. Objects can
be bounded by obscuring edges, concave edges, and crack edges. Figure 2.6

Interpretation

R1 - An inseparable concave edge; the object of which R1 is a part [OB(R1)] is
R2 the same as [OB(R2)].
R1 - A separable two-object concave edge; if [OB(R1)] is above {OB(R2)] then
R2 < [OB(R2)] supports [OB(R1}1.
R1 ~— . - '

3 Same as abovg, if R1 is above R2, then [OB(R2)] obscures [OB(R1}] or
R2 [OB(R1)] supports [OB(R2)].
R1 — . .

< A separable three-object concave edge; neither [OB(R1)1 nor [OB(R2)]
R2 can support the other.
R1 C

E?+— A crack edge; [OB(R2)] is in front of {OB(R1}] if R1is above R2.

2; ¢ A crack edge; [OB(R2)] supports [OB(R1)] if R1 is above R2.
Separations

- —— —_ -— >\ ——— Y +

-A — A cA — | A

-V — \\'4 C h —_— v+

Understanding Line Drawings of Scenes with Shadows 29

Old labeling New labeling

Fig. 2.6 (continued)

shows the results of appending a label analogous to the “obscuring edge”
mark to crack and concave edges. This approach is similar to one first
proposed by Freuder.?

2.2.3 Edge Geometry

The first problem is to find-all possible trihedral vertexes. Huffman observed
that three intersecting planes, whether mutually orthogonal or not, divide
space into eight parts so that the types of trihedral vertex can be

30 The Psychology of Computer Vision

Octant
(o
Octant
(oon
Octant
(Hn
e
1
1
:>
Octant i
(000)]
Octant
(1HO)
L’
—
Y4
— (100) Octant
Y (010)
—
X
Fig. 2.7

characterized by the octants of space around the vertex which are filled by
solid material.!

Consider the general intersection of three planes shown in Fig. 2.7.
These planes divide space into octants, which can be uniquely identified by
three-dimensional binary vectors (x y z) where the X, y, and z directions are
specified as shown. The vectors make it easy to describe the various
geometries precisely. I can then generate all possible geometries and
nondegenerate views by imagining various octants to be filled in with solid
material. There are junctions which correspond to having 1, 2,3,4,5,6,0r7
octants filled. Figure 2.8 shows the ten possible geometries that result from
filling various octants; when considered from all possible viewing positions
these ten geometries produce 196 different junction labelings. There are some
other geometries which I have chosen not to use to generate junction labels. I
have not included these geometries because each involves objects which touch
only along one edge, and whose faces are nonetheless aligned, an extremely
unlikely arrangement when compared to the other geometries. (In addition,
some of the geometries are physically impossible unless one or more objects
are cemented together along an edge or supported by invisible means.)

The four geometries recognized by Huffman and Clowes correspond to
my numbers 1, 3, 5, and 7 in Fig. 2.8.

In Fig. 2.9 I show how the 20 different labels with type 3 geometry can
be generated. Basically this process involves taking a geometry from Fig. 2.8,
finding all the ways that the solid segments can be connected or separated,
and finding all the possible views for each partitioning of the octants. To
generate all the possible views one can either draw or imagine the particular
geometry as it appears when viewed from each octant. From some viewing
octants the central vertex is blocked from view by solid material, and
therefore not every viewing position adds new labelings.

31

Understanding Line Drawings of Scenes with Shadows

Total number of
junction labeis

Octants filied

20

15

@
g
S|

Fig. 2.8

21

Y] ® b3 ¢

Total number of
junction labels

The Psychology of Computer Vision
Fig. 2.8 (continued)

32
Octonts filled
4 .
{Case C)
4
(Case D)
5
6

6'C "b14
AO—. —.v =0 9 8 o)
@ (00L) = £ Ty | vexx
(000) = V¥ *
) (OLL) N (00L) = & 5
*‘E (o0)=v | ¢ el 8e-L
Iy (0L1) =9 . \/»oV/? el
<>>=' | 001) " (000) = v *
oLy n
% (00L) N (000) = ¥ C ik Ve
(s)308lqo aie XaLIaA uotoun{
Buipuodsatiod X31409A 1B J0 uopoun|
j0 1e s198(qo | Buljage) pue | o awep
acueleaddy §102(qQ | Jo saquinN | 8oueieaddy

33

(ponuniuos) @2 ‘613

51 (000) = O g %A% (000) =D 9
ma. (oL0) =4 € + ge-XX SFOM =9 € VE- XX
<> (100) = ¥ K (110) = ¥
g
(010) = 8 8 a0 (0L0) N (000) = 8 >
4 ae-L 9 -
g (000) N {L00) = V L v (110) = ¥ ¢ > ge-
> v +
&[] |0 nioo0)=38 S _~ c 8l (000) = 8 o}
c * ot-L m [4 Ve
<] = = v =
v (100) =V *\«M Y1 (L10) N (0L0) =V .
(010) N aq v) (LL0) N v _*
< - (000) N (100) = ¥ F \+ ae N (0L0) N (000) = V b = VEMOUY
<~ < +
{s)109[(qo ale X314aA uopoun({s)308iqo aue X8349n uonouni
Buipuodsaliod X9149A 1e Jo uonoun| 6uipuodsaiiod X8119A e j0 uonoun{
jo 1e syoslqo | Buyesqel pue | #° aweN jo b1 s108fgo | Buijaqe) pue | jo aweN
adueseaddy s108{qQ | $0 s8QUINN goueseaddy aoueseaddy $103[GQ | 40 J8qWINN soueseaddy

(ponuiuos) 62 6id

{0LL) =2 {0LL) =D
mm’u (ooL) =9 £ ag-y4od mmw (0L0) =4 I IE-XX
<> (L) =V < (L) =V
8
8] (00L) = 8 3 n (0L0) =8 % 8
< - -
ﬂ./ o niy=v| ¢ v o | OFMd Q ol ni=v| ° . L
<> >
8 8
(0oL} N {oLL) =4 3 1¥§ |winioit)=8
=310 -
(L) =V ¢ v L o | BEHed 7 ai=v| ¢ : L
<>
N (001) N > (0L0) N N
<> - .
= |ownain=v g v § o« | VEMH ' (oL N (L) =¥ g 7 0E
<> < >
(s)109(qo ale XaLIan uoidunf (s)r00fgo ale XalIaA uonoun{
Buipuodsaiiod X814aA e J0 uoploun(BGutpuodssslod X9148n 1e jo uonaunf
jo 1e s108[qo | Buijeqe| pue | 10 sweN Jo 1e s198{qo | Buijeqej pue | 40 awenN
aoueieaddy 5199{qQ | 40 J8qWINN soueseaddy aoueieaddyy 51090 | 40 JequInN | adueseaddy

| A —

| S

35

