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Idea
• Backdoor = Trigger + Payload

• Triggers are necessary to bypass truthful design validators
• Triggers need to be predictable by attackers

• Prior solution: Detects malicious actions of Payloads
• Tamper-Evident Microprocessors [Oakland 2010]
• Incomplete coverage because payload space is large

• This work: Disables Triggers
• Alter inputs to defeat triggers
• Fairly general-purpose

• Solution approach
• Set of digital trigger types is finite
• Find efficient methods to disable each trigger type
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Outline
• Overview

• Framework for solving the backdoor problem

• Solutions and their theoretical strengths
• Power Resets

• Encrypted Computation

• Reordering

• “Catch all”

• Practical applicability 
• OpenSPARC case study

• Performance Impacts

• Open problems



Hardware Design

• A design is a connected set of  modules

• Modules connect to each other through interfaces

• In the picture above, each box is a module
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Three Interfaces, Three Triggers

Global                                Ticking Timebombs

Control

Data

Cheatcodes
•Single-shot
•Sequence

Cheatcodes
•Single-shot
•Sequence



Instruction
Decoder

clk/rst

Jump/
Branch Etc.

Instr. Type/
immediate

JTag

Outputs
(ops, registers,

stall signals, etc.)

Control and data
processing logic

Trigger #1: Ticking Timebomb

• After a fixed time, functionality changes
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Trigger #3: Sequence Cheat Code

• A set of bits, events, or signals cause malicious

functionality to turn on
• Example: c, a, f, e, b, e, e, f

• Order and timing can vary
• Taxonomy is complete
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Outline

• Overview
• Framework for solving the backdoor problem
• Solutions and their theoretical strengths

• Power Resets
• Encrypted Computation
• Reordering
• “Catch all”

• Practical applicability 
• OpenSPARC case study
• Performance Impacts

• Open problems
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Three Solutions For Three Triggers

• Goal: Obfuscate information coming into each interface

• Ticking timebombs
• Periodically reset the power

• Single-shot Cheatcodes

• Encrypt data values

• Sequence Cheatcodes
• Reorder events or insert dummy events



Power Resets

•Power to modules is reset periodically
• Time period = N – K cycles

• N = Validation epoch

• K = Time to restart module operation

•Forward progress guarantee
• Architectural state must be saved and restored

• Microarchitectural state can be discarded (low cost)
• e.g., branch predictors, pipeline state etc.,



Power Resets: Security Analysis

Can trigger be stored to architectural state and restored 
later?

•No: Unit validation tests prevent this

•Reasons for trusting validation epoch
• Large validation teams

• Organized hierarchically

Can trigger be stored in non-volatile state internal to an 
unit?

•Maybe, but non-volatile state can be detected
• Details in the paper
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Data Obfuscation

• Homomorphic computation (Gentry 2009)
• Data is operated on while encrypted
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Data Obfuscation: Simple Case
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Data Obfuscation: Complex Case
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Sequence Breaking
• Prevent sequences from being predictable by the user

• Pseudorandom reordering of events
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Sequence Breaking

• Prevent sequences from being predictable by the user
• Insert events when correctness conditions prevent reordering
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Sequence Breaking

• Works for finite sets (not just ordered sequences)
Set is large enough for attacker to use  Set is large enough for validation 

engineer to catch

(details in the paper)

Encryptor Decryptor
ABC

ABC

• Prevent sequences from being predictable by the user
• Insert events when correctness conditions prevents reordering

New Module



Catch all: Duplication

• However, duplication is prohibitively expensive

• Non-recurring design, verification costs due to duplication

• Recurring power and energy costs

Unit A Unit A’

Inputs

Trusted Output Checker
(XOR gates)
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OpenSPARC Microprocessor Case Study

• Methodology
• Manual analysis of modules in the design
• Identified digital-only modules (nearly all)

• Power reset protection against ticking timebombs
• Can be applied, can piggyback on power gating support
• No non-volatile memories

• Obfuscation protection against single-shot cheatcodes
• Data:  > 3/4ths do not require non-trivial support
• Control: Interfaces small enough to not be vulnerable

• Reordering protection against sequence cheatcodes
• Must ensure that reordering does not violate memory 

reordering rules with respect to coherence and consistency
• Most units, however, do not have these requirements

43



Performance Impacts

• OpenSPARC T2 microprocessor
• Zesto X86 simulator

• Performance cost of all methods is < 1% on average
• Precise breakdowns in the paper

0.9%
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• Randomized triggers
• Determine the level of threat from randomized backdoors

• RNGs, other true sources of randomness
• Uncontrolled payloads at uncontrolled times

Open Problems



• Randomized triggers
• Determine the level of threat from randomized backdoors

• RNGs, other true sources of randomness
• Uncontrolled payloads at uncontrolled times

• Secure usage of non-volatile memory technologies
• Incorporate non-volatile memory in a trusted way

• Improvements to and increased use of Flash
• PCM and other new technologies

Open Problems
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• Secure design of performance counters
• Provide information to users in a trusted way

• Performance counters are increasingly used
• Directly supply trigger-type information
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Open Problems

• Secure design of performance counters
• Provide information to users in a trusted way

• Performance counters are increasingly used
• Directly supply trigger-type information

• More efficient homomorphic functions
• Efficient obfuscation for computational units

• Units classified by type
• Formal understanding of costs

�

• Automated implementation of backdoor protection
• Compiler and/or language additions

• Tools for designers
• Simple language constructs for HDLs



Summary

• Prevent the triggering of hidden backdoors
• Hardware-only solution

• Low performance impact
• Low power/area overhead

• Prototyping required

• Revealed new open problems
• Challenges for processors/embedded systems
• Linguistic challenges

• Vastly raises the bar against hardware backdoors

Thank You! Questions?

Trigger
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