
Silencing Hardware Backdoors

Adam Waksman
Simha Sethumadhavan

Computer Architecture & Security Technologies Lab (CASTL)
Department of Computer Science

Columbia University

1

Idea
• Backdoor = Trigger + Payload

• Triggers are necessary to bypass truthful design validators
• Triggers need to be predictable by attackers

• Prior solution: Detects malicious actions of Payloads
• Tamper-Evident Microprocessors [Oakland 2010]
• Incomplete coverage because payload space is large

• This work: Disables Triggers
• Alter inputs to defeat triggers
• Fairly general-purpose

• Solution approach
• Set of digital trigger types is finite
• Find efficient methods to disable each trigger type

Backdoors in Hardware Design

Untrusted Designer
(Human/Insider)

Waksman et al., 2010
Hicks et al., 2010 Untrusted Compiler

(Software)

Kastner et al., 2010
Smith et al., 2010

Potkonjak et al., 2010
Potkonjak et al., 2009

Koushanfar et al., 2007 Untrusted
Fabrication

(Physical Process)

Banga et al., 2008
Chakraborty et al.,

2008
Agrawal et al., 2007

Lee et al., 2004
Quisquater et al., 2001

Backdoors in Hardware Design

Untrusted Designer
(Human/Insider)

Waksman et al., 2010
Hicks et al., 2010 Untrusted Compiler

(Software)

Kastner et al., 2010
Smith et al., 2010

Potkonjak et al., 2010
Potkonjak et al., 2009

Koushanfar et al., 2007 Untrusted
Fabrication

(Physical Process)

Banga et al., 2008
Chakraborty et al.,

2008
Agrawal et al., 2007

Lee et al., 2004
Quisquater et al., 2001

Solution: Obfuscation of Inputs

Inputs

Backdoor = Trigger + Payload

HARDWARE
MODULE

Outputs

Hides
Triggers

Deliver
Payload

Solution: Obfuscation of Inputs

Inputs

Backdoor = Trigger + Payload

HARDWARE
MODULE

Outputs

Hides
Triggers

Correct
Op

Encryptor
Module
(trusted)

Decryptor
Module
(trusted)

Obfuscates
Trigger

Outline
• Overview

• Framework for solving the backdoor problem

• Solutions and their theoretical strengths
• Power Resets

• Encrypted Computation

• Reordering

• “Catch all”

• Practical applicability
• OpenSPARC case study

• Performance Impacts

• Open problems

Hardware Design

• A design is a connected set of modules

• Modules connect to each other through interfaces

• In the picture above, each box is a module

Taxonomy of Interfaces

Global

Outputs
HARDWARE

MODULE

Taxonomy of Interfaces

Global

Control
Outputs

HARDWARE
MODULE

Taxonomy of Interfaces

Global

Control

Data
Outputs

HARDWARE
MODULE

Taxonomy of Interfaces

Global

Control

Data

Test

Outputs
HARDWARE

MODULE

Three Kinds of Backdoor Triggers

Global

Control

Data

Outputs

Global

HARDWARE
MODULE

Three Kinds of Backdoor Triggers

Global

Control

Data

Outputs

Global

Control

HARDWARE
MODULE

Three Kinds of Backdoor Triggers

Global

Control

Data

Outputs

Global

Control

Data

HARDWARE
MODULE

Three Interfaces, Three Triggers

Global Ticking Timebombs

Control

Data

Cheatcodes
•Single-shot
•Sequence

Cheatcodes
•Single-shot
•Sequence

Instruction
Decoder

clk/rst

Jump/
Branch Etc.

Instr. Type/
immediate

JTag

Outputs
(ops, registers,

stall signals, etc.)

Control and data
processing logic

Trigger #1: Ticking Timebomb

• After a fixed time, functionality changes

Trigger #1: Ticking Timebomb

Instruction
Decoder

Outputs
(ops, registers,

stall signals, etc.)

Control and data
processing logic

Trigger #2: Single-Shot Cheat Code

• A special value turns on malicious functionality
• Example: 0xcafebeef

0xabababab f(0xabababab)0xcafebeef Private Data

clk/rst

Jump/
Branch Etc.

Instr. Type/
immediate

JTag

Trigger #2: Single-Shot Cheat Code

• A special value turns on malicious functionality
• Example: 0xcafebeef

Instruction
Decoder

Outputs
(ops, registers,

stall signals, etc.)0xC0xA

0xF 0xE

0xB

0xE

0xE

0xF

Control and data
processing logic

Trigger #3: Sequence Cheat Code

• A set of bits, events, or signals cause malicious

functionality to turn on
• Example: c, a, f, e, b, e, e, f

clk/rst

Jump/
Branch Etc.

Instr. Type/
immediate

JTag

Trigger #3: Sequence Cheat Code

• A set of bits, events, or signals cause malicious

functionality to turn on
• Example: c, a, f, e, b, e, e, f

• Order and timing can vary

Instruction
Decoder

Outputs
(ops, registers,

stall signals, etc.)0xC0xA

0xF 0xE

0xB

0xE

0xE

0xF

Control and data
processing logic

clk/rst

Jump/
Branch Etc.

Instr. Type/
immediate

JTag

Trigger #3: Sequence Cheat Code

• A set of bits, events, or signals cause malicious

functionality to turn on
• Example: c, a, f, e, b, e, e, f

• Order and timing can vary
• Taxonomy is complete

Instruction
Decoder

Outputs
(ops, registers,

stall signals, etc.)0xC0xA

0xF 0xE

0xB

0xE

0xE

0xF

Control and data
processing logic

clk/rst

Jump/
Branch Etc.

Instr. Type/
immediate

JTag

Outline

• Overview
• Framework for solving the backdoor problem
• Solutions and their theoretical strengths

• Power Resets
• Encrypted Computation
• Reordering
• “Catch all”

• Practical applicability
• OpenSPARC case study
• Performance Impacts

• Open problems

Solution: Obfuscation of Inputs

Inputs

Backdoor = Trigger + Payload

HARDWARE
MODULE

Outputs

Hides
Triggers

Correct
Op

Encryptor
Module
(trusted)

Decryptor
Module
(trusted)

Obfuscates
Trigger

Three Solutions For Three Triggers

• Goal: Obfuscate information coming into each interface

• Ticking timebombs
• Periodically reset the power

• Single-shot Cheatcodes

• Encrypt data values

• Sequence Cheatcodes
• Reorder events or insert dummy events

Power Resets

•Power to modules is reset periodically
• Time period = N – K cycles

• N = Validation epoch

• K = Time to restart module operation

•Forward progress guarantee
• Architectural state must be saved and restored

• Microarchitectural state can be discarded (low cost)
• e.g., branch predictors, pipeline state etc.,

Power Resets: Security Analysis

Can trigger be stored to architectural state and restored
later?

•No: Unit validation tests prevent this

•Reasons for trusting validation epoch
• Large validation teams

• Organized hierarchically

Can trigger be stored in non-volatile state internal to an
unit?

•Maybe, but non-volatile state can be detected
• Details in the paper

28

Data Obfuscation

Memory
Controller

S

5

7

E D

?

?

5

7

Data Obfuscation

• Homomorphic computation (Gentry 2009)
• Data is operated on while encrypted

Memory
Controller

S

5

7

E D

?

?

5

7

Data Obfuscation: Simple Case

Non-Computational
Case

Router, Interconnect, Memory,
Cache, Comparator, Buffer,

Register, Table, etc.

Data Obfuscation: Simple Case

Non-Computational
Case

Router, Interconnect, Memory,
Cache, Comparator, Buffer,

Register, Table, etc.

XOR XOR

Data Obfuscation: Simple Case

Non-Computational
Case

Router, Interconnect, Memory,
Cache, Comparator, Buffer,

Register, Table, etc.

XOR XOR

Memory
Controller

Store 5 to address 7

Data Obfuscation: Simple Case

Non-Computational
Case

Router, Interconnect, Memory,
Cache, Comparator, Buffer,

Register, Table, etc.

XOR XOR

Memory
Controller

S

5

7

E D

8

4

5

7

Data Obfuscation: Complex Case

Computational
Case

ALUs, FGUs, decoders,
custom logic, etc.

F G

Data Obfuscation: Complex Case

Computational
Case

ALUs, FGUs, decoders,
custom logic, etc.

F G

Sequence Breaking
• Prevent sequences from being predictable by the user

• Pseudorandom reordering of events

Reorder Reorder

New Module

Sequence Breaking
• Prevent sequences from being predictable by the user

• Pseudorandom reordering of events

Reorder Reorder
ABC AB C ABC

New Module

Sequence Breaking

• Prevent sequences from being predictable by the user
• Insert events when correctness conditions prevent reordering

Insertion Filtering
ABC ABCABC ABCDD

New Module

Sequence Breaking

• Works for finite sets (not just ordered sequences)
Set is large enough for attacker to use  Set is large enough for validation

engineer to catch

(details in the paper)

Encryptor Decryptor
ABC

ABC

• Prevent sequences from being predictable by the user
• Insert events when correctness conditions prevents reordering

New Module

Catch all: Duplication

• However, duplication is prohibitively expensive

• Non-recurring design, verification costs due to duplication

• Recurring power and energy costs

Unit A Unit A’

Inputs

Trusted Output Checker
(XOR gates)

Outline

• Overview
• Framework for solving the backdoor problem
• Solutions and their theoretical strengths

• Power Resets
• Encrypted Computation
• Reordering
• “Catch all”

• Practical applicability
• OpenSPARC case study
• Performance Impacts

• Open problems

OpenSPARC Microprocessor Case Study

• Methodology
• Manual analysis of modules in the design
• Identified digital-only modules (nearly all)

• Power reset protection against ticking timebombs
• Can be applied, can piggyback on power gating support
• No non-volatile memories

• Obfuscation protection against single-shot cheatcodes
• Data: > 3/4ths do not require non-trivial support
• Control: Interfaces small enough to not be vulnerable

• Reordering protection against sequence cheatcodes
• Must ensure that reordering does not violate memory

reordering rules with respect to coherence and consistency
• Most units, however, do not have these requirements

43

Performance Impacts

• OpenSPARC T2 microprocessor
• Zesto X86 simulator

• Performance cost of all methods is < 1% on average
• Precise breakdowns in the paper

0.9%

Outline

• Overview
• Framework for solving the backdoor problem
• Solutions and their theoretical strengths

• Power Resets
• Encrypted Computation
• Reordering
• “Catch all”

• Practical applicability
• OpenSPARC case study
• Performance Impacts

• Open problems

• Randomized triggers
• Determine the level of threat from randomized backdoors

• RNGs, other true sources of randomness
• Uncontrolled payloads at uncontrolled times

Open Problems

• Randomized triggers
• Determine the level of threat from randomized backdoors

• RNGs, other true sources of randomness
• Uncontrolled payloads at uncontrolled times

• Secure usage of non-volatile memory technologies
• Incorporate non-volatile memory in a trusted way

• Improvements to and increased use of Flash
• PCM and other new technologies

Open Problems

Open Problems

• Secure design of performance counters
• Provide information to users in a trusted way

• Performance counters are increasingly used
• Directly supply trigger-type information

Open Problems

• Secure design of performance counters
• Provide information to users in a trusted way

• Performance counters are increasingly used
• Directly supply trigger-type information

• More efficient homomorphic functions
• Efficient obfuscation for computational units

• Units classified by type
• Formal understanding of costs

Open Problems

• Secure design of performance counters
• Provide information to users in a trusted way

• Performance counters are increasingly used
• Directly supply trigger-type information

• More efficient homomorphic functions
• Efficient obfuscation for computational units

• Units classified by type
• Formal understanding of costs

�

• Automated implementation of backdoor protection
• Compiler and/or language additions

• Tools for designers
• Simple language constructs for HDLs

Summary

• Prevent the triggering of hidden backdoors
• Hardware-only solution

• Low performance impact
• Low power/area overhead

• Prototyping required

• Revealed new open problems
• Challenges for processors/embedded systems
• Linguistic challenges

• Vastly raises the bar against hardware backdoors

Thank You! Questions?

Trigger

	PowerPoint Presentation
	Idea
	Backdoors in Hardware Design
	Slide 4
	Solution: Obfuscation of Inputs
	Slide 6
	Outline
	Hardware Design
	Taxonomy of Interfaces
	Slide 10
	Slide 11
	Slide 12
	Three Kinds of Backdoor Triggers
	Slide 14
	Slide 15
	Three Interfaces, Three Triggers
	Trigger #1: Ticking Timebomb
	Slide 18
	Trigger #2: Single-Shot Cheat Code
	Slide 20
	Trigger #3: Sequence Cheat Code
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Three Solutions For Three Triggers
	Power Resets
	Power Resets: Security Analysis
	Data Obfuscation
	Slide 30
	Data Obfuscation: Simple Case
	Slide 32
	Slide 33
	Slide 34
	Data Obfuscation: Complex Case
	Slide 36
	Sequence Breaking
	Slide 38
	Slide 39
	Slide 40
	Catch all: Duplication
	Slide 42
	OpenSPARC Microprocessor Case Study
	Performance Impacts
	Slide 45
	Open Problems
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Summary

