FANCI: Identifying Malicious Circuits

Adam Waksman

Matthew Suozzo Simha Sethumadhavan

Computer Architecture & Security Technologies Lab Department of Computer Science Columbia University

Do You Trust Hardware?

Cyber-attack concerns raised over Boeing 787 chip's 'back door' [1] Researchers claim chip used in military systems and civilian aircraft has built-in function that could let in hackers

NSA Subverts Most Encryption, Works With Tech Organizations For Back-Door Access, Report Says

Western spooks banned Lenovo PCs after [3] finding back doors

Report suggests 'Five Eyes' alliance won't work with Chinese PCs

NSA's Own Hardware Backdoors May Still Be a ^[4] "Problem from Hell"

[2]

1) The Guardian 2012, 2) New York Times 2012, 3) The Register 2013, 4) Tech Review 2013

The Problem of Third-Party IP

Increase in Usage of Third-Party IP in Phones

(International Business Strategies, 2012)

Our Solution

Automatically identify malicious circuits
 in third-party hardware design IP


```
.
assign bus_x87_i = arg0 & arg1;
always @(posedge clk) begin
if (rst) data_store_reg7 <= 16'b0;
else begin
if (argcarry_i37 == 16'hbacd0013) begin
data_store_reg7 <= 16'd7777;
end
else data_store_reg7 <= data_value7;
end
end
assign bus_x88_i = arg2 ^ arg3;
assign bus_x89_i = arg4 | arg6 nor arg5;
```

Our Solution

- Automatically identify malicious circuits
 in third-party hardware design IP
 - Engineers read few lines instead of thousands or millions

assign bus_x87_i = arg0 & arg1; always @(posedge clk) begin if (rst) data_store_reg7 <= 16'b0; else begin

if (argcarry_i37 == 16'hbacd0013) begin
 data_store_reg7 <= 16'd7777;</pre>

end

else data_store_reg7 <= data_value7;
end
end</pre>

assign bus_x88_i = arg2 ^ arg3; assign bus_x89_i = arg4 | arg6 nor arg5;

Currently Undergoing Testing

Overview

- Motivation
 - Hardware can be evil, don't live in denial
- Key Observation
 - Evil hardware is stealthy
- Algorithm
 - Rank gates by degree of stealth
- Results
 - No false negatives, pragmatic and effective
- The Future of FANCI
 - How would we attack our own tool?
- Conclusions
 - Can we really use this tool today? (Spoiler: Yes)

Backdoor = Trigger + Payload

AES Key Stealing

Ciphertext

Key Exfiltration

Backdoor = Trigger + Payload

AES Key Stealing

Ciphertext

Key Exfiltration

Stealth = Power

Validation != Security

What FANCI Does

• We need to catch stealthy circuits that validation is not able to catch

What FANCI Does

Identifying Stealthy Code

- We propose a new quantitative measure of stealth
 - We rank wires in a circuit by stealth value
- Any wire is connected to many other wires
 - *Stealth* value is computed from the *control* values of all the wires its connected to

Example Histograms of Stealth Values

Identifying Stealthy Code

- We propose a new quantitative measure of stealth
 - We rank wires in a circuit by stealth value
- Any wire is connected to many other wires
 - *Stealth* value is computed from the *control* values of all the wires its connected to

Example Histograms of Stealth Values

Defining Control

How often does an input matter?

$$Out = f(A, B, C)$$

How often does an input matter?

How often does an input matter?

Larger Circuits

Example: 4-to-1 Mux

- Consider a real circuit (4-to-1 multiplexer)
 - How can we measure control?

Example: 4-to-1 Mux

- When is M dependent on A?
 - When $S_1 = S_2 = 0$ (one fourth of cases)
 - Total effect = 0.25 Α 0.25 В 0.25 Μ С 0.25 0.25 D $\mathbf{S}_{1} \mathbf{S}_{2}$

Example: 4-to-1 Mux

- M is dependent on S_1 and sometimes affected
 - When A is different from C (and $S_2 = 0$)
 - When B is different from D (and $S_2 = 1$)
 - One half of cases (total effect = 0.5)

Computing Stealth From Control

	Α	В	С	D	S1	S2
Μ	0.25	0.25	0.25	0.25	0.50	0.50

Mean(M) = (2.0 / 6) = 0.33Median(M) = 0.25Triviality(M) = 0.50

Computing Stealth From Control

	Α	В	С	D	Ε	S1	S2	{S ₃₋₆₀	3 }
Μ	0.25	0.25	0.25	0.25	2 ⁻⁶⁵	0.50	0.50	2 ⁻⁶³	

Mean(M) = (2.0 / 71) = 0.03<u>Median(M) = 2⁻⁶³</u> Triviality(M) = 0.50

Computing Stealth From Control

	Α	В	С	D	Ε	S1	S2	{S ₃₋₆₆	}
Μ	0.25	0.25	0.25	0.25	2 ⁻⁶⁵	0.50	0.50	2 ⁻⁶³	

Mean(M) = (2.0 / 71) = 0.03Median(M) = 2^{-63} Triviality(M) = 0.50

Triviality detects more triggers. Mean/median detect more payloads.

Optimization: Sampling

Optimization: Sampling

Results

- Stealth metrics are effective for existing benchmarks
 - No false negatives for TrustHub benchmarks
- Effective even on large designs
 - Able to process full (academic) microprocessor cores
- Efficient enough for modern designs
 - About 1 day to process an average sized module
- Can catch well-hidden backdoors
 - 100% coverage against "stealthy, malicious backdoors" (SSP 2011)

Effectiveness On TrustHub

How Would We Attack FANCI?

- Frequent-Action Backdoor
 - No stealth, requires incompetent/non-existent validation engineers
- False Positive Flooding
 - Contrived design, requires naïve integration engineer
- Pathological Pipeline (State Explosion) Backdoor
 - Contrived design, requires naïve integration engineer
- Foundry (Physical/Parametric) Backdoor
 - Malicious device from benign design, requires malicious foundry

Security Assurances

- Zero false negatives <u>so far</u>
 - Mathematical connection exists between stealth and validation
- FANCI flags wires if and only if they are stealthy
 - Static and not probabilistic or dynamic
- Can operate on digital, synchronous design IP
 - Source code or gatelists
- Can achieve design-side security with minimal validation
 - Works well with current state of practice

The Big Picture: Hardware Security

The Big Picture: Hardware Security

Design Attacks

- Insiders
 - Hicks et al., 2010, Waksman et al., 2010 and 2011
- Third-Party IP
 - This Talk
- CAD Tool Attacks
 - Automated Malicious Design IP
 - This Talk
- Foundry Attacks
 - Counterfeiting
 - Chakraborty et al., 2008, Rajendran et al., 2012
 - Malicious Injections
 - Agrawal et al., 2007, Banga et al., 2008, Salmani et al., 2009, Next talk

Conclusions

- Hardware backdoors: A serious, immediate threat
 - Currently no way to certify trustworthiness
 - Causes tech. localization (increased costs)
- FANCI: Static analysis to identify suspicious circuits
 - Zero false negatives so far
 - Minimal reliance on validation personnel
- Current Status
 - Practical, ready for modern designs (e.g., AFRL, CSAW)
 - First hardware certification tool for trustworthy IP