
FANCI: Identification of Stealthy Malicious Logic Using
Boolean Functional Analysis

Adam Waksman Matthew Suozzo Simha Sethumadhavan
Computer Architecture and Security Technologies Lab

Department of Computer Science
Columbia University
New York, NY, USA

{waksman,simha}@cs.columbia.edu
{ms4249}@columbia.edu

ABSTRACT
Hardware design today bears similarities to software design. Often
vendors buy and integrate code acquired from third-party organi-
zations into their designs, especially in embedded/system-on-chip
designs. Currently, there is no way to determine if third-party de-
signs have built-in backdoors that can compromise security after
deployment.

The key observation we use to approach this problem is that
hardware backdoors incorporate logic that is nearly-unused,i.e.
stealthy. The wires used in stealthy backdoor circuits almost never
influence the outputs of those circuits. Typically, they do so only
when triggered using external inputs from an attacker. In this paper,
we present FANCI, a tool that flags suspicious wires, in a design,
which have the potential to be malicious. FANCI uses scalable,
approximate, boolean functional analysis to detect these wires.

Our examination of the TrustHub hardware backdoor benchmark
suite shows that FANCI is able to flag all suspicious paths in the
benchmarks that are associated with backdoors. Unlike prior work
in the area, FANCI is not hindered by incomplete test suite cover-
age and thus is able to operate in practice without false negatives.
Furthermore, FANCI reports low false positive rates: less than 1%
of wires are reported as suspicious in most cases. All TrustHub de-
signs were analyzed in a day or less. We also analyze a backdoor-
free out-of-order microprocessor core to demonstrate applicability
beyond benchmarks.

1. INTRODUCTION
Malicious backdoors and intentional security flaws in hardware

designs pose a significant threat to trusted computing [1, 2, 3]. This
threat is growing in seriousness due to the ever-increasing complex-
ity of hardware designs. A designer can hide a backdoor within a
hardware design by writing one or a few lines of code in a way
that slightly deviates from specification. For instance, a hardware
backdoor, when triggered, might turn off the page protections for a
certain range of addresses or weaken the cryptographic strength of a

This is the authors’ version of the work. It is posted here by permission of
ACM for your personal use, not for redistribution. The definitive version
will appear in the Proceedings of CCS 2013. (c) 2013, ACM.
CCS’13, November 04–08, 2013, Berlin, Germany
Copyright 2013 ACM **** ****.

psuedo-random number generator. Such backdoors can be inserted
either by third-party designers producing independent components
or by malicious insiders working for an otherwise benign company.
As a concrete example, Kinget al. designed a backdoor that trig-
gers when a specific rare value appears on the memory bus [4].

In recent years, techniques have been proposed for protecting
against hardware design backdoors, including unused circuit iden-
tification [5], validation of design properties at runtime [6], and
methods for disabling backdoor triggers at runtime [7, 8]. Each
of these solutions provides protection against some of the hard-
ware backdoor attack space, and each of these techniques operates
at least partially at runtime. Runtime techniques increase design
complexity, due to the added effort of modifying designs to include
runtime protections.

A key difference between our work and prior works is that our
solution does not depend directly on validation and verification.
This is extremely useful because validation and verification teams
are often large (larger even than design teams) and hard to trust.
Additionally, it can be hard in practice to verify third-party IP.

We propose a solution for discovering backdoors in hardware
designs prior to fabrication using functional analysis. If backdoors
can be detected statically, then the design can be fixed or rejected
before it is taped-out and sent to market. The key insight behind
our work – one that has been observed in prior works [5, 7] – is
that backdoors are nearly always dormant (by design) and thus rely
on nearly-unused logic, by which we mean logic that almost never
determines the values of output wires. It is desirable to design back-
doors with rare triggers to avoid unintentional exposure during de-
sign validation or other benign testing. In other words, triggers give
stealth and control to the adversary. Our goal is tostatically iden-
tify what we refer to asweakly-affecting inputs, which are input
wires that have the capability to serve as backdoor triggers.

We propose a metric calledcontrol value to identify nearly-unused
logic. This metric measures the degree of control that an input has
on the operation and outputs of a digital circuit. The gist of our
method is to approximate the truth table for each intermediate out-
put in a design as a function of any wire that can determine that
output. We then compute the influence of each input on the output.
We show that control value computations can be approximated ef-
ficiently and accurately for real circuits and that control value is a
useful measure for finding backdoors. We then present a tool called
FANCI—Functional Analysis for Nearly-unused Circuit Identifica-
tion. FANCI reads in a hardware design and flags a set of wires that
appear suspicious. FANCI whitelists most of the design (usually
more than 99%) and flags a few suspect wires to be code reviewed.

The intuition behind why FANCI works is that in a given de-

1

sign module, there are typically very few (or even zero) wires with
low enough control values to be capable of serving as a backdoor
trigger. Typically, a backdoor has more or less the following form:
a good circuit and a malicious circuit exist. The outputs of both
feed into something semantically equivalent to a multiplexer. The
multiplexer is controlled by an input that selects the output of the
malicious circuit when triggered. For this general arrangement to
work, the control value for the control wire is made very low, and
FANCI detects such wires.

While we are not theoretically guaranteed to find all backdoors,
our empirical results support that the types of circuits designers cre-
ate in the real world can be effectively analyzed using our tool. For
the backdoored circuits in the TrustHub benchmark suite, we were
able to detect all backdoors with low false positive rates. We were
also able to analyze a backdoor-free, out-of-order microprocessor
core without obtaining false positives, indicating that FANCI does
not flag most commonly used circuits as backdoors. We argue that
applying FANCI to designs statically prior to applying runtime pro-
tections can only bolster defenses and never weakens them. Lastly,
our method has pseudo-randomness built in to defeat adversaries
that may have knowledge of our tools.

The rest of the paper is organized as follows. We first present our
threat model in Section2. We then describe our analysis algorithm
and the way FANCI works in Section3. We further show that our
algorithm solves a previously unsolved problem in backdoor detec-
tion in Section4. The results of our experiments are presented in
Section5. Finally, we discuss related work in Section6 and con-
clusions in Section7.

2. THREAT MODEL
In our threat model, an independent hardware designer or third-

party intellectual property (IP) provider supplies us with a hardware
design. This design is soft IP, encoded as either hardware descrip-
tion language (HDL, also sometimes referred to as RTL) source
code, a gatelist or a netlist. Gatelists are produced by logic synthe-
sis, and netlists are produced by physical synthesis. In each case,
the design is a soft product that has not yet been sent to foundries
for physical manufacture. The provider is malicious and has in-
cluded hidden, malicious functionality that they are able to turn on
at an opportune time for them. The nature of the malicious payload
of the attack is not restricted.

Our goal as security engineers is to use non-runtime, validation-
and verification-independent, functional analysis to identify which
wires in a digital design could potentially be carrying backdoor sig-
nals. We want to flag a small number of wires and be assured that
the malicious functionality is dependent on a subset of those sus-
picious wires. In other words, we need to avoid false negatives (a
false negative would mean a backdoor that we do not detect).

False positives are also relevant. We must flag a small enough
set of wires that security engineers or code reviewers can evaluate
all of the suspicious wires by inspecting code. In other words, we
must whitelist most of the design. We consider a wire to be a true
positive if it is part of combinational logic used in the triggering
of the backdoor. In other words, a true positive wire is part of the
circuit that produces malicious activity.

Our goal in this paper is detection, not correction. By detecting
a backdoor prior to fabrication and deployment, we at least know
that our provider is malicious before we apply compromised IP to
our designs. We can then blacklist that provider and get our IP from
a different source. We do not attempt automatic correction.

3. THE FANCI ALGORITHM AND TOOL

Algorithm 1 Flag Suspicious Wires in a Design
1: for all modulesm do
2: for all gatesg in m do
3: for all output wiresw of g do
4: T ← TruthTable(FanInTree(w))
5: V ← Empty vector of control values
6: for all columnsc in T do
7: Compute control ofc (Section3.2)
8: Add control(c) to vectorV
9: end for

10: Compute heuristics forV (Section3.3)
11: Denotew as suspicious or not suspicious
12: end for
13: end for
14: end for

We begin with a high-level overview of the algorithmic steps
in FANCI and then describe each step individually. Algorithm1
describes how suspicious wires are flagged within an untrusted de-
sign. For each module and for each gate in the module, we examine
the outputs. When we refer to outputs we mean any wire that is the
output of any gate, not just the output pins of a chip or a module
in the design. Since we are looking at all wires (including inter-
nal ones), we do not unnecessarily bias our search for backdoor
activity.

For each output wire, we construct a functional truth table for
the corresponding inputs (i.e. the cone of input wires that feed into
the given intermediate output, also called the fan-in tree). We then
iterate through each of the input columns of the truth table1. For
each column, we hold all other columns fixed. For each possible
row, we check to see if the value of the column in question deter-
mines the output. Mathematically, there are two different logical
functions, the function one gets from fixing the input to digital zero
and the function one gets from fixing the input to digital one. We
are computing the boolean difference between these two functions.
As a result, for each input wire, we get a number between zero and
one (inclusive) that represents the fraction of the rows that are in-
fluenced or controlled based on the input column. Once we have
done this for each input, we have a vector of these numbers. We
then apply heuristics (described in Section3.3) to these vectors to
decide if the output wire is suspicious.

All of our analysis is done on a per-module basis. While a hard-
ware backdoor can affect security of operations that happen in mul-
tiple modules,i.e. the payload of the backdoor can be spread across
different modules, the actual trigger computation usually happens
in only one circuit within one module. The choice to analyze per-
module is practical but not mathematically necessary. As an added
benefit, each module can be analyzed independently of each other,
which means in the future our tool could be parallelized for im-
proved scalability.

Before getting into the further details of the algorithm and imple-
mentation, we provide some background and terminology regard-
ing digital wires and circuits.

3.1 Terminology
FANCI operates at the level of wires and gates, which are the ba-

sic building blocks of digital hardware. In this section we define the
notion of dependency, control values and other relevant concepts in
terms of these building blocks for the understanding of the FANCI

1This is similar to what is called zero-delay combinational logic
simulation in CAD tools

2

Table 1: A small example of an unaffecting input dependency.
Input C has no influence over the outputO.

Input A Input B Input C Output O

1 1 1 0
1 1 0 0

1 0 1 1
1 0 0 1

0 1 1 1
0 1 0 1

0 0 1 0
0 0 0 0

Table 2: An example of an always-affecting input dependency.
C influences the value of the outputO in every row.

Input A Input B Input C Output O

1 1 1 1
1 1 0 0

1 0 1 0
1 0 0 1

0 1 1 0
0 1 0 1

0 0 1 1
0 0 0 0

tool and underlying algorithm.
Our goal is to identify suspicious circuits, and a suspicious cir-

cuit is one that is nearly unused. In prior related work [5], suspi-
cious circuitry was defined as circuits that are not used or otherwise
activated during design verification tests. Our definition contrasts
in two key ways. First, we do not care about verification tests. Sec-
ond, we consider wires to be suspicious if they are activated rarely
rather than never at all. In other words, we are not simply looking
for unused logic. We are looking for logic that is used rarely or
in situations that have a low probability of being exercised during
regular testing.

Dependence:We distinguish between two distinct dependence re-
lations that can exist between wires. These arephysical dependence
andvalue dependence. A wire w2 is physically dependent on an-
other wirew1 if the signal inw2 receives signal from the wirew1.
In other words, there is a path of combinational logic connecting
w1 tow2. Thus, the value thatw2 carries comes from computation
that makes use of the value carried byw1. We can also think ofw2

as the output of a small circuit for whichw1 is an input. Outputs
are dependent on inputs. When we say thatw2 is dependent onw1,
we refer to physical dependency. Ifw2 is dependent onw1, then we
sayw1 is a dependency ofw2. Thus, dependent and dependency
are dual notions.A is a dependent ofB whenB is a dependency
of A.

Value dependence means that there is functional dependence. A
wire w2 is value dependent onw1 if the digital value taken on by
w2 changes depending on the value ofw1. Given thatw2 is physi-
cally dependent onw1, w1 potentially determines the value ofw2,
but it is not guaranteed. For example, in the case of a circuit that
always outputs digital one, the input values do not affect the out-
put at all. We break down value dependence into three relevant
types. These terms convey the notion of how much one wire af-
fects or influences another. They areunaffecting, always-affecting

and weakly-affecting.

Unaffecting Dependency:A dependency of a wire is unaffecting
if it never determines the value of its dependent wire. An example
of this is shown in Table1. The truth table shown represents a small
circuit with three inputs (A, B, C) and one output (O). There are
eight possible cases, broken into four pairings. Within each pairing,
the value ofC can be zero or one. However, that choice does not
matter, because the value of the outputO is fixed with respect toC.

The truth table is equivalent to a circuit whereO is equal to the
logical XOR ofA andB. Within each pair of rows, the set of values
for O is either all ones or all zeros. Thus, we say that the inputC

is an unaffecting dependency of the dependent output wireO.

Always-Affecting Dependency: The opposite of unaffecting is
always-affecting. A dependency of a wire is always-affecting if
the value of that dependency always influences the value of its de-
pendent wire. An example is shown in Table2. The circuit being
represented is similar to the one from Table1. In this case, how-
ever, every pair of rows is affected by the value of the inputC.

The truth table is equivalent to a circuit where the outputO is
computed as the logical XOR of all three of its inputs. In this case,
no matter what the values ofA andB are, the value ofC determines
the computed value of the output.

Weakly-Affecting Dependency: Weakly-affecting dependencies
are the ones we care about the most in this paper. This is because
malicious backdoor triggers rely on weakly-affecting input depen-
dencies for the implementation of nearly useless logic.

A weakly-affecting dependency is a case where one input wire
affects an output but only very rarely. One example of this could
be a large comparator. Consider a circuit that compares a 64-bit
array of wires against the value 0xcafebeefcafebeef. Consider one
of those 64 input wires, say the least significant bit. The output
wire takes on the value one only if all 64 input wires match the
specified comparison value. This means that the least significant
bit only matters if the 63 other bits already match. In that case, the
least significant bit would make the difference between 0xcafebeef-
cafebeee and 0xcafebeefcafebeef and thus the difference between
and output of zero or one. However, in the other263− 1 cases, that
least significant bit is irrelevant. For example, it does not matter if
the input is 0xaaaaaaaaaaaaaaaa or 0xaaaaaaaaaaaaaaab. Thus,out
of the263 total input case pairs, there is only a single one in which
that input bit matters. Thus, it is a weakly-affecting dependency for
the output wire.

In general, a wirew2 has a weakly-affecting dependencyw1 if in
nearly all cases the value ofw1 does not determine the value ofw2.
In other words, for some threshold valueǫ > 0 such thatǫ ≪ 1,
the control value ofw1 onw2 is less thanǫ.

If we consider the example from Section1, of a backdoor where
a comparator on the memory bus fires for one unique large data
value on the bus, all of the input wires to that comparator are clear
examples of weakly-affecting dependencies for the output wire that
serves as the backdoor trigger.

3.2 Computing Control Values
In this section, we discuss how to compute control values for the

dependencies of wires that are the outputs of circuits. The discus-
sion thus far has motivated why weakly-affecting dependencies are
stealthy wires of interest. They are necessary for the implemen-
tation of malicious backdoors. In other words, if the output of a
circuit or gate is carrying a stealthy, malicious signal, then some or
all of its inputs are weakly-affecting. We compute control value to
quantify how weak or strong the degree of effect is.

3

Algorithm 2 Compute Control Value
1: count← 0
2: c← Column(w1)
3: T ← TruthTable(w2)
4: for all Rowsr in T do
5: x0 ← Value ofw2 for c = 0
6: x1 ← Value ofw2 for c = 1
7: if x0 6= x1 then
8: count++
9: end if

10: end for
11: result← count

size(T)

Roughly speaking, the control value of an inputw1 on an out-
put w2 quantifies how much the truth table representing the com-
putation ofw2 is influenced by the column corresponding tow1.
Specifically, the control value is a number between zero and one
quantifying what fraction of the rows in the truth table for a cir-
cuit are directly influenced byw1. Note that this is independent
of particular tests inputs that might be supplied during validation.
Even with high quality test suites, most tests fail to exercise all of
the internal circuits because input coverage and code coverage are
not equivalent to internal state or value coverage. This provides
attackers with an obvious way to hide their backdoors. By oper-
ating statically and looking at the truth tables, we can observe the
behaviors of every gate in the design.

The algorithm to compute the control value ofw1 onw2 is pre-
sented as Algorithm2. We note that in step 3, we do not actually
construct the exponentially large truth table. We instead construct
the corresponding function, which is equivalent to a BDD.

There is one further and necessary optimization we make. Since
the sizes of truth tables grow exponentially (with respect to the
number of input wires), computing control values deterministically
is exponentially hard. Thus, in our evaluation we approximate con-
trol values by only evaluating a constant-sized subset of the rows in
the truth table. We choose the subset of rows uniformly at random
at runtime to make it impossible for attackers to know which rows
we will choose. This algorithm is depicted in Algorithm3.

To take a simple example, suppose we have a wirew2 that is
dependent on an input wirew1. Letw2 haven other dependencies.
From the set of possible values for thosen wires (2n-many), we
choose a constant number, let us say for instance 10,000. Then for
those 10,000 cases, we setw1 to zero and then to one. For each of
the 10,000 cases, we see if changingw1 changes the value ofw2.
If w2 changesm times, then the approximate control value ofw1

onw2 is m

10,000
.

The fact that we choose the inputs at random is important. Back-
doors can be designed to evade known validation test suites. Only
by choosing at random can we guarantee that the attacker will not
know what part of the truth table is going to be explored.

Our hypothesis, which is supported by our results in Section5,
is that choosing a constant, large number of inputs at random is
sufficient for the weak law of large numbers to take effect, resulting
in small statistical deviations and high quality approximations.

3.3 Heuristics for Identifying Backdoors from
Control Values

When we are finished computing approximate control values for
each input, we have a vector of values for each output of each gate
in the design. In this section we describe the heuristics that we use
for making final decisions about wires in designs. Given a vector of

Algorithm 3 Compute Approximate Control Value

1: numSamples← N (usually215)
2: n← number of inputs
3: rowFraction← numSamples

2n

4: count← 0
5: c← Column(w1)
6: T ← TruthTable(w2)
7: for all Rowsr in T do
8: if rand() < rowFraction then
9: x0 ← Value ofw2 for c = 0

10: x1 ← Value ofw2 for c = 1
11: if x0 6= x1 then
12: count++
13: end if
14: end if
15: end for
16: result← count

numSamples

control values, these heuristics determine whether or not a wire is
suspicious enough to be flagged for inspection. For example, hav-
ing only one weakly-affecting wire or a wire that is only borderline
weakly-affecting might not be sufficiently suspicious. This might
be a wire that is in the same module as a backdoor but has no re-
lation to it. Or it could simply be a benign but slightly inefficient
circuit. This is why we need heuristics for taking into account all
of the control values in the vector.

Going back to the example wherew2 is our output,w2 has a
vector ofn+1 control values from its inputs (w1 and then others),
each between zero and one. Thesen + 1 numbers are then + 1
control values from the dependencies ofw2. In this section, we
discuss options for processing these vectors to make a distinction
between suspicious and non-suspicious output wires.

For a small but real example of what these vectors can look like,
consider a standard, backdoor-free multiplexer with two selection
bits that are used to select between four data inputs. This common
circuit is depicted in Figure1. The outputM of the multiplexer is
dependent on all four data inputs and both selection bits. Seman-
tically, the selection bits choose which of the four data values is
consumed.

We can see intuitively what the control values are for the six
input wires (computation for one input is shown explicitly in Fig-
ure 1). The situation is symmetric for each of the four data wires
(A, B, C andD). They directly control the outputM in the cases
when the selection bits are set appropriately. This occurs in one
fourth of the cases, and each of these data inputs has control value
0.25. This can also be confirmed by writing out the truth table and
counting the rows.

The two selection bits have higher control values. A given se-
lection bit chooses between two of the data values. For example, if
S1 = 1 thenS2 chooses betweenB andD. In that caseS2 matters
if and only if B 6= D, which occurs in half of the cases. So the
control values for the two selection bits are 0.50. The full vector of
control values for the outputM contains six values, one for each of
the six inputs. The values are:

[0.25, 0.25, 0.25, 0.25, 0.50, 0.50]

Intuitively, this is a benign circuit, as we would expect. All of the
inputs are in the middle of the spectrum (not close to zero and not
close to one) which is indicative of a common and efficient circuit.

Figure2 depicts a malicious version of a multiplexer. There are
64 additional select bits. When those 64 bits match a specific 64-

4

Figure 1: A standard 4-to-1 multiplexer. The output M takes on the value of one of the four data inputs (A, B, C, D) depending on
the values of the two selection bits (S1, S2).

Figure 2: A malicious 4-to-1 multiplexer. The outputM takes on the value of one of the four data inputs (A, B, C, D) depending on
the values of the two selection bits (S1, S2). There are also 64 extra selection bits ({S3, · · ·S66}) that only change the output if they
match a specific key.

bit key, then the output of the multiplexer is changed to a malicious
payload. In terms of the truth table, this affects only an exponen-
tially small fraction of the output rows. The vector of control values
we would get for the outputM would include 64 additional values
for those 64 extra input wires. Each of those control values would
be on the order of2−63. Intuitively, this is an suspicious circuit, as
it is a textbook backdoor. We next discuss heuristics for interpret-
ing these vectors.

From a large circuit or large design, we get a variety of these
control value vectors, one each per intermediate output within the
circuit. The guarantee we have about the distribution of control
values is at least one or a few of them will be zero or nearly zero for
wires that belong to stealthy backdoor triggers. Thus, the vectors
will contain at least some small values. The practical question is
how to deal with these vectors and identify the output wires that
are truly suspect from ones that are benign. Toward this end, we
consider a few (but not all) different heuristics for evaluating these
vectors. The general description is shown in Algorithm4.

Median: The first option we consider is the median. In the case
of backdoor triggers, the wires on the critical paths of the trigger
generally have mostly unaffecting or very weakly-affecting depen-
dencies, such as in the example displayed in Figure1. Thus, the
median is often close to zero. The median can be an imperfect
metric when the data distribution is irregular, which does happen.
Using only the median (as we confirm in our evaluation), can result
in a few unnecessary false positives.

Mean: In addition to the median, we also consider the mean of
the control values. The mean is slightly more sensitive to outliers.
For example, if there are only a few dependencies, and one of them
is unaffecting, that is likely to get noticed.

Both: Since there are potential limitations with both median and

Algorithm 4 Compute a Heuristic for an Output Wire
1: w ← output wire
2: h← heuristic function (e.g., median)
3: t← threshold (between zero and one)
4: v(w)← vector of control values
5: result(w)← h(v(w))
6: if result(w) < t then
7: return suspicious
8: else{ result(w) ≥ t}
9: return not suspicious

10: end if

mean, we also consider the option of using both,i.e. flagging wires
that have extreme values for both the mean and the median. We
set a threshold for both the median and the mean, and we flag a
wire as suspicious only if the median value is low and the mean
value is also low. This helps in some cases to slightly diminish
false positives. Details and comparisons are presented in Section5.

Triviality: One last heuristic we consider in our implementation
is one that we calltriviality. In terms of control values, this is a
weighted average of the values in the vector. We weight them by
how often they are the only wire influencing the output to deter-
mine how much an output is influenced overall by its inputs. The
purpose is to learn more about the output wire and less about the
individual inputs. For instance, in a circuit that XORs many inputs,
each input has a control value of 1.0, but it is never the case that one
input completely controls the output, and the triviality of the out-
put is only 0.5. Equivalently, this heuristic computes the fraction of
the rows in the truth table in which the dependent output wire has
the value zero (or symmetrically, the value one). In practice, we

5

can compute triviality directly in this way by looking only at the
output column, which often allows for faster runtime than the other
heuristics.

The name ’triviality’ refers to the fact that if the triviality value
is zero or one then the circuit is completely trivial (always outputs
zero or always outputs one). This metric quantifies how function-
ally trivial the sub-circuit computing a specific output wire is. Note
that this metric is not a simple function of the control values, as it
makes use of correlations, but we went with it because it worked
well in practice. The exact value for triviality can vary from run to
run depending on which rows are randomly selected, but it is proba-
bilistically likely to vary by only a very small amount. Empirically,
we did not see significant variance. Additionally, since triviality
can be computed in this alternative way, it might be a good metric
for unusually large modules or if computational runtime becomes
relevant.

For each metric, it is necessary to have a cut-off threshold for
what is suspicious and what is not. This value (between zero and
one) can be chosen eithera priori or after looking at the distrub-
tion of computed values. In practice, the latter often works better,
as there are often natural breakpoints to choose as the threshold.
Either way, the threshold is generally very small,i.e. ≪ .001. Var-
ious other heuristics and/or thresholds could be considered in the
future to attempt to gain improvements in terms of false positive
rates.

4. RELATION TO STEALTHY, MALICIOUS
CIRCUITS

Prior to our work, UCI [5] was the state-of-the-art in analyzing
backdoors inserted during the design phase. The state-of-the-art
in design backdoor attacks is a class of attacks known asstealthy,
malicious circuits (SMCs) [9]. This class of attacks deterministi-
cally evades UCI and was a viable way to attack hardware designs
prior to our work. As we will see, FANCI catches SMCs with high
probability (approaching 1).

UCI is an analysis algorithm that looks at dataflow dependencies
in hardware designs and looks for completely unused intermediate
logic. It is a form of dynamic validation; in terms of our terminol-
ogy, they identify dependencies that are always-affecting depen-
dencies for a given test suite. Given the inputs in the test suite, if
two wires always carry the same values as each other, there is an
identity relationship, and the internal logic is unneeded. If the test
suites were exhaustive, then UCI would have significantly fewer
false positives. However, given the incompleteness of standard val-
idation test suites, UCI has many false positives. For this reason,
the Bluechip system was built to replace the removed logic with ex-
ception handlers that invoke runtime simulation software whenever
false positives are encountered.

There are a few key differences between FANCI and UCI. The
first is that FANCI does not require a validation test suite. This is
valuable for two reasons. Today, third-party IP blocks often do not
come with a validation test suite. Furthermore, if a validation suite
is supplied, the malicious provider can change the validation test
suite to help the compromised hardware evade UCI. A common
problem in validation and verification is that achieving good code
coverage and good interface coverage does not mean good cover-
age of internal states and wires. Certain rare states may never get
tested at all, which can lead to bugs in commercial designs and also
offers ways for backdoor designers to evade detection, such as mis-
using ‘don’t care’ states. FANCI tests all logic equally, regardless
of whether or not it is an input interface, and so it is impossible for
a portion of the logic to go untested.

The second key difference between UCI and FANCI is that UCI
is deterministic and discrete-valued in its approach. Given a test
suite, a wire is only flagged if it is completely unused, regardless
of its relations to other wires. In FANCI, we also catch nearly-
unused wires, meaning wires that are not completely unused but
which rarely alter output signals. For example, if a wire strongly
affects the value of a nearby wire (and thus is not quiescent) but
ultimately has only a small impact on an output wire a few hops
away, we will notice that. A wire that is part of a backdoor trigger
might also do useful work in a different part of the circuit, and
we account for that. Another aspect of FANCI is that it takes into
account the full vector of dependencies and uses heuristics to make
a final decision. For example, if a wire affects two different outputs,
one in a reasonable way and one only rarely, FANCI can notice
that. In the designs we tested, there were many always-affecting
dependency relationships that FANCI correctly did not flag. Those
relationships could have been false positives in UCI.

To give a toy example, consider a double-inverter path, two in-
verters placed one after the other. This is a logical identify func-
tion, so it generates an always-affecting relationship that would be
flagged by UCI. However, as long as the output of the double-
inverter path is used, it would not be flagged by any of FANCI’s
current heuristics. This is a small example and could easily be
hard-coded for in a practical implementation of UCI. However, it
serves as a microcosm of the difference between the deterministic
approach of UCI and the heuristic-based approach of FANCI.

Sturtonet al. introduced stealthy, malicious circuits as a way to
evade UCI. FANCI detects SMCs, and we explain the intuition be-
hind why that is. The basic idea behind SMCs is to use logic that
alters the values of intermediate wires but ultimately does not af-
fect outputs. Using this backdoor class, Sturton et al. demonstrated
basic circuit building blocks — such as AND and OR gates — that
can be used to implement stealthy hardware backdoors. Thus, any
small backdoor can be turned into an SMC and evade UCI. The
truth table for one of the simplest SMCs is the following (repro-
duced from [9]):

t1 t0 i1 i0 h f Operation
0 0 0 0 0 0 Normal Operation
0 0 0 1 1 0 Normal Operation
0 0 1 0 0 0 Normal Operation
0 0 1 1 1 1 Normal Operation
0 1 0 0 0 0 Normal Operation
0 1 0 1 1 0 Normal Operation
0 1 1 0 0 0 Normal Operation
0 1 1 1 1 1 Normal Operation
1 0 0 0 0 0 Normal Operation
1 0 0 1 1 0 Normal Operation
1 0 1 0 0 0 Normal Operation
1 0 1 1 1 1 Normal Operation
1 1 0 0 1 1 Malicious Operation
1 1 0 1 1 0 Malicious Operation
1 1 1 0 1 1 Malicious Operation
1 1 1 1 1 1 Malicious Operation

There are two normal input bitsi1 andi0 and two trigger bitst1
andt0. In terms of the outputf , this is a classic backdoor trigger.
Only when all of the trigger bits are set to one does the functionality
change. In the other cases, the functionality is fixed, and the circuit
looks likef is the AND of i1 andi0. The use of the intermediate
variableh, which is distinct fromf , makes it so thatt1 andt0 are
not truly quiescent. Thus, Sturton proved that UCI’s defenses could
be evaded.

Can FANCI detect stealthy, malicious circuits? Observe that the

6

trigger wires –t1 andt0 – are weakly-affecting for the outputf , i.e.,
they only affect the value off during malicious operation, which
is a smaller fraction compared to normal operation. This fraction
diminishes as the number of trigger bits increases. Thus, for the
backdoors in this class of stealthy, malicious circuits, the trigger
inputs will have low control values and will be caught by FANCI
with high probability.

5. EVALUATION
For our implementation of FANCI, we developed a parser for

gatelists that are compiled from the Verilog HDL, a popular lan-
guage for hardware design. The concepts and algorithms we apply
could be applied to VHDL or any other common HDL, as well as
to hand-written gatelists. Though our analysis is language agnos-
tic, we use Verilog for all evaluation purposes. We use benchmarks
from the TrustHub suite, a popular benchmark suite for work on
hardware backdoors [10]. TrustHub is a suite from an online com-
munity of hardware security researchers and includes a variety of
different types of backdoors, intended to be both stealthy and ef-
fective. For some of these benchmarks, the gatelists were provided.
For others, we acquired the gatelists from the Verilog source using
the Synopsys logic synthesis tool, DC Compiler.

From a given gatelist, our goal is to construct a circuit represen-
tation that can be used to calculate different types of dependencies.
We treat multiple-bit wires as sets of independent wires. Gates that
represent multiple basic logic functions — such as an AND-OR-
INVERTER (AOI) — are treated as functionally equivalent to their
basic elements. We treat memory elements (e.g., flip-flops) as their
logical equivalents. For example, a D-flip-flop is treated as an iden-
tity function. We do this because exponential state-space explo-
ration is infeasible, and as such treating state machines as stateful,
rather than as their combinational counterparts, would be imprac-
tical. Since we track all internal wires (as opposed to only inputs
and outputs), we catch sequential backdoors by catching the com-
binational logic used during internal state recognition.

5.1 Results for Detecting Backdoors
We evaluate the four heuristics presented in Section3.3 on the

TrustHub benchmarks. We perform one run on each design2 with
215 = 32, 768 input cases (truth table row pairs), with the row pairs
chosen uniformly at random (without replacement).

The most important result is that we did not encounter false neg-
atives. For each benchmark and for each of the heuristics, we dis-
covered at least one suspicious wire from each backdoor, which
was enough for us to identify the functionality of the hidden back-
doors. Interestingly, different metrics can highlight different parts
of the backdoor. In general, the mean and median tend to highlight
backdoor payload wires and are more similar to each other than to
triviality. We hypothesize that this is because these payloads have
triggers or resulting values from triggers as their inputs. Thus, sev-
eral of the input wires have low control values, causing both the
mean and median to be small. On the other hand, triviality focuses
more on the output wire itself and as such tends to highlight back-
door trigger wires. Since these are wires that rarely toggle, their
truth tables tend to score very low for triviality. Using multiple
metrics in concert can help out in code review by flagging more of
the wires associated with the backdoor and thus demarcating the
boundary of the backdoor more clearly.

Figure3 shows the results for the 18 TrustHub benchmarks we

2If desirable, multiple runs could be performed to increase confi-
dence. In practice, the same results tend to come up every time, but
it cannot hurt.

Figure 3: False positive rates for the four different metrics and
for TrustHub benchmarks. The RS232 group — which is the
smallest — has about 8% false positives. The others have much
lower rates (less than 1%).

analyzed regarding false positives. For our results, we categorize
the benchmarks into groups as they are categorized by TrustHub.
These categories represent four different design types, containing
a variety of backdoor triggering mechanisms. Each of the four
groups contains a variety of backdoors manually included into a
given design. The RS232 group contains eleven benchmarks, rep-
resenting eleven different backdoors applied to a relatively small
third-party UART controller. The S35932 and S38417 groups each
contain three benchmarks, containing backdoors built into two gatelists
whose source and description are not provided. The S15850 group
contains only one benchmark. The S38417 group contains the
largest designs in terms of area and number of gates, while the
RS232 benchmarks, as the smallest, mostly contain sequential trig-
gers. The s15850, s35932, and s38417 categories are qualitatively
different from RS232 and more similar to each other. We experi-
enced a decrease in false positive percentage for these larger de-
signs, which we attribute to the fact that the total number of false
positives did not vary significantly with respect to design size.

Additionally, the different benchmark categories achieve differ-
ing degrees of stealth (some are documented and others can be cal-
culated manually). The stealth is imply the probability that a back-
door will accidentally reveal itself on a random test input. Most
of the triggers in the RS232 category have a relatively high prob-
ability (i.e. low stealth) of going off randomly, as high as around
one in a million. In the other categories, the probabilities are lower,
ranging from one in several million to as low as around one in2150.
The backdoors in the three low probability groups are the most re-
alistic, since they are stealthy enough to evade detection by normal
methods. The backdoors in the RS232 category go off with such
high probability that validation testing would have a good chance
of finding them. This is an aspect that made them more difficult to
distinguish and resulted in slightly more false positives. From what
we have empirically observed, the larger the design and the more
well-hidden the backdoor, the better FANCI performs in terms of
keeping false positive rates low.

Unsurprisingly (as shown in Figure3), using the median by it-
self produced the most false positives on average. However, the
difference is not large. The heuristic that produced the least false
positives on average was triviality. All four metrics are effective
enough for practical use. We also believe that other metrics could
be considered in the future to achieve incremental improvements.
A promising result we discovered was that the percentage of false

7

Figure 4: These are the total number of suspicious wires de-
tected by each method for each type of backdoor design on av-
erage. For each design and each of the four methods we tried,
we always found at least one suspicious wire. Thus, each of the
four methods is empirically effective. However, some turned up
larger portions of the trigger critical paths, proving to be more
thorough for those cases.

Figure 5: The trade-off between the number of inputs being
used (i.e. running time) and the percentage of true positives
caught, normalized to the results for215 inputs. Results are
shown averaged over the four different metrics we used. The
x-axis is on a logarithmic scale.

positives diminished as we looked at larger designs (granted this is
a small sample set). In other words, it appears that scaling up to
larger designs does not greatly increase the total number of false
positives (i.e. the effort of code review).

Figure 4 shows how many wires are flagged as suspicious on
average for each of the benchmark groups by each of the differ-
ent metrics. Each of the four metrics worked well, though the
mean turned up the most suspicious wires on average (at the cost
of slightly higher false positive rates). We see that all four metrics
flag only a small number of critical wires, which means security
engineers are given a small and targeted set to inspect. For most of
the benchmarks, FANCI whitelists more than 99% of the designs,
making code review and inspection a feasible task.

We lastly test to see what happens as we increase and decrease
the number of input rows we sample. The results are shown in
Figure5. We see that up to a certain point, the results improve.

After that point, the results tend to converge and stay roughly the
same. This is essentially the weak law of large numbers kicking in,
and it allows FANCI to scale well. Note that due to randomness,
sometimes we flag more values using less inputs. This ends up not
affecting our results significantly, since the true positives tend to be
clustered in the design, so adding or removing one wire does not
make a large difference in code review. What we also learned from
varying the number of inputs is that there are two sources of false
positives. The first source is approximation. If we run only a few
inputs, we get extra false positives, and if we run more inputs we get
less false positives. The second source is from persistent positives,
i.e. weakly-affecting signals that are in the design for legitimate
reasons. The first type disappears quickly as the number of inputs
gets large, which is why false positives due to approximation are
not a major concern.

5.2 Runtime and Random Row Selection
The runtime for FANCI is roughly proportional to the size of the

design under test in terms of number of total gates. In practice,
the runtime for a normal module ranges from less than an hour to
a couple of days using215 row pairs per approximate truth table.
The runtime can be increased or decreased by changing the num-
ber of inputs tested. In practice we did not find it necessary to de-
crease this number. Given the sizes of third-party IP components on
the market, the runtime for FANCI should not be a major problem
for real-world scenarios. Our runtime in terms of number of gates
scales similarly to many synthesis and analysis tools, since our tool
and other tools require the parsing of every gate in the design.

To be precise, the asymptotic runtime for a deterministic algo-
rithm would be in the setO(nd2d) wheren is the number of gates
(or nodes) andd is the maximal degree of a node,i.e. the maximal
number of inputs on which an intermediate wire can depend. Us-
ing approximate truth tables reduces the asymptotic runtime to the
setO(nd). Making the (usually true) assumption that the degree is
small and bounded, this reduces to the setO(n), which represents
linear runtime. The algorithm is trivially parallelizable, since the
algorithm is in essence a massivefor loop. Our initial implemen-
tation is sequential, but in the future it could be made parallel if
necessary.

Lastly, we do not do directed testing or targeting of specific rows
in truth tables or specific inputs. We go with uniform randomness
because any other method would be better for an attacker and worse
for us as the security engineers (assuming the attacker knows our
strategy).

5.3 Discussion of False Positives
One lesson learned from our experiments is that false positives

tend to be consistent and are not greatly affected by the randomness
of our sampling methods. We anticipate that the false positives we
encounter in the future will bear similarities to each other, perhaps
allowing for easier recognition. Some examples of potential false
positives could be the most significant bit of a large counter or an
input to an exception-recognition circuit. These circuits are seman-
tically similar to backdoors, because they react to one specific rare
case. For example, consider a floating point divider that throws a
single exception, caused by a divide-by-zero error. Then for the
data input representing the divisor, only the value zero invokes the
exception-handling logic. The exception-handling logic is nearly-
unused.

The existence of these circuits should not pose much of a prob-
lem, because counters and exceptions are easily recognizable in
code review. Nevertheless, as an attacker, one could be motivated
to include many such circuits to increase the false positive count.

8

The problem from an attacker’s point of view is that each of these
false positives requires a costly circuit, and so building an entire
design this way would be impractical. Additionally, these types of
circuits tend to have obvious architectural purposes, and so adding
thousands of them would be a dead giveaway in code review. For
example, including a large number of exception handlers that serve
no apparent purpose would be a source of concern during code in-
spection.

Our hypothesis was that in real designs (i.e. designs that one
might buy as commercial IP), even malicious designers are forced
to follow common design conventions and design reasonably effi-
cient circuits. We believe that this is the reason we did not find a
significant number of false positives in any of the designs we ana-
lyzed.

A related and important property of our approach is that it be-
haves well with respect to common, reusable structures. In modern
designs, much of the circuitry is spent on reusable components,
such as CAMs, RAMs, FIFOs, decoders, encoders, adders, regis-
ters, etc. For some simple designs, such as adders and multipliers,
the results of FANCI have been mathematically verified. We have
not had issues with false positives for these common types of struc-
tures. When identifying suspicious wires, we look for outliers. In
these standard structures, there tend to be no outliers due to symme-
try. Consider a CAM with 32-bit data entries. For each entry, there
is a 32-bit data comparator, which includes some very low control
value dependencies (on the order of1

232
). However, each of the

comparators is identical (or nearly identical), leaving no outliers
to serve as false positives. Additionally, the nature of the structure
should make it obvious in code review how many such wires should
exist (often a power of two or otherwise documented number).

5.4 Out-of-Order Processor Case Study
In order to study FANCI on a larger and backdoor-free design,

we use the FabScalar microprocessor core generation tool [11].
FabScalar is an HDL code generator that produces processor cores
given a set of parameters. The core we choose to use is a moderately-
sized, out-of-order core with four execution units and does not con-
tain backdoors.

The core we analyze has a total of 56 modules. The modules
contain about 1900 distinct wires on average, with the largest mod-
ule containing slightly over 39,000 distinct wires. This largest one
is abnormally large for a single module containing primarily com-
binational logic. However, as this is an auto-generated design, it
is understandable. If it were being hand-written, it most likely
would be broken into smaller, coherent pieces. While the overall
design is larger than any of the modules from the TrustHub suite,
and larger than typical third-party IP components, many of the in-
dividual modules are on average around the same size as modules
in the TrustHub suite.

We were able to analyze each of the 56 modules in FabScalar
using215 row pair samples per truth table, except for two of the ab-
normally large modules where we had to approximate more coarsely.
The two largest modules are outliers and took several days to pro-
cess, even using more coarse-grained approximation. These could
more easily be analyzed in a commercial setting on a compute clus-
ter. Additionally, many software optimizations (including paral-
lelization) could be applied prior to commercialization.

As expected, we did not detect false positives in the benign Fab-
Scalar core. To garner further intuition for how our heuristics look
for wires in benign hardware, we construct a histogram of a typi-
cal FabScalar module (shown in Figure6). In this example, there
are two major spikes at1

2
, 1
4

and 1
8
. The reason for the presence of

spikes is that semantically similar wires tend to have similar values,

Figure 6: A histogram of the triviality values for wires in a
typical FabScalar module called CtrlQueue. The biggest spikes
occur at around 1

2
, 1

4
and 1

8
, which is common. There are no

major outliers. X-axis values are shown on a logarithmic scale,
starting at one and getting smaller going to the right. Inlaid in
the upper right is the sum of all 56 FabScalar modules.

as we saw in the example of a multiplexer. For this module, there
are no suspicious outliers, with all of the values being more than
0.01 (and less than 0.99). We did not see any noticeable outliers,
and our thresholds are typically less than 0.001. More data from
FabScalar is included in the Appendix.

5.5 Security Discussion and Limitations
We briefly discuss some of the security properties discussed in

this paper and their limitations.
• FANCI relies on the assumption that backdoors use weakly-affecting
wires. This is valid in practice because they need to be stealthy. The
more well-hidden the backdoor is, the more likely it is to be caught
by FANCI because more well-hidden backdoors have lower control
values. It is provable3 that for a fixed-length combinational circuit
path, achieving a given level of stealth requires a correspondingly
low control value for one or more of the inputs. On the other hand,
the less well-hidden it is, the more likely it is to evade FANCI but
be caught during testing. We would call such an attack aFrequent-
Action Backdoor, where the idea is to put the backdoor in plain
sight. Standard validation testing and FANCI are highly comple-
mentary.
• FANCI does not remove the need for standard code inspection/re-
view practices. Consider as an example an attack where a malicious
designer includes hundreds of backdoor-like circuits. Each of these
circuits could turn on given a variety of rare triggers, with only one
of them having a useful malicious payload. Thus, FANCI would
flag all of them, mostly generating false positives. We would call
this type of attackFalse Positive Flooding. However, in addition to
the area bloat this would cause, it would be obvious in basic code
inspection that this was not a reasonable design. FANCI specifi-
cally targets small, well-hidden backdoors, which are the type that
are able to evade testing and code inspection.
• Functional analysis only applies to designs or discrete representa-
tions of designs. Functional analysis alone does not protect against
backdoors inserted physically into a device by a malicious foundry,

3We leave out the full proof as it is out of scope for this venue.

9

unless a functional representation can be reverse engineered from
the device via decapping, which is not easy. We would call these
types of attacksPhysical or Parametric Backdoors. Functional
analysis is one piece of hardware security and must exist as part of
the larger security scope, which includes validation, code inspec-
tion and foundry-level techniques in addition to runtime methods

Our approach also works well against sequential backdoors but
with limitations. Sequential backdoors are trigged not by one com-
binational input but by a stream of small inputs over time. In other
words, they are triggered by the combination of an input and a
specific internal state. Hypothetically, a sequential backdoor that
makes use of an extremely large and contrivedly deep state ma-
chine might be able to evade detection or at least made detection
more difficult. We would call an attack of this type aPathological
Pipeline Backdoor. The idea is that by stretching out the backdoor
trigger computation over a long stretch of logic, it makes the con-
trol value data more noisy and potentially more difficult to interpret.
For example, if an input needs to determine an ultimate output with
1

232
probability, this can be done with two sequential components,

each with a probability of 1
216

of turning on. The control value
from beginning to end will still be 1

232
, but there will be many in-

termediate control values, and the overall metrics might not be as
clean. This is one of the many cases where we find that FANCI is
complementary to standard validation practices. While basic tests
would be likely to catch an extremely large backdoor, FANCI is
more likely to catch small, well-hidden backdoors. As we can see
in Table3, practical backdoors tend to have relatively small critical
path lengths, and none of the backdoors we have encountered have
used deep pipelining. In the table, we use path length (in number of
gates) as a proxy for the depth and size of a backdoor trigger com-
putation. These results could be interpreted as merely commentary
on the specific types of backdoors that benchmark designers choose
to build, or they could be interpreted as broadly representative of
the way attackers build malicious circuits. Without a wider array
of benchmarks, we cannot say for certain. However, it appears that
the crucial part of a backdoor – even a relatively complex backdoor
– tends to be composed of only a few gates, and this is good for
security engineers.

Table 3: Average Length of Backdoor Critical Paths in
TrustHub Benchmarks

TrustHub Benchmark Group Average Backdoor Path Length

RS232 4.9
s15850 5.0
s35932 4.4
s38417 4.0

6. RELATED WORK
Hardware design backdoor detection, identification, categoriza-

tion and protection are areas that have recently grown in interest.
Hardware designs have been demonstrated to be highly vulnera-
ble [1, 4]. Reeseet al. evaluated how lightweight and stealthy
one can make practical backdoors [12]. In recent years, there has
been work both in design-time and in-the-field or runtime protec-
tion schemes.

Hickset al. proposed a runtime method for averting backdoors [5].
This method has been shown to detect backdoors, thus raising the
bar for the cleverness of hardware attacks. However, it is also vul-
nerable to sophisticated attacks, as demonstrated by Sturtonet

al. [9] and discussed in Section4. The three key differences be-
tween our work and theirs: 1) our detection technique is exclu-
sively design-time, 2) we do not rely on a validation suite to iden-
tify suspicious circuits, and 3) we provide a continuous measure of
suspiciousness as opposed to a binary metric used by Hickset al.

Also in the area of runtime techniques, Waksman and Sethumad-
havan designedTrustNet [6], a methodology for integrating prop-
erty checkers into hardware designs that can ensure that a wide ar-
ray of properties are upheld at runtime. Waksman and Sethumadha-
van also developed a technique for disabling digital hardware back-
doors at runtime, which identifies possible trigger sources and pre-
vents backdoor triggers from reaching malicious logic [7, 8]. Their
work identifies the notion of a trigger as a rare signal that does not
fire during validation testing. Our work with FANCI is comple-
mentary to that prior work, in part because it lessens the burden of
trust on validation teams.

There has also been prior work in related areas of hardware supply-
chain security, including the detection of physical backdoors added
during fabrication [13, 14, 15, 16] and detecting actively running
backdoors [17, 18]. This work generally assumes a trusted design,
called a golden model, which we and others endeavor to make more
of a reality.

The concept of influence of input variables over truth tables and
boolean functions has been approached from a theoretical perspec-
tive at least as far back as 1988 [19]. As far as we know, we are
the first to apply these concepts to hardware security. Our work
does not rely on formal verification or require manual inspection or
understanding of the inner-workings of designs.

7. CONCLUSIONS
The ability to identify and understand hardware backdoors at de-

sign time using static analysis mitigates the dangers of integrat-
ing third-party intellectual property components into hardware. We
presented a concept calledcontrol value, which describes how wires
within a design affect other wires. Using the idea of control value,
we developed a methodology for identifying suspicious wires that
have the capability to carry backdoor trigger signals. Specifically,
we look at the influence wires have over intermediate outputs within
a circuit and identify those wires that have an abnormally low de-
gree of influence. Our method is scalable and approximate; to
achieve our goals, we build truth tables of intermediate outputs in
the circuit of interest and compute the control value by randomly
sampling rows in the truth table. Using a tool we developed, called
FANCI, we examined 18 TrustHub benchmarks. We were able to
identify triggers in each of these benchmarks, obtaining low false
positives rates (flagging less than 10 wires per design on average)
in the process.

FANCI is the first tool for checking the security of third-party
soft IP and regular hardware designs prior to fabrication. Similar
to software static analysis tools, we envision FANCI being used as
a first line of defense for enhancing hardware security. It is com-
plementary to runtime techniques for protecting against hardware
attacks and also to standard testing practices. Additionally, it has
fewer trust requirements as compared with previously existing run-
time detection/protection techniques. While our tool is not theoret-
ically guaranteed to find all backdoors, it is likely that backdoors
that evade FANCI have to break the digital abstraction or have to
be non-stealthy and thus detectable through normal means. Our
experimental results support the claim that this methodology could
be applied to real-world designs today. As designs get more com-
plex and time to market shrinks, tools like FANCI that can target
backdoors prior to fabrication are critical to the development of
trustworthy systems.

10

Figure 7: Histograms of the triviality values from three of the modules in the FabScalar core design we used. The y-axis shows the
number of wires in each category, and the x-axis shows a logarithmicscale of the triviality values for the wires. Triviality scales from
one to zero (going left to right), so the logarithmic values scale fromzero to negative infinity.

ACKNOWLEDGEMENTS
We thank anonymous reviewers and members of the Computer Ar-
chitecture and Security Technologies Lab (CASTL) at Columbia
University for their feedback on this work. This work was sup-
ported by grants FA 99500910389 (AFOSR), FA 865011C7190
(DARPA), FA 87501020253 (DARPA), CCF/TC 1054844 (NSF)
and gifts from Microsoft Research, WindRiver Corp, Xilinx and
Synopsys Inc. This work is also supported through an Alfred P.
Sloan Foundation Fellowship and the Department of Defense ND-
SEG Fellowship. Opinions, findings, conclusions and recommen-
dations expressed in this material are those of the authors and do
not necessarily reflect the views of the US Government or commer-
cial entities.

APPENDIX
In Figure7, we include some example histograms of the triviality
values we found for wires in six of the modules from FabScalar, the
benign microprocessor core that we tested with FANCI. In a normal
design, most of the wires have values that are not extremely small,
with values between1

8
and 1

2
being very common. To make the

results easier to read, we have combined the values between zero
and 1

2
with the values between1

2
and one. For example, 0.1 and

0.9 are plotted together, as are 0.7 and 0.3. Semantically, we care
about the distance from1

2
, so this is the easiest way to understand

the data.
To take the example of the DecodePISA module, which experi-

enced slightly lower triviality values than the other example mod-
ules, it turns out that most of the lower values belong to higher or-
der bits of a 128-bit output packet called DecodedPacket0. Without
knowing the intention of the original designer, it seems likely that
these upper order bits are not always being used efficiently. How-
ever, the control values are not so low as to merit real suspicion.
In addition to serving as a security method, these types of observa-
tions may also be useful for regular debugging and optimization by
trusted designers.

As we can see in the histograms, the vast majority of wires are
bunched up on the left side, having relatively normal values (closer
to 1

2
then to the extremes of zero or one). In FabScalar, we rarely

see wires with values even less than2−10, which is still a rela-
tively benign value (corresponding to roughly a one in one thousand
chance of a certain behavior occurring). We can also see that while
the values are mostly close to2−1 = 1

2
, the actual distributions

vary from module to module. This is to be expected, as module
designs are complex, and it is rare for two different modules to be
exactly the same.

11

References
[1] Sally Adee. The Hunt for the Kill Switch.IEEE Spectrum

Magazine, 45(5):34–39, 2008.

[2] Marianne Swanson, Nadya Bartol, and Rama Moorthy. Pi-
loting Supply Chain Risk Management Practices for Federal
Information Systems. InNational Institute of Standards and
Technology, page 1, 2010.

[3] United Stated Department of Defense.High Performance Mi-
crochip Supply, February 2005.

[4] Samuel T. King, Joseph Tucek, Anthony Cozzie, Chris Grier,
Weihang Jiang, and Yuanyuan Zhou. Designing and Im-
plementing Malicious Hardware. InProceedings of the
1st Usenix Workshop on Large-Scale Exploits and Emergent
Threats, pages 5:1–5:8, Berkeley, CA, USA, 2008. USENIX
Association.

[5] Matthew Hicks, Samuel T. King, Milo M. K. Martin, and
Jonathan M. Smith. Overcoming an Untrusted Computing
Base: Detecting and Removing Malicious Hardware Auto-
matically. In Proceedings of the 31st IEEE Symposium on
Security and Privacy, pages 159–172, 2010.

[6] Adam Waksman and Simha Sethumadhavan. Tamper Evident
Microprocessors. InProceedings of the 31st IEEE Symposium
on Security and Privacy, pages 173–188, Oakland, California,
2010.

[7] Adam Waksman and Simha Sethumadhavan. Silencing Hard-
ware Backdoors. InProceedings of the 2011 IEEE Sympo-
sium on Security and Privacy, pages 49–63, Oakland, Cali-
fornia, 2011.

[8] Adam Waksman, Julianna Eum, and Simha Sethumadhavan.
Practical, Lightweight Secure Inclusion of Third-Party Intel-
lectual Property. InDesign and Test, IEEE, pages 8–16, 2013.

[9] Cynthia Sturton, Matthew Hicks, David Wagner, and
Samuel T. King. Defeating UCI: Building Stealthy and Mali-
cious Hardware. InProceedings of the 2011 IEEE Symposium
on Security and Privacy, SP ’11, pages 64–77, Washington,
DC, USA, 2011. IEEE Computer Society.

[10] Mohammad Tehranipoor, Ramesh Karri, Farinaz Koushanfar,
and Miodrag Potkonjak. TrustHub.http://trust-hub.org.

[11] Niket K. Choudhary, Salil V. Wadhavkar, Tanmay A. Shah,
Hiran Mayukh, Jayneel Gandhi, Brandon H. Dwiel, Sandeep
Navada, Hashem H. Najaf-abadi, and Eric Rotenberg. Fab-
scalar: Composing Synthesizable RTL Designs of Arbitrary
Cores within a Canonical Superscalar Template. InComputer
Architecture (ISCA), 2011 38th Annual International Sympo-
sium on, pages 11–22. IEEE, 2011.

[12] Trey Reece, Daniel Limbrick, Xiaowen Wang, Bradley Kid-
die, and William Robinson. Stealth Assessment of Hardware
Trojans in a Microcontroller. InProceedings of the 2012 In-
ternational Conference on Computer Design, pages 139–142,
2012.

[13] Sheng Wei, Kai Li, Farinaz Koushanfar, and Miodrag Potkon-
jak. Provably Complete Hardware Trojan Detection Using
Test Point Insertion. InProceedings of the International Con-
ference on Computer-Aided Design, ICCAD ’12, pages 569–
576, New York, NY, USA, 2012. ACM.

[14] Dakshi Agrawal, Selçuk Baktir, Deniz Karakoyunlu, Pankaj
Rohatgi, and Berk Sunar. Trojan Detection using IC Finger-
printing. In IEEE Symposium on Security and Privacy, pages
296–310, 2007.

[15] Mainak Banga, Maheshwar Chandrasekar, Lei Fang, and
Michael S. Hsiao. Guided Test Generation for Isolation and
Detection of Embedded Trojans in ICS. InGLSVLSI ’08:
Proceedings of the 18th ACM Great Lakes symposium on
VLSI, pages 363–366, New York, NY, USA, 2008. ACM.

[16] Jie Li and J. Lach. At-Speed Delay Characterization for IC
Authentication and Trojan Horse Detection. InHardware-
Oriented Security and Trust, 2008. HOST 2008. IEEE Inter-
national Workshop on, pages 8–14, June 2008.

[17] Mainak Banga and Michael S. Hsiao. A Region Based
Approach for the Identification of Hardware Trojans. In
Hardware-Oriented Security and Trust, 2008. HOST 2008.
IEEE International Workshop on, pages 40–47, June 2008.

[18] Hassan Salmani, Mohammad Tehranipoor, and Jim Plusquel-
lic. New Design Strategy for Improving Hardware Trojan De-
tection and Reducing Trojan Activation Time. InHardware-
Oriented Security and Trust, 2009. HOST ’09. IEEE Interna-
tional Workshop on, pages 66 –73, 2009.

[19] Jeff Kahn, Gil Kalai, and Nathan Linial. The Influence of
Variables on Boolean Functions (Extended Abstract). pages
68–80, 1988.

12

http://trust-hub.org

	Introduction
	Threat Model
	The FANCI Algorithm and Tool
	Terminology
	Computing Control Values
	Heuristics for Identifying Backdoors from Control Values

	Relation to Stealthy, Malicious Circuits
	Evaluation
	Results for Detecting Backdoors
	Runtime and Random Row Selection
	Discussion of False Positives
	Out-of-Order Processor Case Study
	Security Discussion and Limitations

	Related Work
	Conclusions

