
UNIVERSIDAD AUTÓNOMA DE MADRID

Dynamic & Static Pruning Techniques

for Classification Ensembles

by

V́ıctor Soto Mart́ınez

A thesis submitted in partial fulfillment for the

degree of Masters of Science

in the

Escuela Politécnica Superior
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In ensemble learning the outputs of several diverse classifiers are combined into a unified

decision. It has been proved in the literature that using this scheme of classification

provides both good accuracy and robustness to the classification. However, ensemble

learning has expensive requirements: it needs to keep every classifier in memory in order

to be able to query them, and all the classifiers need to be queried to output a decision.

In order to overcome these drawbacks, ensemble pruning techniques have been designed.

Usually ensemble pruning techniques are categorized as static and dynamic techniques.

Static techniques select a subensemble of classifiers that optimize a given heuristic, and

discard the rest. Dynamic techniques sequentially query the classifiers and halt the

process when a confidence-interval measure reaches a preset value.

In this Master’s Thesis two contributions are made to the field of ensemble pruning

techniques. First, a double pruning scheme is presented, that reduces the memory re-

quirements of the ensembles and ameliorates the classification process by combining

preexisting static and dynamic pruning techniques from the literature. Second, an up-

dated version of the Statistical Instance-Based Pruning method is proposed. The new

formulation of the method allows us to include specific knowledge about the classifica-

tion problems, thus better fitting the disagreement between the full ensemble and its

dynamically pruned counterpart, and further increasing the speed-up rates.
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Chapter 1

Introduction

The goal of supervised machine learning is to build an autonomous prediction system h,

also known as classifier or hypothesis, by means of an induction process using a training

dataset Ztrain. The training dataset is a collection of examples formed by pairs (x, y)

where is x ∈ X is a feature vector of independent variables and y ∈ Y is its class label or

dependent variable. The prediction task consists in labeling each example with a class

based only on its feature vector.

h : X −→ Y

x 7→ y

When the class labels space Y is a discrete space where no order is established the

prediction task is called classification, whereas when the class label is real valued the task

is called regression. The quality of the prediction system is measured in its generalization

performance capacity, i.e the accuracy achieved on a separate test dataset Ztest generated

from the same training distribution.

accuracy =
1

‖Ztest‖
∑

(x,y)∈Ztest

I(h(x) = y) (1.1)

Ensemble learning is a branch of supervised learning concerned with combining multiple

classifiers in order to generate a single, more accurate classifier [1–5]. Ensemble classifiers

combine the output of every single classifier and output a unified prediction. There is

extensive evidence in the literature that shows that combining multiple predictions is a

good mechanism to improve generalization performance and improve the robustness of

the prediction [6–8]. Specifically, combining diverse classifiers (those whose errors are

independent and mostly complementary) further improves the performance of the final

1



aggregated classifier, since the errors made by some hypothesis are corrected by other

hypothesis.

The prediction of the ensemble can be computed using different rules. The most common

rule is the majority rule, where the most voted class is chosen. Supposing the ensemble

has T classifiers, the rule is given by the following formula

y = argmax
i

T
∑

t=1

I(ht(x) = yi) (1.2)

An extensive analysis on this rule can be found in [1].

The biggest drawback of ensemble learning algorithms is the the elevated cost of space

and time complexity: several classifiers have to be allocated in memory and be queried

in order to output a final prediction. In order to ameliorate these costs, many ensem-

ble pruning techniques have been proposed (see section 2.2). These ensemble pruning

techniques can be separated in two different groups: static and dynamic techniques.

Static techniques (or off-line techniques) focus in selecting a subset of classifiers of fixed

size that improves the accuracy with respect to the full ensemble, discarding the rest of

them. Dynamic pruning techniques, on the other hand, estimate the number of classi-

fiers needed to obtain the final decision for each specific instance during the classification

process. Dynamic pruning techniques (or on-line techniques) speed up the classification

process but all the classifiers need to be stored in memory.

In this work two different contributions are made:

1. A double pruning algorithm is proposed. This algorithm consists in first reducing

the set of classifiers by applying a static method, which ensures that both the

accuracy and speed-up are improved. Then a dynamic method is used during the

classification process, which furthers accelerates the classification process. Two

variants of the double pruning algorithm are given for ensemble algorithms Bagging

and Adaboost.

2. A variant of the dynamic pruning method Statistical Instance-Based is shown. The

variation incorporates prior knowledge about the specific classification problem. It

is shown that the new method improves the speed-up rates of the original ensemble.

The rest of the work is organized as follows. Chapter 2 reviews the state of the art of

ensemble methods and static and dynamic pruning techniques, the main focus of the

thesis. It also contains an extensive analysis on the SIBP method, including the involved

mathematical proofs. Chapter 3 contains the first contribution of this thesis, the double



pruning technique. Chapter 4 presents a thorough analysis of the new updated SIBP

method. Finally in chapter 5 the global conclusions of this thesis are expounded.





Chapter 2

Classification Ensembles and

Pruning Techniques

In this chapter a revision of the vast state of the art on classification ensemble methods

and its pruning techniques is given. Mainly the methods used throughout this work are

explained, or those the author judged interesting or necessary for the reader. The first

section contains the review of three most important ensemble algorithms. The second

section offers a review of key ensemble pruning techniques. Finally, the third section

presents the experiments performed over several benchmark classification problems using

the SIBP method. These results will be relevant for Chapters 3 and 4.

2.1 Classification Ensembles

A condition both necessary and sufficient to build classification ensembles is if the hy-

pothesis are accurate and diverse [1]. A hypothesis is accurate if its accuracy is better

than random guessing, i.e higher than 50%. A set of ensembles are diverse if they make

errors in different instances, i.e their errors are independent. Ensemble construction

techniques can be categorized as [6]: enumerating the hypothesis, manipulating the

training dataset, manipulating the input features, manipulating the output targets and

injecting randomness. In this work, all the tested ensembles are built by manipulating

the training dataset. Using this approach, the diverse hypothesis are built creating a

different training set sampled from the original set. Random Forests also uses the ma-

nipulating the input vectors approach by selecting a reduced number of features in each

split node of its tree classifiers.

5



Chapter 2. Classification Ensembles and Pruning Techniques 6

In the next three sections we review the three most important ensemble algorithms, also

used in this work.

2.1.1 Bagging

Bagging (Bootstrap Aggregating) [2] is an ensemble learning algorithm that creates

diverse classifiers from the same dataset and aggregates their output to create a single

predictor. The method creates an ensemble of T classifiers by creating T different

bootstrap learning sets Zt
train t ∈ [1, T ]. Given a learning set of size N , bootstrap

samples uniformly and with replacement N examples from the learning dataset. As a

direct consequence of sampling with replacement, each bootstrap dataset will contain

repeated examples and will miss some examples. Specifically, each bootstrap dataset

will contain a fraction close to 0.632 of the N examples.

P (xi /∈ Zt
train) =

(

N − 1

N

)N

= eN ln N−1

N
N→∞−−−−→ eN(N−1

N
−1) = e−1 = 0.368 (2.1)

where it has been used the inequality limx→1 lnx = x − 1. The examples that are

not included in the bootstrap sampling (a fraction 1/e of the total) are called out-of-

bag instances, and are used to compute estimates of the ensembles [9]. The bagging

pseudocode can be observed in Algorithm 1.

Algorithm 1 Bagging Pseudocode

Require: A training set E = {(xi, yi)}Ni=1 and Learn algorithm

Ensure: Classification ensemble {ht}Tt=1

1: for t = 1→ T do

2: Et = BootStrapSample(E)

3: ht ← Learn(Et)

4: end for

5: return Ensemble classifier given by the expression H(x) = sign
(

∑T
t=1 αthtx)

)

Once the T classifiers have been built, the aggregated predictor outputs classification

decisions using the majority voting scheme rule

y = argmax
i

T
∑

t=1

I(ht(x) = yi) (2.2)

Bagging needs unstable predictors to work properly. An unstable prediction algorithm

is one that generates very different (diverse) classifiers if the same training data is used
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with small perturbations. It has been studied that neural networks and decision trees

are unstable learning algorithms, while nearest neighbors methods are very stable [10].

2.1.2 Boosting

The state of the art of boosting is very extensive. In this section only a brief review

is given following a chronological perspective. The first boosting algorithm comes up

as an answer to a question posed in [11] within the PAC (probably approximately cor-

rect) learning framework: ”A weak learning algorithm is given, capable of generating

hypothesis with an accuracy better than random guessing for any distribution over the

instances space. Does the existence of such weak algorithm imply the existence of a

strong algorithm capable of generating classifiers of arbitrarily high accuracy?”. The

answer by Robert E. Schapire is affirmative [12], proving that it is possible to join the

decision of several weak learners and form an aggregated strong classifier in polynomial

time. Later, a new algorithm that works in the majority voting framework is proposed

by Yoav Freund in [13]. Both algorithms were characterized by keeping a probability

distribution over the training dataset and updating that distribution in each iteration in

a way that often misclassified examples have more probability that correctly classified

examples. Using this distribution to generate the training datasets of each hypothesis,

it is more likely that successive classifiers will be able to correctly classify examples that

were misclassified by the previous hypothesis.

Up to that point, the existent boosting algorithms had the undesirable characteristic of

not being adaptive, that is, they needed an input parameter γ ∈ (0, 1/2) that indicated

the minimum accuracy 1/2 + γ required to each hypothesis. Hypothesis that failed to

achieve a minimum accuracy, were discarded and not used in the ensemble classifier.

Adaboost (Adaptive Boosting) [14, 15] was the first boosting algorithm to overcome

this drawback. Unlike its predecessors, Adaboost used all the weak hypothesis generated

during its training phase, being almost as efficient as boosting-by-majority. Due to its

efficiency and simplicity, Adaboost quickly gained fame between the researchers of the

field. Adaboost proved to be extremely efficient in driving the training error to zero,

but more importantly, it proved to continue reducing the generalization error long after

the training error was zero [16]. The Adaboost pseudocode is given in Algorithm 2.

There are two main implementations of boosting: boosting-by-resampling and boosting-

by-reweighting. In boosting-by-resampling each time the weak learning algorithm is

called, a resampled (with replacement) training set is fed directly to the algorithm.

However, in boosting-by-reweighting the base learning algorithm is capable to handle the
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weights over the examples space and both the probability distribution and the complete

training set is passed.

Both bagging and boosting by resampling creates new training sets for each hypothesis

by resampling the original training data. However, whereas the resampling performed

in boosting is uniform over the space of instances and independently done for each

classifier, in boosting the resampling follows a given probability distribution that is very

dependent from the previous ones.

Breiman proposed in [16] a general term for adaptive boosting algorithms under the

name of Arcing algorithms (Adaptively Resample and Combining) and gave a set of

directions under which the arcing algorithms were constructed. Breiman’s goal was to

provide an analysis framework capable of explaining why Adaboost kept reducing the

generalization error after terminating the training error. In the same work, Breiman

conducts an analysis on arcing algorithms in which the generalization error is decom-

posed into a Bayes error term (the minimum misclassification rate), a bias term and a

variance term. The definitions of both terms varies greatly depending on the author,

but the concept remains the same: the bias is defined as the error directly related to the

learning algorithm, and the variance is the error related to the fluctuations of generating

single classifiers.

An alternative framework for analysis of arcing algorithms is proposed in [17], where the

authors claim that the key to the boosting algorithms effectiveness lies not in reducing

the training error to zero, but in maximizing the margins of the examples. The margin

of an ensemble classifier over an example is defined as

margin(x, y) =
T
∑

t=1

wtyht(x) (2.3)

where wt > 0 is the weight associated to hypothesis ht, such that
∑T

t=1 wt = 1.

2.1.3 Random Forests

Random Forests [4] is an ensemble learning algorithm for decision trees. Starting from

the same idea of bagging, Random Forests creates a bootstrap dataset to train each

base classifier. The main difference between bagging and random forest is that during

the training of the decision trees, the latter chooses randomly in each node m variables

to calculate the best split. Usually the number of selected variables follows the identity

m = log2 (M + 1), where M is the dimensionality of the feature space.
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Algorithm 2 Adaboost Pseudocode

Require: A training set E = {(xi, yi)}mi=1 and WeakLearn algorithm

Ensure: Classification ensemble formed by {(αt, ht)}Tt=1

1: w1(i) = 1/m

2: for t = 1→ T do

3: ht ←WeakLearn(S,wt)

4: ǫt ←
∑m

i=1 wt(i)I(ht(xi) 6= yi)

5: αt =
1
2 ln

(

1−ǫt
ǫt

)

6: for i = 1→ m do

7: wt+1(i) =
wt(i) exp (−αtyiht(xi))

Zt

8: end for

9: end for

10: return Ensemble classifier given by the expression H(x) = sign
(

∑T
t=1 αtht(x)

)

2.2 Pruning Techniques for Classification Ensembles

There is extensive empirical evidence that combining the predictions of complementary

classifiers is a successful strategy to build robust classification systems with good gen-

eralization performance [6–8]. The main disadvantages of ensemble methods are the

difficulties in the interpretation of the decisions of the ensemble and their large compu-

tational requirements. In particular, the training cost, the storage needs and the time

of prediction increase linearly with the number of classifiers that are included in the

ensemble. To alleviate these shortcomings, different ensemble pruning methods can be

used [18–27]. The goal of these methods is to reduce the memory requirements and to

speed-up the classification process while maintaining or, if possible, improving the accu-

racy of the original ensemble. Besides needing less storage space and predicting faster,

pruned subensembles can actually outperform the original classification ensembles from

which they are extracted [19–22, 24].

The pruning methods for classification ensembles are clustered into two different groups:

static and dynamic (also known as off-line and on-line respectively). The goal of static

pruning methods is to select a subensemble of classifiers that improves or maintains the

generalization performance while accelerating the classification process with respect to

the full ensemble [18, 23, 24]. Once the subensemble is identified, the rest of classifiers

are discarded and only the subsensemble is stored in memory. Thus, memory storage

needs is ameliorated and the classification stage is sped-up. Additionally, if the selected
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classifiers make complementary errors, the generalization performance can be improved

[24]. Static pruning ensemble methods have been successfully applied to both parallel

ensembles [24] and sequential ensembles [18, 23].

Dynamic methods estimate the prediction of the full ensemble based on the results of a

few queried classifiers. Given a high level of confidence α, all the classifiers are queried

until the probability that both the full ensemble and the queried subensemble predictions

is the same is above α [25]. Unlike static methods, dynamic methods need to store all

the classifiers and thus do not alleviate memory storage needs. On the other hand they

further improve the speed-up rates, which makes them suitable for on-line applications.

Dynamic pruning ensemble methods have been applied only to parallel ensemble, given

that its theoretical analysis assumes that the classifiers are built independently when

conditioned to the training data.

2.2.1 Static Pruning Techniques

A possible approach to ensemble pruning is to select from the original ensemble a subset

of representative classifiers whose combined performance is equivalent or better than

the complete ensemble. A handicap is that the selection of classifiers has to be based

on estimates on the training data. However, the objective is to identify a subensemble

that has good generalization performance. Even if we can compute accurate estimates

of the generalization accuracy on the basis of the training data only, finding the optimal

subensemble is a computationally expensive problem that involves comparing all the

possible 2T−1 non-empty subensembles that can be extracted from the original ensemble.

An important subset of static pruning techniques are those called ordered aggregation

techniques. These techniques use a greedy strategy based on modifying the order of

the original ensemble. The greedy search starts from an initial subset of classifiers of

the complete pool ET and adds in each iteration the classifier that optimizes a given

heuristic measure. From the subensemble Su−1 of size u − 1, the subensemble of size

Su is constructed by incorporating a single classifier su from the remaining pool of

classifiers ET \Su−1. The result is a sequence of ordered hypothesis that can be pruned

by selecting the first k classifiers. An exhaustive analysis of order aggregation techniques

can be found in [24]. Next we review some of the most notable static pruning techniques

in the literature. For each method, its own ordered aggregation rule is given.
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2.2.1.1 Early Stopping

The early stopping or fix-rate pruning selects the first t hypothesis produced by the

ensemble learning algorithm and discards the rest. Therefore, the u−th selected classifier

will be the same classifier in that position in the original ensemble

su = hu (2.4)

2.2.1.2 KL-divergence Pruning

Based on the assumption that a good indicator of the generalization performance of an

ensemble is the diversity between its classifiers, this technique maximizes the diversity

of the selected subensemble using the Kullback-Leibler divergence of the probability

distributions over the training data. The KL-divergenceKL(p||q) measures how different

two probability distributions p and q are. It is not a proper distance, as it does not satisfy

the symmetrical and transitive properties, but it is often used as such in the literature.

The definitions, for both discrete and continuous distributions are

KL(p||q) =
N
∑

n=1

p(xn) log
p(xn)

q(xn)
KL(p||q) =

∫

X
p(x) log

p(x)

q(x)
dx (2.5)

This technique initializes the subset of classifiers with the first hypothesis of the en-

semble. Starting from a subensemble of size u − 1, it creates the subensemble of size

u by adding the classifier that maximizes the sum of the pairwise distances of all the

classifiers. We make an abuse of notation and define the KL divergence between two

classifiers K̃L(hi||hj) as the KL divergence between the probability distributions over

their training sets. The ordering rule follows:

su = argmin
k

u−1
∑

i=1

K̃L(si||hk) (2.6)

2.2.1.3 Kappa Pruning

This technique chooses the classifiers that will form the pruned ensemble based on their

pairwise diversity. In order to do so, it uses the κ statistic. The κ coefficient of a pair

of classifiers hα and hβ, is computed using the estimated probability that the classifiers

coincide in the classification of an instance, Θ1, and the estimated probability that the

classifiers coincide by chance in the classification, Θ2. The definition of both statistics
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is

Θ1 =
1

m

l
∑

i

Cii Θ2 =

l
∑

i=1





1

m

l
∑

j

Cij









1

m

l
∑

j

Cji



 (2.7)

where Cij is the number of instances in the training dataset for which hα = yi and

hβ = yj. The kappa statistic measures the agreement between the classifiers as

κ =
Θ1 −Θ2

1−Θ2
(2.8)

The κ statistic is interpreted as follows. If κ = 1 then the two classifiers are identical

on their decisions and thus not diverse at all. If κ = 0 then their agreement rate is

the same as their agreement expected by chance. Finally κ takes negative values when

the agreement is lower than the expected by chance. This technique incorporates pairs

of classifiers to the subensemble with minimum value of kappa, until t hypothesis have

been selected:

su = argmin
k

κ(hk,HSu−1
) (2.9)

2.2.1.4 Boosting-Based Ordering

The boosting-based ordering [28] uses the weights updates of boosting on bagging en-

sembles. Given a bagging ensemble of size T , the boosting-based ordering starts by

initializing the weights over the training dataset uniformly. In each iteration the method

chooses the classifiers with the lowest weighted error over the training set from the pool

of classifiers and updates the weights over the dataset according to the Adaboost rules.

The weighted error of a classifier over the training dataset is given by

ǫt =
1

N

N
∑

n=1

wn · I(ht(xn) 6= yn) (2.10)

and the Adaboost weight updates follow

wi =

{

wi

2ǫt
if ht(xi) 6= yi

wi

2(1−ǫt)
if ht(xi) = yi

(2.11)

The ordering rule of Boosting-based Ordering is

su = argmin
k

ǫ(hk) (2.12)
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2.2.1.5 Reduce-Error Pruning

The Reduce-Error pruning, based on the method of the same name for pruning decision

trees, is introduced in [18]. This method, following a greedy strategy, iteratively adds

to Su−1 the classifier hu such that the voted combination of Su−1 ∪ hu minimizes the

classification error. It is mentioned in [18] that better results can be obtained introducing

a back-fitting stage after each addition to the pruned ensemble, although as noted in [29]

this might not be necessarily true. The back-fitting stage consist in replacing one of the

already added classifiers with one of the classifiers in the pool. If the classification rate

is improved after the replacement, it tries to accomplish another replacement until the

ensemble converges or a preset maximum number of iterations is reached. The ordering

rule is given by

su = argmax
k

N
∑

n=1

I(HSu−1∪hk
(xn) = yn) (2.13)

2.2.1.6 Complementary Measure Pruning

The Complementary Measure pruning technique [20] adds in each iteration the classi-

fier that is most accurate over the set of misclassified instances of the current pruned

ensemble. Initially the subensemble is initialized with the classifier with the lowest clas-

sification error, and iteratively incorporates the most diverse hypothesis. In this case

the most diverse classifier is the one that correctly classifies the misclassified instances

by the actual ordered ensemble. The ordering rule of the method follows

su = argmax
k

N
∑

n=1

I(hk(xn) = yn & HSu−1
(xn) 6= yn) (2.14)

2.2.1.7 Margin Distance Minimization

This method, first published in [20], uses the margin vector ct = (ct1, c
t
2, . . . , c

t
N ) of each

classifier to create the pruned ensemble. The margin of the classifier ht over the i-th

example is defined as

ctn = 2I(ht(xn) = yn)− 1 (2.15)

In order to build the ensemble, the method iteratively adds the classifier that minimizes

the distance between the aggregated margin of the pruned ensemble and a randomly

chosen point o in the same space whose coordinates are all positive but close to zero

oi = p p ∈ (0.05, 0.25), representing and ideal classifier that does not misclassify any
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instance without being overly optimistic. The ordering rule of the method is

su = argmin
k

d(o,
1

T
(ck +

u−1
∑

t=1

ct)) (2.16)

The authors later proposed in [24] to update the point o as a function of the number of

iteration, finding a good approximation p(u) ∝ √u.

2.2.1.8 Orientation Ordering

This Orientation Ordering method, described in [29], sorts the classifiers of the ensemble

by increasing order of the angles of the margin vector ct and a reference vector cref . In

order to do so, the reference vector is chosen as to maximize the influence of the perfect

classification performance (given by o, which is any vector oriented along the diagonal

of the first quadrant o = a · e, a ∈ N and ei = 1 ∀i) over the margin vector of the full

ensemble cens:

cref = o+ λcens (2.17)

where

cens =
1

T

T
∑

t=1

ct (2.18)

and λ is a constant such that cens and cref are orthogonal. The ordering rule of the

method is given by

su = argmin
k

arccos

(

cref · ck
‖cref‖‖ck‖

)

(2.19)

2.2.1.9 Ensemble pruning via Semi-definite Programming

This technique, proposed in [23], formulates the ensemble pruning as a quadratic integer

programming problem. The authors conjecture that the subensemble that achieves

optimal values of some accuracy-diversity measure will also attain optimal generalization

performance. Therefore the goal of the method is to find the subensemble of (fixed) size

t < T that minimizes the heuristic measure. The authors define ad-hoc the square matrix

G of size T that contains both a measure of the accuracy of the individual classifiers and

the pairwise diversity between classifiers. Specifically, the diagonal elements Gii are the

number of misclassified instances by the i-th hypothesis and elements Gij i 6= j is the

number of common of misclassified instances by the i-th and j-th hypothesis.
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The subset selection task is formulated as a quadratic programming problem to find a

fixed size subset of classifiers that minimize the sum of the elements of the G matrix

min
x

xTGx

s.t. xT Ix =

T
∑

i

xi = t (2.20)

xi ∈ {0, 1}

where xi = 1 indicates that the i-th classifier belongs to the subset, and xi = 0 the

opposite. This problem is NP-hard in general, but it is very similar to the MC-k graph

partitioning problem, which is known for having a very good approximate solution algo-

rithm based on semi-definite programming (SDP). The original formulation of the MC-k

problem is

min
y

yTWy

s.t.
T
∑

i

yi = Nv − 2t (2.21)

yi ∈ {−1, 1}

where Wii = 0, Nv is the number of vertices in the graph and t is the number of cuts

needed to separate the graph. Both formulations are similar, except for the values of

the variables xi and yi. The difference is fixed using the transformation xi =
vi+1
2 where

vi ∈ {+1,−1}. The problem formulation becomes

min
v

1

4
(v + e)TG(v + e)

s.t.
1

4
(v + e)T I(v + e) = t (2.22)

vi ∈ {−1, 1}

Another transformation is used to put the formulation back in quadratic form. In order

to do so we extend the definition of vector v as ṽT = (1 v) and define the new matrices

H and D as

H =

(

eTGe eTG

Ge G

)

D =

(

n eT

e I

)

(2.23)

The new problem (2.24) is equivalent to (2.22)

min
ṽ

ṽTH(ṽ)

s.t. ṽTDṽ = 4t (2.24)

ṽi ∈ {−1, 1}
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Proof.

ṽTHṽ =
(

1 vT
)

(

eTGe eTG

Ge G

)(

1

v

)

=
(

eTGe+ vTGe eTG+ vTG
)

(

1

v

)

= eTGe+ vTGe+ eTGv + vTGv

= eTG(e + v) + vTG(e+ v) = (e+ v)TG(e + v)

ṽTDṽ =
(

1 vT
)

(

n eT

e I

)(

1

v

)

=
(

n+ vT e eT + vT I
)

(

1

v

)

= n+ vT e+ eT v + vT Iv = eT Ie+ vT Ie+ eT Iv + vT Iv

= eT I(e+ v) + vT I(e+ v) = (e+ v)T I(e+ v)

This formulation of the problem is equivalent to the MC-k partitioning problem. As

mentioned before, the partitioning problem is NP-hard, and thus cannot be solved in

polynomial time. But, the previous enunciation of the problem can be relaxed into a

convex SDP problem. In order to do so, first notice that the matrix V = vvT if and

only if V � 0 and rank(V ) = 1.

Proof. ⇒

A matrix M is said to be positive-semidefinite if xTMx ≥ 0 ∀x ∈ R
n. In our case, given

x ∈ R
n,

xTV x =
(

∑n
i=1 xiVi1 . . .

∑n
i=1 xiVin

)

x =

n
∑

j=1

xj

n
∑

i=1

xiVij

=
n
∑

j=1

xj

n
∑

i=1

xivivj =
n
∑

j=1

xjvj

n
∑

i=1

xivi = (
n
∑

j=1

xjvj)
2 ≥ 0
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To demonstrate that rank(V ) = 1, it is enough to observe that any row Vi of the matrix

is linearly dependent to the others

Vi =
(

Vi1 Vi2 . . . Vin

)

=
(

viv1 viv2 . . . vivn

)

= vi

(

v1 v2 . . . vn

)

⇐ If rank(V ) = 1 then all the rows of the matrix are linearly dependent of each other,

for example the i-th is Vi = λi

(

v1 v2 . . . vn

)

. Again, if V is positive-semidefinite,

given any x ∈ R
n, xTV x ≥ 0. In that case

xTV x =
(

x1 x2 . . . xn

)















λ1v1 λ1v2 . . . λ1vn

λ2v1 λ2v2 . . . λ2vn
. . .

λnv1 λnv2 . . . λnvn





























x1

x2
...

xn















= (
n
∑

i=1

λixi)
(

v1 v2 . . . vn

)















x1

x2
...

xn















= (

n
∑

i=1

λixi)(

n
∑

i=1

vixi) ≥ 0⇒ λi = vi∀i⇒ V = vvT

In that case the optimization problem becomes

min
V

H • V

s.t. D • V = 4t

diag(V ) = e (2.25)

rank(V ) = 1

V � 0

The constraints vi ∈ {+1,−1} and diag(V ) = e are equivalent because the diagonal

elements are Vii = vivi = (±1)2 = 1. The convex relaxation is obtained by dropping the

constraint rank(V ) = 1. Dropping this constraint is equivalent to allowing V to take

real values, and not only values in ±1. Once the problem is solved, it will be necessary

to approximate a solution to the original values. The new formulation (2.26) is a convex
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SDP problem that can be solved in polynomial time.

min
V

H • V

s.t. D • V = 4t

diag(V ) = e (2.26)

V � 0

A greedy version of the algorithm can be attained by iteratively selecting the classifier

su that, parting from an initial pool of classifiers Su−1 minimizes the value of 2.20 the

most.

2.2.2 Dynamic Pruning Techniques

The dynamic pruning techniques focus on reducing the time devoted to make a predic-

tion. In these techniques, the number of classifiers that need to be queried is computed

for each instance. In order to do so, dynamic methods usually make estimations of the

probability that the decision made by the first k hypothesis will coincide with the deci-

sion output by the full ensemble. When this estimation is above a confidence threshold,

then the querying process is halted. Dynamic methods greatly improve the classifica-

tion speed but do not reduce the storage requirements, because all classifiers need to be

available during the classification process.

2.2.2.1 Dynamic Scheduling for Classification Ensembles

This method proposed in [30, 31] is formulated for cost-sensitive classification problems.

Here only a schematic summary of the method is given. Let wk the weight of hypoth-

esis hk and T (x) the decision-threshold associated to instance x. The objective of the

ensemble is to detect if the label associated to the instance x is the class y(x) = y0

with the highest cost. Let Pk(x) be the probability of a given instance being labeled as

class y0. For simplification purposes we suppose that the hypothesis of the ensemble are

already sorted from highest to lowest weight, that is wk > wk+1 ∀k.

The weighted probability computed by the k first queried hypothesis of the ensemble is

given by

Fk(x) =

∑k
i=1 wihi(x)
∑k

i=1wi

(2.27)

The goal of the method is to halt the querying process once there is enough confidence

that the full ensemble would reach the same decision with respect to y0. The weighted

probability by the full ensemble FK(x) is unknown. To overcome this fact, the method
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computes the probability distribution of the error over the training dataset, where the

error of an instance is given by ǫk(x) = Fk(x) − FK(x). The interval [0, 1] is divided

into ξ bins of the same length. If Fk(x) ∈
[

i−1
ξ
, i
ξ

)

, then the statistics µk,i and σ2
k,i, the

mean and the variance of the error of the examples that have fallen in the i-th bin when

using only the first k classifiers, are used in the following decision rule















Fk(x)− µk,i − β · σk,i > T (x), then y0

Fk(x) + µk,i + β · σk,i ≤ T (x), then y1

else, uncertain

(2.28)

where the parameter β is the confidence interval parameter. If the result at iteration k

is uncertain, then the k + 1-th hypothesis is queried and the process repeated.

2.2.2.2 Statistical Instance-based pruning

The usual ensemble classification scheme consists in querying (sequentially or in parallel)

every hypothesis and then output the majority class. However it is not always necessary

to query all the hypothesis to find the majority class. For example, in binary problems it

is possible to output the class voted by at least the 50% of the ensemble. The equivalent

rule for multiclass problems consists in labeling the most voted class when the difference

in votes between the most voted class and the second most voted class is higher than

the number of remaining hypothesis. In the following sections, we refer to this rule as

full-confidence pruning rule (α = 1). This pruning rule allows us to classify instances

in the same way as the full ensemble without querying all the classifiers. However, it

is also possible to halt the querying process if it is considered acceptable to classify an

instance within a confidence interval α < 1.

Before going any further, some notation will be introduced. Let T be the total number

of hypothesis that form the classification ensemble. During the classification stage, each

hypothesis outputs its predicted class y = h(x) for instance x. Assuming the ensemble

is queried sequentially, after iteration t < T we will have the following voting vector

t = {t1, t2, . . . , tl;
l
∑

i=1

ti = t} (2.29)

where ti is the number of votes emitted to the class yi by the first t hypothesis. The

final voting vector T is

T = {T1, T2, . . . , Tl;
l
∑

i=1

Ti = T} (2.30)
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where again Ti is the total number of votes assigned to class yi by all T classifiers of the

ensemble. The majority vote rule says that the label assigned to instance x is

y(x) = argmax
i

Ti(x) (2.31)

Therefore one way to define the pruning task will be to estimate vector T based on

current t vector.

Statistical Instance-Based Pruning (SIBP) [25] is based in computing the probability

that the label predicted by a queried subensemble of size t and the full ensemble of size T

is the same with certainty α. For the computation of this probability it is only necessary

to know: the number of hypothesis in the full ensemble T , the number of labels present

in the classification problem l and the confidence interval α. Two important assumptions

are made for the derivation: the hypothesis are independent and identically distributed

when conditioned to the training data, and the a priori distribution of votes for the

different classes is supposed to be equal. Following these assumptions, the authors

formulate in a Bayesian framework the probability of obtaining the voting vector T

after querying T classifiers given that a vector t has been observed after querying t

classifiers.

P(T|t) = (T − t)!
∏l

i=1 (Ti − ti)!

∏l
i=1 (ti + 1)Ti−ti

(t+ l)T−t

(2.32)

where (a)n = a(a + 1) · · · (a + n − 1) is the Pochhammer symbol, or rising factorial,

with a and n nonnegative integers. We show the proof to this result in the following

Proposition.

Proposition 2.1. Given a classification ensemble of size T of independent and iden-

tically distributed classifiers, the probability of obtaining the voting vector T given the

vector t after querying the first t classifiers follows the formula

P(T|t) = (T − t)!
∏l

i=1 (Ti − ti)!

∏l
i=1 (ti + 1)Ti−ti

(t+ l)T−t

Proof. Let p(x) be the probability vector

p(x) = {p1(x), p2(x), . . . , pl(x)},
l
∑

i=1

pi(x) = 1 (2.33)

where pi(x) is the probability of instance x is classified as class yi by any hypothesis

of the ensemble. At a given moment during the classification of the instance x, t votes

have been emitted. The distribution of the voting vector t restricted to p can be seen
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as a multinomial distribution of parameters (t1 + 1, t2 + 1, . . . , tl + 1)

P(t|p) = t!

t1!t2! . . . tl!

l
∏

i=1

ptii (2.34)

Following the previous assumption that the a priori probability of the classes is equally

likely, the prior distribution P(p) is uniform. Using the Bayes theorem we compute the

posterior distribution

P(p|t) =
P(t|p)P(p)
P(t) =

Γ(t+ l)
∏l

i=1 Γ(ti + 1)

l
∏

i=1

ptii (2.35)

where P(t) is the normalization constant

P(t) =

∫

D
P(t|p)P(p)dp =

t!

t1!t2! . . . tl!

∫

D

l
∏

i=1

ptii dp (2.36)

=
t!

t1!t2! . . . tl!

∏l
i=1 Γ(ti + 1)

Γ(t+ l)
(2.37)

The posterior distribution P(p|t) is a Dirichlet distribution of order l and parameters

(t1 + 1, t2 + 1, . . . , tl + 1). Now we can compute the probability that given vector t we

can obtain vector T when all the hypothesis have been queried

P(T|t) =

∫

D
P(T − t|p)P(p|t)dp

=
(T − t)!

∏l
i=1 (Ti − ti)!

Γ(t+ l)
∏l

i=1 Γ(ti + 1)

∫

D

l
∏

i=1

pTi

i dp

=
(T − t)!

∏l
i=1 (Ti − ti)!

Γ(t+ l)
∏l

i=1 Γ(ti + 1)

∏l
i=1 Γ(Ti + 1)

Γ(T + l)

=
(T − t)!

∏l
i=1 (Ti − ti)!

∏l
i=1 (ti + 1)Ti−ti

(t+ l)T−t

Finally, the probability that the class label predicted by the full ensemble and the label

predicted by the t first classifiers coincide is given by the expression

P∗(t, T ) =
(T − t)!

(t+ l)T−t

∑

T∈Tt

∏l
i=1 (ti + 1)Ti−ti
∏l

i=1 (Ti − ti)!
(2.38)

where Tt is the set of vectors T that obey the following restrictions:

1. Ti ≥ ti ∀i and
∑l

i=1 Ti = T
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2. Let kt the majority class of t, then Tkt > Tj ∀j 6= kt.

If P∗(t, T ) = 1, then we have full confidence on the result of the final classification given

by the ensemble and the querying process can be halted. However, if it is acceptable

that, with a small probability 1 − α, the prediction of the partially polled ensemble

and that of the complete ensemble disagree, the voting process can be stopped when

the probability (2.38) exceeds the specified confidence level α. The final classification

would be given as the combined decision of the polled classifiers only. In particular, the

querying process can be halted after t classifiers have been queried, if the vector of class

predictions of the current subensemble t is such that P∗(t, T ) ≥ α.

2.3 Experiments on SIBP

Table 2.1 shows the results of applying the SIBP technique on several classification

problems of the UCI Repository [32]. The experiments are performed on Random Forests

Ensembles of T = 101 CART trees. The acceptance threshold is set on α = 0.99. The

table contains the following information: column 1 is the name of the problem, column

2 shows the test error of the full ensemble, columns 3 shows the test error of the pruned

ensemble, column 4 shows the mean disagreement rate of between the full ensemble and

the pruned ensemble, column 5 and 6 display the number of queried trees by the full

ensemble and the pruned ensemble respectively, and finally column 7 contains the mean

speed-up rate of the SIBP technique with respect to the full-confidence pruning rule

(α = 1). The mean error rate (MER) is given by the formula

MER =
1

N

N
∑

n=1

I(H(xn) == yn) (2.39)

The mean disagreement rate (MDR) between the ensemble H and the SIB-pruned one

Ĥ is computed as

MDR =
1

N

N
∑

n=1

I(H(xn) == Ĥ(xn)) (2.40)

The numbers show significant speed-up rates, from 4.4 to 8.5. Notice that the speed-up

rate is computed with respect to the full-confidence (α = 1) pruning rule mentioned

before, and not with respect to the 101 trees of the ensemble. In the problems inves-

tigated, the error rate of the pruned ensemble is very similar to the error of the full

ensemble in all the analyzed problems The differences range from 0.1 in favor of SIBP

in echocardiogram to 0.2 in favor of full ensemble in german, sonar and threenorm. In

relation to the disagreement rates, it should be expected that the disagreement rates are



Test error # trees IB
Problem RF IB-RF101 Dis-rate α = 1 α = 0.99 Speed-Up

australian 13.0±3.7 13.1±3.7 0.3±0.6 62.2±1.4 16.1±2.1 6.6±0.4
breast 3.2±2.1 3.2±2.1 0.1±0.4 54.2±0.9 8.9±1.4 8.0±0.2
diabetes 24.3±4.2 24.3±4.1 0.6±0.9 68.8±1.8 24.9±3.2 5.6±0.4
echocardiogram 22.2±14.3 22.1±14.7 0.7±3.1 68.0±4.6 22.6±8.2 5.7±1.1
german 23.4±3.5 23.6±3.3 0.8±0.8 71.8±1.3 28.4±2.8 5.1±0.4
heart 18.3±6.9 18.4±7.0 0.8±1.8 67.2±2.5 22.5±4.2 5.8±0.6
liver 27.1±6.7 27.1±7.0 1.0±1.7 74.5±2.3 31.8±4.5 4.6±0.6
mushroom 0.0±0.0 0.0±0.0 0.0±0.0 51.0±0.0 6.0±0.0 8.5±0.0
ringnorm 7.6±1.3 7.7±1.2 0.5±0.2 68.6±0.8 22.9±1.1 5.5±0.3
sonar 16.3±8.7 16.5±8.7 0.9±2.0 73.9±3.0 32.1±6.6 4.7±0.7
threenorm 17.8±1.1 18.0±1.1 1.0±0.2 76.6±0.5 34.8±1.0 4.4±0.2
twonorm 4.7±0.6 4.8±0.6 0.4±0.1 67.2±0.2 21.0±0.5 5.8±0.1
votes 4.1±2.9 4.1±2.9 0.1±0.4 54.5±1.2 8.8±1.8 7.9±0.3

Table 2.1: Results of applying the SIBP technique to a Random Forest ensemble of
101 trees

close to the theoretical bound 1− α, in this case 1%. However, most of them are much

lower than 1%. Depending on the problem from 0.0 for mushroom to 1.0 for liver and

threenorm. Although this might seem a positive feature, increasing the disagreement

rate would help to better find the balance position between error and speed-up rates.

We conjecture that this happens because no a priori knowledge is incorporated into the

SIBP technique. In Chapter 4, we propose an update into the SIBP technique that does

not assume a uniform prior distribution, and instead models different prior distributions

using the training data.





Chapter 3

Double Pruning Techniques For

Classification Ensembles

3.1 Introduction

The theoretical analysis of majority voting on which SIBP is grounded relies on the fact

that, in parallel ensembles, the individual classifiers are generated under the same con-

ditions and independently of each other. When the ensemble is sequential, the classifier

that is added at one point in the sequence depends on the classifiers that have been

included in the ensemble up to that point. As a result, correlations among classifiers are

introduced, which can result in biases in the estimation of the final ensemble prediction

on the basis of the outputs of the initial classifiers in the sequence.

The goal of this chapter is to determine whether SIBP can be also used in sequential en-

sembles. Specifically, SIBP is applied to two types of sequential ensembles: ordered bag-

ging ensembles and static-pruned boosting ensembles. This results in a double pruning

method that combines the advantages of static and dynamic pruning. Namely improved

generalization performance, reduced storage requirements because only classifiers in the

pruned ensemble need to be stored in memory, and improved speed-up rates during

classification process.

The results of experiments on several benchmark classification problems carried out in

this investigation show that the biases introduced by SIBP can cause some distortions

in the estimation of the error rate of the complete ensemble when the classifiers of the

ensemble are not independently generated. By contrast, SIBP is remarkably effective

when it is used to halt the aggregation process in a previously pruned sub-ensemble.

25
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Previous sections 2.2.1.4, 2.2.1.9 and 2.2.2.2 provide reviews of the Boosting-Based,

SDP and SIBP pruning algorithms respectively.

This chapter is organized as follows. Section 3.2 explains the methodology of the double

pruning technique, section 3.3 summarizes the results of experiments on benchmark

classification tasks and demonstrates the effectiveness of the double pruning algorithm

proposed and finally the conclusions of this chapter are exposed in section 3.4.

Part of the work presented in this Chapter was published in [33].

3.2 Double pruning applied to sequential ensembles

3.2.1 Double pruning in Ordered Bagging

In ordered bagging ensembles it is generally observed that the curves that trace the

dependence of the error rate on the size of the ordered ensemble exhibit a minimum at

intermediate ensemble sizes. This induces us to think that classifiers included at the

beginning and the end in the ordered bagging ensemble have rather different statistical

properties. As a matter of fact, the first classifiers of the ordered sequence produce a

steep error descent that indicates a higher degree of uncorrelated errors than the clas-

sifiers included at the end. In consequence, estimations based on the first classifiers in

the ensemble can be very different from the final decision, which takes into account all

the classifiers in the ensemble. By contrast, in the case of randomly ordered bagging en-

sembles, the test error rate monotonically decreases with the size of the ensemble, which

indicates that the statistics behind the outputs of the first classifiers are maintained

throughout the whole voting process. The results of extensive experimental evaluation

show that early stopping in the aggregation process allows us to identify pruned ensem-

bles, whose size is ≈ 20% of the complete ensemble [28], which outperform bagging and

retain bagging’s resilience to noise in the class labels of the examples (see Figure 3.1).

This figure shows that by stopping the aggregation of classifiers at ≈ 20 − 30% of the

total number of elements in the ensemble, a significant reduction in the classification er-

ror is obtained. These error curves are representative of the general behavior of bagging

and ordered bagging in all the datasets investigated. We will analyze empirically the

applicability of SIBP to ordered bagging ensembles.

3.2.2 Double pruning in Boosting

Boosting ensembles induce an intrinsic ordering during the training phase. One way

to avoid the correlations related to the ordered sequence is to shuffle the classifiers in
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the ensemble by a random permutation. In order to test the applicability of SIBP to

boosting ensembles, we do it following the original order of the classifiers and random

permutations. Furthermore we will analyze the potential applicability of a static prun-

ing strategy with SIBP. The boosting ensembles are statically pruned using the SDP

algorithm. Unlike ordered aggregation techniques, SDP does not induce an ordered se-

quence in the selected classifiers. Furthermore, the greedy variant of SDP is also tested

together with boosting ensembles.

3.3 Experiments

For each classification problem, bagging and boosting ensembles of 101 CART trees are

built. Every ensemble is pruned off-line to a different size, depending on the type of

ensemble. Then, the on-line SIBP algorithm is applied to all the ensembles and results

are reported. The confidence parameter is set to α = 0.99.

All the experiments are performed on twelve binary classification problems from the

UCI repository [32]. The same learning setup is used to make comparisons possible. In

all cases the results reported are averages over 10 independent 10-fold cross validation

estimates. The protocol followed in each execution for a partition of the data into

training and test is as follows: (i) Build an ensemble of classifiers composed of T = 101

CART trees [34] using the training set. The standard settings for the generation of the

decision trees are used. The ordering of the initial ensemble is determined by the order

of generation, which is random in bagging and sequential in boosting. (ii) Estimate

the generalization error in the test set for the whole ensemble. Apply SIBP to the

complete ensemble using α = 99% recording the test error and the average number of

trees used to classify the instances. (iii) Modify the sequence of aggregation of the trees

in the ensemble using the chosen off-line technique (SDP and greedy for boosting and

boosting-based for bagging). Estimate the test error for the pruned ensemble and the

value for the number of selected trees for the off-line pruned ensemble. Compute the

average test error and the average number of classifiers used to classify the instances.

(iv) Finally, apply SIBP to the off-line pruned subensemble and record the number of

trees and classification error.

In the following sections the results of the experiments are summarized in tables display-

ing the error rates, disagreement rates between full and pruned ensembles, number of

queried trees and speed-up rates between full and pruned ensembles. For each dataset,

the tables show the average of the corresponding measure and its standard deviation

after the ± sign.
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Figure 3.1: Test error curves with respect to the number of classifiers for bagging and
bagging ordered using boosting based ordering

3.3.1 Boosting-based Ordered Bagging

In order to determine whether SIBP can be used in combination with ordered bagging

several experiments are carried out. In the first set of experiments SIBP is applied to

a standard (randomly ordered) bagging ensemble. As expected, the results of these

experiments confirm the effectiveness of SIBP in parallel ensembles. A second batch of

experiments show SIBP applied to ordered bagging. Finally, SIBP applied to a pruned

ensemble that is obtained by selecting the first ≈ 20% classifiers in the ordered bagging

ensemble.

The results of applying SIBP to bagging are summarized in Table 3.1. For each dataset,

the table shows the average test error for bagging (BAG101), bagging using the first 21

randomly generated classifiers (BAG21) and SIBP applied to the full bagging ensemble

(IB-BAG101). The average number of trees used to classify each instance in IB-BAG101

is shown in the last column of the table. These experiments confirm the results reported

in [25]. Table 3.1 shows that the generalization error of a bagging ensemble with 101 trees

is generally better than a bagging ensemble composed of 21 classifiers. This also confirms

the observation that increasing the size of parallel ensembles in which the generation

of the individual classifiers involves some form of randomization generally improves the

generalization performance of the ensemble [4]. In contrast, when SIBP is used to

determine when to stop querying for the classification of new instances, a performance

comparable to BAG101 is achieved in the studied datasets using on average a fairly

small fraction of the classifiers. In particular, the average number of trees that need to

be queried in IB-BAG101 ranges from 6.1 for Votes to 21.1 for Liver.

Table 3.2 compiles the results of the application of SIBP to ordered bagging ensembles.

The column labeled BAG101 displays the test error rate obtained by a bagging ensemble

composed of 101 trees. The third column presents the results of SIBP when applied to

the complete ordered bagging ensemble (IB-OB101). The average number of trees used
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Table 3.1: Average results for bagging (for each dataset the best method is highlighted
in boldface)

Test error # trees IB
Problem BAG101 BAG21 IB-BAG101 (α = 99%)

australian 14.5±3.8 14.5±3.8 14.5±3.8 7.4±1.0
breast 4.8±2.8 4.8±2.6 4.8±2.8 8.6±1.3
diabetes 24.9±3.9 24.9±4.0 24.9±3.9 14.3±2.3
german 25.6±3.1 25.9±3.5 25.7±3.1 18.0±2.6
heart 19.6±8.0 19.9±8.0 19.4±7.8 18.5±4.8
horse-colic 17.8±6.3 17.9±6.0 17.7±6.2 9.9±3.0
ionosphere 9.7±4.6 9.8±4.5 9.7±4.5 8.6±1.9
labor 13.4±12.8 14.1±12.9 13.7±12.6 17.7±8.7
liver 31.1±6.2 31.9±6.9 31.1±6.2 21.1±5.2
sonar 25.1±9.7 25.1±9.2 25.0±9.7 19.4±5.4
tic-tac-toe 1.6±1.3 2.2±1.5 1.6±1.3 10.1±1.3
votes 4.4±3.0 4.4±3.0 4.4±3.0 6.1±0.3

by IB-OB101 is given in the sixth column. The results for a pruned ensemble composed of

the first 21 trees of the ordered bagging ensemble are given in the column labeled OB21.

These results show that the performance of ordered bagging with 21 classifiers is better

than that of full bagging for all the datasets investigated except for Votes. Ordered

bagging has two advantages over bagging: faster classification, because only a small

fraction (≈ 20%) of the original classifiers is used, and, in general, better accuracy in

the test set. Instead of using a fixed number of classifiers, SIBP individually determines

the number of classifiers that are needed to estimate the complete ensemble prediction

for each particular instance. When SIBP is used in conjunction with ordered bagging

(column IB-OB101 in Table 3.2), the number of queried classifiers is generally lower than

the 21 trees used in pruned bagging (OB21). However, it is over the number of elements

queried by SIBP for randomly ordered bagging (right most column of Table 3.1). In

addition, the accuracy improvement with respect to bagging is not as ample as the

improvement of OB21 over BAG101. This poorer performance is a consequence of the

fact that IB-OB101 is making inference about the predictions of the complete ensemble

on the basis of the predictions of only the first classifiers in the ordered sequence. These

classifiers follow a distribution that is different from the overall distribution of classifiers

in bagging. These results can be understood analyzing the plots displayed in Fig. 3.1.

The curves depicted trace the dependence of the test error with the size of the ensemble

using bagging and ordered bagging for the classification tasks German and Sonar.

In the final batch of experiments SIBP is applied to a pruned ensemble composed of the

first 21 classifiers in ordered bagging. The results of these experiments are displayed in

the fifth column of Table 3.2 (IB-OB21). The last column shows the average number of
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Table 3.2: Average results for ordered bagging (for each dataset the best method is
highlighted in boldface)

Test error # trees (α = .99)
Problem BAG101 IB-OB101 OB21 IB-OB21 IB-OB101 IB-OB21

australian 14.5±3.8 14.3±3.9 13.7±3.9 13.7±4.0 11.3±1.7 7.0±0.5
breast 4.8±2.8 4.5±2.6 4.1±2.6 4.0±2.6 8.7±1.2 5.9±0.3
diabetes 24.9±3.9 24.7±4.0 24.3±3.9 24.3±3.9 17.2±2.3 8.7±0.6
german 25.6±3.1 25.2±3.3 24.8±3.7 24.7±3.8 21.1±2.5 9.3±0.6
heart 19.6±8.0 18.9±7.6 18.6±7.2 18.6±7.1 20.2±4.0 9.4±1.0
horse-colic 17.8±6.3 17.5±6.2 16.3±6.6 16.3±6.5 9.8±2.1 6.6±0.7
ionosphere 9.7±4.6 8.5±4.4 7.5±4.2 7.5±4.1 10.9±2.0 6.7±0.6
labor 13.4±12.8 10.0±11.3 8.3±10.0 8.5±10.0 14.8±7.5 7.9±1.9
liver 31.1±6.2 29.5±6.2 28.2±6.5 28.4±6.7 28.0±4.6 11.8±0.9
sonar 25.1±9.7 23.6±9.5 20.2±10.7 20.2±10.7 26.1±5.3 11.2±1.3
tic-tac-toe 1.6±1.3 1.4±1.2 1.4±1.2 1.5±1.2 9.4±1.0 6.5±0.4
votes 4.4±3.0 4.4±3.1 4.7±3.2 4.6±3.2 7.0±0.8 5.6±0.3

trees used by IB-OB21. These results, show that the generalization error of SIBP applied

to OB-21 is equivalent to that of OB21 in the problems analyzed. Small variations of one

or two tenths of a percent point both positive and negative can be observed for some

datasets. Therefore, the improvements obtained by IB-OB21 over complete bagging

(BAG101) are of the same magnitude as the improvements obtained by the pruned

ensemble obtained by early stopping in ordered aggregation (OB21). The number of

trees that need to be stored in memory is also reduced from 101 to 21 trees. Finally, the

average number of trees that need to be queried is further reduced by the application of

SIBP to the pruned ensemble OB21. Specifically, IB-OB21 employs an average number

of trees that ranges from 5.6 (Votes) to 11.8 (Liver). In summary, the application of

SIBP to the pruned ensemble obtained from ordered aggregation (OB21) improves the

accuracy and reduces the memory requirements of bagging as much as OB21 does. It

has the additional advantage that it predicts even faster than OB21.

The overall generalization performance of the different ensemble methods in the clas-

sification tasks analyzed is compared using the methodology proposed by Demšar [35].

Fig. 3.2 displays the rank of each method averaged over the results in the different

classification tasks. In this diagram, the differences between methods connected with

a horizontal line are not significant according to a Nemenyi test (p-value< 0.05). The

critical difference (CD=2.2 for 6 methods, 12 dataset and p-value< 0.05) is shown for

reference. The best overall performance corresponds to OB21 and IB-OB21. The per-

formance of these two methods is equivalent in the classifications tasks investigated.

According to this test the performance of OB21 and IB-OB21 in terms of average rank
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Figure 3.2: Comparison of the different methods using the Nemenyi test. Classifi-
cation systems whose performance are not significantly different according to this test

(p-value < 0.05) are connected by a line segment in the diagram.

is significantly better than standard bagging. The performances of the remaining meth-

ods are not significantly different from bagging.

3.3.2 SDP-pruned Boosting

We perform several experiments to confirm whether SIBP can be applied to boosting en-

sembles and to pruned boosting ensembles obtained by the ordered aggregation method

and the SDP method. First, SIBP is applied to boosting ensembles to see whether it

can be used to reduce the error rates and the number of queried classifiers in several

classification problems. Second SDP and its greedy variant is applied to the full ensem-

bles. Finally, the on-line SIBP algorithm is applied to the ensembles pruned with the

off-line technique.

Table 3.3 summarizes the mean error rate obtained by boosting ensembles with 101 clas-

sifiers (BOOST 101), ordered boosting ensembles with the first 51 classifiers (GREEDY

51) and pruned boosting ensembles using the SDP method with 51 classifiers (SDP 51).

Every ensemble has been tested using the full ensemble (FULL), using SIBP following

the natural order of the classifiers (IB-SEQ) or a random permutation of the classifiers

in the ensemble (IB-PERM). Table 3.5 displays the average number of trees queried to

classify every instance of a given problem. This table only shows the results obtained

by the IB-pruned methods from table 3.3.

Although the classifiers in a boosting ensemble are not independent from each other,

the experiments confirm that SIBP can be used to reduce the time and space cost

of boosting ensembles. These results show that the mean error rate is usually the

same or even better when the statistical instance based pruning algorithm is applied
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Figure 3.3: Test error rate evolution following the original order and random permu-
tations for boosting ensembles

to the original order of classifiers. Given that the SIBP algorithm is formulated on the

hypothesis that the classifiers are uncorrelated, we test the method following a different

random permuted order for each instance. However, several experiments show that

SIB-pruned ensembles yield worse error and speed-up rates when applied over random

ordered boosting ensembles instead of following their original order (columns 3 and

4 of tables 3.3 and 3.5). Moreover the disagreement rates achieved by the permuted

ensemble are not acceptable, as they exceed the imposed bound 1% (column 3 of table

3.4). This can be explained looking at figure 3.3, where it can be observed that when

the order of the hypothesis is altered, the error rate curve is generally above that of

the original boosting. To understand this we conjecture the following: first, in the

randomly ordered ensemble the voting statistics are given by prior distributions similar

to the ones plotted in figure 3.4, and thus using a uniform prior distribution results in

unrealistic and optimistic stopping rules; and second, when using the original sequence

of boosting classifiers, the first hypothesis (those who have not been under the influence

of the boosting algorithm for being created in the early iterations) probably have a

more uniform voting distribution, and thus the best results. In conclusion, SIB-pruned

boosting ensembles improve the accuracy of the original ensemble and ameliorates the

classification process (only 30 − 50% of the original trees are queried) only when the

original order of classifiers is followed.

Comparing the performance of the statically pruned ensembles (by SDP or its greedy

version) with that of the full boosting ensemble (column 1 versus columns 5 and 7 from

tables 3.3 and 3.4). Unlike in the previous section, where the error rate curves of the

ordered ensembles suggested the ideal size of the pruned ensemble, the error curves

of neither method show an absolute minima. For this reason, 51 was chosen as the

pruning point. The SDP and Greedy methods slightly improve the test error rates

in our experiments, albeit some exceptions like labor and sonar where the error rates
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Figure 3.4: Prior distributions for hard to classify problems for boosting ensembles

are higher, and horse-colic and liver where the error rates are improved. There is no

significant evidence that either Greedy or SDP is better than each other.

SIBP applied to SDP and Greedy subensembles have a generalization performance com-

parable to the off-line pruned subensembles (see table 3.3). Nevertheless, our main

interest lies in speeding-up the classificacion process. In this regard, the double pruned

subensembles, besides achieving similar or better results than the full ensemble, query

between 14% (votes) and 33% (liver) of the trees queried by the original boosting en-

semble (columns 6 and 8 against column 1 of 3.5). This fact confirms that the off-line

pruning phase is useful to reduce the number of queried classifiers. Finally, the number

of queried trees by the SIB-Greedy-pruned subensembles is usually lower when compared

to SIB-SDP-pruned ensembles. Although the results obtained by both methods are very

similar, the greedy version of SDP is recommended because it is computationally less

expensive. Hence, this double-pruning method keeps and improves the error rates and

speeds up the classification process. The method consists in summarizing the original

boosting ensemble using the Greedy or SDP methods as explained previously and later

applying the on-line instance-based pruning algorithm. It is important to emphasize

that the method does not suppose an overhead of classification time as the execution of

SDP is off-line and the SIBP does not add any complexity to the classification process.

3.4 Conclusions

We propose to combine two existing pruning algorithms (static and dynamic) to reduce

the computational costs associated with the use of ensembles of classifiers for predic-

tion and to improve their generalization performance. Two different combinations are

proposed, depending on whether the ensemble learning algorithm used is bagging or

boosting. The first strategy applies a static pruning method: boosting-based ordering
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BOOST101 GREEDY51 SDP51

Problem FULL IB-SEQ IB-PERM FULL IB-SEQ FULL IB-SEQ

australian 13.4±3.9 13.5±3.9 13.9±4.0 13.3±4.0 13.3±4.0 13.3±3.9 13.3±3.9

breast 3.3±2.1 3.3±2.1 3.4±2.1 3.2±2.0 3.3±2.0 3.2±2.0 3.2 ±1.9

diabetes 26.0±4.0 26.0±4.0 26.6±4.0 25.1±4.1 25.1±4.0 25.2±4.2 25.2±4.1

german 24.8±3.8 24.7±3.8 25.3±4.1 24.5±3.6 24.6±3.6 24.5±3.4 24.5±3.5

heart 19.7±7.1 19.4±6.7 20.1±7.5 19.5±7.1 19.6±7.1 19.6±7.0 19.6±7.0

horse-colic 21.3±6.7 20.9±6.6 22.0±6.6 17.7±5.7 17.5±5.8 17.4±5.8 17.5±5.9

ionosphere 6.3±3.5 6.3±3.5 6.3±3.4 6.2±3.4 6.3±3.4 6.2±3.4 6.2±3.5

labor 6.7±9.8 6.7±9.8 6.8±10.0 7.1±10.5 7.1±10.5 7.2±10.5 7.1±10.5

liver 28.5±7.2 28.5±7.0 29.0±7.0 27.8±7.0 27.8±6.9 27.8±6.8 27.8±6.8

sonar 13.9±8.3 13.8±8.1 14.4±8.3 15.2±8.2 15.1±8.1 15.1±8.5 15.1±8.3

tic-tac-toe 0.7±0.9 0.7±0.9 0.7±0.9 0.8±1.0 0.8±1.0 0.8±1.0 0.8±1.0

votes 4.5±3.1 4.5±3.1 4.6±3.1 4.6±2.9 4.7±2.9 4.6±2.9 4.6±2.9

Table 3.3: Error rates comparison of the double-pruning scheme for boosting ensem-
bles (for each dataset the best method is high-lighted in boldface)

BOOST101 GREEDY51 SDP51
Problem IB-SEQ IB-PERM IB-SEQ IB-SEQ

australian 0.1±0.4 1.1±1.2 0.2±0.6 0.2±0.6
breast 0.0±0.2 0.2±0.5 0.0±0.2 0.0±0.2
diabetes 0.2±0.5 1.9±1.6 0.5±0.8 0.2±0.5
german 0.6±0.7 1.9±1.4 0.7±0.7 0.4±0.6
heart 0.2±1.0 1.1±1.9 0.3±1.2 0.1±0.6
horse-colic 0.6±1.4 1.9±2.4 0.5±1.1 0.2±0.7
ionosphere 0.0±0.0 0.2±0.9 0.1±0.4 0.2±0.7
labor 0.0±0.0 0.9±4.1 0.0±0.0 0.2±1.7
liver 0.2±0.7 2.4±2.6 0.8±1.4 0.3±1.1
sonar 0.2±0.9 1.7±2.9 0.4±1.6 0.6±1.7
tic-tac-toe 0.0±0.2 0.2±0.4 0.0±0.2 0.0±0.2
votes 0.0±0.2 0.2±0.7 0.1±0.5 0.0±0.0

Table 3.4: Disagreement rates comparison of the double-pruning scheme for boosting
ensembles

with early stopping in the case of bagging ensembles and SDP-pruning for boosting en-

sembles. The static methods reduce the storage requirements, speed-up the classification

process and improve the generalization performance. The second strategy consists in

applying the dynamic method Instance-Based Pruning. This method does not reduce

the storage requirements, but further reduces the classification time without decreas-

ing the accuracy significantly. SIBP is applied by computing the probability that the

majority class obtained after having queried t classifiers is the same class given by the

full ensemble. If this probability is above a specified confidence level α the classification

process stops.

For bagging ensembles, SIBP applied to the original ensemble obtains error rates similar

to the complete ensemble and reduces the average number of queries more than the



BOOST101 GREEDY51 SDP51

Problem FULL IB-SEQ IB-PERM FULL IB-SEQ FULL IB-SEQ

australian 79.0±1.9 35.0±4.7 37.7±4.2 37.1±0.8 19.6±1.8 37.1±0.8 19.9±2.0

breast 62.2±1.5 12.7±2.0 14.9±1.9 29.1±0.5 8.8±0.8 29.4±0.5 9.2±1.0

diabetes 85.4±1.7 49.1±5.2 52.2±4.5 39.8±0.7 25.2±1.7 39.7±0.8 25.1±2.0

german 85.4±1.5 49.3±4.6 51.6±3.9 40.8±0.6 26.9±1.5 40.6±0.7 26.2±1.7

heart 81.7±2.1 42.1±6.0 42.8±5.8 38.5±1.1 22.9±2.7 38.4±1.2 22.6±3.0

horse-colic 86.0±2.2 45.7±6.1 53.8±6.2 39.1±1.1 22.8±2.6 39.5±1.1 23.4±2.7

ionosphere 71.8±1.7 21.6±3.8 25.5±3.7 32.3±1.0 12.0±1.7 33.0±0.9 13.1±1.7

labor 72.3±4.5 27.3±10.5 25.5±9.1 33.6±2.5 14.2±5.1 34.4±2.4 16.2±5.0

liver 88.1±1.7 59.1±6.2 57.4±5.6 42.0±1.0 29.0±2.7 42.1±1.0 29.9±2.8

sonar 82.4±2.2 44.8±7.0 45.0±7.3 39.7±1.3 24.3±3.3 39.8±1.3 25.1±3.0

tic-tac-toe 69.6±0.9 17.4±1.7 20.9±1.7 32.6±0.4 11.5±0.9 33.2±0.5 12.6±1.0

votes 66.3±1.8 15.6±3.2 18.9±2.5 30.0±0.7 9.4±1.2 30.5±0.8 10.4±1.4

Table 3.5: Number of trees comparison of the double-pruning scheme for boosting
ensembles (for each dataset the best method is high-lighted in boldface)

pruned ensemble that is built by selecting the first 21 classifiers in the ordered ensemble.

When SIBP is applied to the complete ordered ensemble its generalization accuracy is

better than the complete ensemble. Nevertheless, this accuracy is still inferior to the

pruned ordered ensemble. This is due to the fact that the distribution of the predictions

of classifiers that appear first in the ordered ensemble is different from the last classi-

fiers included. Therefore, one of the basic assumptions of IB does not hold, leading to

suboptimal performance. Finally, when SIBP is applied to the pruned ordered ensemble

itself, a significant speed-up is achieved with a performance that is similar to the pruned

ensemble and much better than bagging.

For boosting ensembles, SIBP applied to the original ensemble improves very slightly

its accuracy, despite being a sequential ensemble and thus not holding a basic SIBP as-

sumption. The number of queried trees is reduced 50− 70% depending on the problem

without increasing the error rates. The SDP-pruned ensembles are reduced to 51 classi-

fiers and its accuracy is improved with respect to the full boosting ensemble. When the

SIBP method is applied to the pruned ensembles, the error rates are increased, although

they stay close to the rates achieved by the full ensemble. However, their speed-up rates

are further improved.

The result is a double pruning algorithm that significantly improves the performance

of the original ensemble learning algorithms: the accuracy is improved or maintained,

depending on the problem and the ensemble algorithm. Moreover, it reduces the memory

requirements with respect to the full ensemble, because only the classifiers that are

selected in the pruned ordered ensemble need to be accessible for potential queries, and

predicts much faster than both the original ensemble and the pruned one.





Chapter 4

Improved Statistical Instance

Based Pruning

4.1 Introduction

The Statistical Instance-Based Pruning technique ([25] and section 2.2.2.2) is a dynamic

pruning method for classification ensembles. The method works under the assumption

that the classifiers of the ensemble are independent from each other given the training

data. Iteratively, the method queries one classifier of the ensemble and updates the

number of votes assigned to each class. Using the voting information received until

that moment, SIBP computes the probability that the majority voted class by the full

ensemble and the queried subset coincide. If this probability exceeds a given confidence

threshold α, the classification process is halted.

After extensive empirical evidence, it has been observed that often the disagreement rates

between the full ensemble and the SIB-pruned ensemble is usually below the theoretical

bound 1 − α. We conjecture that this is due to the fact that no prior information on

the classification problem is included in the derivation. The original method assumes a

uniform prior distribution of the votes, which may result in unrealistic pruning points and

disagreement rates lower than the user’s imposed theoretical bound. By incorporating

the prior knowledge about the specific problem, our goal is to improve the disagreement

estimation between the full and pruned ensembles and to speed-up the classification

time in those cases where the disagreement rate is underestimated.

In this chapter we propose three different ways to model the prior distribution over

the probability vectors P(p) from the SIBP technique. In that formulation the prior

distribution over the probability vector p(x) was considered uniform.

37
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The probability vector p(x) is defined as

p(x) = {p1(x), . . . , pl(x)},
l
∑

i=1

pi(x) = 1 (4.1)

where pi(x) is the probability that instance x is predicted as class yi by any hypothesis

in the ensemble, regardless of the real class. The real distribution of this probability

vector is unknown. However, approximated samples can be obtained from the training

dataset using, for example, out-of-bag or cross-validation. Using these empirical samples

the value of pi(xj) can be obtained as tji/T , where tji is the number of votes assigned

to class i for instance xj . These empirical probability vector samples can be used to

estimate the distribution over p.

The two first proposals consider that p follow a Dirichlet distribution. The third al-

ternative introduces a discrete approach to the instance based pruning technique and

model the prior distribution of p using a discrete non-parametric distribution of the

votes in the training data. In the next sections we develop the mathematical equations

involved are derived and the results of the new proposed methods are described.

Our experiments prove that by incorporating prior knowledge about the problem, the

disagreement rates come closer to the theoretical bound and the speed-up rates are

improved significantly for those problems with prior distributions over p very different

from the assumed uniform distribution. In addition, the test error rates are kept close

to the error rates achieved by the original ensemble.

This chapter is organized as follows. In section 4.2 the prior distribution is modelled

after a Dirichlet distribution. In section 4.3 a mixture of Dirichlet distribution is used

to better fit the multi-modal distributions. Section 4.4 presents a reformulation of the

SIBP technique that allows us to model the prior with a non-parametric distribution.

Section 4.5 discusses the computational complexity of each method. Section 4.6 shows

the experimental results of the proposed methods over a set of benchmarking problems.

Finally, section 4.7 contains the conclusions of the whole chapter.

4.2 Prior following a Dirichlet distribution

We consider that the distribution P(p) follows a Dirichlet distribution

P(p;β) = Γ(β)

Γ(β1) . . .Γ(βl)

l
∏

i=1

pβi−1
i (4.2)



Chapter 4. Improved Statistical Instance Based Pruning 39

where β is the vector β = (β1, . . . , βl) such that βi > 0, β =
∑l

i=1 βi and l ≥ 2.

The Dirichlet distribution is equivalent to a beta distribution in a 2-dimensional prob-

lem. The support of the Dirichlet distribution is the hyperplane of points that satisfies
∑l

i=1 pi = 1 and 0 < pi < 1 ∀i. We choose to model the prior after a Dirichlet dis-

tribution because it models random variables that can be interpreted as probabilities,

which is the case with vector p(x). Moreover, given that the likelihood P(t|p) is mod-

eled after a multinomial distribution, the posterior distribution over p is also a Dirichlet

distribution, which is a desirable property.

Before proceeding to the mathematical proof of the method, it is important to point out

that by introducing this prior, the βi parameters might no longer be integers. This must

be taken into account when evaluating the gamma function Γ(βi). The gamma function

is defined for complex numbers with a positive real part z ∈ C
+ = {x ∈ C : Re{x} > 0}

by the following equation

Γ(z) =

∫ ∞

0
tz−1e−tdt (4.3)

The Gamma function satisfies

Γ(z) = (z − 1)Γ(z − 1) (4.4)

Notice that when n is a positive integer greater or equal to 1, the previous formula

simplifies to Γ(n) = (n − 1)!. Property 4.4 allows us to avoid the computation of the

integral until 0 < Re{z} < 1, which is an expensive calculation. Fortunately, the Gamma

functions in our calculations will always appear in fractions of the form Γ(x+ t)/Γ(x).

This form allows us to simplify the computations to products of real numbers, without

having to compute the integral 4.3, as:

Γ(x+ t)

Γ(x)
=

{

(x) . . . (x+ t− 1) = (x)t t ∈ N, x ∈ R
+

1 t = 0

After clearing up this implementation detail, let us go back to the derivation. Just as

in the original SIBP, our goal is to compute the probability that the ensemble of size T

classifies an instance with the same label as the one predicted by the sub-ensemble of

size t. We denote that probability as P∗(t, T ).

Proposition 4.1. Assuming that the distribution over vector p(x) follows a Dirichlet

distribution of parameters β = {β1, . . . , βl} and that the likelihood P(t|p) follows a

multinomial distribution, the conditional probability of vector T = {T1, . . . , Tl} given

vector t = {t1, . . . , tl} obtained after querying t classifiers is

P(T|t) = (T − t)!
∏l

i=1 (Ti − ti)!

∏l
i=1 (ti + βi)Ti−ti

(t+ β)T−t

(4.5)
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Proof. Given a probability vector p, the probability distribution of vector t = {t1, . . . , tl}
follows a multinomial distribution

P(t|p) = t!

t1!t2! . . . tl!

l
∏

i=1

ptii (4.6)

The class predicted at time t is given by kt = argmaxi ti. The posterior probability

P(p|t) can be obtained by applying Bayes Theorem and considering that the prior P(p)
follows equation (4.2).

P(p|t) =
P(t|p)P(p)
P(t) =

Γ(t+ β)
∏l

i=1 Γ(ti + βi)

l
∏

i=1

pti+βi−1
i (4.7)

where P(t), the normalization constant is given by:

P(t) =

∫

D
P(t|p)P(p)dp =

Γ(β)

Γ(β1) . . .Γ(βl)

t!

t1!t2! . . . tl!

∫

D

l
∏

i=1

pti+βi−1
i dp

=
Γ(β)

Γ(β1) . . .Γ(βl)

t!

t1!t2! . . . tl!

∏l
i=1 Γ(ti + βi)

Γ(t+ β)

Thus the posterior distribution of p given the observed votes vector t is given by a

Dirichlet distribution of order l and parameters (t1 + β1, t2 + β2, . . . , tl + βl).

Before inducing the equation of P(T|t), it is necessary to understand two mathematical

matters. First, the probability distribution P(T|t) is the same as P(T − t|t). And

second, the probability distribution P(T − t|p, t) is equivalent to P(T − t|p). Both

remarks are direct consequences of the individual classifiers being independent from

each other given the training data.

P(T|t) = P(T − t|t) =
∫

D
P(T − t|p, t)P(p|t)dp =

∫

D
P(T − t|p)P(p|t)dp

=
(T − t)!

∏l
i=1 (Ti − ti)!

Γ(t+ β)
∏l

i=1 Γ(ti + βi)

∫

D

l
∏

i=1

pTi+βi−1
i dp

=
(T − t)!

∏l
i=1 (Ti − ti)!

Γ(t+ β)
∏l

i=1 Γ(ti + βi)

∏l
i=1 Γ(Ti + βi)

Γ(T + β)

=
(T − t)!

∏l
i=1 (Ti − ti)!

∏l
i=1 (ti + βi)Ti−ti

(t+ β)T−t

where (t)n = t(t+ 1) · · · (t+ n− 1) is the Pochhammer symbol, t is a non-negative real

number and n is a non-negative integer.

Finally, the probability that the classes predicted by the subensemble of size t and the
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full ensemble of size T coincide is the sum of the conditional probabilities P(T|t) for each
T ∈ Tt, where Tt is the set of vectors T such that kT = kt, Ti ≥ ti and

∑l
i=1 Ti = T .

Therefore we have

P∗(t, T ) =
(T − t)!

(t+ β)T−t

∑

T∈Tt

∏l
i=1 (ti + βi)Ti−ti
∏l

i=1 (Ti − ti)!
(4.8)

Notice that if βi = 1 ∀i (parameters corresponding to the uniform distribution), and

thus β = l, the exact same formula from the regular instance-based method is recovered.

4.3 Prior following a mixture of Dirichlet distributions

Using only one Dirichlet distribution to model the prior might not always provide a good

fit. The distributions P(p) for the examined datasets often show two or more different

modes which cannot be accurately approximated with one Dirichlet distribution. Given

that usually each mode corresponds to the distribution of instances of each class, we

choose to fit the prior distribution with a mixture of Dirichlets, where the number of

Dirichlets is given by the number of classes in the dataset and each Dirichlet is estimated

using only examples of one class. Following this scheme, the prior distribution can be

defined as

P(p) =
l
∑

j=1

P(cj)P(p|cj) =
l
∑

j=1

wj
Γ(βj)

Γ(βj
1) . . .Γ(β

j
l )

l
∏

i=1

p
β
j
i−1

i (4.9)

where each Dirichlet is weighted by wj, the class prior, that can be estimated by the

frequency of each class, i.e. wj =
nj

N
where N =

∑l
j=1 nj. The remaining part of

the mathematical proof follows the same steps as in the previous section, albeit the

differences included with the new prior.

Proposition 4.2. Assuming that the distribution over vector p(x) follows a mixture

of Dirichlet distributions (4.9), and that the likelihood P(t|p) follows a multinomial

distribution, the conditional probability of vector T = {T1, . . . , Tl} given vector t =

{t1, . . . , tl} obtained after querying t classifiers is

P(T|t) = (T − t)!
∏l

j=1 (Tj − tj)!

∑l
i=1

wi

(βi)T

∏l
j=1 (β

i
j)Tj

∑l
j=1

wj

(βj)t

∏l
i=1 (β

j
i )ti

(4.10)

Proof. The conditional probability distribution P(t|p) follows a multinomial distribution

(see Eq. (4.6)). In order to apply the Bayes Theorem, we first need to compute the



Chapter 4. Improved Statistical Instance Based Pruning 42

normalization constant P(t):

P(t) =

∫

D
P(t|p)P(p)dp

=
t!

t1! . . . tl!

l
∑

j=1

wj
Γ(βj)

Γ(βj
1) . . .Γ(β

j
l )

∫

D

l
∏

i=1

p
ti+β

j
i−1

i dp

=
t!

t1! . . . tl!

l
∑

j=1

wj
Γ(βj)

Γ(t+ βj)

l
∏

i=1

Γ(ti + βj
i )

Γ(βj
i )

=
t!

t1! . . . tl!

l
∑

j=1

wj

(βj)t

l
∏

i=1

(βj
i )ti (4.11)

The posterior distribution P(p|t) is computed applying the Bayes Theorem. Unlike

in the previous section, numerator and denominator cannot simplify, and the resulting

equation is computationally more complex:

P(p|t) = P(t|p)P(p)P(t) =

∑l
j=1wjΓ(β

j)
∏l

i=1
p
ti+β

j
i
−1

i

Γ(βj
i )

∑l
j=1

wj

(βj)t

∏l
i=1 (β

j
i )ti

(4.12)

Finally, the probability of vector T given vector t, or P(T|t), is given by:

P(T|t) =

∫

D
P(T − t|p)P(p|t)dp

=
(T − t)!

∏l
i=1 (Ti − ti)!

∑l
j=1wjΓ(β

j)
∫

D

∏l
i=1

p
Ti+β

j
i
−1

i

Γ(βj
i )

dp

∑l
j=1

wj

(βj)t

∏l
i=1 (β

j
i )ti

=
(T − t)!

∏l
j=1 (Tj − tj)!

∑l
i=1

wi

(βi)T

∏l
j=1 (β

i
j)Tj

∑l
j=1

wj

(βj)t

∏l
i=1 (β

j
i )ti

And the probability that the class predicted by the full ensemble and the partially

queried ensemble of size t is

P∗(t, T ) =
∑

T∈Tt

(T − t)!
∏l

j=1 (Tj − tj)!

∑l
i=1

wi

(βi)T

∏l
j=1 (β

i
j)Tj

∑l
j=1

wj

(βj)t

∏l
i=1 (β

j
i )ti

(4.13)

where the vectors T ∈ Tt satisfy that kT = kt, Ti ≥ ti and
∑l

i=1 Ti = T .
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4.4 A Reformulation of the SIBP Method

In this section we propose an equivalent formulation of the SIBP method using a dis-

crete Hypergeometric distribution. This new formulation, equivalent to the original one,

allows us to incorporate a discrete non-parametric prior distribution.

The classification process can be modelled after the classical urn models. Suppose we

have a total of T balls in the urn of l different classes, of which Tk is the number of balls

of class yk with 1 ≤ k ≤ l. The total number of balls and the number of balls for each

class is fixed. After t balls have been extracted without replacement, a number of tk of

them belong to class yk,
∑l

i=1 ti = t. The probability of extracting tk balls of class yk

after extracting a total of t, given a total of T balls in the urn, of which Tk belong to

class yk, can be described by the hypergeometric distribution:

P(t|T) =

∏l
i=1

(

Ti

ti

)

(

T
t

) (4.14)

The posterior distribution P(T|t) is computed applying the Bayes Theorem

P(T|t) =
P(t|T)P(T)

P(t) =
P(t|T)P(T)

∑

T∗∈Ωt
P(t|T∗)P(T∗)

=

(

T1

t1

)

. . .
(

Tl

tl

)

P(T)
∑

T∗∈Ωt

(

T ∗

1

t1

)

. . .
(

T ∗

l
tl

)

P(T∗)

=

T1!
(T1−t1)!

. . . Tl!
(Tl−tl)!

P(T)
∑

T∗∈Ωt

T ∗

1
!

(T ∗

1
−t1)!

. . .
T ∗

l
!

(T ∗

l
−tl)!
P(T∗)

(4.15)

where Ωt is the set of vectors T such that Ti ≥ ti ∀i and
∑l

i Ti = T .

Assuming a uniform prior distribution P(T) = 1
‖T‖ , where ‖T‖ stands for the number

of possible T vectors, we recover the formula of the original SIBP method (2.38). A

proof of that result is included in Appendix B (for binary problems).

The distribution P(T) can be modeled using a non-parametric prior. The values of this

prior can be obtained from the training data by some in-sample validation: out-of-bag

or cross validation. Out-of-bag is faster, since it does not require multiple generations of

the ensemble. However, each instance xn is classified only by a fraction of the classifiers

T̃ n, such that T̃ n = T̃ n
1 + . . .+ T̃ n

l , where T̃
n
i is the number of out-of-bag votes assigned

to class i for instance xn. In order to estimate the number of votes for each class with

respect to T , we proceed

T n
i ≈ round

(

T T̃ n
i

T̃ n

)
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Figure 4.1: Prior of a selected fold from the German problem

This normalization process generates artifacts in the prior distributions. In figure

4.1(left) it can be observed that some probability values of Ti are zero, while nearby

probability values of Ti are very high. In order to reduce the spurious effect of the

normalization, the value of each probability is smoothed by averaging the values using a

sliding window of size 5. Figure 4.1(right) shows the distribution P(T) on the left plot

after being smoothed. Figures A.6 and A.7 in Appendix A show the smoothed prior

distributions for all analyzed problems.

4.5 Computational complexity

The original SIBP formulation, with uniform prior distribution, permits to compute for

binary problems a look-up table indexed by the number of votes of the minority class and

whose values are the minimum number of votes of the majority class given confidence

interval α. The consequence of using a uniform prior is that all classes are considered

equivalent. Hence it is sufficient to compute one look-up table for all classes. When

incorporating the prior knowledge, the prior probability of votes for each class is not

necessarily the same and P(t1 = n, t2 = m) is not necessarily equal to P(t1 = m, t2 = n)

for n 6= m. Therefore one effect of introducing prior knowledge of the p distribution, is

that one look-up table per class will be necessary.

In addition, it is also necessary to compute a different set of tables for each dataset. The

prior distribution is estimated from the training data and, hence, it is dependent on the

problem. Furthermore, for experimental comparisons, since these instances are different

for each partition of the data, it is necessary to recompute again the look-up tables for

each realization.

Finally, the calculation of the look-up tables for the Dirichlet-based SIBP methods is

computationally more expensive with respect to the original uniform SIBP method. In
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Products Divisions

One Dirichlet 2(T − t− 1) 1
Mixture of Dirichlets 2l(T + t− 1) 2l + 1

Difference 2[(l − 1)(T − 1) + t(l + 1)] 2l

Table 4.1: Complexity comparison of the priod-based SIBP methods

the following paragraphs we offer some insight into some of the implementation details

used to build the look-up tables. The hypergeometric formulation only uses integers

in its computations, making it possible to use the tricks described in [36] to improve

the computation speed of the look-up table. The authors of [36] propose to decompose

all the terms in (2.38) in prime factors, then to simplify numerator and denominator,

and to compute only the irreducible fractions, which avoids numerical overflows for high

values of T . Moreover, for a fixed vector t, the denominator is the same for all the set

of possible vectors T , allowing to compute it only once.

The Dirichlet-based methods, on the contrary, cannot take advantage of these tricks

because the estimated parameters of the distribution are real numbers and therefore a

decomposition in prime factors is not possible. Analyzing equations (4.5) and (4.10), it

can be observed that the mixture of Dirichlets (4.10) is computationally more expen-

sive. Ignoring the term (T−t)!
∏l

j=1 (Tj−tj)!
which is common to both equations, the number

of operations for each equation is shown in Table 4.1. The table displays the number

of products and divisions operations involved in the computation of P(T|t), for both

Dirichlet-based methods. The third row shows the additional number of operations that

need to be performed by the mixture of Dirichlets method, with respect to the single

Dirichlet approach.

4.6 Experiments

In order to test the prior-based SIBP methods a series of experiments have been carried

out. The proposed modifications are compared with the full ensemble and the SIBP

method in its original formulation with uniform prior. The performance is evaluated

using as a benchmark several problems (binary and multiclass) included in the UCI

Repository [32]. The fitting algorithm for the Dirichlet distributions used is described

in [37] and the FastFit Matlab ToolBox [38].

For each problem, 100 partitions are created, and for each partition a Random Forest

ensemble of size T = 101 is trained. We compute the mean error rate of the full ensemble
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and the mean number of queried trees. It is important to point out that the speed-

up rate is computed with respect to the real number of queried trees using the full-

confidence rule (α = 1), and not with respect to the size of the full ensemble (101 in

this case). Then SIBP is applied to the ensemble querying process using the following

priors: uniform, Dirichlet, mixture of Dirichlets and the non-parametric prior following

the hypergeometric re-formulation. The confidence interval is set to α = 0.99 for all the

experiments. The ensembles are queried until the α confidence is reached. At that point

the generalization error rate, number of queried trees, speed-up and the disagreement

rates between the SIB-pruned ensemble and the original ones is computed.

Figures A.1, A.2, A.3 A.4 and A.5 display the prior distributions of the tested binary

problems using a Dirichlet prior (left column) and a mixture of Dirichlets prior (right

column). Figures A.6, A.7 and A.8 display the prior distributions when using the hyper-

geometric re-formulation of the pruning problem. All the figures display the histogram

of the prior probability distribution over p1 (or t1 in the case of the hypergeometric re-

formulation). In addition, the plots that display the Dirichlet priors show the estimated

Dirichlet parameters and the Dirichlet curve itself. A look at the prior distribution

plots can provide useful information about the problem in question. Easy classification

problems concentrate most of its probability mass close to the end points p = 0 and

p = 1, since they are characterized by easily separable classes. However, hard problems

concentrate its mass probability close to p = 0.5 in one or two modes, making the task

of classification much harder. By comparing the prior distribution plots and the dis-

agreement rates of the random forest ensembles using the original SIBP method, it is

clear that easy problems have disagreement rates closer to 0.0 and hard problems have

disagreement rates close to 1.0.

Tables 4.2, 4.3, 4.4 and 4.5 show the error rates, disagreement rates, number of queried

trees and speed-up rates respectively for all the tested classification problems. The

tables display the results of the full ensemble (RF), the full ensemble using the original

SIBP method (SIBP), the SIBP using a Dirichlet prior (1DIR), the SIBP using a prior

formed by a mixture of Dirichlets (NDIR) and finally the hypergeometric reformulation

with prior (HYPER). All the results are displayed as mean ± std. deviation over the

100 partitions. The best results for each problem are marked with bold fonts.

From table 4.2 it can be observed that the mean error rates obtained by all pruning

methods are similar to the original Random Forests. Although for some problems the

mean error rates are slightly worse than the rates obtained by the full ensemble, the dif-

ference between them is never greater than 0.3 percentage points. All proposed methods

obtain disagreement rates that are closer to 1% than the SIBP method with uniform
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Problem RF SIBP 1DIR NDIR HYPER

australian 13.00±3.7 13.09±3.7 13.14±3.7 13.14±3.7 13.25±3.8
breast 3.22±2.1 3.23±2.1 3.40±2.3 3.45±2.2 3.76±2.3
diabetes 24.34±4.2 24.25±4.1 24.31±4.1 24.21±4.0 24.23±4.0
echocardiogram 22.18±14.3 22.05±14.7 22.46±14.6 22.18±14.4 22.18±14.1
german 23.43±3.5 23.65±3.3 23.60±3.3 23.61±3.3 23.62±3.3
heart 18.30±6.9 18.37±7.0 18.44±7.0 18.44±7.1 18.37±7.2
horse-colic 15.47±5.6 15.44±5.4 15.47±5.4 15.49±5.4 15.44±5.4
ionosphere 6.44±4.1 6.44±4.1 6.50±4.0 6.55±4.0 6.52±3.9
labor 6.33±8.9 6.17±8.8 6.33±8.9 6.33±8.9 6.43±9.1
liver 27.10±6.7 27.09±7.0 27.04±6.9 27.01±6.9 27.01±6.9
mushroom 0.00±0.0 0.00±0.0 0.00±0.0 0.08±0.2 0.08±0.2
new-thyroid 4.29±4.0 4.38±4.0 4.61±4.3 4.94±4.5 4.52±4.3
ringnorm 7.60±1.3 7.72±1.2 7.74±1.2 7.78±1.2 7.82±1.2
sonar 16.25±8.7 16.45±8.7 16.40±8.7 16.50±8.7 16.45±8.8
spam 4.59±1.5 4.63±1.5 4.72±1.5 4.79±1.5 4.86±1.4
threenorm 17.85±1.1 18.04±1.1 17.94±1.1 17.95±1.1 17.97±1.1
tic-tac-toe 1.05±1.1 1.16±1.1 1.20±1.2 1.34±1.3 1.72±1.5
twonorm 4.66±0.6 4.77±0.6 4.76±0.6 4.90±0.6 4.90±0.6
votes 4.05±2.9 4.12±2.9 4.23±2.9 4.23±2.9 4.30±2.9
waveform 17.30±0.9 17.36±0.8 17.65±0.8 17.46±0.8 17.42±0.8
wine 1.69±2.8 1.74±2.8 2.19±3.2 2.24±3.4 2.13±3.2

Table 4.2: Error rates comparison of the SIBP variants (for each dataset the best
method is high-lighted in boldface)

prior, except in problems liver, sonar and threenorm. In these problem the prior distri-

butions over p (see Appendix A) are somehow similar to a uniform distribution and the

disagreement for the original SIBP method is already very close to the expected one.

Nonetheless, the disagreement rates of the proposed methods do not divert significantly

from the expected 1%. From the proposed methods, the one that shows the poorest fit

of the disagreement rate to the theoretial bound is 1DIR. NDIR improves significantly

the fit of the disagreement, possibly because it can better model bimodal distributions.

Finally the HYPER method achieves the best fit of the disagreement rates, except in

the echocardiogram problem.

As for the number of queried trees (see table 4.4) and speed-up rates (table 4.5), the

proposed methods improve with respect to the SIB-pruned ensemble in many of the

tested datasets. The benefit of using the prior distribution becomes more evident in

the mushroom problem. For this problem, the predictions of most classifiers agree as

it can be observed in figures A.4(a) and A.7(c). That information is incorporated into

the pruning method, that queries a mean number of just one or two classifiers before

casting a decision, achieving a speed-up rate of 51 times. Other problems in which

the proposed methods improve the speed-up rates are australian, breast, ionosphere,
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Problem SIBP 1DIR NDIR HYPER

australian 0.3±0.6 0.5±0.8 0.4±0.8 0.9±1.1
breast 0.1±0.4 0.3±0.7 0.5±0.9 1.0±1.1
diabetes 0.6±0.9 0.8±1.1 0.7±1.0 0.8±1.0
echocardiogram 0.7±3.1 0.8±3.3 0.8±3.3 1.4±4.6
german 0.8±0.8 0.9±0.9 0.8±0.8 0.8±0.9
heart 0.8±1.8 1.0±1.9 1.0±2.0 1.0±2.1
horse-colic 0.4±0.9 0.4±0.9 0.5±1.0 0.7±1.3
ionosphere 0.1±0.6 0.2±0.7 0.3±0.9 0.7±1.3
labor 0.2±1.7 0.3±2.3 0.3±2.3 1.2±4.5
liver 1.0±1.7 0.8±1.4 0.8±1.4 0.9±1.5
mushroom 0.0±0.0 0.0±0.0 0.1±0.2 0.1±0.2
new-thyroid 0.1±0.7 0.5±1.5 0.9±2.2 0.5±1.5
ringnorm 0.5±0.2 0.5±0.2 0.6±0.2 0.8±0.3
sonar 0.9±2.0 0.6±1.8 0.8±1.9 0.8±1.9
spam 0.1±0.2 0.4±0.3 0.5±0.4 0.7±0.4
threenorm 1.0±0.2 0.7±0.1 0.7±0.2 0.8±0.2
tic-tac-toe 0.1±0.4 0.2±0.4 0.3±0.6 0.7±1.0
twonorm 0.4±0.1 0.4±0.1 0.7±0.2 0.7±0.2
votes 0.1±0.4 0.4±1.1 0.5±1.2 1.0±1.8
waveform 0.6±0.1 1.7±0.4 1.0±0.2 0.8±0.2
wine 0.1±0.6 0.8±2.1 0.9±2.3 0.9±2.0

Table 4.3: Disagreement rates comparison of the SIBP variants (for each dataset the
best method is high-lighted in boldface)

new-thyroid, spam, tic-tac-toe, votes and wine.

From the observations of tables 4.3 and 4.5 we consider that the Hypergeometric formu-

lation with incorporated prior is the best of the new proposed methods in terms of best

fitting the disagreement rates and speeding-up the classification process. This can be

explained given that this method does not assume that the prior follows any parametric

distribution.

4.7 Conclusions

The Statistical Instance-Based Pruning method is a dynamic pruning algorithm for clas-

sification ensembles. This pruning technique queries sequentially the classifiers of the

ensemble until the probability that the output class by the classifiers queried up until

that point and the predicted output class of the full ensemble is the same exceeds a pre-

set threshold α. The original pruning technique is based on a scheme of majority voting

and does not include prior knowledge about the classification problem. The disagree-

ment rates between the full ensembles and the SIB-pruned ensembles are often much

lower than the theoretical bound given by 1 − α. In order to better fit the empirical
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Problem RF SIBP 1DIR NDIR HYPER

australian 62.2±1.4 16.1±2.1 14.6±2.2 14.7±2.1 12.8±2.3
breast 54.2±0.9 8.9±1.4 5.8±1.3 5.1±1.1 4.0±1.0
diabetes 68.8±1.8 24.9±3.2 23.7±3.3 24.5±3.3 24.0±3.2
echocardiogram 68.0±4.6 22.6±8.2 21.5±8.1 21.8±8.2 20.0±8.0
german 71.8±1.3 28.4±2.8 27.3±2.8 28.1±2.8 27.7±2.9
heart 67.2±2.5 22.5±4.2 21.7±4.3 21.4±4.2 20.9±4.2
horse-colic 66.2±2.1 20.2±3.5 19.6±3.5 19.0±3.5 17.5±3.7
ionosphere 57.9±1.5 11.9±2.3 9.9±2.3 9.3±2.3 7.8±2.1
labor 61.6±4.0 14.1±6.0 12.5±6.0 12.1±6.0 9.7±5.3
liver 74.5±2.3 31.8±4.5 32.6±4.5 32.5±4.5 31.7±4.5
mushroom 51.0±0.0 6.0±0.0 3.0±0.0 1.0±0.0 1.0±0.0
new-thyroid 55.2±1.8 10.7±2.6 6.2±2.4 5.4±2.2 6.3±2.4
ringnorm 68.6±0.8 22.9±1.1 22.6±1.3 21.3±1.4 20.4±1.5
sonar 73.9±3.0 32.1±6.6 32.7±6.6 32.1±6.4 32.6±6.8
spam 57.1±0.3 11.1±0.5 8.5±0.6 7.9±0.7 7.2±0.6
threenorm 76.6±0.5 34.8±1.0 36.6±1.1 36.3±1.1 35.8±1.6
tic-tac-toe 60.7±0.9 12.8±1.4 11.1±1.3 9.4±1.3 7.8±1.2
twonorm 67.2±0.2 21.0±0.5 20.9±0.5 18.6±0.6 18.4±0.9
votes 54.5±1.2 8.8±1.8 5.8±1.7 5.1±1.6 4.1±1.4
waveform 72.3±0.7 29.3±1.1 24.9±1.1 26.9±1.2 28.1±1.6
wine 57.3±2.1 11.4±2.7 6.7±2.4 6.1±2.2 6.1±1.8

Table 4.4: Number of queried trees comparison of the SIBP variants (for each dataset
the best method is high-lighted in boldface)

disagreement rates to the theoretical bound, we propose to incorporate prior knowledge

about the actual classification problem to the SIBP method. Three different methods

have been developed and tested in this work that incorporate prior knowledge over the

distribution of class votes from specific problem into the SIBP. The first method in-

corporates the prior knowledge by modelling the prior probability distribution after a

Dirichlet distribution. The second method models the prior distribution after a mixture

of Dirichlet distributions that can fit multimodal distributions. The third method pro-

poses a reformulation of the SIBP method in which the voting process is modeled after

a hypergeometric distribution. In this case the prior is modelled using a non-parametric

distribution.

The proposed methods succeed in achieving disagreement rates that are closer to the

preset 1 − α with respect to the ones obtained by the original SIBP formulation. The

method that obtains disagreement rates closer to the fixed one is the hypergeometric

formulation with non-parametric prior. Obtaining disagreement rates close to the desired

one means that the pruning technique has a more reliable and foreseeable behavior.

Additionally, the proposed methods obtain a generalization performance very close to

the one obtained by the full ensemble. Furthermore, the proposed methods significantly
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Problem SIBP 1DIR NDIR HYPER

australian 6.6±0.4 8.1±0.7 8.0±0.5 10.0±0.9
breast 8.0±0.2 14.8±0.4 16.3±0.5 22.4±1.5
diabetes 5.6±0.4 6.8±0.8 6.2±0.5 6.4±0.6
echocardiogram 5.7±1.1 6.8±1.7 6.6±1.4 7.8±2.0
german 5.1±0.4 6.0±0.5 5.7±0.5 5.8±0.5
heart 5.8±0.6 6.5±0.9 6.6±0.9 6.8±1.0
horse-colic 5.9±0.5 6.6±0.7 6.8±0.7 7.9±1.2
ionosphere 7.3±0.4 10.2±0.6 11.0±0.7 14.0±1.0
labor 6.7±1.3 8.7±1.8 8.6±1.9 11.1±2.5
liver 4.6±0.6 4.3±0.6 4.3±0.6 4.4±0.6
mushroom 8.5±0.0 17.0±0.1 51.0±0.0 51.0±0.0
new-thyroid 6.8±0.3 15.8±1.1 19.3±3.0 15.1±1.2
ringnorm 5.5±0.3 5.8±0.5 6.3±0.7 6.6±0.6
sonar 4.7±0.7 4.4±0.6 4.6±0.7 4.4±0.7
spam 7.5±0.1 11.4±0.2 13.2±1.2 14.5±0.7
threenorm 4.4±0.2 3.7±0.2 3.7±0.2 3.8±0.3
tic-tac-toe 6.9±0.3 9.3±0.5 10.7±0.6 12.8±1.4
twonorm 5.8±0.1 5.8±0.2 7.2±0.2 7.1±0.3
votes 7.9±0.3 14.5±0.7 16.2±0.8 20.7±3.0
waveform 4.5±0.1 7.8±0.4 5.9±0.3 5.2±0.4
wine 6.5±0.5 15.1±1.4 15.2±1.3 13.8±1.3

Table 4.5: Speed-up rates comparison of the SIBP variants (for each dataset the best
method is high-lighted in boldface)

improve the classification speed, especially for datasets where the mass of the prior is

close to 0 and 1. For the analyzed datasets, the method based on the hypergeometric

reformulation with non-parametric prior achieves the best results both getting closer to

the disagreement rate and speeding-up the classification process.
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Conclusions

In this work two contributions have been made to ensemble pruning. The first contribu-

tion is a double pruning scheme, presented in Chapter 3. This double scheme combines

the two types of ensemble pruning techniques: static and dynamic. Specifically the

scheme consists in applying a static method that reduces the number of classifiers of the

original ensemble and improves the accuracy with respect to the full ensemble. Using

only the classifiers selected by the static method, the classification is performed using

the dynamic Statistical Instance-Based Pruning (SIBP) method. Applying SIBP al-

lows us to further reduce the classification time and keep the accuracy of the statically

pruned ensembles. Two variants of the double pruning scheme were presented: one for

parallel ensembles and one for sequential ensembles. The parallel variant uses boosting-

based ordering with early-stopping to reduce the size of the ensemble and the sequential

counterpart uses SDP pruning (or its greedy version).

Based on the observation that ordered bagging ensemble reach a local minima in its ac-

curacy after querying around 20% of its classifiers, the boosting-based bagging ensembles

are pruned off-line at that point. When SIBP is applied to the off-line pruned ensemble,

the number of queried classifiers is decreased to 5-12% of all classifiers of complete the

ensemble, depending on the problem. For boosting ensembles the static method selects

a subensemble with 50% of the original classifiers. After applying SIBP, the number

of queried trees during the classification phase is reduced to 8-30% of all the original

classifiers.

The second contribution of this Master Thesis, described in Chapter 4, is an updated

version of the SIBP method. The SIBP queries sequentially the classifiers of the ensemble

until the probability that the output class by the classifiers queried up until that point

and the predicted output class of the full ensemble is the same exceeds a preset threshold

α. The original formulation of the SIBP method does not have into account previous

51
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knowledge about the class votes distribution of the classification problem. We have pro-

posed three different ways to include this prior knowledge from estimates obtained from

the training data. The first proposal includes a Dirichlet prior distribution. The second

one includes a probability distribution that follows a mixture of Dirichlets. Finally the

third method, is a reformulation of the SIBP method based on the hypergeometric dis-

tribution, equivalent to the original, that permits to introduce a non-parametric prior

distribution. The prior-based SIBP methods succeed at achieving disagreement rates

(with respect to the original ensemble) closer to the theoretical bound given by 1 − α.

One direct consequence is that the number of queried classifiers is further reduced, espe-

cially for easy separable problems. The main consequence is that the proposed pruning

technique has a more reliable and foreseeable behavior with respect to the disagreement

rate which is a necessary property for the application of these techniques. The pro-

posal based on the non-parametric prior and hypergeometric distribution is the one that

delivers better results.



Appendix A

Prior Probability Distributions

In this Appendix, all the prior distribution plots are included for the binary classification

problems. It is important to remark that, in order to facilitate the visualization of the

prior distributions, the plots displayed here contain all the out-of-bag votes from all

the dataset partitions. Therefore, the plots might be more optimistic than the actual

distributions used during the classification process, which only contain the out-of-bag

information from one of the partitions.

(a) Australian dataset

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p
1

P
(p

1)

β
1
=0.51732    β

2
=0.42876

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

p
1

P
(p

1)

β
1
1=1.768    β

2
1=0.462

β
1
2=0.526    β

2
2=1.575

(b) Breast dataset
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Figure A.1: Dirichlet-based Prior Distributions for datasets (a) Australian and (b)
Breast
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(a) Diabetes dataset
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(b) Echocardiogram dataset
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(c) German dataset
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(d) Heart dataset
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Figure A.2: Dirichlet-based Prior Distributions for datasets (a) Diabetes, (b)
Echocardiogram, (c) German and (d) Heart
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(a) Horse-colic dataset
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(b) Ionosphere dataset
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(c) Labor dataset
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(d) Liver dataset
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Figure A.3: Dirichlet-based Prior Distributions for datasets (a) Horse-colic, (b) Iono-
sphere, (c) Labor and (d) Liver
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(a) Mushroom dataset
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(b) Ringnorm dataset
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(c) Sonar dataset
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(d) Spam dataset
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Figure A.4: Dirichlet-based Prior Distributions for datasets (a) Mushroom, (b) Ring-
norm, (c) Sonar and (d) Spam
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(a) Threenorm dataset
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(b) Twonorm dataset
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(c) Votes dataset
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Figure A.5: Dirichlet-based Prior Distributions for datasets (a) Threenorm, (b)
Twonorm and (c) Votes
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(a) Australian dataset (b) Breast dataset
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(c) Diabetes dataset (d) Echocardiogram dataset
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(e) German dataset (f) Heart dataset
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(g) Horse-colic dataset (h) Ionosphere dataset
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Figure A.6: Non-parametric Prior Distributions for datasets (a) Australian, (b)
Breast, (c) Diabetes, (d) Echocardiogram, (e) German, (f) Heart, (g) Horse-colic and

(h) Ionosphere
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(a) Labor dataset (b) Liver dataset
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(c) Mushroom dataset (d) Ringnorm dataset
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(e) Sonar dataset (f) Spam dataset
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(g) Threenorm dataset (h) Twonorm dataset
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Figure A.7: Non-parametric Prior Distributions for datasets (a) Labor, (b) Liver, (c)
Mushroom, (d) Ringnorm, (e) Sonar, (f) Spam, (g) Threenorm and (h) Twonorm
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Votes dataset
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Figure A.8: Non-parametric Prior Distributions for Votes dataset



Appendix B

On the SIBP equivalence

In order to prove the equivalence between the original formulation of the SIBP method

and the new formulation when the prior distribution is uniform, we first need to know

three important results, shown in the theorem and the proposition below. Notice that

in order to keep simple the notation and simplify the computations, it is assumed that

the classification problem is binary. However it is entirely possible to generalize all the

results shown here to a multiclass problem.

Theorem B.1. Chu-Vandermonde Identity (Generalization of the Vandermonde Iden-

tity)

Let s, t ∈ C and n ∈ N, then

(

s+ t

n

)

=
n
∑

k=0

(

s

k

)(

t

n− k

)

(B.1)

Proposition B.2. Upper negation

Let r ∈ C and k ∈ Z, then

(

r

k

)

= (−1)k
(

k − r − 1

k

)

(B.2)

This proposition is the key to proving the equivalence between the two formulations.

The previous theorem and proposition are used here.

Proposition B.3. Let t1 and t2 be positive integers such that t1 + t2 = t and t ≤ T .

Then
T−t2
∑

i=t1

(

i

t1

)(

T − i

t2

)

=

(

T + 1

T − t

)

(B.3)

Proof. The difficulty of this proof lies in the series indices being situated in the upper

part of the Newton’s binomial. We first use the symmetry property to bring down the
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indices
T−t2
∑

i=t1

(

i

t1

)(

T − i

t2

)

=

T−t2
∑

i=t1

(

i

i− t1

)(

T − i

T − i− t2

)

(B.4)

The upper indices are removed by applying the upper negation property B.2

T−t2
∑

i=t1

(

i

i− t1

)(

T − i

T − i− t2

)

=

T−t2
∑

i=t1

(−t1 − 1

i− t1

)( −t2 − 1

T − i− t2

)

(−1)i−t1(−1)T−i−t2 (B.5)

Now the Vandermonde Convolution B.1 can be applied

T−t2
∑

i=t1

(−t1 − 1

i− t1

)( −t2 − 1

T − i− t2

)

(−1)i−t1(−1)T−i−t2 =

(−t− 2

T − t

)

(−1)T−t (B.6)

Finally the upper negation is applied and the desired result is obtained

(−t− 2

T − t

)

(−1)T−t =

(

T + 1

T − t

)

(−1)2(T−t) =

(

T + 1

T − t

)

(B.7)

Proposition B.4. Following the hypergeometric reformulation as explained in section

4.4 and assuming that the prior distribution follows a uniform distribution, the hyper-

geometric reformulation and its original are equivalent.

Proof. Let t1, t2 ∈ N such that t1 + t2 = t and t ≤ T = T1 + T2.

P(T|t) = P(t|T)P(T)

P(t) =
P(t|T)P(T)

∑T−t2
T ∗

1
=t1
P(t|T∗)P(T∗)

(B.8)

Following the formulas in section 4.4, P(t|T) =
(T1t1)(

T2
t2
)

(Tt)
and P(T) = 1

T+1 . We use the

results on proposition B.3 to simplify the denominator and the original SIBP equation

2.38 is obtained:

P(T|t) =

(

T1

t1

)(

T2

t2

)

∑T−t2
T ∗

1
=t1

(

T ∗

1

t1

)(

T ∗

2

t2

) =

(

T1

t1

)(

T2

t2

)

(

T+1
T−t

) =

T1!
t1!(T1−t1)!

T2!
t2!(T2−t2)!

(T+1)!
(T−t)!(t+1)!

=
(T − t)!

∏2
i=1 (Ti − ti)!

∏2
i=1 (ti + 1)Ti−ti

(t+ 2)T−t

(B.9)
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ensembles. Pattern Recognition Letters, 28(1):156–165, 2007.
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