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Abstract—The pervasiveness of cell phones and mobile social
media applications is generating vast amounts of geolocalized
user-generated content. Since the addition of geotagging infor-
mation, Twitter has become a valuable source for the study
of human dynamics. Its analysis is shedding new light not
only on understanding human behavior but also on modeling
the way people live and interact in their urban environments.
In this paper, we evaluate the use of geolocated tweets as
a complementary source of information for urban planning
applications. Our contributions are focussed in two urban planing
areas: (1) a technique to automatically determine land usesin
a specific urban area based on tweeting patterns; and (2) a
technique to automatically identify urban points of interest as
places with high activity of tweets. We apply our techniquesin
Manhattan (NYC) using 49 days of geolocated tweets and validate
them using land use and landmark information provided by
various NYC departments. Our results indicate that geolocated
tweets are a powerful and dynamic data source to characterize
urban environments.

I. I NTRODUCTION

Cell phones have become one of the main sensors of human
behavior, thanks, among others, to their growing penetration
and wealth of user applications. As smartphones and data plans
become more affordable, we are witnessing a worldwide shift
towards mobile social media applications such as Whatsapp,
Facebook, Twitter, Foursquare or Flickr. From messaging to
social networking, these tools are used by citizens on the go.
In fact, the mobile nature of cell phones promotes the use of
such applications anytime, anywhere, thereby generating vast
amounts of human behavioral information. Additionally, many
mobile social media applications allow users to add geoloca-
tion information to their profiles or to the information they
share, enhancing the richness of the behavioral datasets. For
example, Twitter offers the possibility of recording the user’s
geographical coordinates each time a tweet is generated. The
research presented in this paper focuses on understanding the
usefulness of geolocated twitter datasets as a complementary
information for urban planning applications.

Urban planning is a process that focusses on the control and
on the design of urban environments in order to increase the
well being of citizens. Two of the main processes concerning
urban planing are the characterization of urban land use
and the identification of urban landmarks. For that purpose,
urban planners require, among other things, large amounts
of data on urban land use and landmarks in order to make
public policy decisions. Such information is typically gathered
through direct observation or using questionnaires that attempt

to capture how citizens interact with the urban environment.
Nevertheless, this approach has some limitations such as the
resiliency of citizens to provide such information or the cost of
running questionnaires, which highly limits the frequencywith
which the information is captured. Alternative approachessuch
as GIS (Geographic Information Systems) provide satellite
imagery that might reveal land use information through vision
techniques. However, such techniques fail to provide real
time information as images are not captured frequently. In
order to overcome this issues, our research seeks a cost-
effective approach to capture land uses and landmarks using
the information provided by geolocated tweets.

The approach presented in this paper exclusively makes use
of spatial (geo-tagged) and temporal (time-stamped) informa-
tion, without accessing personal details or the content of the
tweets. By doing so, our techniques preserve privacy and also
can potentially be applied to any other mobile social media
dataset with geolocation information. Our main contributions
are: (1) a technique to automatically identify urban land uses
i.e., determine the type of activities that are most common in
specific urban areas based on tweeting patterns; (2) a technique
to automatically identify landmarksi.e. localize urban points
of interest as places with high activity of tweets; and (3) a
preliminary validation of our techniques in Manhattan(NYC)
using49 days of geolocated tweets and land use and landmark
information provided by various NYC departments.

The rest of the paper is organized as follows: Section II
presents related work in the characterization of urban land
use and landmarks based on user-generated content. After
that, we describe our technique to automatically identify
land use and its evaluation in Manhattan in Sections III and
IV, followed by our technique to detect landmarks and its
evaluation in Sections V and VI. Finally, Section VII presents
the conclusions and future research lines.

II. RELATED WORK

The rise of location-based services, from social networks
to microblogging sites, has opened a plethora of new research
areas that take advantage of the location data. Researchershave
explored how information propagates geographically [1], [2],
have quantified influence across geographical areas [3], [4],
have modelled trending topics in specific urban environments
[5], and have studied the topological characteristics of the
social networks that location-based services might create[6],
[7].



Focusing on twitter, some authors have used geotagged
datasets and its content to study and characterize human and
crowd mobility. Wakamiyaet al. [8] and Fujisakaet al. [9]
studied how to exploit geotagged tweets and the semantics of
its content to interpret individual and crowd behaviori.e.,how
individuals and groups of people move across geographical ar-
eas. The authors propose models of aggregation and dispersion
as a proxy to understand the bursty nature of human mobility.
Similarly, Kinsellaet al. [10] used geolocated tweets, together
with their content, to create language models at varying levels
of granularity (from zip codes to countries). The authors use
these models to predict both the location of the tweet and the
user based on location changes. Building on these results, we
propose the use of twitter datasets to identify and characterize
land uses and landmarks.

There exist interesting results using geotagged information
from Foursquare and Flickr to model land use in urban
environments. For example, Noulaset al. [11] have used
the geolocated information provided by Foursquare to model
crowd activity patterns in London and New York City using
spectral clustering. The authors then characterize the activ-
ity patterns identified by the clusters using the predefined
Foursquare categories that give an indication of the type
of check-in location (restaurants, academic, etc.). As such,
this approach gives an approximated understanding of land
use. However, it’s highly limited by the predefined categories
described in Foursquare and it’s not validated to understand
the accuracy of the results. In a related work, Crandallet
al. [12] used a dataset of geotagged photos from Flickr to
perform landmark location throughout the world. The authors
used the mean-shift algorithm to detect landmarks as areas
with high numbers of geolocated pictures. The results were
validated with an observational and qualitative approach that
informally identified many of the landmarks aswell known
points of interest.

Our research builds on previous work and is similarly
motivated. However, there are two significant novel contribu-
tions: (1) the use of geolocated tweets (without content and/or
semantics) to automatically detect land use and landmarks,and
(2) the validation of our results againstofficial information
on land use gathered by local governments, rather than using
predetermined tags or evaluations based on popular wisdom.

III. I DENTIFYING URBAN LAND USES

Urban land-use planning is a branch of public policy that
focuses on regulating land use in an efficient way. Professional
planners in the public and private sectors typically carry out
research to understand land uses in the community under
evaluation. Their main methods include public gatherings,
questionnaires or GIS image analysis, among others. How-
ever, as mentioned earlier, such methods might involve high
expenses as well as a lack of real time information. In the next
two sections, we study the possibility of using geolocalized
tweets to characterize urban land uses and explore whether
these can be used as a complement to traditional land-use
analytical approaches.

We present a method to automatically identify urban land
uses from geotagged tweets using exclusively the spatial (lo-
calization) and temporal (timestamp) information. Our method
consists of two main components: land segmentation and land
use detection. Given that we want to identify land uses in
different urban regions, we first need to partition the land
into different segments (land segmentation), which can then
be characterized by its tweet usage. The second component
focuses on understanding common tweet uses across land
segments and identifying how these behavioral patterns might
relate to land use. The following two sections describe each
phase in detail.

A. Land Segmentation with Geotagged Data

There are a variety of techniques that can be used to par-
tition a geographical area into different land segments, rang-
ing from administrative municipalities to grids or clustering.
However, we seek a technique that preserves the topological
properties of the geolocalized tweets, while respecting the
actual shape of the geographical area under study. For that
reason, we propose to use Self-Organizing Maps which have
been shown to be very efficient for spatial clustering purposes
[13], [14], [15], [16].

A Self-Organizing Map (SOM) is an unsupervised neural
network (NN) that reduces the input data dimensionality to
be able to represent its distribution as a map. As a result,
SOM forms a map where similar samples are mapped close
together and dissimilar apart. In our case, the input data are
the latitude & longitude pairs that represent the geolocalized
tweets over a period of time for a specific urban area. Thus, we
use a SOM to build a map that segments the urban land into
geographical areas with different concentrations of tweets in
the time period under study. The SOM consists of a collection
of N neurons where each neuronn is related to a weight
vector w(n) that represents the coordinates of the neuron in
the map. Neurons are organized in a grid[p, q], with N =
p ∗ q. The neurons are initially geolocalized at random within
the boundaries of the mapi.e., the initial neuron weights are
assigned randomly within its axis. During the SOM training,
the neuronm most similar to a given geolocalized tweetx
updates its weight. Similarly, neighboring neurons are also
updated using a neighboring functionh(m, n). The training
update rule is given by the following equation:

wt+1(n) = wt(n) + αtht(m, n)(x − wt(n)) (1)

whereαt is the learning rate that decreases monotonically in
time. The neighboring functionht(m, n) also decreases its
influence in time and space: the further neuronn is from
neuronm, the smaller will be the neighboring value, and thus
less significant will be the update. For this reason, a common
choice for the neighboring function is a Gaussian with its
width parameter decreasing in time.

Since we can choose any initial size[p, q] for the map,
our method explores different map sizes and selects as the
best land segmentation map the topology that minimizes the



Dataset
Total Mean

World 24130423 492457.61
Manhattan 247381 5048.59

TABLE I
DATASET CHARACTERISTICS

Weekdays Weekends
Total Mean Total Mean

Manhattan 184757 5278.77 62624 4473.14

TABLE II
DATASET CHARACTERISTICS FORMANHATTAN CONSIDERING

WEEKDAYS AND WEEKENDS

Davies-Bouldin clustering index [17]:
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1
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n
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The DB index is chosen because the partition with minimum
DB value will minimize the maximum sum of a pair of
standard deviationsσi andσj i 6= j and maximize the distance
between cluster representatives, ensuring that even the most
disperse clusters concentrate its points (geolocated tweets)
inside a compact cluster.

At the end of the training, we obtain a map where each
neuron represents a pointer to a region with a high density of
tweets. Additionally, areas with larger concentrations oftweets
will have larger numbers of neurons geographically located
nearby. Finally, we apply Voronoi tessellation considering the
location of the neurons so as to compute the land segments
that each neuron represents. These land segments are used as
the elements for the characterization of land use.

B. Detecting Urban Land Uses

In order to detect different land uses in an urban region, we
first characterize each land segment in the Voronoi tessellation
by its average tweet activity. These tweet activities are then
used to identify common land uses across land segments.
Tweet-activity vectors are built following the ideas presented
in [18], [19], where each land segments is characterized by
a vectorXs representing the average tweetting behavior as
follows:

1) An activity vectorxs,n for land segments is built for
each dayn = 1, ..., d in the twitter dataset.

2) Each dayn in the activity vector contains72 components
xs,d(t), t = 1, ..., 72 where each one represents the
number of tweets generated in segments during a 20-
minute intervalt in day d.

3) An average activity vector for land segments is com-
puted for both weekdaysXs,wkd and weekendsXs,wkn

as Xs,wkd(t) =
Pd

n=1
xs,n(t)

n
, t = 1, ..., 72 wheren is

a weekday andXs,wkn(t) =
P

d
n=1

xs,n(t)

n
, t = 1, ..., 72

wheren is a weekend day.

4) The final activity vector for land segments is repre-
sented as the concatenation of weekday and weekend
average activity vectorsXs = {Xs,wkd, Xs,wkn} and is
normalized as:

X̂s(t) =
Xs(t)

∑72
t=1 Xs,wkd(t) +

∑72
t=1 Xs,wkn(t)

. (3)

In the end, each land segments is represented by a unique
activity vectorXs with 144 elements representing the average
weekday and weekend tweeting activity computed in 20-
minute timeslots.

We use the activity vectors of all land segments to automat-
ically identify and characterize urban land uses. In order to do
so, we use the k-means algorithm to reveal clusters of common
tweeting behaviors across land segments [20]. The land use of
each cluster can be derived by analyzing the activity vectors
of the regions comprised within the cluster. It is important
to clarify that our research focuses on identifying the main
land use of each cluster, although there might be other minor
land uses associated to it. However, this is not a drawback of
our method since land use maps computed by urban planners
typically associate a unique land use to each region. Section
IV will show evaluation details about how the method is used
to identify and validate land uses in Manhattan.

Given that k-means depends on the initial random selected
seeds and that it needs to specify beforehand the number of
clustersk (land uses) to identify, we execute our method one
hundred times for each valuek = 2, ..., 10 and select the
value of k that outputs the highest silhouette validity index
[21]. The silhouette validity index is computed dividing a
measure of intra-cluster similarity by a measure of inter-cluster
dissimilarity. Since we seek well-separated clusters of similar
samples, we aim to maximize the index to obtain the best
partition of the data.

Once the best value ofk is selected, the method outputs
the clusters of land segments. In order to analyze the type of
land use associated to each cluster, we average the activity
vectors of all the land segments in the cluster and compute
an average activity vector that represents the tweeting activity
for that clusteri.e., Xc =

Pm
s=1

Xs

m
, c = 1, ..., k where m

is the number of land segments in clusterc. Next section
presents an evaluation of our method with tweeting activity
from Manhattan and shows how to identify and validate land
use.

IV. EVALUATION OF LAND USES INMANHATTAN

In this section we first describe the twitter dataset we use
to evaluate land use in Manhattan. Next, we describe how
to apply our method to carry out land segmentation with the
geolocated tweets and to identify clusters of common tweeting
activity. We finish the section identifying possible land uses
in Manhattan and validating our results against land use data
retrieved from various open NYC datasets.



Fig. 1. Land segmentation process with Twitter: (left) datapoints, (center) centers of activity computed with SOM and (right) Voronoi tessellation.

A. Twitter Dataset

Twitter users are allowed to tag tweets with their current
geospatial location. Specifically, users can set their geograph-
ical location by specifying a city or region by themselves or
by allowing Twitter to track their GPS longitude and latitude
coordinates. When a new tweet is produced, Twitter records
the geographical information of the user at that moment, along
with a variety of other meta data. Given that we want to model
land use within an urban environment, we require highly gran-
ular geolocations. Thus, we only collect tweets whose location
is automatically recorded by Twitter trough the GPS and not
self-reported by the user. It is important to highlight thatwe
are only interested in the spatial and temporal informationof
the tweetsi.e., latitude and longitude coordinates as well as
timestamps. Thus, no personal identifiers or tweet content has
been collected or is required to apply our method to identify
urban land uses.

The process of collecting tweets was facilitated by the
Twitter API. We used the Twitter Streaming API [22] to gather
geolocalized tweets in near real-time. The streaming API en-
ables a high-throughput stream to be established with Twitter
by which a large volume of public statuses of tweets can be
gathered. Specifically, the Twitter steaming API provides a
sample of all tweet public statuses, currently about one percent
of the full Firehose set of tweets. Finally, we relied upon
the Tweepy [23] library for establishing the long-lived HTTP
stream and for consuming the data received in JSON format.

Our final Twitter dataset consists of49 days (seven weeks) of
geolocated tweets worldwide from October 25th to December
12th, 2010. Although our study focuses on Manhattan, we
collected tweets worldwide mostly for sanity purposes. We
observed that the dataset contained a considerable amount of
fixed locations (probably GPS-enabled, non-mobile terminals)
with large numbers of daily tweets. We posit that these might
relate to mobile advertising companies sending commercialof-
fers to mobile terminals. However, since these locations donot
represent mobile users that can provide information regarding
land use, we eliminate them from the dataset. In order to filter
them, we apply the following filtering rule: any GPS location
that generates more than20 tweets per day is eliminated from
the dataset (remember that for privay purposses we do not
consider user identifiers, and as a result filtering is done ata
GPS location level). As a result, approximately10% of the
tweets are eliminated.

Tables I and II show the general statistics for the dataset
collected describing the total and average daily number of geo-
tagged tweets worldwide and in Manhattan during the period
under study. We can observe that Manhattan is responsible
for approximately 1% of all the geolocalized tweets and that,
on average, the tweeting activity in Manhattan is higher in
the week than during the weekends. Finally, Figure 1(left)
shows the geographical representation of all the tweets in our
Manhattan dataset where each dot represents a geolocalized
tweet.



k 2 3 4 5 6 7 8 9 10
S 0.488 0.496 0.506 0.491 0.471 0.457 0.451 0.455 0.463

TABLE III
MEAN SILHOUETTE VALUES

B. Land Segmentation and Land Use Clustering

As explained earlier, our method first trains a SOM with the
geolocalized tweets to divide Manhattan into different land
segmentss characterized by their tweet activity vectorXs.
The SOM is trained with a varying number of neuronsN and
the value with the minimum DB index is selected as the best
distribution on neurons (centroids of land segments). Since
SOMs preserve the geographical information, neuronsN must
be geolocated within the area of Manhattan. For this case we
consideredN in the rangeN = [10, ..., 100], with N defined
as N = p · q p, q > 1, p, q ∈ N. The values ofp and q
define the number of neurons considered in each axis:p in
the north-south axis andq in the east-west axis (we leave out
the cases whereN is a prime number). Given the rectangular
shape of Manhattan, we only consider cases in whichp > q.
For example,n = 10 would define an initial grid withp = 5
andq = 2 and andn = 12 would generate(p = 6, q = 2) and
(p = 4, q = 3).

Due to the randomized nature of the SOM training stage,
100 SOMs are trained for each pair(p, q) with N = p ∗ q ∈
[10, ..., 100] and their average DB index is computed. The
minimum DB index obtained has a value of 0.3569 and is
associated toN = 64 neurons with withp = 16 and q = 4,
which adapts nicely to the geographical shape of Manhattan.
Figure 1(center) shows the64 SOM centroids after the training
process. We observe that the Midtown area, where the best part
of the tweets are geolocated (as shown in Figure 1(left)), shows
a high density of neurons; whereas the north of Manhattan,
with a scarce number of tweets, has a much smaller number
of neurons. Finally, the land segmentation is computed by
applying Voronoi tessellation [24] to each SOM centroid in the
two-dimensional space as shown in Figure 1(right). The final
land segmentation consists of64 land segments. Each segment
is characterized by its Twitter activity vectorXs which has144
components, the first72 describe the tweeting activity during
an average weekday and the last72 the activity during and
average weekend day.

Next, our method uses the64 Xs vectors to identify different
land uses in Manhattan. For that purpose, it executes k-means
to cluster land segments with similar activity vectors thatcould
be associated to a common land use. Specifically, it executes
k-means withk values in the range[2, ..., 10] and selects the
k with the largest mean silhouette value. Table III displays
the mean silhouette validity index for eachk. We observe that
the best land segment clusters are computed fork = 4 which
reveals four well differentiated land uses in Manhattan. Figure
2 presents the class representatives for these four land uses.
Figures 3(a), 3(b), 3(c) and 3(d) presents the geographical
representation of the land use clusters.
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Fig. 2. Tweeting activity signatures per cluster, where theY axis represents
the normilized tweeting activity and the X axis two 24-hour periods, the first
one for an average weekday and the second one for an average weekend.



Fig. 3. Geographical representation of Land Use Clusters: (a) Business, (b) Leisure/Weekend, (c) Nightlife and (d) Residential

Considering the cluster maps and the activity vectors, we
can provide some hypothesis about the potential types of land
use discovered:

- Cluster 1 (Figures 2(a) and 3(a)): The activity vector
of this cluster is characterized by a higher tweetting activity
during weekdays than weekends. During weekdays the highest
tweeting activity is reached at 9:30PM, 13:00PM and 8:30PM,
which might be associated to the times at which people
typically get to work, go for lunch, and leave work. The peak
of the tweeting activity during the weekends is reduced by
33% when compared to weekdays.

Looking at the geolocation of the cluster in Figure 3(a), we
observe that it includes areas like Battery Park and Wall street,
and moving further north areas around Mid-Town. For these
reasons, we hypothesize that the geographical area coveredby
this cluster might represent Business areas in Manhattan.

- Cluster 2 (Figures 2(b) and 3(b)): This cluster shows
almost twice as much tweeting activity during weekends
that during weekdays. During weekends tweeting activity
constantly increases until 16.00PM, when it peaks, and then
constantly decreases. The geographical representation ofthis
cluster covers Central Park and its surrounding areas, including
the main NYC museums such as the Guggenheim or the
Metropolitan Museum. Thus, we hypothesize that this cluster
might be associated to Leisure or Weekend activities since
users are active mostly during the weekends. However, we
believe that it does not represent weekend nightlife since the

tweeting activity highly decreases after 16:00PM during the
weekends.

- Cluster 3 (Figures 2(c) and 3(c)): Unlike the first two
clusters, this activity vector shows the highest peaks of activity
at night. On weekdays the tweeting activity increases untila
maximum is reached at 20:00PM. On weekends, we observe
two peaks, a smaller one between 18:00PM and 23:00PM
and the largest peak that happens between 00:00 and 04:00.
This second peak shows a tweeting activity that doubles the
tweeting activity of any other cluster for the same time period.

The geographical representation of this cluster (see Figure
3(c)) mostly focuses in the surroundings of the East Vil-
lage and Broadway shows. For these reasons, we hypoth-
esize that these tweeting behaviors might be associated to
nightlife leisure activities, which during the week happen
earlier (20:00PM) and during the weekends go on until late at
night (04:00AM).

- Cluster 4 (Figures 2(d) and 3(d)): This cluster has a
signature that shows an almost constant tweeting activity
between 10:00AM and 22:00PM during the weekends. During
weekdays, we also observe a constant activity from 10:00AM
until 16:00PM after which the tweeting activity increases until
reaching a peak at 20:00. Figure 3(d) shows that the cluster
mostly covers areas in the Upper-East and Upper/Lower-West
sides. Thus, we hypothesize that this cluster might represent
a residential land use, where people stay home during the
weekends, and mostly return from work at night showing a



peak Twitter activity later inthe day (around 20:00).
As explained in Section III, we focus on identifying the

main land use of each cluster (although there might be other
minor ones), since this is the way urban planners typically
compute land use maps.

C. Land Use Validation

In order to validate our land use hypothesis, we compare
our results against official land use data released by the
NYC Department of City Planning and the NYC Department
of Parks&Recreation through the NYC Open Data Initiative
[25]. This initiative provides a catalog with hundreds of
datasets of public data produced by City agencies typically
through a combination of on-site inspections, interviews and
questionnaires.

Figure 4 depicts the official land uses at a block level in
Manhattan1. The NYC Department of City Planning considers
four main land use types: (1) residential, (2) commercial,
(3) industrial and (4) parks&recreation. Visually speaking,
we want to understand the percentage of overlapping that
exists between our land use clusters in Figures 3(a), 3(b), 3(c)
and3(d) and theofficial land use areas declared by the NYC
Departments in Figure 4. Such overlapping will give us an
understanding of the accuracy that Twitter activity achieves
in identifying land usesi.e., the larger the overlapping areas,
the more accurate tweeting activity is in modeling land use.
It is important to highlight that the percentage of overlapping
is an approximate measure to validate land use identification
given that both maps have different granularities: our maps
represent land segment clusters based on Voronoi and the
density of tweets, whereas the NYC maps show data at a block
level. However, we believe it constitutes a good preliminary
approach to validate our results.

In order to analyze overlapping areas, we use ArcGIS
[27]. ArcGIS allows, among many other GIS functions, to
evaluate overlapping between the shapefiles of two given
regions. In our case, one shapefile will represent the land
use cluster we have obtained and the other one an official
land use in the NYC Open Data map. The official land
use areas are distributed by the NYC Open Data in the
shapefile format; whereas our land use clusters are trans-
formed from their latitude and longitude coordinates into
shapefiles also using ArcGIS. Table IV shows the percentages
of overlap between the official land uses (rows) and our land
use hypothesis (columns). Specifically, each element(i, j)
in the table represents the percentage of the official land
use regioni = Commercial, Residential, Industry, Parks
that is covered by one of our land use clustersj =
Business, Residential, Nightlife, Leisure (bear in mind
that since our Voronoi tessellation does not precisely cover
all Manhattan land, the percentages do not exactly need to
sum up to100%).

We observe that the official Commercial land use is iden-
tified with a coverage of77% by our Business cluster. It

1Zoning map plotted with Oasis, an online free tool developedby the
Graduate Center at CUNY [26]

Fig. 4. Official Land Uses from NYC Department of City Planning:
Commercial, Residential, Industrial and Parks&Leisure

Official Land Use Twitter Land Use
Business Residential Nightlife Leisure&Weekend

Commercial 77% 14% 4% 4%
Residential 8% 62% 22% 8%
Industry 7% 85% 0% 6%
Parks&Recreation 5% 6% 6% 79%

TABLE IV
PERCENTAGE OF OVERLAP BETWEEN OFFICIAL LAND USES ANDTWITTER

LAND USES.

also includes other minor land uses detected with Twitter like
residential with a14% of overlap. The official Residential
land use is also well modeled by our Residential cluster, with
an overlap area of approximately62%, although it is also
covered by a14% of Nightlife land use. Focussing on the
official Industrial land use, we see that in this case there is
a strong overlap with our Residential land use. It seems that
our method, using Twitter data, is unable to model Industrial
land use which goes completely undetected and is a result is
included within the Residential land cluster. This is probably
due to the difference in granularity between the two land use
maps: given that industrial areas in Manhattan are typically
long, narrow and next to Residential land uses, it is harder for
our clusters to separate them. Additionally, it might also be the
case that workers in the industrial areas are not using Twitter
and thus our method only captures the activity of citizens in
the residential areas intertwined with the industrial zones. In
order to clarify these issues, we plan to carry out future work
to model user Twitter profiles and understand better tweeting
behaviors based on job and location factors. Finally, the official
Parks&Recreation land use is identified by our Leisure cluster



Fig. 5. Community Districts with Noise Complaints from the NYC 311

Service (red represents the highest number of complaints)

with an overlap of a79%, although minor land uses are also
included.

On the other hand, our method identified a Nightlife cluster
which mostly overlaps with the official Residential land use.
However, we wanted to understand whether the cluster is
incorrect or whether it is modeling a different type of land use
not accounted for by the NYC Departments. Figure 5 displays
the number of noise complaints per community district made
to the 311 on-line service during 2010, where darker colors
imply higher number of complaints. We observe that the
two community districts with the highest average number of
complaints (plotted in red) correspond to geographical areas
covered by our Nightlife cluster. Given that the community
districts have much lower granularity than our land use clus-
ters, we compute the percentage of the Nightlife cluster that
is included within the districts with the highest number of
complaints, which corresponds to an82% of overlap. Thus, it
is fair to say that the Nightlife cluster detected by our method
identifies a Nightlife land use that could be of interest for city
halls to model potential areas of noise complaints.

To conclude, we have shown that geolocated tweets can
constitute a good complement for urban planners to model
and understand in an affordable and near real-time manner
land uses in urban environments. We have shown preliminary
results for the identification of Residential, Commercial and
Park&Leisure land uses. Although our method has failed
to identify Industrial land uses, it has the ability to detect
Nightlife land uses that might be of significance for city halls
attempting to model sources of noise complaints.

V. L ANDMARK IDENTIFICATION

Urban landmark identification constitutes an important com-
ponent of policy making for Landmark Preservation Commit-
tees (LPC) or for Transportation Departments. Urban planners
typically build maps of historic, popular or tourist areas and

propose a wide range of policies for their preservation. Such
policies might include walking tours through historic districts
to promote awareness or the improvement of transportation
routes to an urban area popular among citizens. Landmark
maps are typically built gathering data from questionnaires or
interviews with district commissions and local organizations,
which has both time and cost limitations. In an attempt to
help urban planners, we evaluate the usefulness of geolo-
cated Twitter activity to identify historic and/or popularurban
landmarks. The advantage of using Twitter as opossed, for
example, to Flickr, is that, while Flickr is heavily influenced
by visitors/tourists, Twitter is used by the population at large,
thus facilitating the identification of more landmarks.

In this section, we propose a method to identify urban
landmarks as areas with very high tweeting activity. In order
to compute these areas, we need to use a clustering technique
capable of detecting local maxima (landmarks) over a non-
parametric distribution of geolocated tweets. Although one
could apply techniques like k-means or DBSCAN, these have
the limitation that knowing beforehand the number of clusters
(urban landmarks) is, in general, not possible. In fact, unlike
land uses in an urban area which might account for a few,
urban landmarks can go anywhere from a few to a few
hundreds. For that reason we use mean-shift, a clustering
technique that does not require to specify the number of
clusters beforehand [12].

A. Mean-shift Algorithm

Mean-shift is a non-parametric clustering technique that
detects the modes of an underlying probability distribution
from a set of discrete samples. As such, mean-shift can be used
both as an algorithm to detect local maxima (modes) as well as
a clustering technique (areas associated to the modes). In our
setting, we assume that there exists an unobservable underly-
ing probability distribution of where people tweet from. The
modes of that distribution are determined to represent urban
landmarks or points of interest in the city. Specifically, mean-
shift estimates the gradient of the probability distribution from
the set of tweets using a kernel functionK and a bandwidth
δ. The bandwidth represents the scale of observationi.e., the
scale associated to the spatial information of the samples.As
such, larger values ofδ will identify clusters that cover large
geographical areas which could be associated to popular cities;
whereas smaller values will identify clusters that cover smaller
areas which could be associated to landmarks within a city.

Initially, mean-shift designates a given locationx as the
maximum and iteratively updates it following the direction
given by the vectormδ,K(x), which always points towards
the direction of highest gradient. The procedure iteratively
updatesx until mδ,K(x) converges to zero, andx is labeled
as a maximum. All the points visited in the gradient ascent
are marked as belonging to that maximum.

mδ,K(x) =

∑n

i=1 xik‖(x − xi)/δ‖
2

∑n
i=1 k‖(x − xi)/δ‖2 (4)

x(i+1) = x(i) + mδ,K(x(i)) (5)



Weekdays Weekends
Rank Places Tweets (lat, lon) Places Tweets (lat, lon)
1 Penn Station 3532 40.750480, -73.993457 NYU 1053 40.728802, -73.999840
2 Rockefeller 2407 40.758597, -73.979010 Rockefeller 775 40.758616, -73.978972
3 NYU 2386 40.728801, -73.999828 Times Sq 755 40.757869, -73.985721
4 Times Sq 2178 40.756342, -73.986366 Penn 505 40.750123, -73.992414
5 Union Sq 1681 40.734215, -73.990600 Union Sq 577 40.736538, -73.990566
6 Herald Sq (Empire State) 1663 40.749757, -73.987731 MSG 559 40.750510, -73.993499
7 Theater District 1395 40.821546, -73.933991 Herald Sq 465 40.749761, -73.987992
8 Apple Store 1357 40.763919, -73.973101Theater District 456 40.821546, -73.933991
9 Columbus Circle 1327 40.763919, -73.973101 Meatpacking 448 40.741375, -74.005089
10 East Village 1256 40.731259, -73.988741 Grand Central 446 40.752750, -73.977263

TABLE V
RANKING OF NYC LANDMARKS WITH HIGHEST NUMBER OF GEOTAGGED TWEETS FOR WEEKDAYS AND WEEKENDS.

Mean-shift algorithm is run for a set of different initial
positions in order to identify all local maxima. At the end
of the process, every geolocated tweet is assigned to a local
maxima and a cluster representing a potential urban landmark.
The larger the number of tweets assigned to a cluster, the
highest the tweeting activity for that landmark. As a result,
mean-shift algorithm applied to Twitter activity producesa list
of local maxima/clusters which, if ranked according to number
of tweets, represents the list of the most popular landmarksin
the city.

VI. EVALUATION OF LANDMARKS IN MANHATTAN

In this section we evaluate whether we can identify the
urban landmarks of Manhattan using geolocated tweets and
validate our results against official data collected by the NYC
Landmark Preservation Commission.

A. Landmark Detection

In order to detect Manhattan landmarks we apply the
mean-shift landmark detection method to the Twitter dataset
described in Section IV.A. In order to be able to explore
landmarks at an urban scale, we set the bandwidth parameter
to 0.001o, which corresponds to approximately≈ 85 meters at
that latitude. Finally, we start mean-shift with1000 randomly
selected geolocations and iterate until convergence is reached.

Table V shows the output of the mean-shift algorithm ap-
plied to weekend and weekday geolocated tweets. It represents
the top ten landmarks identified in Manhattan ranked by the
largest amount of tweets during weekdays and weekends,
respectively. Additionally, the table shows the number of
tweets assigned to each location and its coordinates in WGS 84
format. We observe that the Penn Station area is detected as a
popular landmark during weekdays, which seems logical given
that it represents one of the most important commuting centers
for thousands of New Yorkers on a daily basis. Addition-
ally, the Rockefeller Center or Herald Square (Empire State
Building area) which represent important historic and popular
locations, make it to the top of the list. On weekends, we
observe a shift whereby commercial/leisure areas like Times
Square or the Meatpacking district are ranked higher when
compared to weekend landmarks.

B. Landmark Validation

In order to validate our results (beyond common sense), we
compare the top50 landmarks detected with mean-shift against
the official Manhattan landmark list retrieved from the NYC
Open Data website. Note that the official list of landmarks is
not ordered and does not give any indication of the relevance
of the landmark, its importance or any other ranking factor.
The data, collected by the Landmark Preservation Commission
(LPC), covers over800 locations grouped into historic districts
like Greenwich Village (NYU area), Madison Square North
or Herald Square (Penn Station area) [28]. NYC Open Data
provides a list with the landmarks, their geolocation and the
shapefiles for the different historic districts. Figure 6 shows the
Manhattan landmarks focussing on the area south of Central
Park.

The number of official landmarks co-located with our top
50 landmarks will determine the accuracy of the mean-shift
method to reveal urban points of interest. Since the latitude and
longitude of our landmarks represent the center of the cluster
detected by mean-shift , we compute arobustlocation drawing
an100m-diameter circle around each of our landmarks. Next,
we determine the number of official landmarks that fall into
the diameter of any of our detected landmarks. Following this
procedure, approximately a17% of the official landmarks are
detected by the mean-shift algorithm.

In order to understand the types of landmarks that our
method misses, we explored the official landmark list in depth.
We observed that most of the landmarks that go undetected
represent historic buildings that, although protected by the
LPC, do not necessarily represent popular or tourist points
of interest. For example, we detect Grand Central which is
both a historic building and a popular landmark. However, we
do not detect the Manhattan House Block (East65th), a 1947
New York Life Insurance Company building which occupies a
full block but does not draw much attention. Additionally, we
also detect new urban points of interest that are not considered
historic or touristic by the LPC like the Meatpacking District,
but which attract many new yorkers specially during the
weekends. Thus, it is fair to say that Twitter activities can
be used to detect urban popular/tourist landmarks.

To further support this point, we checked our top landmarks



Fig. 6. Historic Manhattan Landmarks determined by the Landmark
Preservation Commission south of Central Park.

against the list of NYC landmarks published by Crandallet
al. [12]. As explained in the related work, Crandall used the
mean-shift algorithm to perform landmark location based on
Flickr geotagged photos. The authors identified the top seven
landmarks in NYC including the Empire State Building or
Times Square among others. Our Manhattan landmarks in
Table V include all the top ones detected by Crandall except
for Liberty Island, which we have not considered as part
of Manhattan. This analysis confirms the accuracy of our
landmark detection and shows that Twitter appears to be as
good as Flickr for the detection of touristic landmarks.

To sum up, we have shown that our mean-shift method
can detect popular landmarks. However, it misses most of
the historic landmarks outside the popular or tourist routes
given that these probably do not receive a critical mass of
tweeting visitors. We believe that our method might provide
an affordable and near real-time tool for authoritative bodies
to detect urban spots that are becoming landmarks.

VII. C ONCLUSIONS ANDFUTURE WORK

We have presented techniques to automatically identify
urban land uses and landmarks from geolocated information.
Although our experiments have focussed on using Twitter
datasets, our methods are potentially applicable to any user-
generated dataset with geolocation information. Our results
have shown that Twitter data can help urban planners to
characterize commercial, leisure and residential areas, as well
as to model new types of urban uses like Nightlife. In terms
of landmarks, we have shown that our technique can help
urban planners identify popular/tourist landmarks, although
historic landmarks go highly undetected. Both elements have
been validated with information collected by the NYC Open
Data Initiative. Future work will evaluate our techniques on
different geolocated datasets so as to understand the limitations
and applicability of our methods at large.
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