
Presence Scalability Architectures1
Vishal K. Singh and Henning Schulzrinne

Department of Computer Science, Columbia University

{vs2140, hgs}@cs.columbia.edu

Abstract: We apply the two-stage reliable and scalable SIP server architecture proposed

in [1] for presence. The first stage proxies the requests to one of second stage server

groups based on the event header and destination user identifier. The destination user

identifier is based on presentity’s URI. Such a system achieves uniform load sharing on

the servers on an average. However, in certain cases the load may not be uniformly

distributed on all the servers. We propose to use load metric based static allocation

algorithm to distribute the load uniformly. The load metric determination and

performance evaluation of such a strategy is identified as future work. Additionally, we

explain load sharing architecture for XCAP server, which is based on HTTP request

redirection which is similar to load sharing in web servers.

1. Introduction
The scalability of presence [5] system becomes increasingly important with growing

number of presence based applications e.g., instant messaging, wireless and wireline

networked applications. It is important to know when a new server needs to be added to

the presence system. Additionally, the system capacity must increase linearly with

additional hardware i.e., CPU and memory.

This short paper is an extension of [1] for load sharing of presence server. We apply the

two-stage scalable Session Initiation Protocol (SIP) [7] server architecture proposed in

[1] for the case of presence. The technique is transparent to the client application.

However, presence system is also an event processing and notification system. The

incoming requests can be classified based on user identifiers as well as event package

[10]. Each event type is processed differently by the server. The load sharing architecture

proposed in [1] can be extended to handle multiple event types using one more level of

indirection, which distributes request based on the type of event. This can be done in the

first stage servers itself or by adding one more stage which does request forwarding based

on event type. Additionally, presence server involves complex XML processing and can

result in multiple notifications to be generated for each received PUBLISH [11] message,

which is different from normal SIP based call processing server.

The remainder of this document is organized as follows: Section 2 presents an overview

of presence server and presence data processing, Section 3 explains factors affecting the

scalability of presence server. Section 4 presents the load sharing architecture, section 4.1

explains the two stage load sharing architecture proposed in [1], section 4.2 introduces a

load balance metric and identifies future work for load sharing in presence based on load

balance metric, section 4.3 explains load sharing for XCAP [17] server. In section 5, we

present the evaluation strategy for load sharing mechanisms using SIMPLEStone [16]

1
 This work is supported by Verizon labs.

benchmarking standard. Then we present some future works in section 6, conclusion in

section 7 and provide the references in section 8.

2. Presence Overview and Data Processing
A presence system allows for users to subscribe to each others presence [5] (availability

and willingness for communication) information. The users (Watchers) subscribe to

presence information of other users (Presentity) using SIP SUBSCRIBE [10] and are

notified about the changes in state of other users by SIP NOTIFY [10] messages.

Presence data for a user (Presentity) is published from different presence sources using

SIP PUBLISH. The received presence data is processed and distributed to give to the

watchers a consistent view of the status of the presentities they are interested. Fig. 1

shows a basic block diagram of presence system.

Figure 2 shows the processing on presence server. This is explained in detail in

SIMPLEStone in section 2.1

Presence
Sources

PSTN Phone,
Cell Phone,

VOIP Client

Presence Authorization
Presentity specified filter

NOTIFY

candidate
presence
document

privacy

filtering

Watcher

Filter

Composition

Composition

Policy

SUBSCRIBE
specifies

watcher filter

Watchers

PUBLISH

NOTIFY

NOTIFY

final
presence
document

Post

Processing

Composition

candidate

presence

document

filtered
presence
document

 Fig. 2 Presence processing overview

PUBLISH

NOTIFY

REGISTER
SIP Proxy/
Registrar

Presence

Agent

SUBSCRIBE

NOTIFY

Watcher

NOTIFY

Presentity

Fig.1. Basic block diagram of presence system

3. Factors Affecting Presence Server Scalability
In this section, we explain different factors which affect the presence server scalability.

Request Rate: Number of messages received and distributed by the presence server per

second. The number of PUBLISH messages received depends on average number of

sources and their PUBLISH rates. Similarly, the number of SUBSCRIBE messages

received and NOTIFY messages sent is a factor of number of watchers for each

presentity.

Filter document size or Number of rules:

Every notification is generated after performing the rule matching process and applying

the matched filter rules. This implies checking conditions and applying actions and

transformations as specified in common policy draft [18] and in presence authorization

rules [12] draft. The processing of this step depends on the number of rules in the policy

document of the presentity.

Composition

The type of composition [14] policies that the server supports and application of the

policy, i.e., different policy being used on a per presentity basis or applied globally on the

server for all presentities. This determines the processing done by the server and hence

affects the scalability. Composition can also affect the size of PIDF [6] document. An

intelligent composition based on a rule language will load the presence server higher than

the default composition based on union or overriding policy.

Watcher filtering

The size of watcher filter [13] sent by the watcher in SUBSCRIBE message affects both

the processing and amount of traffic generated.

Partial notification

Partial notification [22] is mechanism used to conserve bandwidth by sending only the

changes in the presence document to the watchers. The watchers generate the complete

event state from the partial presence documents. The server compares the updated

document with the old document for the presentities and generates the partial presence

document.

Transport: The transport protocol used like TCP, UDP, or TLS affects the performance

of the server.

Other factors: Other factors that can affect the scalability are DNS look up, XCAP

change event handling, database optimizations, database vs. in memory design etc. Each

of these contributes to determine the load on system.

4. Load Sharing Architectures
In this section, we explain the two stage identifier based scalable load sharing

architecture for presence. We also explain the load balance metric based load sharing

architecture and HTTP redirect based load sharing architecture for XCAP.

4.1 Two-Stage Identifier based architecture

As explained in [1] the presentity identifier space is divided into non-overlapping groups.

A hash function maps the identifier to a particular server group that manages presentity’s

presence information. For Example, The first stage server (P0 or P0’) proxies the

presence requests to P1or P2 based on the destination user identifier. For example, when

a PUBLISH or SUBSCRIBE is received for bob@a1.com and H (bob) is 1 then it goes to

P1, whereas sam@a1.com where H (sam) is 2 goes to P2. To guarantee almost uniform

distribution of presence requests to different servers, a better hashing algorithm such as

SHA1 can be used or the groups can be re-assigned dynamically based on the load. The

first stage server is selected based on DNS SRV [19] and NAPTR [20] records.

 Fig 3.Two stage scalable load sharing

This architecture is explained in much detail in [1]. We explained above how PUBLISH

and SUBSCRIBE are sent to the appropriate presence server. SIP SUBSCRIBE and

PUBLISH allow multiple event types including presence. Thus, we can add one more

stage of proxy servers to distribute these requests based on type of event. , Adding a new

stage will be similar to the first stage shown in Figure 3 and would map event types to

one of the first stage server groups. Optionally, we can add event based forwarding in the

first stage itself. In which case, the first stage chooses a server pool based on event type

and choose the server from the pool based on hash of user identifier.

sip:bob@a1.com
Proxy
Server

Proxy
Server

Presence
Server

Presence
Server

Presence
Server

Presence
Server

sip:bob@a1.com

sip:sam@a1.com

S-M, P3

First Stage
(P0, P0’)

A-I, P1

Second Stage

sip:sam@a1.com

4.2 Load Metric based architecture

Each presence request may generate different amount of load on the server depending on

the number of filter rules, the PIDF document size, the number of watchers of the

presentity etc. The load sharing mechanism assumes that on an average the request rates,

filter sizes, etc., are randomly distributed such that the hash function generates uniform

distribution to share the load more or less equally among the second stage servers.

However, this may not be the case always e.g., a set of presentities allocated to a server

generating high request rate, or having huge filter sizes. To address such scenarios we

propose to use load metric (LM). Load metric is the load generated by a presentity on a

server. The sum of load metrics for all presentities gives the total load. Using this metric

we can statically allocate presentities to different server groups. This allocation is

provided to the first stage servers so that it can forward the requests to the correct server

group. LM can be calculated as a sum of load generated by each operation like privacy

filtering (filter size), watcher filtering, composition (policy per presentity), sending

notification to the watchers etc. LM also depends on the rate of PUBLISH and

SUBSCRIBE for the presentity. An example of load metric calculation is given below

Total Load = num of presentity X [load metric for presentity]

 = num of presentity X load [(composition) * 1 + (privacy filtering + watcher

 filtering + notify generation) * num of watchers] + C.

 Where C is load added for other factors like transport protocol, design choices like

DB vs. in-memory etc.

 However, quantifying load for each operation to measure LM is an open issue.

One mechanism is calculating LM is by determining the load for each operation

experimentally.

4.3 XCAP Server Load balancing Architecture

Load balancing XCAP server uses the same architecture as is used for load balancing

web servers. For such architecture to work for creating and updating policy files, buddy

lists, resource lists etc., the XCAP servers need to have access to user’s information to

authenticate the requests and access to the user’s documents.

The following load balancing mechanisms can be used.

A) DNS based load balancing

The DNS SRV [19] and NAPTR [20] mechanisms can be used for load sharing using

priority and weight fields in the resource records. It can be used to statically distribute

load in proportions of existing load on the servers. Additionally, DNS can be used to

send requests in round robin fashion.

B) HTTP Redirect request based load balancing.

In this mechanism, the first stage HTTP redirect server sends HTTP redirect [21]

responses with the address of the XCAP server to the clients. The client can then directly

connect to the XCAP server. The redirection server can be based on existing load on the

servers, round robin or using a hashing algorithm where a range of identifiers are

statically allocated to the second stage servers. If we want to do round robin or load based

redirection, all the servers need to have access to users credentials and policy files, so that

the requests can be authenticated and their policy files be updated. Figure 4 shows two-

stages of load balancing server for XCAP requests where requests can be served by any

of the second stage servers. The XCAP servers use a directory service e.g., mapping the

request URI to file system to get the XML documents. The second request directly goes

to XCAP server.

 Fig 4 HTTP redirect requests based load balancing.

C) There is other techniques to achieve load sharing, e.g., Packet rewriting, TCP splicing

techniques, based on how this goes. These mechanisms are based on additional hardware

to re-encapsulate packets at wire speed. They are limited by the throughput of the switch

being used to do that.

5. Performance Evaluation Strategy
The scalability scheme can be evaluated using the SIMPLEStone specification. The

loader and handler tools can be used to perform test runs, with increasing load levels,

targeted at the server set up being tested. The load is increased till the server starts

dropping requests and the additional server can be added. We can verify if the request

rate scales linearly with number of servers. This can be repeated with different hashing

and presentity allocation mechanisms.

6. Future Work
We plan to do the scalability and performance testing using the two stage architecture.

The additional indirection for event type in the three stage architecture also needs to be

validated when additional events type need to be supported. Further, we would like to test

the presentity migration using a load metric based static allocation algorithm. The load

metric for each of the factors need to be determined experimentally and should be used to

determine the load generated per presentity.

7. Conclusion
We explained various factors which limit the scalability of a presence system. We

explained the two-tiered architecture and explained how to use it in the context of

XCAP Server

XCAP Server

XCAP Server

XCAP Client

XCAP Client

XCAP Client

XCAP Client

HTTP

Redirect
server
(Load

balancer)

302

Request

302

Request

302

Request

302

Request
s

presence. We explained load balance metric based solution for certain deployments.

Additionally, we presented load sharing architecture for XCAP server.

8. References
1. Kundan Singh and Henning Schulzrinne, "Failover and Load Sharing in SIP

Telephony", International Symposium on Performance Evaluation of Computer and

Telecommunication Systems (SPECTS), Philadelphia, PA, July 2005.

2. Rosenberg, J., "A Data Model for Presence"draft-ietf-simple-presence-data-model-07,

January 22, 2006.

3. Rosenberg, J., "A Processing Model for Presence" draft-rosenberg-simple-presence-

processing-model-01, July 17, 2005.

4. Lonnfors, M., "Session Initiation Protocol (SIP) extension for Partial Notification of

Presence Information" draft-ietf-simple-partial-notify-05, May 24, 2005.

5. Day, M., Rosenberg, J. and H. Sugano, "A Model for Presence and Instant

Messaging", RFC 2778, February 2000.

6. Sugano, H., Fujimoto, S., Klyne, G., Bateman, A., Carr, W. and J. Peterson,

"Presence Information Data Format (PIDF)", RFC 3863, August 2004.

7. Rosenberg, J., Schulzrinne, H., Camarillo, G., Johnston, A., Peterson, J., Sparks, R.,

Handley, M. and E. Schooler, "SIP: Session Initiation Protocol", RFC 3261, June

2002.

8. Rosenberg, J., "A Presence Event Package for the Session Initiation Protocol (SIP)",

RFC 3856, August 2004.

9. Schulzrinne, H., Gurbani, V., Kyzivat, P. and J. Rosenberg, "RPID: Rich Presence:

Extensions to the Presence Information Data Format (PIDF)" draft-ietf-simple-rpid-

08, July 16, 2005.

10. Roach, A., "Session Initiation Protocol (SIP)-Specific Event Notification", RFC 3265,

June 2002.

11. Niemi, A., “Session Initiation Protocol (SIP) Extension for Event State Publication ",

RFC 3903, October 2004.

12. Rosenberg, J., "Presence Authorization Rules" draft-ietf-simple-presence-rules-04,

October 18, 2005.

13. Khartabil, H., "An Extensible Markup Language (XML) Based Format for Event

Notification Filtering" draft-ietf-simple-filter-format-05.txt, March 15, 2005.

14. Schulzrinne, H., “Composing Presence Information” draft-schulzrinne-simple-

composition-00, July 10, 2005

15. Schulzrinne, H., Sankaran Narayanan, Jonathan Lennox and Michael Doyle,

“SIPstone - Benchmarking SIP Server Performance”.

16. Singh, V., Schulzrinne, “SIMPLEStone - Benchmarking presence Server

Performance”.

17. Rosenberg, J., "The Extensible Markup Language (XML) Configuration Access

Protocol (XCAP)", draft draft-ietf-simple-xcap-08, Oct 24, 2005.

18. Schulzrinne, H., "A Document Format for Expressing Privacy Preferences", draft-

ietf-geopriv-common-policy-06, Oct 2005.

19. A. Gulbrandsen, P. Vixie, and L. Esibov, “A DNS RR for specifying the location of

services (DNS SRV)," RFC 2782, Internet Engineering Task Force, Feb. 2000.

20. M. Mealling and R. W. Daniel, “The naming authority pointer (NAPTR) DNS

resource record," RFC 2915, Inter-net Engineering Task Force, Sept. 2000.

21. Fielding, R., Gettys, J., Mogul, J., Frysyk, H., Masinter, L., Leach, P. and T.

Berners-Lee, "Hypertext Transfer Protocol HTTP/1.1", RFC 2616, June 1999.

22. Lonnfors, M., Costa-Requena, J., Leppanen, E., Khartabil, H., Session Initiation

Protocol (SIP) extension for Partial Notification of Presence Information, draft-ietf-

simple-partial-notify-06, October 21, 2005.

