
QoEScope: Adaptive IP Service Management for
Heterogeneous Enterprise Networks

Yueping Zhang, Vishal Singh, Yu Gu, and Guofei Jiang
NEC Laboratories America, Inc.

4 Independence Way, Princeton, NJ 08540
Email: {yueping, vishal, yugu, gfj}@nec-labs.com

Yu Ru
University of Illinois at Urbana Champaign
1308 West Main Street, Urbana, IL 61801

Email: yuru2@uiuc.edu

Abstract—In the recent years, a progressively growing number
of computing and communication services have undertaken the
migration from their conventional media to the new unified
platform, IP networks. As a consequence, business success of
service providers becomes largely determined by the effectiveness
of their service management schemes, which require rapid
identification of problems and resolution of network-related
anomalies. However, this is a non-trivial task in heterogeneous
enterprise networks due to service providers’ invisibility of the
health and performance of the underlying carrier network. In
addition, the gap between quality of service (QoS) measurements
reflecting network performance and quality of experience (QoE)
metrics indicating user-perceived service quality further makes
effective service management more challenging. In this paper, we
present a unified service management system called QoEScope,
which combines scalable end-to-end probing, accurate topology
inference in the presence of implicit routers, adaptive bridging
between QoS measurement and QoE metrics, and intelligent
root cause analysis. Extensive testbed emulations and Internet
experiments demonstrate that QoEScope is a highly practical
and effective IP service management solution for heterogeneous
enterprise networks.

I. INTRODUCTION

There is an emerging trend of unified communication over
Enterprise IP networks across the globe, and Voice over IP
(VoIP) and NetMeetings have been widely deployed. From
the perspective of IP service management, it is highly desir-
able to identify problematic network segments promptly and
accurately when users perceive unsatisfying service qualities.
There are a number of challenges in pinning down the exact
network segments that cause poor user-perceived performance.
First, IP service users dynamically join service sessions (e.g.
IP video conferences) from different network locations. As a
consequence, the underlying network topologies change across
multiple service sessions. This creates a non-trivial obstacle
for network tomography based methods [3], which usually
assume static network environments and highly correlated
measurements. Second, Enterprise IP services may span over
vastly separated geographical locations with rented third-party
networks, oftentimes in the form of virtual private networks
(VPNs). As a consequence, the service providers have limited
information about the underlying network and cannot know
exactly the quality of service perceived by the end users.
Third, the network condition is always changing. In particular,
problems presented in one session may not present themselves

in another session and network status discovered in a single
service session may not reflect the true underlying problematic
network segments. This is especially true given the transient
behaviors in today’s Internet. Meanwhile, even if measure-
ments of the network can be performed, the measurements are
subject to resource limitations from the underlying networks
and the client side. Some of the measurements can only
be obtained at a very coarse granularity, such as packet
loss rate; some of them could be distorted, such as end-
to-end delay; and some of them can contain missing data,
such as routing information obtained from traceroute.
Fourth, even if all the above information is available, inferring
the problematic network segments from accurate end-to-end
measurements can itself be a difficult problem that is highly
under-determined [3].

Targeted at overcoming challenges listed above, we propose
a framework called QoEScope, which identifies problematic
network segments using an end-to-end approach. QoEScope
consists of four key technical components/steps. First, we
perform scalable end-to-end measurements of quality of ser-
vice (QoS) metrics (e.g., packet loss rate, delay, and jitter)
over the path. These measurements are taken using light-
weight client-side Java applets, which can either be integrated
with any third-party applications (e.g., Web browser) or run
independently. Then, we introduce a network routing topol-
ogy inference algorithm called NetScan, which complements
information obtained from traceroute and achieves very
high accuracy even when intermediate routers do not respond
to traceroute queries. Third, we develop a QoE learning
engine, which utilizes a neural network classifier to adaptively
map QoS measurements obtained from active probing to user-
perceived quality of experience (QoE). Finally, combining
topology information from NetScan and user perceived qual-
ities from the QoE learning engine, we devise a simple yet
effective algorithm that locates the most possible problematic
network segments.

We implemented QoEScope in real systems and performed
extensive experiments both in controlled environments (i.e.,
our in-house testbed) and the wild Internet (i.e., Planetlab
[17]). All of our experiments demonstrate that our frame-
work exhibits excellent deployability without modification to
applications’ existing code base, high accuracy in topology
inference even in cases where all intermediate routers are

1



implicit, and real-time adaptability to dynamic network en-
vironments. However, we emphasize that this paper does not
attempt to claim optimality of any of the four components
in QoEScope and acknowledge that each of them has its
own limitations. Instead, the purpose of this paper is to share
with the community our experience of design, implementation,
and evaluation of a practical QoE management tool (which
is a combination of several simple yet effective technical
components) for a real IP service system.

The rest of the paper is structured as follows. In Sections II–
V, we respectively describe QoEScope’s end-to-end probing,
topology inference, QoE learning, and problem reasoning
mechanisms. In Section VI, we evaluate QoEScope’s perfor-
mance in both controlled testbeds and the Internet. In Section
VII, we give a brief review of related work. Finally in Section
VIII, we conclude this paper and point out further work.

II. END-TO-END PROBING

In the rest of the paper, we present QoEScope in the
context of an IP conference system and keep in mind that the
proposed framework can be generalized to other IP service
systems. We start with the end-to-end probing mechanism
used in QoEScope to obtain real-time monitoring of internal
traffic dynamics inside the underlying carrier network. Before
the conference session starts, each user clicks a URL, which
signals the server to push a Java applet to the client’s Web
browser. Then, the applet starts sending and receiving probing
packets at a constant rate between the client and server. We
set the packet size of each probe to 200 bytes and inter-packet
interval to 50 ms1. At both the client and server sides, sequence
number and timestamp of each incoming probe are recorded.
At the end of every T seconds (we set T = 10, which is
configurable), both the client and server calculate one-way
delay, packet loss rate, and delay jitter for the path connecting
them. We implemented a data processing mechanism that
synchronizes clocks of the server and clients in a manner
similar to NTP. Subsequently, the client sends the server a
report message containing the calculated results. Then, the
server combines this report with its own measurements and
estimates QoE perceived by the client, i.e., the transmission
rating factor (or R-value). We note that while the E-model
involves many metrics that cannot be directly measured via
end-to-end probing, in QoEScope we express the R-value as a
function of delay and loss and set other metrics to their default
values specified by [10]. This way, the service provider is able
to monitor network condition and user-perceived quality for
each client in real time.

We note that for the enterprise IP conference system that
QoEScope is designed for, the size of participants in a con-
ference session is usually less than 100, in which case the
above probing mechanism imposes a minimum impact on
the existing communication traffic. For larger-scale IP service
systems, the probing overhead may become a major issue.

1Those values are chosen according to the transport protocol employed in
our test IP conference system. In practice, they can be changed to different
values to emulate other protocols, e.g., RTP [20] and DCCP [13].

For instance, using the packet size and inter-packet interval
specified above, 1000 clients will generate combined probing
traffic of 32 Mb/s, which, when aggregate at the server, may
affect the existing IP services. This problem can be mitigated
by incorporating various probing optimization techniques [11]
or certain passive measurement schemes [18] in the existing
literature. We do not seek to address this problem in the paper,
but leave further exploration in this direction for future work.

III. QOE LEARNING ENGINE

As described in the last section, we calculate the R-value
purely based on QoS measurements (e.g., delay and loss) and
set all other variables in the E-model to their default values,
which however could deviate from their real values in practical
systems. Moreover, user perceived quality of experience is
a subjective and sensitive metric, which can be significantly
affected by many external factors, such as level of room noise,
loudness of the receiving speaker, mood of the listener, and
even workload of the client’s machine. Therefore, it is a critical
challenge for any practical IP service management system to
correctly and dynamically infer users’ QoE.

In this paper, we tackle this challenge by taking a ma-
chine learning based approach. Specifically, we model the
relationship between QoS and QoE metrics using a multilayer
perceptron classifier (MLP). In QoEScope, training data are
simply a collection of network measurements of delay, loss,
and jitter. We first train the classifier using R value computed
based on QoS measurement data and then refine it with labeled
data derived from real users’ feedbacks, which are not part of
probing traffic, but collected from clients periodically or on-
demand. After training the classifier, the service provider can
simply input one-way delays, jitters, and loss rates to the MLP
and obtain an estimated mean opinion score (MOS) describing
end-user experiences. We further note that the inputs are
not limited to delay, loss, or jitter, but can be conveniently
extended to include any other metrics. Therefore, the resulting
learning engine can be applied to QoE management of many
other services (e.g., IPTV, VoIP, and software-as-a-service)
than IP conference.

The above QoE learning engine, combined with end-to-end
probing, allows service providers to monitor users’ experience
in real time. Once service quality degradation is determined
for certain users, it becomes paramount for service providers
to accurately and timely diagnose the root cause and localize
the problem down to specific network segments. Towards this
end, we respectively present routing topology inference and
fault diagnosis schemes in the following two sections.

IV. ROUTING TOPOLOGY DISCOVERY

Among existing Internet routing topology inference mecha-
nisms, traceroute-based techniques are the earliest and
most widely used ones [5], [8], [9], [12]. However, these
techniques require explicit cooperation of intermediate routers.
For security reasons, more and more routers in today’s en-
terprise networks choose not to reveal their identity by either
suppressing ICMP responses or using the destination addresses
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Fig. 1. Illustration of Sandwich and NetScan probing schemes.

of traceroute packets instead of their own as source
addresses for outgoing ICMP packets. We call these routers
implicit or anonymous as coined in [21]. In the presence of im-
plicit routers, the conventional traceroute-based methods
result in routing paths with unidentifiable intermediate routers
(which are marked as “∗” by a typical traceroute com-
mand). Thus, the resulting routing topology may be incomplete
or inaccurate [21]. To address this issue, we propose a new
topology inference algorithm called NetScan.

A. Sandwich Probing

NetScan is inspired by the sandwich probing algorithm
proposed in [6]. Without loss of generality, consider a one-
server-two-client system illustrated in Fig. 1. As seen in the
figure, a sandwich probe consists of two small packets (P1

and P3) with packet size s1 separated by a large packet (P2)
with packet size s2. The two small packets are sent out by the
source with a fixed time interval d. In a typical scenario shown
in Fig. 1(a), source S first transmits P1 to the first receiver R1.
After d time units, it sends out two back-to-back packets P2

and P3, which are destined at R2 and R1, respectively. Then,
due to queueing delay experienced by the three packets, the
initial time interval d between P1 and P3 is changed by δ (i.e.,
the interval becomes d+δ) at the branching router where paths
S-R1 and S-R2 diverge. Then, the original sandwich probing
scheme reconstructs the logical network topology by applying
a penalized maximum likelihood algorithm on δ measurements
collected at the receivers. Due to limited space, we refer
interested readers to [6] for details of sandwich probing.

B. NetScan

We next present how we modify sandwich probing and
leverage TTL decrement to identify the branching node of
two paths. This in in spirit similar to Eriksson’s recent work
[7], in which TTL decrements are used to infer the length of
shared path of two end-hosts. Our scheme is simple. Define
NS,R1 as the number of hops between hosts S and R1 and
mS,R1,R2 = min(NS,R1 , NS,R2), which can be used as an
upper bound on the length of the shared path between S-
R1 and S-R2. Here, NS,R1 and NS,R2 can be determined by
sending a packet with the default TTL value 255 from S to R1

and R2, respectively, and then checking the TTL decrements of
the packets at the receiving end. Then, our probing algorithm
will initiate mS,R1,R2 +1 sandwich probes with different TTL
values for the large packet P2. Specifically, the large packet

Algorithm: BPI

Input: Source S and destinations R1 and R2

Output: Branching node

Obtain NS,R1 , NS,R2 , and mS,R1,R2 = min(NS,R1 , NS,R2);

for i = 1 to K do
for j = 1 to mS,R1,R2 do

Set TTL of P2 to j, send P1, P2, and P3 from S to R1;
Measure and calculate δi(j);

Set TTL of P2 to 255, send P1 and P3 to R1 and P2 to R2;
Measure and calculate δ′(j);

Calculate mean E[qj ] and E[q′];
return argj min |E[qj ]− E[q′];

Fig. 2. Branching-point identification algorithm of NetScan.

P2 of the j-th sandwich probe has TTL equal to j (where
1 ≤ j ≤ mS,R1,R2) with destination R1. For P2 in the last
(i.e., the (mS,R1,R2 +1)-st) sandwich probe, we set its TTL to
255 and destination to R2. Consider Fig. 1 for an illustration,
where the sandwich probe will be sent four times and TTL
values and destinations of P2 are shown in the table.

In the j-th round, receiver R1 measures the variation δj(i)
of the inter-packet interval between the two small packets
P1 and P3. Analogously, δ′(i) of the last probe reflects the
transmission and queuing delay of the sub-path up to the
branching point (e.g., I2 in Fig. 1(b)). Thus, at the end of
the K rounds, we have mS,R1,R2 + 1 time series:

qj = (δj(1), . . . , δj(i), . . . , δj(K)), (1)

where 1 ≤ j ≤ mS,R1,R2 , and

q′ = (δ′(1), . . . , δ′(i), . . . , δ′(K)). (2)

Denote σ(i) the queuing delay difference introduced by pack-
ets between packets P2 and P3 in router i. Then, as derived
in [22], the expectation of δj is approximately equal to the
summation of s2/Ci and σ(i) along the path S-R1 up to
the j-th hop. Then assuming j is the index that minimizes
|E[δj ]−E[δ′]|, the branching point will be the (j +1)-st node
from sender S. The pseudo-code of this algorithm, Branching
Point Identification (BPI), is given in Fig. 2.

V. ROOT CAUSE ANALYSIS

In QoEScope, end-users’ perceived quality of experience
is inferred periodically by the QoE Learning Engine intro-
duced in Section III. Each time the qualities are inferred,
QoEScope automatically localizes the most possible network
segments that lead to the poor qualities inferred, if any. The
problematic links are flagged a value of 1 and these link
values are then accumulated and displayed in our control GUI.
Detailed description and evaluation of the root cause analysis
mechanism used in QoEScope are available in [22].

VI. EXPERIMENTAL EVALUATION

We implemented the client-side of QoEScope as a Java ap-
plet based on two considerations. First, platform-independence
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of Java applet enabled Web browser is critical when de-
ployed in customers’ networks with heterogeneous system
configurations. Second, its support for sandboxing provides
improved security and allows clients to perform probing
without installing additional software on their local machines.
In cases where agent-based implementation (i.e., software
installation on clients’ machines) is desired, our prototype
can be easily converted. Using this implementation, we next
examine QoEScope’s probing scalability, topology inference
accuracy, and QoE learning performance via real experiments
conducted on our in-house testbed and Planetlab [17].

A. Scalability

We perform the scalability test of the QoEScope server to
verify how many distributed clients can be supported simul-
taneously without compromising the accuracy of monitoring.
Since, monitoring is done in a centralized architecture, we
want to ensure that increase in load does not affect the probing
interval on the server side or the measurement data itself by
introducing disturbance in the network (e.g., queueing delay
in the local router affecting the probing delay). We also want
to verify, using a commodity hardware with 100 Mb/s ethernet
card, that all probing clients are supported and whether there is
any requirement on the IP server bandwidth and how increased
probing affects it (or affects the underlying IP conference
traffic). Our testing setup is explained below.

The QoEScope server was collocated with the IP conference
server and run on a Linux box with a 2.4 GHz CPU, 4 GB
RAM, and 100 Mb/s ethernet card. We run the instances of
probing clients from 4 different client machines, two of which
are Windows XP (3 GHz CPU and 1 GB RAM) and the other
two are Windows Vista (2.33 GHz CPU and 3 GB RAM).
Multiple probing client processes were created in each client
machine. Each probing client was launched with a one-second
interval. Fig. 3(a) plots CPU, memory, and network utilization
as functions of the number of clients. As seen from the figures,
these metrics increase linearly with the number of probing
clients, which is expected. In addition, from the measurement
traces we verified that, probing packet intervals on the server
were not affected while the CPU utilization was less than 99%.
This implies that the probing accuracy was not compromised
on the server side by the client-generated probing traffic. We
also verified that there are no packet loss during the entire
experiment duration.

B. Topology Discovery

In this subsection, we evaluate performance of QoEScope’s
topology discovery scheme (NetScan) in Planetlab. We choose
20 Planetlab nodes, 15 of which are US nodes and 5 are
overseas. We conduct 100 rounds of NetScan probing and
identification processes, in each of which we randomly choose
one node as the sender and two nodes as receivers. We also
run traceroute from the sender to receivers to obtain the
ground-truth routing topology. To emulate anonymous routers,
we randomly choose a set of routers and manually replace their
IP addresses in the traceroute results with ∗. We plot the
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Fig. 3. (a) Scalability test of QoEScope on in-house testbed with one server
and four physical client machines; (b) Accuracy of QoEScope’s topology
inference mechanism in Planetlab.

measurement results in Fig. 3(b), from which we can see that
QoEScope is very robust to anonymous routers. Particularly,
even with 100% anonymous routers, NetScan still can achieve
95% accuracy. This makes QoEScope highly appealing for
heterogeneous enterprise networks.

C. QoE Learning Engine

We also study the performance of QoEScope’s QoE learning
engine. We use the same testbed as in the scalability test
presented in Section VI-A. In this testbed, traffic of each client
passes through a separate Dummynet pipe, which allows us
to independently configure delay and loss rate of individual
clients. During the course of the measurements, we also
concurrently launched our IP video conference system to
emulate realistic background traffic. We conducted two sets of
experiments, in both of which delay and packet loss of each
client are randomly and dynamically updated. These two data
sets include 300 and 200 measurement samples, respectively.
We use the first data set as the labeled data for training the
classifier and the second set as the test set. In particular, we
are interested in studying the impact of training data size on
prediction accuracy on the test set.

The experiment results are given in Table I, in which we
calculate the correlation coefficient (CC), mean absolute error
(MAE), root mean square error (RMSE), relative absolute error
(RAE), and root relative square error (RRSE) between the
actual R-scores and those predicted by QoEScope using a
training set of different sizes. From the table we can see that as
the size of training set increases, prediction accuracy quickly
approaches the optimal case, which is obtained by using the
second data set as both training and test sets. Specifically,
when the training set contains 256 samples, performance of the
classifier almost achieves optimality. This demonstrates that
the MLP classifier utilized by QoEScope is very accurate to
describe the relationship between QoS and QoE metrics and
requires a small set of labeled data for initial training.

VII. RELATED WORK

Several works are especially related to ours. Specifically,
[1], [4] tried to infer root causes of failing network services by
discovering dependency graphs among network applications
and network elements. Our work focuses more on locating
problematic network segments that causes poor user perceived
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TABLE I
QOE LEARNING ENGINE: ACCURACY VS. SIZE OF TRAINING SET.

Size of training set Optimum
2 4 8 16 32 64 128 256

CC 0.73 0.98 0.99 0.99 0.99 0.99 0.99 1.00 1.00
MAE 14.22 10.87 4.19 3.45 1.51 0.96 0.91 0.33 0.32

RMSE 15.66 12.45 5.42 4.79 3.29 1.49 1.25 0.45 0.37
RAE (%) 49.09 38.79 16.16 14.03 6.01 2.97 1.86 1.34 1.19

RRSE (%) 50.16 41.79 20.16 19.04 12.74 4.13 2.32 1.90 1.77

experience. Our work is also related to network performance
inference problems such as [16], where network link losses
are inferred from server traces through various approaches.

There is also a large body of literature in network topology
inference, which is in spirit similar to NetScan. Specifically,
among existing Internet routing topology inference mecha-
nisms, traceroute-based techniques are the earliest and
most widely used ones [5], [8], [9], [12]. However, as dis-
cussed in Section II, these schemes may not work well in the
presence of implicit routers. To overcome the drawbacks of
traceroute-based schemes, many new topology-inference
techniques have been proposed. In particular, Coates et al.
used the Sandwich Probing scheme to infer the routing tree
topology for one sender and multiple receivers [6]. Later on
in [19], Rabbat et al. showed that the multiple source, multiple
destination logical topology inference problem can be reduced
to the two source, two destination case and then proposed
a method for testing whether links are shared in the two
source, two destination case. In [14], Mao et al. used historical
data to infer the local structure based on nonnegative matrix
factorization and then diagnosed faults using the inferred local
topology. In [15], the logical routing tree is constructed based
on additive metrics (e.g., loss rate, utilization, and delay). In
[2], metric-induced network topologies are constructed using
end-to-end measurements.

VIII. CONCLUSIONS

In this paper, we presented design and experimentation
of QoEScope for the management of enterprise IP service
systems with a client-server structure (e.g., IP conference
and IPTV). QoEScope integrates scalable end-to-end probing,
adaptive learning of user-perceived service quality, accurate
and robust topology inference, and automatic root cause anal-
ysis into a single QoE management solution. As discussed in
the paper, although presented in the context of IP conference
systems, QoEScope can be easily extended to other IP service
systems by customizing the learning component. Performance
of QoEScope has also been evaluated using real experiments
conducted in local testbed and Planetlab. Our future work
involves field test of QoEScope in a production IP service
system, enhancement of probing scalability, and design of
more robust and accurate root cause analysis schemes.
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