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Understanding Infinity

“All infinite sets are infinitely large, but some
infinite sets are larger than others”



Sets (definition)

Definition: a set is an unordered collection of
objects

Definition: the objects in a set are called
elements/members

Notation:
* {}

e a€A
e ag A



Sets (types)

= Empty set: set with no elements @ or

Universal . set containing everything
currently under consideration

Important common sets:

N
Z
Z+
R
R+
C
Q

natural numbers = {0,1,2,3....}
integers ={...,-3,-2,-1,0,1,2,3,...}
positive integers = {1,2,3,.....}
set of real numbers

set of positive real numbers

set of complex numbers.

set of rational numbers



Sets (specification)

Roster: S={abcd}, S={abcd, ...... ,Z }
Predicates (set builder notation):

* S={x[P()}

 S={x|xisapositive integer less than 100}
* Q*t={x€R|x=p/qg, for some positive integers p,qg}
Intervals:

* [ab]l={x|a<x< b}

* (ab)={x|a<x<b}

Sets can be elements of other sets
Operations on other sets

Recursive construction



Relations on Sets

Subset: set A is a subset of B, if and only if

every element of A is also an element of B
ACB Ve(r € A — x € B)

Equality: two sets are equal if and only if they
have the same elements
A=B Ve(r € A+ x € B)

Proper subset: if Ais a subset of B but A is not
equal to B then A is a proper subset of B
AcCB
Ve(t € A—xz e B)Ade(xr € BAx & A)



Set Operations

Union: AU B {x|x € AV x € B}
Intersection: AN B {z|lxr € ANz € B}
Set difference: A—B {x| x€AAXxE&B}

Complement: A€ or A {xeU|xegA}



Union (Venn diagram)

= Union: AU B {x|x € AV x € B}
= Example:

{1,2,3}U {3, 4,5} ={1,2,3,4,5)

U




Intersection (diagram)

= Intersection: AN B {zx|lx e ANz € B}
= Example:

{1,2,3} n{3,4,5} ={3}
{1,2,3} n {4,5,6} =0

q b}
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Set Difference (diagram)

= Set difference: A—B x| x€EAAXxE&B}

= A-Bisthe set containing the elements of A
that are notin B

= Example:

{1,2,3}-{3,4,5} ={1,2}

>
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Complement (diagram)

= Complement: A€ or A IxeU|x&A)}
= The complement of A (with respect to U) is
theset U-A

= Example:
* Uis “positive integers less than 100”
* Ais{x|x>70}

¢ Ais{x|x<70} 0
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Set Identities

Commutative, Associative, Distributive, De
Morgan’s laws...

AUB=BUA
AU(Bul)=(AUuB)UC
AN(BUC)=(ANnB)U(ANC)

AUB=ANB
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Set Identities (example 1)

Example 2.2.7: N distributes over U.

AN(BUuC)=(AnB)U(AnNnCQC)

g

—|

BuC AnNn(BuC(C)



Set Identities (example 2)

Example 2.2.8: U distributes over N.

AUu(BNC)=(AuB)Nn(Au(C)

a0

& |-

BNC



Power Set

= Recall: sets can be elements of other sets

111.2,3}, a tbcy ]
O #{0}

m : the set of all subsets of a set A,
denoted pow(A) or P(A)
e [fA={a,b} then
pow(A)={@,{a},{b},{a,b}}
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Cardinality

Definition: a finite set has exactly n (nonnegative
integer) distinct elements. Otherwise it is infinite

Definition: the cardinality of a finite set A,
denoted by |A|, is the number of (distinct)
elements of A

Examples:

* |9 =0
 [{1,2,3}| =3
 [{o}l =1




Cartesian Product (two sets)

" Definition: the Cartesian Product of two sets
(A x B) is the set of ordered pairs (a,b) where
a€A andbeB

Ax B={(a,b)lac ANbe B}
= Example:

* A={a,b} B={1,2,3}
* AxB=1{(a2l)(a2)(a,3),(b,1),(b,2),(b,3)}



Cartesian Product (n sets)

= Definition: the Cartesian Product of the sets
(A; X 4, X ...... X A, ) is the set of ordered n-
tuples (a,,a,,.....,a,) where Vi, a, € A

AlXAQX“'XAn:
{(a1,a2,...,ay)|a; € A; fort=1,2,...n}
= Example:
* A={0,1} B={0,1} C=1{0,1}
* AxBxC={(0,0,0),(0,0,1),0,1,0),(0,1,1),...}



Functions (definition)

* Definition: a function f from Ato B (f: A— B) is
a mapping that assigns each element of set A
to exactly one element of set B: f(a) = b

Students Grades
A

1

Stan

() B
Kyle O C
Kenny O O D
Eric O F
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Functions (more definitions)

e We also say that f : A — B is a mapping
from domain A to codomain B.

o f(a) is called the image set of the element
a, and the element « is called a preimage of

fla).
o The set {a | f(a) = b} is called the preimage
set of b. NOTATION: f~1(b).

DEF: The set {b € B | (Ja € A)[f(a) = b]} is called
the image of the function f : A — B.



Functions (examples)

Example 2.3.1: Some functions tfrom R to Z.
(1) Aoor |x| = max{k e Z | k < x} image = Z
(2) ceiling [z] =min{k € Z | k> x} im = Z

—1 itz <O
(3) sign o(x) = {O if x =0
+1 x>0

image(o) = {—1,0,+1}

The halting function maps the set of C pro-
grams to the boolean set, assigns TRURE iff
this program will always halt eventually, no
matter what input is supplied at run time.



Relations (definition)

Definition: a R consists of two
sets, A (domain of R), B, (codomain of R), and
a subset of A X B called the graph of R

We use “ ” to mean that the pair (a,b) is in
the graph of R

Note: a function is a particular (special case)
binary relation



Relations (properties)

* Therelation (R:A—>B)is , if and only if
R(a) = R(b) implies that a = b for all a and b in the
domain of f
» Thereis at most one a € A such that R(a) =b
> “Injection” (injective relation)

= Therelation is , IFF for every element b € B,
there is at least one element a € A with R(a) = b
» “Surjection” (surjective relation)



Bijections

" Definition: a bijection is a function that is both
one-to-one and onto (one-to-one
correspondence)

» No unpaired elements
> “bijective” (injective and surjective relation)

= Definition: the inverse of a relation R, is the

relation R defined by the rule:
» bRla IFF aRb



Showing Properties

Suppose that f : A — B.

To show that f is injective Show that if f(x) = f(y) for arbitrary x, y € A with x # y,
then x = y.

To show that f is not injective Find particular elements x, y € A such that x # y and
fx)=f).

To show that f is surjective Consider an arbitrary element y € B and find an element x € A
such that f(x) = y.

To show that f is not surjective Find a particular y € B such that f(x) # y forall x € A.
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From Relations to Cardinality

= Cardinality of two sets (A & B) is equal IFF there is a
bijection from Ato B
> |A|=|B| IFF 3f:A - B (wherefis a bijection)

= Cardinality of set A is less than or equal to
cardinality of set B IFF there is a one-to-one function
(total, injective relation) from A to B
> |A| < |B| IFF 3f:A— B (where fis one-to-one)



Cardinality of Power Sets

= Given a set A with n elements, what is the
cardinality of the power set |P(A)]?

" [ts a finite set, we can count the total number
of subsets

" Another approach: establish a bijection from
subsets of A to rows of a truth table with n
variables (i.e. to a bit sequence)



Sequences

" Informal definition: a sequence is an ordered
ist of objects (terms)

" Definition: a sequence is a function from a
subset of the integers {0, 1, 2,...} or {1, 2, 3...}
toasetS

= Notation:
 (aba) -- terms can repeat
* (abyc)#(¢cba) -- order matters
* a,=f(n) -- image of integer n



Sequences (examples)

. 1 1 1 1
* Example: a, = — 1,=, =, =
n 23 4
TABLE 1 Some Useful Sequences.
nth Term First 10 Terms
n? 1,4,9, 16, 25, 36, 49, 64, 81, 100, . ..
n3 1,8,27,64, 125,216, 343,512, 729, 1000, . ..
n* 1,16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, . . .
2 2,4,8,16,32, 64, 128, 256, 512, 1024, . ..
31 3,9, 27,81,243,729, 2187, 6561, 19683, 59049, . ..

l:ds258: 9. 8, 15521, 54559, 89 < » «

1,2,6,24,120, 720, 5040, 40320, 362880, 3628800, . . .
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Infinite Sets

How do you know that a set is infinite?

Add an element to a set: if Ais a finite setand b
& A, then |[AU {b}| = |A] + 1.

Not true for infinite sets! Need to find a bijection
between A and A U {b}

|dea:

* Thereis aninfinite sequence a,,a,,...a,,... of different
elements of A

 Define bijectionf: Au{b} > A
° f(b) = aO ’ f(an) = an+1



Countable Sets

= Definition: a set that is either finite or has the
same cardinality as the set of positive integers
(Z*) is called

= Definition: the cardinality of a countable, infinite
set (countably infinite) is X
» Nisaleph, the 15t]etter of the Hebrew alphabet
> We write |S| =X,

" |tis possible to list the elements of a countable
set in a sequence indexed by the positive

Integers



Integers vs. Integers

Example: the set of positive even integers is
countably infinite

Approach: establish a bijection between Z*
and this set

Solution: Let f(x) = 2x.
1 2 3 4 5 6 ...

2 4 6 8 10 12 ....



Integers vs. Rational Numbers

Theorem 2.5.2. There are as many positive inte-
gers as rational fractions.

a0 Al Al aln ==
NGO NTA NI NN N -
AN AT F AT TARATE VI ]
A0 BN AW AN DA

mlo ald ol alny ol =
colo old ol olv ol

P f(%?) _ (p+q—1)2(p+q—2)+p &



Integers vs. Real Numbers

= Example: the set of real numbers (R) is uncountable

= Approach: Cantor’s diagonal argument (obtain a
contradiction)
= Solution:

1. Suppose R is countable. Then the real numbers between 0
and 1 are also countable

» Any subset of a countable set is countable
2. The real numbers between 0 and 1 can be listed in order r,

r2 ) r3 ALK
3. Denote the (infinite) decimal representation of this listing



Integers vs. Real Numbers (proof)

Solution:

Suppose R is countable. Then the real numbers
between 0 and 1 are also countable

The real numbers between 0 and 1 can be listed in

order x,, X,, X3,...

Let the (infinite) decimal representation be:

Form a new real number
Show it can’t be on list

.8841752032669031 . ..
1415926531424450 . .
.3202313932614203 . .
1679888138381728. ..
.0452998136712310. ..

— 1

L2
=3

— 4
=5



5.

Suppose R is countable. Then the real numbers between 0

Cantor’s Diagonal Argument

and 1 are also countable

The real numbers on [0,1] can be listed in order x,, X, , X3,...

Let the (infinite) decimal representation be:

Form a new real number X: 0.d,d,d,...

>
>

Show it can’t be on list:
»  Xisnot equal to any of the x;, x,, x5,... 25 = .0452998136712310

>
>

d;=4 if jthdigitof x,isnot4
d;=5 if jthdigitofxis4

Differs from x; in its jth position

Every real number has a unique decimal expansion

T = .8841752032669031 . ..
To = .1415926531424450. ..
T3 = .3202313932614203 . ..
ry = .1679888138381728.. ..

=1
= 2

— 4

N



Sets vs. Power Sets

= Theorem: for any set A, the cardinality of the power set
P(A) is larger

= Approach: show that you cannot construct a bijection g:
A - 2(A)

= Solution:

1. Suppose a bijection ‘g’ has been established between
elements of A (a;,a,, ...) and 2(A) (B{,B,, ...) .

2. Let X be the set of elements of A which do not belong to
their “associated subsets”
> Ifa;€B; then a;€X
> X €ePA)
3. Suppose that X corresponds to some element a, € A, and
derive a contradiction



The Halting Problem

The problem is to determine, given a program and
an input to the program, whether the program will
eventually halt when run with that input

Turing proved no algorithm can exist which always
correctly decides whether, for a given arbitrary

program and its input, the program halts when run
with that input



The Halting Problem (terminology)

: generating a program of low-level instructions
from a program text written in some high level programming
language
Routine features of compilers involve to

eliminate run-time errors, and optimizing the generated
programs

Call a programming procedure (compiled program)—written
in your favorite programming language—a

Focusing just on string procedures, the general halting
problem is to decide, given strings s (program) and t (input),
whether or not the procedure P_ halts when applied to t.

A program that type-checks is guaranteed not to cause a run-
time type-error. But since its impossible to always recognize
when programs won’t cause type-errors, no type-checker
can be perfect



