W3203 Discrete Mathematics

Set Theory

Spring 2015

Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w3203

Outline

- Sets
- Subsets, power set, Cartesian product
- Set operations, Venn diagrams
- Functions & sequences
- Binary relations
- Properties: one-to-one, onto
- Cardinality
- Infinite sets: countable, uncountable
- The Halting Problem
- Text: Rosen 2.1 2.5
- Text: Lehman 4, 7.1

Understanding Infinity

"All infinite sets are infinitely large, but some infinite sets are larger than others"

Sets (definition)

- Definition: a set is an unordered collection of objects
- Definition: the objects in a set are called elements/members
- Notation:
 - {}
 - *a* ∈ *A*
 - a ∉ A

Sets (types)

- Empty set: set with no elements Ø or {}
- Universal set (U): set containing everything currently under consideration
- Important common sets:
 - $N = natural numbers = \{0,1,2,3....\}$
 - \mathbf{Z} = integers = {...,-3,-2,-1,0,1,2,3,...}
 - Z^+ = positive integers = {1,2,3,....}
 - R = set of real numbers
 - R^+ = set of positive real numbers
 - C = set of complex numbers.
 - **Q** = set of rational numbers

Sets (specification)

- Roster: $S = \{a,b,c,d\}, S = \{a,b,c,d,,z\}$
- Predicates (set builder notation):
 - $S = \{x \mid P(x)\}$
 - $S = \{x \mid x \text{ is a positive integer less than } 100\}$
 - $\mathbf{Q}^+ = \{x \in \mathbf{R} \mid x = p/q, \text{ for some positive integers } p, q\}$
- Intervals:
 - $[a,b] = \{x \mid a \le x \le b\}$
 - $(a,b) = \{x \mid a < x < b\}$
- Sets can be elements of other sets
- Operations on other sets
- Recursive construction

Relations on Sets

- Subset: set A is a subset of B, if and only if every element of A is also an element of B
 - $A \subseteq B$ $\forall x (x \in A \to x \in B)$
- Equality: two sets are equal if and only if they have the same elements
 - A = B $\forall x (x \in A \leftrightarrow x \in B)$
- Proper subset: if A is a subset of B but A is not equal to B then A is a proper subset of B
 - $A \subset B$ $\forall x (x \in A \to x \in B) \land \exists x (x \in B \land x \notin A)$

Set Operations

■ Union: A ∪ B

$$\{x|x\in A\vee x\in B\}$$

■ Intersection: $A \cap B$

$$\{x|x\in A\land x\in B\}$$

■ *Set difference*: *A* − *B*

$$\{x \mid x \in A \land x \notin B\}$$

Complement: A^c or Ā

$$\{x \in U \mid x \notin A\}$$

Union (Venn diagram)

■ *Union*: *A* ∪ *B*

$$\{x|x\in A\vee x\in B\}$$

Example:

$$\{1,2,3\} \cup \{3,4,5\} = \{1,2,3,4,5\}$$

Intersection (diagram)

- Intersection: $A \cap B$ $\{x | x \in A \land x \in B\}$
- Example:

$$\{1,2,3\} \cap \{3,4,5\} = \{3\}$$

 $\{1,2,3\} \cap \{4,5,6\} = \emptyset$

Set Difference (diagram)

- Set difference: A B $\{x \mid x \in A \land x \notin B\}$
- *A* − *B* is the set containing the elements of *A* that are not in *B*
- Example:

$$\{1,2,3\} - \{3,4,5\} = \{1,2\}$$

Complement (diagram)

- Complement: A^c or \bar{A} $\{x \in U \mid x \notin A\}$
- The complement of A (with respect to U) is the set U - A
- Example:
 - U is "positive integers less than 100"
 - A is $\{x \mid x > 70\}$
 - \bar{A} is $\{x \mid x \le 70\}$

Set Identities

 Commutative, Associative, Distributive, De Morgan's laws...

$$A \cup B = B \cup A$$

$$A \cup (B \cup C) = (A \cup B) \cup C$$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

Set Identities (example 1)

Example 2.2.7: \cap distributes over \cup .

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

Set Identities (example 2)

Example 2.2.8: \cup distributes over \cap .

$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Power Set

- Recall: sets can be elements of other sets
 - $\{\{1,2,3\}, a, \{b,c\}\}$
 - Ø ≠ { Ø }
- Power set: the set of all subsets of a set A, denoted pow(A) or $\mathcal{P}(A)$
 - If A = {a,b} then
 pow(A) = { ø, {a},{b},{a,b} }

Cardinality

- Definition: a *finite* set has exactly n (nonnegative integer) distinct elements. Otherwise it is *infinite*
- Definition: the cardinality of a finite set A, denoted by |A|, is the number of (distinct) elements of A
- Examples:
 - $|\phi| = 0$
 - $|\{1,2,3\}| = 3$
 - $|\{\emptyset\}| = 1$

Cartesian Product (two sets)

■ Definition: the *Cartesian Product* of two sets $(A \times B)$ is the set of ordered pairs (a,b) where $a \in A$ and $b \in B$

$$A \times B = \{(a, b) | a \in A \land b \in B\}$$

- Example:
 - $A = \{a,b\}$ $B = \{1,2,3\}$
 - $A \times B = \{ (a,1),(a,2),(a,3),(b,1),(b,2),(b,3) \}$

Cartesian Product (n sets)

■ Definition: the *Cartesian Product* of the sets $(A_1 \times A_2 \times \times A_n)$ is the set of ordered ntuples $(a_1, a_2,, a_n)$ where $\forall i, a_i \in A_i$

$$A_1 \times A_2 \times \cdots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

- Example:
 - $A = \{0,1\}$ $B = \{0,1\}$ $C = \{0,1\}$
 - $A \times B \times C = \{ (0,0,0), (0,0,1), (0,1,0), (0,1,1), \dots \}$

Functions (definition)

■ Definition: a *function* f from A to B (f: $A \rightarrow B$) is a mapping that assigns each element of set A to exactly one element of set B: f(a) = b

Functions (more definitions)

- We also say that $f: A \to B$ is a **mapping** from **domain** A to **codomain** B.
- f(a) is called the **image set of the element** a, and the element a is called a **preimage** of f(a).
- The set $\{a \mid f(a) = b\}$ is called the **preimage** set of b. NOTATION: $f^{-1}(b)$.

DEF: The set $\{b \in B \mid (\exists a \in A)[f(a) = b]\}$ is called the **image of the function** $f: A \to B$.

Functions (examples)

Example 2.3.1: Some functions from \mathbb{R} to \mathbb{Z} .

- (1) **floor** $\lfloor x \rfloor = \max\{k \in \mathbb{Z} \mid k \le x\}$ image $= \mathbb{Z}$
- (2) ceiling $\lceil x \rceil = \min\{k \in \mathbb{Z} \mid k \ge x\}$ im $= \mathbb{Z}$

(3)
$$sign \ \sigma(x) = \begin{cases} -1 & \text{if } x < 0 \\ 0 & \text{if } x = 0 \\ +1 & x > 0 \end{cases}$$

 $image(\sigma) = \{-1, 0, +1\}$

The **halting function** maps the set of C programs to the boolean set, assigns TRUE iff this program will always halt eventually, no matter what input is supplied at run time.

Relations (definition)

- Definition: a binary relation R consists of two sets, A (domain of R), B, (codomain of R), and a subset of A × B called the graph of R
- We use "a R b", to mean that the pair (a,b) is in the graph of R
- Note: a function is a particular (special case) binary relation

Relations (properties)

- The relation $(\mathcal{R} : A \to B)$ is one-to-one, if and only if R(a) = R(b) implies that a = b for all a and b in the domain of f
 - \blacktriangleright There is at most one $a \in A$ such that $\mathcal{R}(a) = b$
 - "Injection" (injective relation)
- The relation is *onto*, IFF for every element $b \in B$, there is at least one element $a \in A$ with R(a) = b
 - "Surjection" (surjective relation)

Bijections

- Definition: a bijection is a function that is both one-to-one and onto (one-to-one correspondence)
 - No unpaired elements
 - "bijective" (injective and surjective relation)
- Definition: the *inverse* of a relation *R*, is the relation R⁻¹ defined by the rule:
 - \triangleright b R^{-1} a IFF a R b

Showing Properties

Suppose that $f: A \to B$.

To show that f is injective Show that if f(x) = f(y) for arbitrary $x, y \in A$ with $x \neq y$, then x = y.

To show that f is not injective Find particular elements $x, y \in A$ such that $x \neq y$ and f(x) = f(y).

To show that f is surjective Consider an arbitrary element $y \in B$ and find an element $x \in A$ such that f(x) = y.

To show that f is not surjective Find a particular $y \in B$ such that $f(x) \neq y$ for all $x \in A$.

From Relations to Cardinality

- Cardinality of two sets (A & B) is equal IFF there is a bijection from A to B
 - \rightarrow |A| = |B| IFF $\exists f : A \rightarrow B$ (where f is a bijection)
- Cardinality of set A is less than or equal to cardinality of set B IFF there is a one-to-one function (total, injective relation) from A to B
 - $ightharpoonup |A| \le |B| \text{ IFF } \exists f: A \to B \text{ (where } f \text{ is one-to-one)}$

Cardinality of Power Sets

- Given a set A with n elements, what is the cardinality of the power set |P(A)|?
- Its a finite set, we can count the total number of subsets
- Another approach: establish a bijection from subsets of A to rows of a truth table with n variables (i.e. to a bit sequence)

Sequences

- Informal definition: a sequence is an ordered list of objects (terms)
- Definition: a sequence is a function from a subset of the integers {0, 1, 2,...} or {1, 2, 3...} to a set S
- Notation:
 - (a,b,a) -- terms can repeat
 - $(a,b,c) \neq (c,b,a)$ -- order matters
 - $a_n = f(n)$ -- image of integer n

Sequences (examples)

TABLE 1 Some Useful Sequences.	
nth Term	First 10 Terms
n^2	1, 4, 9, 16, 25, 36, 49, 64, 81, 100,
n^3	1, 8, 27, 64, 125, 216, 343, 512, 729, 1000,
n^4	1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000,
2^{n}	2, 4, 8, 16, 32, 64, 128, 256, 512, 1024,
3^n	3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049,
n!	1, 2, 6, 24, 120, 720, 5040, 40320, 362880, 3628800,
f_n	1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,

Infinite Sets

- How do you know that a set is infinite?
- Add an element to a set: if A is a finite set and b
 ∉ A, then |A ∪ {b}| = |A| + 1.
- Not true for infinite sets! Need to find a bijection between A and A U {b}
- Idea:
 - There is an infinite sequence $a_1, a_2, ..., a_n, ...$ of different elements of A
 - Define bijection f: A ∪ {b} → A
 - $f(b) = a_0$, $f(a_n) = a_{n+1}$

Countable Sets

- Definition: a set that is either finite or has the same cardinality as the set of positive integers (Z+) is called countable
- Definition: the cardinality of a countable, infinite set (countably infinite) is \aleph_0
 - \triangleright \aleph is aleph, the 1st letter of the Hebrew alphabet
 - \triangleright We write $|S| = \aleph_0$
- It is possible to list the elements of a countable set in a sequence indexed by the positive integers

Integers vs. Integers

- Example: the set of positive even integers is countably infinite
- Approach: establish a bijection between Z⁺ and this set
- Solution: Let f(x) = 2x.

Integers vs. Rational Numbers

Theorem 2.5.2. There are as many positive integers as rational fractions.

Pf:
$$f\left(\frac{p}{q}\right) = \frac{(p+q-1)(p+q-2)}{2} + p$$
 \diamondsuit

Integers vs. Real Numbers

- Example: the set of real numbers (R) is uncountable
- Approach: Cantor's diagonal argument (obtain a contradiction)
- Solution:
- 1. Suppose $\bf R$ is countable. Then the real numbers between $\bf 0$ and $\bf 1$ are also countable
 - Any subset of a countable set is countable
- 2. The real numbers between 0 and 1 can be listed in order r_1 , r_2 , r_3 ,...
- 3. Denote the (infinite) decimal representation of this listing

Integers vs. Real Numbers (proof)

Solution:

- Suppose R is countable. Then the real numbers between 0 and 1 are also countable
- 2. The real numbers between 0 and 1 can be listed in order x_1 , x_2 , x_3 ,...
- 3. Let the (infinite) decimal representation be:
- 4. Form a new real number
- 5. Show it can't be on list

```
x_1 = .8841752032669031... \mapsto 1

x_2 = .1415926531424450... \mapsto 2

x_3 = .3202313932614203... \mapsto 3

x_4 = .1679888138381728... \mapsto 4

x_5 = .0452998136712310... \mapsto 5
```

•

Cantor's Diagonal Argument

- 1. Suppose $\bf R$ is countable. Then the real numbers between $\bf 0$ and $\bf 1$ are also countable
- 2. The real numbers on [0,1] can be listed in order x_1 , x_2 , x_3 ,...
- 3. Let the (infinite) decimal representation be:
- 4. Form a new real number X: $0.d_1d_2d_3...$
 - \rightarrow d_i = 4 if jth digit of x_i is not 4
 - \rightarrow d_i = 5 if jth digit of x_i is 4
- 5. Show it can't be on list:
 - \succ X is not equal to any of the $x_1, x_2, x_3, ...$
 - \triangleright Differs from x_j in its jth position
 - Every real number has a unique decimal expansion

- $x_1 = .8841752032669031... \mapsto 1$ $x_2 = .1415926531424450... \mapsto 2$
- $x_3 = .32\underline{0}2313932614203... \mapsto 3$
- $x_4 = .1679888138381728... \mapsto 4$
- $x_5 = .0452\underline{9}98136712310\ldots \mapsto 5$

Sets vs. Power Sets

- Theorem: for any set A, the cardinality of the power set $\mathcal{P}(A)$ is larger
- Approach: show that you cannot construct a bijection g: A → P(A)
- Solution:
- 1. Suppose a bijection 'g' has been established between elements of A $(a_1,a_2,...)$ and $\mathcal{P}(A)$ $(B_1,B_2,...)$.
- 2. Let X be the set of elements of A which do not belong to their "associated subsets"
 - ightharpoonup If $a_1 \notin B_1$ then $a_1 \in X$
 - \succ $X \in \mathcal{P}(A)$
- 3. Suppose that X corresponds to some element $a_i \in A$, and derive a contradiction

The Halting Problem

- The problem is to determine, given a program and an input to the program, whether the program will eventually halt when run with that input
- Turing proved no algorithm can exist which always correctly decides whether, for a given arbitrary program and its input, the program halts when run with that input

The Halting Problem (terminology)

- Compilation: generating a program of low-level instructions from a program text written in some high level programming language
- Routine features of compilers involve type-checking to eliminate run-time errors, and optimizing the generated programs
- Call a programming procedure (compiled program)—written in your favorite programming language—a string procedure
- Focusing just on string procedures, the general halting problem is to decide, given strings s (program) and t (input), whether or not the procedure P_s halts when applied to t.
- A program that type-checks is guaranteed not to cause a runtime type-error. But since its impossible to always recognize when programs won't cause type-errors, no type-checker can be perfect