W3203 Discrete Mathematics

Relations

Spring 2015

Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w3203

Outline

- Recap
- Representation of relations
- Relation properties: reflexive, symmetric, transitive
- Digraphs
- Equivalence relations
- Partial orders
- Lattice
- Text: Rosen 9

Binary Relations (recap)

- Definition: a binary relation R consists of two sets, A (domain of R), B, (codomain of R), and a subset of A × B called the graph of R
- We use "a R b", to mean that the pair (a,b) is in the graph of R
- Note: the Cartesian Product of two sets (A ×
 B) is the set of ordered pairs (a,b) where a ∈
 A and b ∈ B

N-ary Relations

- Generalization of binary relations to N sets
- Note: the *Cartesian Product* of the sets ($A_1 \times A_2 \times ... \times A_n$) is the set of ordered n-tuples $(a_1, a_2, ..., a_n)$ where $\forall i, a_i \in A_i$

$$A_1 \times A_2 \times \dots \times A_n = \{(a_1, a_2, \dots, a_n) | a_i \in A_i \text{ for } i = 1, 2, \dots n\}$$

Representation

Example 9.1.7: The relation Q from the set $\{1,2,3\}$ to the set $\{A,B,C\}$, with the ordered-pairs model

$$Q = \{(1, A), (1, B), (2, C), (3, A), (3, C)\}$$

has the lists-of-relatives model

1 : A, B

2:C

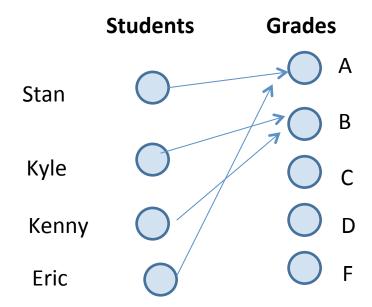
3:A,C

and the **matrix model**

$$\begin{array}{c|cccc}
A & B & C \\
1 & 1 & 1 & 0 \\
2 & 0 & 0 & 1 \\
3 & 1 & 0 & 1
\end{array}$$

Representation (digraphs)

- Definition: a directed graph (digraph) is a graph or set of nodes (vertices) connected by edges (arcs)
 - The edges have a direction associated with them
- Digraph representation of binary relations:



Composition of Binary Relations

DEF: Let Q be a relation from S to T and R a relation from T to U. Their **composition** $Q \circ R$ is the relation on $S \times U$ that is true for any pair (s, u) such that

$$(\exists t \in T)[Q(s,t) \land R(t,u)]$$

Example 9.1.8: Construct $Q \circ R$, where

$$Q = \{(1,A), (1,B), (2,C), (3,A), (3,C)\}$$
 and

$$R = \{(A, x), (A, y), (A, z), (B, w), (B, y)\}$$

Composition (example)

Example 9.1.8: Construct $Q \circ R$, where

$$Q = \{(1, A), (1, B), (2, C), (3, A), (3, C)\}$$
 and
$$R = \{(A, x), (A, y), (A, z), (B, w), (B, y)\}$$

$$\left\{
\begin{array}{l}
\frac{Q}{1:A,B} \\
2:C \\
3:A,C
\end{array}\right\} \circ \left\{
\begin{array}{l}
\frac{R}{A:x,y,z} \\
B:w,y \\
C:\emptyset
\end{array}
\right\}$$

$$\begin{array}{l}
A & B & C & w & x & y & z \\
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1
\end{array}
\right\} \times \left\{
\begin{array}{l}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}
\right\}$$

Composition (solution)

Example 9.1.8: Construct $Q \circ R$, where

$$Q = \{(1, A), (1, B), (2, C), (3, A), (3, C)\}$$
 and

$$R = \{(A, x), (A, y), (A, z), (B, w), (B, y)\}$$

$$\left\{ \begin{array}{l} \frac{Q}{1:A,B} \\ 2:C \\ 3:A,C \end{array} \right\} \circ \left\{ \begin{array}{l} \frac{R}{A:x,y,z} \\ B:w,y \\ C:\emptyset \end{array} \right\}$$

$$\left\{ \begin{array}{l} \frac{Q}{1:A,B} \\ 2:C \\ 3:A,C \end{array} \right\} \circ \left\{ \begin{array}{l} \frac{R}{A:x,y,z} \\ B:w,y \\ C:\emptyset \end{array} \right\} \qquad \begin{array}{l} A & B & C \\ 1 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 1 \end{array} \right\} \times \begin{array}{l} A & B & C \\ B:w,y & z \\ C & 0 & 0 & 0 \end{array}$$

$$= \left\{ \begin{array}{l} \underline{Q \circ R} \\ 1 : w, x, y, z \\ 2 : \emptyset \\ 3 : x, y, z \end{array} \right\}$$

$$= \begin{array}{ccccc} & w & x & y & z \\ 1 & 1 & 1 & 2 & 1 \\ 2 & 0 & 0 & 0 & 0 \\ 3 & 0 & 1 & 1 & 1 \end{array}$$

Powers of Relations

■ Let *R* be a relation on a set *S*. Then the powers of R are defined as:

$$R^0 = I \qquad \qquad R^{n+1} = R^n \circ R$$

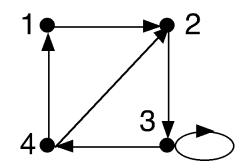
Relation Powers with Digraphs

■ The powers of a relation *R* on a set *S*:

$$R^0 = I R^{n+1} = R^n O R$$

Example 9.3.2: Consider this relation:

$$R = \{(1,2), (2,3), (3,3), (3,4), (4,1)\}$$



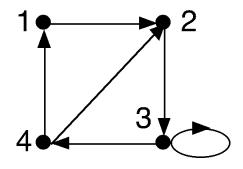
Relation Powers (computing)

■ The powers of a relation *R* on a set *S*:

$$R^0 = I R^{n+1} = R^n O R$$

Example 9.3.2: Consider this relation:

$$R = \{(1,2), (2,3), (3,3), (3,4), (4,1)\}$$



$$R^2 = \{(1,3), (2,3), (2,4), (3,1), (3,3), (3,4), (4,2)\}$$

$$R^{3} = \{(1,3), (1,4),$$

$$(2,1), (2,3), (2,4),$$

$$(3,1), (3,2), (3,3), (3,4),$$

$$(4,3), (4,4)\}$$

Properties of Relations

Let R be a relation on a set S. The relation is,

Reflexive IFF:
$$(\forall x \in S)[R(x,x)]$$

Symmetric IFF: $(\forall x,y \in S)[R(x,y) \to R(y,x)]$
Transitive IFF: $(\forall x,y,z \in S)[R(x,y) \land R(y,z) \to R(x,z)]$
Antisymmetric IFF: $(\forall x,y \in S)[R(x,y) \land R(y,x) \to x = y]$

- Example: Inequality relation on real numbers.
 - Reflexive, nonsymmetric, and transitive
 - Antisymmetric

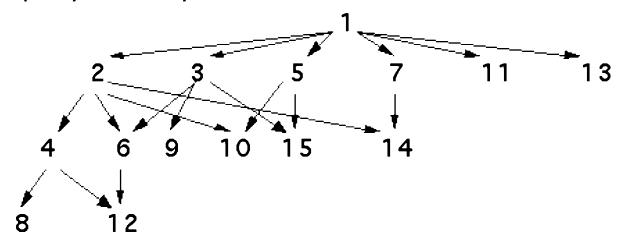
Properties (representation)

Reflexive IFF: $(\forall x \in S)[R(x,x)]$ Symmetric IFF: $(\forall x,y \in S)[R(x,y) \to R(y,x)]$ Transitive IFF: $(\forall x,y,z \in S)[R(x,y) \land R(y,z) \to R(x,z)]$ Antisymmetric IFF: $(\forall x,y \in S)[R(x,y) \land R(y,x) \to x = y]$

- List of relatives model:
 - *Reflexive*: every member of the domain is listed as one of its own relatives.
 - *Symmetric*: for every pair of elements x,y, each occurs in the list of the other.
- Matrix model:
 - Reflexive: 1's down the main diagonal.
 - Symmetric: matrix is symmetric around the main diagonal.
 - Transitive: nth power of R is a subset of R.

Digraph Representation (example)

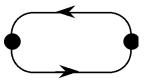
- Let R be the relation on a set $S = \{1, 2, ..., 14\}$ defined as:
 - 1. x properly divides y.
 - 2. There is no integer u such that x properly divides u and u properly divides y.

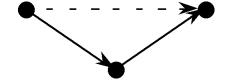


 Proper divisibility relation: not reflexive, not symmetric, and not transitive

Digraph Representation (properties)

- Consider the digraph for the relation R on a set S:
 - 1. R is reflexive IFF there is a *self loop* at every vertex.
 - 2. R is symmetric IFF for each arc from-x-to-y there is an arc from-y-to-x.
 - 3. R is transitive IFF for each *directed path* from-x-to-y there is also an arc directly from-x-to-y.
 - 4. R is antisymmetric IFF given an arc from-x-to-y (x ≠ y), there is no arc from-y-to-x.





Equivalence Relations

 Definition: an equivalence relation is a binary relation that is reflexive, symmetric, and transitive

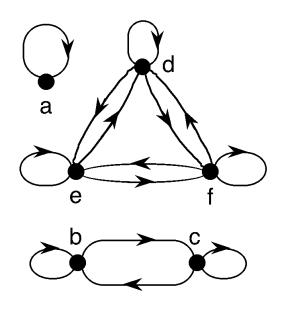
Example 9.5.1: Set
$$S = \{a, b, c, d, e, f\}$$
 and

$$R = \{ (a,a), (b,b), (b,c), (c,b), (c,c), (d,d), (d,e), (d,f), (e,d), (e,e), (e,f), (f,d), (f,e), (f,f) \}$$

Equivalence Relations (example)

■ Binary relation that is reflexive, symmetric, and transitive Example 9.5.1: Set $S = \{a, b, c, d, e, f\}$ and

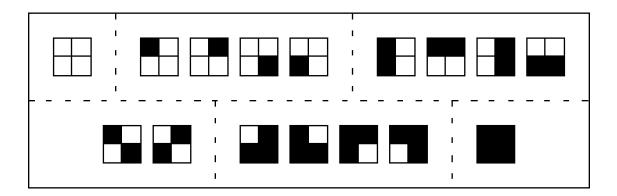
$$R = \{ (a,a), (b,b), (b,c), (c,b), (c,c), (d,d), (d,e), (d,f), (e,d), (e,e), (e,f), (f,d), (f,e), (f,f) \}$$



	а	b	С	d	е	f
a	1					
a b c d e f		1	1			
С		1	1			
d				1	1	1
е				1	1	1
f				1	1	1

Equiv. Classes (geometry example)

 Consider 2-by-2 colored boards. Two boards are related if one can be obtained from the other by rotation or reflection.



Equiv. Classes (fractions & congruence)

Example 9.5.4: domain = rational fractions

$$\left\{ \frac{p}{q} \mid p, q \in \mathcal{Z}, q \neq 0 \right\}$$

Then $\frac{a}{b}$ and $\frac{c}{d}$ are related if ad = bc

The partition cells are rational fractions of equal value.

Example 9.5.5: domain \mathcal{Z}

eq. rel. = congruence mod 3

Equivalence Classes:

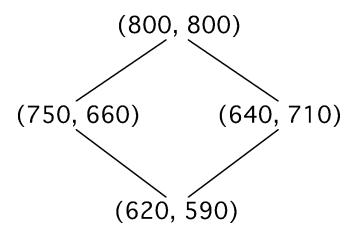
$$[0]_3 = \{\dots, -6, -3, 0, 3, 6, 9, \dots\}$$
$$[1]_3 = \{\dots, -5, -2, 1, 4, 7, 10, \dots\}$$
$$[2]_3 = \{\dots, -4, -1, 2, 5, 8, 11, \dots\}$$

Partial Order

- Definition: a (weak) *partial order* \leq is a binary relation that is reflexive, antisymmetric, and transitive.
- Definition: a *partial ordered set (poset)* $\langle S, \preceq \rangle$ is a set together with a partial order on it

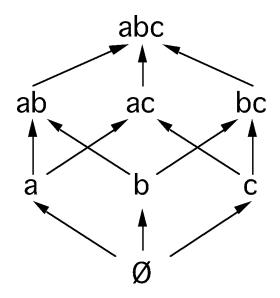
Example 9.6.1: domain: SAT scores (M, V)

relation: double domination



Poset (subset example)

- We write "x < y" if " $x \le y$ " and $x \ne y$
- Consider: $X = \{a,b,c\}$, then the poset (X, \subseteq) is shown below



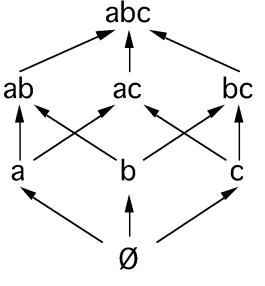
Transitive	$A\subseteqB$
	$B\subseteqC$
	$A \subseteq C$
Reflexive	$A\subseteqA$
Antisymmetric	$A\subseteqB$
	$B\subseteqA$
	A = B

(In)Comparable Elements

Definition: two elements x, y from a poset (X, R) are comparable if either xRy or yRx and incomparable otherwise.

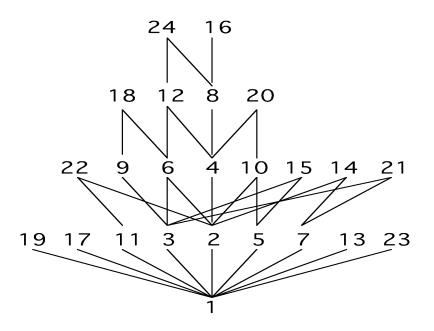
 Subset example: no line connects {a,b} and {b,c} because neither is a subset of the other. We say these two sets are

incomparable in that ordering.



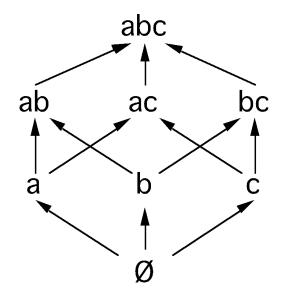
Poset (divisibility example)

- Consider: $X = \{1 \le n \le 24\}$, and the divisibility relation "|".
- An element y covers an element x in a poset if " $x \prec y$ " and there is no element u such that " $x \prec u \prec y$ "
- The *Hasse Diagram* for (X, |) only shows cover relations



Linear Extension

- Definition: a linear order has no incomparable elements.
 Every pair of element is comparable.
- Example: ≤ relation on numbers
- Definition: a *linear extension* of a poset (X, R) is a total ordering Q on S such that $R \subseteq Q$.



linear extensions:

$$\emptyset \leq a \leq b \leq c \leq ab \leq ac \leq bc \leq abc$$

$$\emptyset \leq a \leq b \leq ab \leq c \leq ac \leq bc \leq abc$$