W3203 Discrete Mathematics

Probability

Spring 2015

Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w3203

Outline

- Probability spaces, events
- Probability Measures
- Distributions
- Conditional Probability
- Random variables
- Bayes' Theorem
- Expected value, variance
- Text: Rosen 7
- Text: Lehman 16-18

Monty Hall Problem

■ The Problem:

- Given 3 doors, behind one door is a car, behind the others, goats.
- The car is equally likely to be hidden behind each of the three doors.
- The player is equally likely to pick each of the three doors, regardless of the car's location.
- After the player picks a door, the host must open a different door with a goat behind it and offer the player the choice of staying with the original door or switching.
- If the host has a choice of which door to open, then he is equally likely to select each of them.
- Is it to your advantage to switch your choice of doors?

The Challenge:

- How do we model the situation mathematically?
- How do we solve the resulting mathematical problem?

The Four Step Method

- Goal: model the situation mathematically
 - 1. Find the sample space: identify quantities and outcomes that determine the experiment
 - 2. Define events of interest: translate questions to precise set of outcomes
 - 3. Determine outcome probabilities: assess likelihood and assign probability to each outcome
 - 4. Compute event probabilities: use outcome probabilities to determine probability of event

Probability Jargon

- Definition: a sample space S is a nonempty set
- Definition: an element $a \in S$ of a sample space is called an *outcome*
- Definition: a subset of a sample space S is called an event
- Definition: the power set of a sample space S is called the event space
- Definition: an experiment is a process that produces an outcome (point in sample space)
- Typical basic examples: coins, dice, cards

Coins

- Experiment 1: toss a coin, get heads (H) or tails (T)
 - Sample Space: S = {H, T}
 - Event Space: $P(S) = \{ \emptyset, \{H\}, \{T\}, \{H,T\} \}$
- Experiment 2: toss two coins
 - Sample Space: S = {HH, HT, TH, TT}
 - Event Space: $P(S) = \{ \emptyset, \{HH\}, \{HT\}, ..., \{HH, TT\}, ... \}$
 - Named events:
 - "match": {HH, TT}
 - ➤ "At least one head": {HT, TH, HH}

Dice

- Experiment 1: roll a die
 - Sample Space: S = {1, 2, 3, 4, 5, 6}
 - Named events:

```
> "odd": {1, 3, 5} "even": {2, 4, 6}
```

- > "2 mod 3": {2,5}
- Experiment 2: roll two dice
 - Sample Space: $S = \{11, ..., 16, ..., 61, ..., 66\}$
 - Named events:
 - "doubles": {11, 22, ..., 66}
 - "sum is nine": {36, 45, 54, 63}

Standard Deck of Cards

- Experiment 1: deal one card from deck
 - Sample Space: S = 52-card deck (4 suits)
 - Named events:
 - ➤ "heart": {2H, ..., AH}
 - "seven": {7C, 7D, 7H, 7S}
- Experiment 2: deal five cards from deck
 - Sample Space: S = all possible 5-card hands
 - Named events:
 - "4-of-a-kind", "full-house", "straight flush"

Probability Functions

- A probability function (measure) on a sample space is a total function ($\mathcal{P}_{\mathcal{V}}: S \to R$) such that,
 - $\forall a \in S, \ \mathcal{P}_{\gamma}(a) \geq 0$
 - $\Sigma_{a \in S} \mathcal{P} \gamma(a) = 1$
- Definition: a sample space S with a probability function ($\mathcal{P}_{\mathcal{V}}:S\to R$) is called a *probability space*
- The probability of an event E is defined as the sum of the probabilities of the outcomes in E:

$$Pr(E) = \sum_{a \in E} Pr(a)$$

Probability Spaces

- A discrete probability function (measure) is defined on a finite or countably infinite sample space (set)
- How to assign probabilities to infinite spaces?
 Events rather than outcomes
- What about uncountable sets (real numbers)? Use integrals instead of sums
 - $\triangleright \Sigma_{a \in S} Pr(a) = 1$ $Pr(E) = \Sigma_{a \in E} Pr(a)$

Coin Probabilities

- Experiment 1: toss a coin
 - Sample Space: S = {H, T}
 - $\mathcal{P}\gamma(\emptyset) = 0$, $\mathcal{P}\gamma(H) = \mathcal{P}\gamma(T) = \frac{1}{2}$, $\mathcal{P}\gamma(H,T) = 1$
- Experiment 2: toss two coins
 - Sample Space: S = {HH, HT, TH, TT}
 - Named events:
 - ➤ E1: "match" {HH, TT}
 - > E2: "At least one head" {HT, TH, HH}
 - $Pr(E_1) = \frac{1}{2}$, $Pr(E_2) = \frac{3}{4}$

Dice Probabilities

- Experiment 1: roll a die
 - Sample Space: $S = \{1, 2, 3, 4, 5, 6\}$
 - Named events:

```
> E1: "odd" {1, 3, 5} E2: "even" {2, 4, 6}
```

- $Pr(E_1) = 3/6 = \frac{1}{2}$ $Pr(E_2) = 3/6 = \frac{1}{2}$
- Experiment 2: roll two dice
 - Sample Space: $S = \{11, ..., 16, ..., 61, ..., 66\}$
 - Named events:

```
> E1: "doubles" {11, 22, ..., 66}
```

- > E2: "sum is nine" {36, 45, 54, 63}
- $Pr(E_1) = 6/36 = 1/6$ $Pr(E_2) = 4/36 = 1/9$

Monty Hall (sample space)

A. Find the sample space:

- 1. The door concealing the car {A,B,C}
- 2. The door initially chosen by the player {A,B,C}
- 3. The door that the host opens to reveal a goat {A,B,C}

$$S = \left\{ \begin{array}{l} (A, A, B), (A, A, C), (A, B, C), (A, C, B), (B, A, C), (B, B, A), \\ (B, B, C), (B, C, A), (C, A, B), (C, B, A), (C, C, A), (C, C, B) \end{array} \right\}$$

Monty Hall (events)

B. Define events of interest:

- "Prize behind door C": { (C,A,B), (C,B,A), (C,C,A), (C,C,B) }
- "Prize behind door first picked by player":

"Player wins by switching":

$$S = \left\{ \begin{array}{l} (A, A, B), (A, A, C), (A, B, C), (A, C, B), (B, A, C), (B, B, A), \\ (B, B, C), (B, C, A), (C, A, B), (C, B, A), (C, C, A), (C, C, B) \end{array} \right\}$$

Monty Hall (tree diagram)

Monty Hall (outcome probabilities)

C. Determine outcome probabilities:

- Record probability on each edge of tree, make use of problem assumptions
- 2. Multiply edge probabilities on the path from the root to the outcome (justification?)
- 3. Probability of each outcome is the product from step (2) Pr[(A,A,B)] = 1/18 Pr[(A,B,C)] = 1/9

Monty Hall (outcome prob.)

Monty Hall (event probabilities)

D. Compute event probabilities:

- Use the rule: $\mathcal{P}_{\mathcal{V}}(E) = \sum_{a \in E} \mathcal{P}_{\mathcal{V}}(a)$
- Event of interest: "player wins by switching"
- Relevant outcomes:

$$a \in \{ (A,B,C), (A,C,B), (B,A,C), (B,C,A), (C,A,B), (C,B,A) \}$$

- $\forall a \in E$, $\mathcal{P}r(a) = 1/9$
- Pr(E) = 6 * (1/9) = 6/9 = 2/3

Probability Rules

The probability of an event E is defined as the sum of the probabilities of the outcomes in E:

$$Pr(E) = \sum_{a \in E} Pr(a)$$

• Sum Rule: if $\{E_1, E_2, \dots, E_n\}$ is a collection of disjoint events, then

$$Pr[UE_i] = \Sigma_i Pr(E_i)$$

• Complement Rule: if \bar{A} denotes the complement of the event A, then

$$\mathcal{P}r[\bar{A}] + \mathcal{P}r[A] = 1$$

 $\mathcal{P}r[\bar{A}] = 1 - \mathcal{P}r[A]$

Probability Rules (from set theory)

Basic facts about probability parallel facts about cardinalities of finite sets:

1.
$$\mathcal{P}r[A \cup B] = \mathcal{P}r[A] + \mathcal{P}r[B] - \mathcal{P}r[A \cap B]$$

2.
$$Pr[A \cup B] \leq Pr[A] + Pr[B]$$

3.
$$A \subseteq B \to \mathcal{P}r[A] \leq \mathcal{P}r[B]$$

4.
$$Pr[U E_i] \leq \Sigma_i Pr[E_i]$$

Probability Rules (examples)

- Example 1: toss a coin 10 times. Find probability of at least one tail
 - Event: "at least one tail"
 - Complement of event: "10 heads"
 - $Pr[A] = 1 Pr[\bar{A}] = 1 (1/1024) = 1023/1024$
- Example 2: choose integer from the interval [1, ..., 100]. Find probability it is divisible either by 6 or by 15
 - Event 1: "divisible by 6" Event 2: "divisible by 15"
 - $Pr[E_1] = 16/100$ $Pr[E_2] = 6/100$
 - $Pr[E_1 \cap E_2] = 3/100$
 - $Pr[E_1 \cup E_2] = Pr[E_1] + Pr[E_2] Pr[E_1 \cap E_2] =$ = 16/100 + 6/100 - 3/100 = 19/100

Uniform Probability Space

- Definition: a sample space S with a probability function $(Pr: S \rightarrow R)$ is called a *probability space*
- A finite probability space S is *uniform* if $\forall a \in S$, $\mathcal{P}v(a)$ is the same
- For events:

$$Pr(E) = |E| / |S|$$

Conditional Probability

- Definition: the *conditional probability* of an event X given that event Y has occurred is $Pr[X | Y] = \frac{Pr[X \cap Y]}{Pr[Y]}$
- Example 1: toss two coins

$$\Pr[HH \mid \neg(TT)] = \frac{\Pr[HH \cap \neg(TT)]}{\Pr[\neg(TT)]} = \frac{1/4}{3/4}$$

- Example 2: roll two fair dice
 - At least one is 4, what is the prob. that both are fours?

$$\Pr[44 \mid "4? - or - ?4"] = \frac{\Pr[44 \cap "..."]}{\Pr["..."]} = \frac{1/36}{11/36} = \frac{1}{11}$$

Conditional Probability (product rule)

What about multiple events? Generalize idea:

$$Pr[X | Y] = \frac{Pr[X \cap Y]}{Pr[Y]} \rightarrow Pr[X \cap Y] = Pr[X | Y] Pr[Y]$$

$$Pr[E_1 \cap E_2 \cap E_3] = Pr[E_1 | E_2 E_3] Pr[E_2 | E_3] Pr[E_3]$$

$$P(E_1 E_2 E_3) = P(E_1 | E_2 E_3) P(E_2 | E_3) P(E_3)$$

Independence

 Definition: event A is (probabilistically) independent of event B f knowing that B happens does not alter the probability that A happens

$$Pr[A \mid B] = Pr[A]$$

$$Pr[A \cap B] = Pr[A \mid B] Pr[B] = Pr[A] Pr[B]$$

- Note: disjoint events are never independent!
- Mutual independence:

$$P(E_1 E_2 E_3) = P(E_1 | E_2 E_3) P(E_2 | E_3) P(E_3)$$
$$= P(E_1) P(E_2) P(E_3)$$

Independence (example)

Example: roll two fair dice. Suppose A is the event "first die is 1", and B is the event "sum of rolls is odd". Are the events independent?

$$P(A) = \frac{1}{6} \qquad P(B) = 2 \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{2}$$

$$P(AB) = P("12", "14", "16") = \frac{3}{36}$$

$$P(B \mid A) = \frac{P(AB)}{P(A)} = \frac{3/36}{1/6} = \frac{3}{6} = \frac{1}{2}$$

Email Spam (example)

- How can we detect spam email messages?
- Suppose we try to identify characteristic keywords.
- Example: 12,600 of 100,000 spam messages contained the word "Rolex". However, in another 20,000 non-spam messages the word "Rolex" appeared 100 times.
- Estimate the probability that a new message with the word "Rolex" is spam.
- Define A as the event "message contains word"
- Define B as the event "new message is spam"
- Goal: estimate P(B | A)

Cond. Prob. (law of total prob.)

- Idea: breaking probability calculation into cases
- Calculate the probability of an event A by splitting into two cases based on whether or not another event E occurs, and then using sum rule:

$$Pr[A] = Pr[A \mid E]Pr[E] + Pr[A \mid \overline{E}]Pr[\overline{E}]$$

Email Spam (notation)

- Define A as the event "message contains word"
- Define B as the event "new message is spam"
- Goal: estimate P(B | A)

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

$$P(B) \approx \frac{2}{3}$$

$$P(A \mid B) \approx \frac{12600}{100000} = 0.126$$

$$P(A \mid \overline{B}) \approx \frac{120}{20000} = 0.006$$

Email Spam (solution)

■ A: "message contains word" B: "new message is spam"

$$P(B \mid A) = \frac{P(AB)}{P(A)}$$

$$P(B) \approx \frac{2}{3}$$
 $P(A \mid B) \approx 0.126$ $P(A \mid \overline{B}) \approx 0.006$

$$P(AB) = P(BA) = P(A \mid B)P(B) \approx 0.126 \cdot \frac{2}{3} = 0.084$$

$$P(A) = P(AB) + P(A\overline{B}) = P(A \mid B)P(B) + P(A \mid \overline{B})P(\overline{B})$$
1

$$\approx 0.084 + 0.006 \cdot \frac{1}{3} = 0.086$$

$$P(B \mid A) \approx \frac{0.084}{0.086} = 0.9767$$

Bayes' Theorem

Bayes' Theorem (or rule) relates a pair of probabilities

$$\Pr[B \mid A] = \frac{\Pr[A \mid B] \Pr[B]}{\Pr[A]}$$

We can use the law of total probability to rewrite the denominator:

$$\Pr[B \mid A] = \frac{\Pr[A \mid B] \Pr[B]}{\Pr[A \mid B] \Pr[B] + \Pr[A \mid \overline{B}] \Pr[\overline{B}]}$$

Random Variables

- A random variable is a total function whose domain is the sample space
- It is not a variable and it is not random!
- Example: toss a coin 3 times, let C(outcome) be the random variable denoting number of heads that appear

$$C(HHH) = 3$$
 $C(HHT) = 2$ $C(HTH) = 2$
 $C(HTT) = 1$ $C(THH) = 2$ $C(THT) = 1$
 $C(TTH) = 1$ $C(TTT) = 0$

Probability Density Function

- The probability density function (pdf) of a random variable R measures the probability that R = x.
- The *cumulative distribution function (cdf)* of a random variable R measures the probability that $R \le x$.

Figure 18.1 The probability density function for the sum of two 6-sided dice. Figure 18.2 The cumulative distribution function for the sum of two 6-sided dice.

Bernoulli Distribution

- A Bernoulli distribution is the distribution function for a (two-point) Bernoulli variable
- Probability density function:

$$f_p: \{0,1\} \rightarrow [0,1]$$

 $f_p(0) = p$
 $f_p(1) = 1-p$

- Example: toss a biased (loaded) coin
 - Sample Space: S = {H, T}
 - $\mathcal{P}V(\{H\}) = p = 4/5$ $\mathcal{P}V(\{T\}) = 1 p = 1/5$
- Example: roll a fair die
 - Sample Space: S = {1, 2, 3, 4, 5, 6}
 - PV("even") = p = ½ PV ("odd") = 1-p = ½

Binomial Distribution

- A Binomial distribution extends the Bernoulli variable to n independent repetitions of the (two-point) experiment
- Probability density function:

$$f_{n,p}: \{0,1,2,...,n\} \rightarrow [0,1]$$

 $f_{n,p}(k) = C(n,k)p^k(1-p)^{n-k}$

- Example: toss a biased (loaded) coin 10 times
 - $PY(\{H\}) = p = 4/5$ $PY(\{T\}) = 1 p = 1/5$
 - $\mathcal{P} \mathcal{V}$ ("k heads") = $C(10,k)(0.8)^k (0.2)^{10-k}$