W3203 Discrete Mathematics

Number Theory

Spring 2015

Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w3203

Outline

- Communication, encryption
- Number system
- Divisibility
- Prime numbers
- Greatest Common Divisor (GCD)
- Euclidean Algorithm
- Modular Arithmetic
- Euler's totient function
- RSA cryptosystem
- Text: Rosen 4
- Text: Lehman 8

Private Communication in Public

The Problem:

- Alice (A) wants to tell Bob (B) a military secret. But the enemy (E) is listening to their conversation
- Can they communicate with each other without revealing the secret to the enemy?

General approach:

- Communicate in secret code
- A & B agree on a procedure to encrypt messages
- The receiver (B) has a procedure to decrypt the message
- The enemy (E) should not be able to deduce the decryption procedure

Encryption

- Goal: create a secret code (cipher)
 - 1. Monographic substitution: permute alphabet, replace each letter by substitute
 - 2. Shift cipher: represent letters as numbers, shift all letters by some integer, replace with new numbers
- Shift cipher:
 - {A, B, C, ..., Y, Z} \rightarrow {0, 1, 2, ..., 24, 25}
 - $\{0, 1, 2, ..., 24, 25\} \rightarrow \{3, 4, 5, ..., 1, 2\}$
 - $\{3, 4, 5, ..., 1, 2\} \rightarrow \{D, E, F, ..., B, C\}$
 - To decrypt (recover the original), shift back by the same #

Shift Cipher (example)

Shift cipher:

- Numbers: {A, B, C, ..., Y, Z} \rightarrow {0, 1, 2, ..., 24, 25}
- Shift: $\{0, 1, 2, ..., 24, 25\} \rightarrow \{3, 4, 5, ..., 1, 2\}$
- Letters: {3, 4, 5, ..., 1, 2} → {D, E, F, ..., B, C}
- Example: encrypt the message
 - 1. "MEET YOU IN THE PARK"
 - 2. "12 4 4 19 24 14 20 8 13 19 7 4 15 0 17 10"
 - 3. "15 7 7 22 1 17 23 11 16 22 10 7 18 3 20 13"
 - 4. "PHHW BRX LQ WKH SDUN"

Breaking the Code (1)

- Can we discover the message without knowing the encryption method and "key"?
 - Complicated cipher? Difficult to use!
 - Simple cipher? Can't hide patterns!
 - General knowledge can help: relative frequencies of letters
 - Enemy may have access to multiple messages
 - Decryption is computationally feasible

Number System

DEF: The *natural numbers* are a mathematical system

$$\{\mathbb{N}, \ 0 \in \mathbb{N}, \ s : \mathbb{N} \to \mathbb{N}\}$$

with a number **zero** 0 and a **successor** operation $s: \mathbb{N} \to \mathbb{N}$ such that

(1) $(\not\exists n) [0 = s(n)].$

Zero is not the successor of any number.

(2) $(\forall m, n \in \mathbb{N}) [m \neq n \Rightarrow s(m) \neq s(n)].$

Different numbers cannot have the same successor.

(3) Given a subset $S \subseteq \mathbb{N}$ with $0 \in S$ if $(\forall n \in S) [s(n) \in S]$ then $S = \mathbb{N}$

Arithmetic Operations

DEF: The predecessor of a natural number n is a

number m such that s(m) = n.

NOTATION: p(n).

DEF: **Addition** of natural numbers.

$$n + m = \begin{cases} n & \text{if } m = 0\\ s(n) + p(m) & \text{otherwise} \end{cases}$$

DEF: *Ordering* of natural numbers.

$$n \ge m \text{ means } \begin{cases} m = 0 \text{ or } \\ p(n) \ge p(m) \end{cases}$$

DEF: **Multiplication** of natural numbers.

$$n \times m = \begin{cases} 0 & \text{if } m = 0\\ n + n \times p(m) & \text{otherwise} \end{cases}$$

Division

- Definition: let n and d be integers with $d \neq 0$. If there exists an integer q such that n = dq, then d divides n
 - d is a factor or (proper) divisor of n
 - n is a multiple of d
 - Notation: $d \mid n$ $d \nmid n$
 - Facts: n | 0 n | n 1 | n

Properties of Divisibility

Properties:

Let a, b, and c be integers with $a \neq 0$

- 1. If a | b and a | c then a | (b+c)
- 2. If a | b and b | c then a | c
- 3. If a | b and a | c then a | (sb + tc) for all integers s,t

Proof of part (3):

- a. By definition, $\exists k_1, k_2 \in \mathbb{Z}$: $ak_1 = b$ and $ak_2 = c$
- b. It follows that, $sb + tc = s(ak_1) + t(ak_2) = a(sk_1 + tk_2)$
- c. $sk_1 + tk_2 \in \mathbb{Z} \rightarrow a \mid (sb + tc)$

Division Theorem

- Let $n \in \mathbb{Z}$, $d \in \mathbb{Z}^+$, then there are unique nonnegative integers q and r < d, such that n = dq + r
 - d is called the divisor
 - n is called the dividend
 - q is called the quotient
 - r is called the remainder
 - $r = n \mod d$

Modular Arithmetic

- Definition: let b and n > 0 be integers. Then b mod n is the residue (remainder) of dividing b by n.
- Definition: if a, b, and n > 0 be integers. Then a is congruent to b modulo n if n divides a b
- Notation:
 - $a \equiv b \pmod{n}$
 - $a \equiv_{\text{mod n}} b$
 - $a \not\equiv b \pmod{n}$
- Congruence modulo n defines a partition of the integers into n sets so that congruent numbers are all in the same set

Shift Cipher (functions)

- Shift cipher: letters shifted by some integer (k)
 - Numbers: $\{A, B, C, ..., Y, Z\} \rightarrow \{0, 1, 2, ..., 24, 25\}$
 - Shift: $\{0, 1, 2, ..., 24, 25\} \rightarrow \{3, 4, 5, ..., 1, 2\}$
 - Letters: $\{3, 4, 5, ..., 1, 2\} \rightarrow \{D, E, F, ..., B, C\}$
- Encryption / Decryption functions (k is the key):
 - $f(p) = (p + k) \mod 26$
 - $f^{-1}(p) = (p k) \mod 26$

Linear Combination

- An integer n is a linear combination of numbers $b_0, ..., b_k$ iff $\mathbf{n} = \mathbf{c_0} \mathbf{b_0} + \mathbf{c_1} \mathbf{b_1} + ... + \mathbf{c_k} \mathbf{b_k}$ for some integers $\{\mathbf{c_0}, ..., \mathbf{c_k}\}$
- Application: represent numbers using a linear combination to improve efficiency of algorithms
- Common representation: decimal, or base 10
- We can represent numbers using any base b, where b is a positive integer greater than 1
- The bases b = 2 (binary), b = 8 (octal), and b= 16 (hexadecimal) are important for computing and communications
- Example: $965 = 9.10^2 + 6.10^1 + 5.10^0$

Base b Representations

■ **Theorem**: let b be a positive integer greater than 1. Then if n is a positive integer, it can be expressed uniquely in the form:

$$n = a_k b^k + a_{k-1} b^{k-1} + \dots + a_1 b + a_0$$

where k is a nonnegative integer, $a_0, a_1, ..., a_k$ are nonnegative integers less than b, and $a_k \ne 0$.

The a_j , j = 0,...,k are called the base-b digits of the representation

■ Example: $965 = 9 \cdot 10^2 + 6 \cdot 10^1 + 5 \cdot 10^0$

Base b Expansions (examples)

What is the decimal expansion given the binary expansion?

$$(1\ 0101\ 1111)_2 = 1\cdot2^8 + 0\cdot2^7 + 1\cdot2^6 + 0\cdot2^5 + 1\cdot2^4 + 1\cdot2^3 + 1\cdot2^2 + 1\cdot2^1 + 1\cdot2^0 = 351$$

What is the "decimal given binary" expansion?

$$(11011)_2 = 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 1 \cdot 2^0 = 27$$

What is the "decimal given octal" expansion?

$$(7016)_8 = 7.8^3 + 0.8^2 + 1.8^1 + 6.8^0 = 3598$$

What is the "octal given decimal" expansion?

$$(12345)_{10} = (30071)_8$$

Turing's Code (not really)

Approach:

- Convert message from letters to positive integers (e.g. standard ASCII code)
- Combine separate numbers into one large integer M
- Pad the result (M) with more digits to make a prime number (p)
- Multiply p by a large prime number k (a secret key agreed to beforehand but unknown to the enemy)
- Send message $M^* = p x k$
- Receiver decrypts message by computing p = M* / k, and deducing the words from the sequence of letters (M)

Turing's Code (example)

Example:

- 1. Translate: {A, B, C, ..., Y, Z} \rightarrow {01, 02, 03, ..., 25, 26}
- 2. *Message*: "victory" → {22 09 03 20 15 18 25}
- 3. Pad to prime:
- 4. $\{22\ 09\ 03\ 20\ 15\ 18\ 25\} \rightarrow 2209032015182513$
- *5. Secret key*: **k** = 22801763489
- 6. $M^* = p x k$
 - $= 2209032015182513 \times 22801763489$
 - = 50369825549820718594667857

Prime Numbers

- Definition: a positive integer p > 1 is called prime if the only positive factors of p are 1 and p. A positive integer > 1 which is not prime is called composite
- Prime questions:
 - How many primes are there?
 - Can we efficiently determine whether a number is prime?
 - What is the distribution of prime numbers?
 - How can we generate large primes?
 - Can we efficiently factor composite numbers into their prime factorizations?

How Many Primes?

- Theorem: there are infinitely many primes.
- Proof:
 - Suppose there are finitely many primes: $\{p_1, ..., p_k\}$
 - Let $q = p_1 p_2 \cdots p_k + 1$
 - Either q is prime or it is composite (product of primes)
 - By assumption it is composite
 - But none of the primes p_j divides q since if $p_j \mid q$, then p_j divides $q p_1 p_2 \cdots p_k = 1$
 - Hence, there is a prime not on the list {p₁, ..., p_k} which is a prime factor of q
 - Contradiction!

Prime Factorization

Fundamental Theorem of Arithmetic: every positive integer is a product of a unique weakly decreasing sequence of primes (prime factorization).

Proof idea:

- Assume the factorization is not unique
- Define two sequences (for both, the product equals n)
- Compare the largest prime factor in each sequence
- w.l.o.g, you can divide n by the larger of these (call it 'f')
- Derive contradiction with the fact that 'f' is the largest prime factor

Primality Testing

- Given an integer n, is it prime?
- Naive Algorithm: for each d ∈ [2,n-1], if d | n, then stop and return "FALSE"
- Less Naive Algorithm: for each d ∈ [2,√n], if d | n, then stop and return "FALSE"
- Probabilistic test: gives the right answer when applied to any prime number, but has some (very tiny) probability of giving a wrong answer on a nonprime number

Distribution of Primes

- Primes show up erratically, but we can give an asymptotic estimate for the number of primes not exceeding some integer n
- **Prime Number Theorem**: the ratio of the number of primes $\pi(n)$ not exceeding n and n/ln n approaches 1 as n grows without bound.

 $\lim_{n\to\infty} \frac{\pi(n)}{n/\ln n} = 1.$

 As a rule of thumb, about 1 integer out of every ln n in the vicinity of n is a prime (odds of random selection)

Breaking the Code (2)

- Can we discover the message without knowing the "key"?
 - Recovering the original message requires factoring a very large number into its prime factors
 - Conjecture: there is no computationally efficient procedure for prime factorization
 - But enemy may have access to multiple messages!
 - Message 1: $M_1^* = p_1 x k$ Message 2: $M_2^* = p_2 x k$
 - The key (k) divides both \mathbf{M}_{1}^{*} , \mathbf{M}_{2}^{*}
 - Compute the greatest common divisor of $\mathbf{M_1^*, M_2^*}$

Greatest Common Divisor

- Definition: let a and b be integers, not both zero. The largest integer d such that d | a and also d | b is called the greatest common divisor of a and b, denoted by gcd(a,b)
- Examples:
 - gcd(24,36) = 12
 - gcd(17,22) = 1
 - gcd(n, 0) = n
- Definition: the integers a and b are relatively prime if their gcd is 1, a \bot b

Computing the GCD

Algo 4.3.4: Primepower GCD Algorithm

Input: integers $m \leq n$ not both zero

Output: gcd(m, n)

- (1) Factor $m = p_1^{a_1} p_2^{a_2} \cdots p_r^{a_r}$ into prime powers.
- (2) Factor $n = p_1^{b_1} p_2^{b_2} \cdots p_r^{b_r}$ into prime powers.

(3)
$$g := p_1^{\min(a_1,b_1)} p_2^{\min(a_2,b_2)} \cdots p_r^{\min(a_r,b_r)}$$

Return (g)

Least Common Multiple

Definition: let a and b be positive integers. The least common multiple of a and b is the smallest positive integer that is divisible by both a and b, denoted by lcm(a,b)

$$lcm(a,b) = p_1^{\max(a_1,b_1)} p_2^{\max(a_2,b_2)} \cdots p_n^{\max(a_n,b_n)}$$

- Example: $lcm(2^33^57^2, 2^43^3) = 2^{max(3,4)} 3^{max(5,3)} 7^{max(2,0)}$ = $2^4 3^5 7^2$
- Fact: $ab = gcd(a,b) \cdot lcm(a,b)$

Euclid's Observation

- Observation: let a = bq + r, where a, b ≠ 0, q, and r are integers. Then, gcd(a,b) = gcd(b,r)
- Proof:
 - a. By definition, a is a linear combination of b and r. Likewise, r is a linear combination combination, a qb, of a and b.
 - b. It follows that any divisor of **b** and **r** is a divisor of **a**. Any divisor of **a** and **b** is a divisor of **r**.
 - c. It follows that **a** and **b** have the same common divisors as **b** and **r**.
 - d. Hence they have the same greatest common divisor gcd(a,b) = gcd(b,r) = gcd(b,a)

Euclidean Algorithm

Algo 4.3.5: Euclidean Algorithm

Input: positive integers $m \ge 0, n > 0$

Output: gcd(n,m)

If m = 0 then return(n) else return $gcd(m, n \mod m)$

```
\gcd(210,111) = \gcd(111,210 \mod 111) =

\gcd(111,99) = \gcd(99,111 \mod 99) =

\gcd(99,12) = \gcd(12,99 \mod 12) =

\gcd(12,3) = \gcd(3,12 \mod 3) =

\gcd(3,0) = 3
```

Euclidean Algorithm (example)

Example 4.3.6: Euclidean Algorithm

$$\gcd(42,26) = \gcd(26,42 \mod 26) =$$

 $\gcd(26,16) = \gcd(16,26 \mod 16) =$
 $\gcd(16,10) = \gcd(10,16 \mod 10) =$
 $\gcd(10,6) = \gcd(6,10 \mod 6) =$
 $\gcd(6,4) = \gcd(4,6 \mod 4) =$
 $\gcd(4,2) = \gcd(2,4 \mod 2) =$
 $\gcd(2,0) = 2$

Extended Euclidean Algorithm

- The greatest common divisor of a and b is a linear combination of a and b. That is, for some integers s and t (Bézout coefficients): gcd(a,b) = sa + tb
- How do you determine s and t?

$$\begin{array}{lll} a = r_0 & b = r_1 & & \gcd(a,b) = r_n \\ r_0 = r_1 q_1 + r_2 & 0 \leq r_2 < r_1, & r_n = r_{n-2} - r_{n-1} q_{n-1} \\ r_1 = r_2 q_2 + r_3 & 0 \leq r_3 < r_2, & r_{n-1} = r_{n-3} - r_{n-2} q_{n-2} \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & \\ & & & \\ & & & \\ & & & & \\ &$$

Extended Euclidean Algorithm (example)

```
\blacksquare gcd(a,b) = sa + tb
Example: gcd(259,70)
    259 = 70 \times 3 + 49
                                       49 = 259 - 70 \times 3
    70 = 49 \times 1 + 21
                                        21 = 70 - 49 \times 1
                                          = 70 - (259 - 70 \times 3) \times 1
                                          = -(259 \times 1) + (70 \times 4)
          = 21 \times 2 + 7 7 = 49 - 21 \times 2
    49
                      = (259 - 70 \times 3) - [-(259 \times 1) + (70 \times 4)] \times 2
                      = [3 \times 259] - [11 \times 70]
    21 = 7 \times 3
```

Turing's Code (better idea)

Approach:

- Convert message to into one large integer M and pad to make a prime number p
- Choose a large prime number n > p (n can be made public)
- Multiply p by a large prime number k < n (k is a secret key)
- Send message M* = (p x k) mod n
- Receiver decrypts message by computing p = M* / k
- Decryption is a problem! Must compute "inverse mod n"

Turing's Code (example)

Example 1:

- 1. Message: p = 5
- 2. Large prime: n = 17 Secret key: k = 13
- 3. M* = (p x k) mod n = 65 mod 17 = 14

■ Example 2:

- 1. Message: p = 7
- 2. Large prime: n = 17 Secret key: k = 13
- 3. $M^* = (p x k) \mod n$ = 91 mod 17

Multiplicative Inverse

- Definition: the *multiplicative inverse* of a number x is another number x^{-1} such that: $x^{-1}x = 1$
 - Except 0, every rational number n / m has an inverse, namely, m/n.
 - Over the integers, only 1 and -1 have inverses
- What about modular arithmetic ("ring \mathbb{Z}_n ")?
 - $(2 \cdot 8) \mod 15 = 2 \cdot 8 = 1$
 - $(? \cdot 3) \mod 15 = ? \cdot_n 3 = 1$
 - Some numbers have inverses modulo 15 and others don't

Modular Arithmetic Rules

1.
$$a \equiv \text{rem}(a, n) \pmod{n}$$
 $a \equiv_{\text{mod } n} \text{rem}(a, n)$

- 2. If $\mathbf{a} \equiv_{\text{mod } n} \mathbf{b}$ and $\mathbf{c} \equiv_{\text{mod } n} \mathbf{d}$, then
 - I. $a + c \equiv_{\text{mod } n} b + d$
 - II. ac $\equiv_{\text{mod } n}$ bd

Modular Arithmetic Rules (2)

a ≡ rem(a, n) (mod n) a ≡_{mod n} rem(a, n)
 If a ≡_{mod n} b and c ≡_{mod n} d, then

 a + c ≡_{mod n} b + d
 ac ≡_{mod n} bd

 Define operations in Z_n: ·_n +_n

 a +_n b ::= rem(a + b, n)
 (a + b) mod n = [(a mod n) + (b mod n)] mod n rem(a + b, n) = rem(a, n) +_n rem(b,n)

2. (ab) mod $n = [(a \mod n) \cdot (b \mod n)] \mod n$

 $rem(ab, n) = rem(a, n) \cdot_n rem(b, n)$

Modular Arithmetic (example)

- Find: rem $((44427^{3456789} + 15555858^{5555})403^{6666666}, 36)$.
- Use rules:
 - 1. $rem(a + b, n) = rem(a, n) +_n rem(b, n)$
 - 2. $rem(ab, n) = rem(a, n) \cdot_n rem(b, n)$
- Simplify:

```
rem(44427,36) = 3, rem(15555858, 36) = 6, rem(403,36) = 7

(3^{3456789} + 6^{5555})7^{6666666}

(3^3 + 6^2 \cdot 6^{5553})(7^6)^{1111111}

(3^3 + 0 \cdot 6^{5553})1^{1111111}

= 27.
```

Inverse in **Z**_n

- Definition: the *multiplicative inverse* of a number x is another number x^{-1} such that: $x^{-1}x = 1$
- What about modular arithmetic ("ring \mathbb{Z}_n ")?
 - $x \cdot a \equiv 1 \mod n$
 - \rightarrow xa qn = 1
 - \rightarrow gcd(a, n) = 1
 - Conclusion: for a number ('a') to have an inverse in Z_n,
 'a' must be relatively prime to n

Turing's Code (Decryption)

Approach:

- Convert message to into one large integer M and pad to make a prime number p
- Choose a large prime number n > p (n can be made public)
- Multiply p by a large prime number k < n (k is a secret key)
- Send message M* = (pk) mod n
- Receiver decrypts message by computing the \mathbf{Z}_n inverse \mathbf{j} of the key \mathbf{k} using the extended Euclidean algorithm:

$$M^* \cdot_n j = (p \cdot_n k) \cdot_n j = p \cdot_n (k \cdot_n j) = p \cdot_n 1 = p$$

Breaking the Code (3)

- Can we discover the message without knowing the key?
 - Enemy may have access to multiple messages. No problem, we are working in $\mathbf{Z}_{\mathbf{n}}$
 - Suppose the enemy knows both the message (plaintext),
 M, and its encrypted form, M*
 - Enemy carries out a known-plaintext attack!
 - $\mathbf{M}^* = \mathbf{p} \cdot_{\mathbf{n}} \mathbf{k}$ n > p n > k
 - Using the extended Euclidean algorithm, enemy computes the \mathbf{Z}_n inverse \mathbf{j} of \mathbf{p} and obtain the secret key:

$$j \cdot_n M^* = j \cdot_n (p \cdot_n k) = (j \cdot_n p) \cdot_n k = 1 \cdot_n k = k$$

Public Key Cryptography

Approach:

- Convert message into one large integer M
- The receiver privately creates a pair of functions: E to encrypt the message, and D to decrypt the message, such that D[E(M)] = M
- Receiver publicly reveals the function E
- Message is sent: M* = E(M)
- Enemy can see M* and knows E but can't determine D

RSA (idea)

- A public key cryptosystem was introduced in 1976 by three researchers at MIT: Rivest, Shamir, Adelman
- Idea:
 - Convert message into one large integer M
 - Receiver finds two large primes p, q (using probabilistic primality tests) and calculates their product n = pq (n > M)
 - Receiver finds two integers e, d and creates a pair of functions:

```
E(M) = M^e \mod n to encrypt the message D(M^*) = (M^*)^d \mod n to decrypt the message
```

- Receiver publicly reveals E (n & e)
- Message is sent: M* = E(M)
- Enemy can see M* and knows E but can't determine d

RSA (setup)

Idea:

- Convert message into one large integer M
- Receiver finds two large primes p, q, their product, n = pq
- Receiver finds two integers e, d and creates a pair of functions:

```
E(M) = M^e \mod n to encrypt the message D(M^*) = (M^*)^d \mod n to decrypt the message
```

- Receiver publicly reveals E (n & e)
- Message is sent: M* = E(M)
- Enemy can see M* and knows E but can't determine d
- System only works if: D(M*) = D[E(M)] = M
- D[E(M)] = D(M^e) = (M^e)^d = M^{ed} = M working in in Z_n

Euler's Totient Function

- Definition: let $\varphi(n)$ be defined as the number of integers in [0,n) that are relatively prime to n > 0.
- Examples:
 - $\phi(12) = 4$ {1,5,7,11}
 - $\phi(7) = 6$ {1,2,3,4,5,6}
 - $\phi(11) = 10$
- Rules:
 - 1. If \boldsymbol{p} is prime, $\varphi(p) = p 1$
 - 2. If $p \neq q$ are both primes, $\phi(pq) = (p-1)(q-1)$
 - 3. If \boldsymbol{a} and \boldsymbol{b} are relatively prime, $\varphi(ab) = \varphi(a)\varphi(b)$

Euler's Theorem

- Definition: let $\varphi(n)$ be defined as the number of integers in [0,n) that are relatively prime to n > 0.
- *Euler's Theorem*: if n and k are relatively prime, then:

$$k^{\varphi(n)} \equiv 1 \pmod{n}$$

- Recall: if p is prime, $\phi(p) = p 1$
- Fermat's Little Theorem: if p is prime, and k is not a multiple of p, then:

$$k^{p-1} \equiv 1 \pmod{p}$$

RSA (derivation)

Recall:

- n = pq
- System only works if: D(M*) = D[E(M)] = M
- $D[E(M)] = D(M^e) = (M^e)^d = M^{ed} = M$ working in in Z_n

Derivation:

- 1. $n \perp M$, $M^{\varphi(n)} \equiv 1 \pmod{n}$ Euler's Theorem, gcd(M, n) = 1

2. $M^{c\varphi(n)} \equiv 1 \pmod{n}$

Modular Arithmetic

- 3. $M^{c\varphi(n)+1} \equiv M \pmod{n}$
- Modular Arithmetic
- 4. $\phi(n) = \phi(pq) = (p-1)(q-1)$ Rule
- 5. $e \cdot d = c \cdot \phi(n) + 1 \rightarrow ed \equiv 1 \lceil mod \phi(n) \rceil$
- 6. $gcd(e, \phi(n)) = 1 \rightarrow gcd(e, (p-1)(q-1)) = 1$
- 7. **d** is the $Z_{\phi(n)}$ inverse of **e**

RSA Cryptosystem

1. The Receiver prepares the system as follows:

- a. Generates two large distinct primes **p, q,** keeps them private
- b. Calculates the product, n = pq, makes it public
- c. Selects and integer $e \in [0,n)$, such that gcd(e, (p-1) (q-1)) = 1, makes it public
- d. Calculates an integer $d \in [0,n)$ which is the $Z_{(p-1)(q-1)}$ inverse of e, using the extended Euclidean algorithm, keeps d private

2. Sender prepares and publicly transmits message:

- a. Converts message into one large integer $M \in [0,n)$ such that gcd(M, n) = 1
- b. Encrypts message using public key, $M^* = E(M) = M^e \mod n$

3. Receiver privately decrypts message:

a. Decrypts message using private key, $M = D(M^*) = (M^*)^d \mod n$

RSA Cryptosystem (example)

- 1. The Receiver prepares the system as follows:
 - a. Generate: p = 1231, q = 337
 - b. Calculate: n = pq = 414847, (p-1)(q-1) = 413280
 - c. Select integer $e \in [0,n)$: e = 211243
 - d. Calculate integer $d \in [0,n)$: $d = e^{-1} = 166147$
- 2. Sender prepares and publicly transmits message:
 - a. Converts message: M = 224455
 - b. Encrypts message: $M^* = E(M) = M^e \mod n = 376682$
- 3. Receiver privately decrypts message:
 - a. Decrypts message: $M = D(M^*) = (M^*)^d \mod n = 224455$