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The Bijection Rule

= Principle: count one thing by counting another

: find a bijection between two sets, A & B.

Then the sets have the same size.

= General strategy: get really good at counting just a few
things, then use bijections to count everything else!

= Example:

Set A: all ways to select a dozen donuts when five varieties are
available

Set B: all 16-bit sequences with exactly 4 ones
Map donuts to to sequences of bits
Proves sets have same size, without knowing how big exactly!



The Sum Rule

Number of objects in the whole equals the sum
of objects in the (disjoint) parts

. let A and B be finite disjoint sets (A N B
=Q). Then |[AUB| = |A| + | B]

Can we generalize the rule to n sets?

IfA, A, ..., A are sets, then:
JA,UA,U...UA_ | = |A]| + |A| +...+ |A, ]|

What if the sets overlap? Inclusion-Exclusion



Sum Rule (examples)

= Example 1: suppose there are

19 French speakers, 17 English speakers and no bilingual
speakers

How many ways are there to choose someone who speaks
either language?

Answer: 19+17 =36

= Example 2: suppose there are

20 French speakers, 40 English speakers, 60 Russian speakers,
and 80 Spanish speakers, but no bilingual speakers among them

How many ways are there to choose someone who speaks one
of these languages?

Answer: 20+ 40+ 60+ 80 =200



The Subtraction Rule

" |f two sets (parts) overlap, then we count some
objects twice when we count the whole

= Rule:let A and B be finite sets. Then,
JAUB| = |A| +|B|-|ANB]|
» General principle (n sets): inclusion-exclusion



Inclusion-Exclusion

= Recall: if two sets overlap, then we count some
objects twice when we count the whole

= What about three overlapping sets:
. let A,B,C be finite sets. Then,
JAUBUC| = |A| +|B| + |C]
-l[ANB|-|ANC|-|BnNC|
+ |ANBNC|

= General principle (n sets): sums with alternating
signs, the sum of the k-way intersections getting

the sign (-1)k-1



The Product Rule

= How can we count sequences?

. let A and B be sets. Then the set of
all sequences whose 1t term is from A, and 2"d
term is from B is their Cartesian product A X B. If

sets are finite, then:

= Example:
e Suppose there are 19 CS majors and 17 math majors

* Count the # of ways to pick two students with different
majors

* Answer: 19x17 =323



lterated Product Rule

= Can we generalize the product rule to n sets?
Lif A, A, ..., A, are finite sets,

then:
|A; X A, Xoo XA = A - |A] - .. A,
114 HIAJI
1=1
= Example:

e Passwords on a given system consist of n characters: small case
letters and digits

e Count the # of valid passwords
* Answer: (26+10) x (26+10) x ... x (26+10) = 36"



Counting Passwords Example

= Example: passwords on a given system can be 6-8
characters longs, where each character is a lowercase
letter or a digit. Each password must contain at least one
digit. How many possible passwords are there?

= Solution: combine counting rules
* Let P be the total number of passwords, and let P, P,
and Pg be the passwords of length 6, 7, and 8
* BySumRule: P=P,+ P, + Pg
* To find each of P,, P,, and Pg , we find the number of

passwords of the specified length composed of letters
and digits and subtract the number composed only of

letters



Counting Passwords Example (solution)

" How many possible passwords are there?

= Solution: combine counting rules

* Let P be the total number of passwords, and let P, P-,
and Pg be the passwords of length 6, 7, and 8.

* By Sum Rule: P=P, + P, + Pg
* By Product Rule:

P, = 366 — 266
P, =367 — 267
P, = 368 — 268

P=P,+P,+P,=2,684,483,063,360.



Generalized Product Rule

Rule 14.3.1 (Generalized Product Rule). Let § be a set of length-k sequences. If
there are:

o 111 possible first entries,

o 119 possible second entries for each first entry,

o 1y, possible kth entries for each sequence of first k — 1 entries,

then:
S| =ny-ny-n3--ong



Permutations

= Definition: a of a set S is a sequence
that contains every element of S exactly once. It is a
bijection from a set onto itself

= How many permutations of an n-element set are
there? Answer:n-(n-1):(n-2)...-2-1 =n!
(r-permutation) from a set S
(without repetition) is a sequence of r objects from S.

" Notation: nf=n-(n-1)-...-(h—-r+1)

P(n,r) — (nfr_z!ﬂ!




Permutations (examples)

" Notation: nf=n-(n—-1)-...-(h—-r+1)
= Example 1:
 @Given a standard 52-card deck

 Count the # of ways to deal a 5-card sequence
 Answer: 52 x51 x50 x 49 x 48 =522

= Example 2:
* Given a starting location and 7 cities to visit

* In how many ways (orders) can you visit these cities?
e Answer: 7!'=7-6-5-4-3-2-1=5040



The Division Rule

= A maps exactly k elements of the
domain to every element of the codomain

 Example: the function mapping each ear to its owner
Is 2-to-1

" |f the finite set A is the union of n pairwise-disjoint
subsets, each with d elements, thenn= |A| / d

Rule 441 Divisin Rl F £+ A = B isk--1 hen |4 = . B|.



Division Rule (round table example)

= Example: how many ways are there to seat 4 people
around a circular table, where two seatings are
considered the same when each person has the same left

and right neighbor?

1.

2.

3.

Number the seats around the table from 1 to 4 proceeding
clockwise.

There are four ways to select the person for seat 1, 3 for seat
2, 2, for seat 3, and one way for seat 4
Thus there are 4! = 24 ways to order the four people

But since two seatings are the same when each person has the
same left and right neighbor, for every choice for seat 1, we
get the same seating

Therefore, by the division rule, there are 24/4 = 6 different
seating arrangements.



The Subset Rule

= How many r-element subsets of an n-element set are
there?

: the number of k-element subsets of an
n-element setis “n choose k”

(k-combination) from a set S is
a subset of k objects from S.

= Notation:
k

n— n!

(") —Cnky=" =
k KU (n-k)k!




Subset Rule (derivation)

= How can we count subsets?

= Given set with n elements,

1. Construct mapping from each permutation into a k-element
subset by taking the first k elements of the permutation

There are k! possible permutations of the first k elements
There are (n — k)! permutations of the remaining elements

By Product rule, there are exactly k! (n — k)! permutations of
the set that map to a particular subset

5. Constructed mapping whichis k! (n—-k)!—-to -1
6. There are n! permutations of an n-element set

By Division rule, n! = k! (n—k)! C(n, k) (n) n!

kKl ~ k=)



Subset Rule (examples)

Notation: C(n, k) (n) _ n!
Example 1: k) k=Rt
* Given a standard 52-card deck

* Count the # of 5-card hands that can be dealt

 Answer: C(52,5) = 522 / 5!

Example 2:

* Count the number of n-bit sequences with exactly k ones
* Answer: C(n, k)

Example 3:

* How many ways to select n donuts with exactly k varieties?
* Answer: C(n+(k-1),n)



Sequences of Subsets

Choosing a k-element subset of an n-element set is the
same as splitting the set into two subsets (size k, size n-k)

Generalization to more than two subsets: “sequence
V7

with restricted repetitions”, “permutation with
indistinguishable objects”

Let A be an n-element set and (k,,k,, ..., k) be
nonnegative integers whose sum is n. Define a split of A
as a sequence (4,,4,, ... /A, ) of disjoint subsets, |A.| =k,

To count number of splits, follow approach used to
derive subset rule



Multinomial Coefficient

Definition 14.0.1. Forn, ky,... .k, € N, suchthatk; +ky+--++ky;, = n, define
the multinomial coefficient

I N n!
ikl kilky! k!

Rule 14.6.2 (Subset Split Rule). The number of (k1,ky, ... km)-splits of an n-

element set Is
n
kiyoo k|



Sequences of Subsets (examples)

n!
ki'ko! ... k!

= Notation:

= Example 1:

* Count the # of strings obtainable by rearranging letters of
BANANA 6

e Answer: 3A1B2N => 311121
= Example 2:

 Count the # of strings obtainable by rearranging letters of
BOOKKEEPER 10

e Answer: 1B3E2K201P1R => 113121211111




Binomial Coefficients

= Definition: a binomial is a sum of two terms, a+ b

= Definition: the binomial coefficients are the
coefficients of the terms in the expansion of the
binomial to some power (a + b)"

(a +b)* = aaaa + aaab + aaba + aabb
+ abaa + abab + abba + abbb
+ baaa + baab + baba + babb
+ bbaa + bbab + bbba + bbbb

4 4 4 4 4
(a+b)* = (O) a*hd + (1) .a’h + (2) .a*h? + (3) alh’ + (4) .a%b*

23



Binomial Theorem

" General statement for expansions
* Extends to multinomials

* Explains why n-choose-k is called a binomial
coefficient

Theorem 14.6.4 (Binomial Theorem). Foralln € Nanda,b € R:

(a+b)" i()”kbk



The Pigeonhole Principle

" The problem: a drawer in a dark room contains red,
green, and blue socks. How many socks must you
withdraw to be sure that you have a matching pair?

. if there are more pigeons
than holes they occupy, then at least two pigeons
must be in the same hole

= |[fk+ 1 objects are placed into k boxes, then there is
at least one box containing two or more objects



Pigeonhole Principle (approach)

1. The set A (pigeons, objects)
2. The set B (pigeonholes, boxes)
3. The function f (rule for mapping pigeons to holes)

Rule 14.8.1 (Pigeonhole Principle).
f . A= B, there exist two different elements of A that are mapped by f to the
same element of B,




Set-Theoretic Pigeonhole Principle

= Consider a function f : A - B with finite domain and
codomain. If any two of three properties hold, then
so does the third:
1. f is one-to-one
2. f is onto
3. |Al=18B]|

= Example: given 7 people, suppose no two of them
were born on same week day. Then, one each day,
someone was definitely born



Pigeonhole Principle (examples)

. Functionf: A — B with finite domain and codomain:
1. fis one-to-one
2. fis onto
3. |A| =8|

= Example: given n people, suppose no two of them were
born on same week day, and at least one was born on
each day. Then,n=7

= Example: Boston has about 500,000 non-bald people,
and say the number of hairs on a person’s head is at
most 200,000. We can conclude that at least two people
in Boston have exactly the same number of hairs. We
don’t know who they are, but we know they exist!



Generalized Pigeonhole Principle

" Generalized Pigeonhole Principle: if |A| >k -|B]|,
then every functionf: A — B with finite domain and

codomain maps at least k+1 different elements of A
to the same element of B

= Example: A= 500,000 non-bald people, B =200,000
nairs. Since |A| > 2|B]|, at least 3 people in Boston
nave exactly the same number of hairs. We still don’t
k<now who they are, but we know they exist!




Symmetry ldentity

How do you prove the identity?

(=02

You have n objects but want to keep only k of them
You can select k objects to keep
You can select n-k objects to throw out



Combinatorial Proof

= \We wish to prove that a given equality holds

: an argument that establishes

and algebraic fact by relying on counting principles

= General proof structure:

1.
2.
3.
4.

Define aset S
Show that |S| = n by counting one way
Show that |S| = m by counting another way

Conclude that n =m

= Caveat: it can be tricky to define the set S



Pascal’s Identity

Suppose you are one of n people vying for k spots on a
team. In how many ways can the team be selected?

Approach 1: count # of k-element subsets of an n-
element set

Approach 2: consider two cases

1. You are selected: count # of k-1 element subsets of an n-1
element set

You are not: count # of k element subsets of an n element set

By sum rule: case 1 + case 2 - 7 —1 1 —1
= -+
k k—1 k



Pascal’s Identity (algebraic proof)

05) () = e

(n—1)!r N (n—1)!(n—r)

(n—r)r! (n —r)!lr!
_ (n—1)!r+(n—r)]
(n —r)lr!
 (n—=1!n
 (n=7)!

B (n—n:“)!’r! B (7;)



Pascal’s Triangle

r=0 1 2 3 4 5 6
Nn=0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1
6 1 6 15 20 15 6 1

Often Pascal’s triangle appears this way:

o
-

N

O DN =l
-t
IN
o
IN



BINOMIAL COEFFICIENT IDENTITIES

Theorem 6.4.5. Subset size suin.

>() =)+ ()

Pf: (1st proof: computational)
By induction on n, using Pascal’s recursion.

Pf: (2nd proof: combinatorial)
Both sides count all the subsets.

Pf: (3rd proof: corollary to binomial thm)
Expand (x + y)™ with o = y = 1.

Theorem 6.4.6. Alt sum of binom coefls.

() (D)~ G) - () <1>”()

Expand (x + y)” with x =1 and y = —1.

<&



The set {1,2,3,4} has 16 subsets.
%

g
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1 2 3 4

AN

12 13 14 23 24 34

AN
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N

2% =16
The set {1,2,3,4} has 15 partitions, as follows:

1234

12(34 13|24 14|23 1|234 2|134 3|124 4123
112134 1|3|24 1|4]|23 2|3|14 2|4]|13 3|4]12
1|2|3]4

The types of these partitions are
4 22 13 112 1111

corresponding to the partitions of the number 4.



Partitions

= QObjective: count the partitions of a set of n objects
without listing them all

= Definition: the (Stirling
coefficient of the 2"d kind) is the # of partitions of n
objects into r unlabeled cells {n}

r

= “Distinguishable objects in undistinguishable boxes”

L=t ter =7 Lepme



Stirling’s Recursion

— + r
T r—1 T
Pf: The n'" object is isolated in a cell by itself in

n—1

r—1
partitions. Each of the remaining partitions is
formed by first partitioning the n — 1 other
objects into » nonempty cells and then selecting

one of them as a cell for the n'" object. By the
rule of product, there are

U
-
r
ways to do this. The rule of sum now implies the
conclusion. &>



