W3203 Discrete Mathematics

Induction, Recursion, & Algorithms

Spring 2015

Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w3203

Outline

- Induction Principle
- Strong Induction
- Recursive definitions
- Structural Induction
- Simple algorithms
- Big-O notation, complexity
- Recursive algorithms
- Text: Rosen 3, 5.1 5.4,
- Text: Lehman 5.1-5.3, 6.1-6.3

"P(r)oof" by Picture

 T_n blue dots and T_n red dots for a grand total of $2T_n$ dots

$$2T_n = \text{Total Dots} = n(n+1)$$

Sum of Odd Integers

Theorem

$$1+3+5+\cdots+(2k-1)=k^2$$

Proof.

Sum of Squares

Guidelines

Guidelines

In general, a picture is a proof only if:

The picture represents an abstract idea

- The specific drawing of the picture isn't actually important
- The picture can be "scaled up" to as big an n as necessary

Remember: it's not the picture that's the proof—it's the **idea** that the picture is representing that really counts

Mathematical Induction (idea)

- Suppose we have an infinite ladder:
 - 1. We can reach the first rung of the ladder
 - 2. If we can reach a particular rung of the ladder, then we can reach the next rung

Ordinary Induction (principle)

- Goal: prove that P(n) -- predicate on nonnegative integers -- is true for all n
 - 1. Basis step: show that P(0) is true
 - 2. Inductive hypothesis: assume that P(k) holds for an arbitrary (integer) k
 - 3. Inductive step: show that $P(k) \rightarrow P(k+1)$ holds for all k

Induction (rule)

- Rule of inference:
 - 1. Premise 1: P(0)
 - 2. Premise 2: $\forall k [P(k) \rightarrow P(k+1)]$
 - 3. Conclusion: $\forall n P(n)$
- Note: in a proof by mathematical induction, we don't assume that P(k) is true for all positive integers!

Sum of Integers (proof)

Ind. Step. Ind Hyp.
$$\sum_{j=1}^{k} j = \frac{k(k+1)}{2} \text{ when } k = n.$$

$$\sum_{j=1}^{n+1} j = \sum_{j=1}^{n} j + (n+1)$$

$$= \frac{n(n+1)}{2} + (n+1) \text{ by ind hyp}$$

$$= \frac{n(n+1)}{2} + \frac{2(n+1)}{2} \text{ by arithmetic}$$

$$= \frac{n(n+1) + 2(n+1)}{2} \text{ distrib in numerator}$$

$$= \frac{(n+2)(n+1)}{2} \text{ commutativity} \Leftrightarrow$$

Sum of Odd Integers (proof)

Basis Step.
$$\left[\sum_{j=1}^{k} (2j-1) = k^2\right]$$
 when $k = 0$

Ind Hyp.
$$\left[\sum_{j=1}^{k} (2j-1) = k^2\right]$$
 when $k = n$

Ind Step. Consider the case k = n + 1.

$$\sum_{j=1}^{n+1} (2j-1) = \sum_{j=1}^{n} (2j-1) + [2(n+1)-1]$$

$$= \sum_{j=1}^{n} (2j-1) + 2n + 1$$

$$= n^2 + 2n + 1 \text{ by ind. hyp.}$$

$$= (n+1)^2 \text{ by factoring } \diamondsuit$$

Tiling Boards

■ Problem: can we tile a 2^k – by – 2^k board with one covered square with L-shaped tiles?

Different Base Case

Example 5.2.2: $2^n > n^2 \text{ for all } n \ge 5.$

Basis Step. $2^5 > 5^2$

Ind Hyp. Assume $2^k > k^2$ for $k \ge 5$

Ind. Step.

$$2^{k+1} = 2 \cdot 2^k$$
 arithmetic
 $= 2^k + 2^k$ arithmetic
 $> k^2 + k^2$ ind. hyp.
 $> k^2 + (2k+1)$ by Example 5.2.1
 $= (k+1)^2$ arithmetic

Postage Example

Example 5.2.3: Prove that any postage of $8\not c$ or more can be created from nothing but $3\not c$ and $5\not c$ stamps.

Basis Step.
$$8 = 1 \cdot 3\phi + 1 \cdot 5\phi$$

Ind Hyp. Assume $n\not\in$ possible from 3's and 5's.

Ind. Step. Try to make $(n+1)\not\in$ postage.

Suppose that $n = r \cdot 3\not c + s \cdot 5\not c$

Case 1: $s \ge 1$. Then $n + 1 = \dots$

Case 2: s = 0. Then $n + 1 = \dots$

Strong Induction (rule)

- Goal: prove that P(n) -- predicate on nonnegative integers -- is true for all n
 - 1. Base case: show that P(0) is true
 - 2. Inductive hypothesis: assume that P(k) holds for all integers less than an arbitrary (integer) k
 - 3. Inductive step: show that $[P(0),P(1),...,P(k)] \rightarrow P(k+1)$ holds for all k
- Rule of inference:
 - 1. Premise 1: *P*(0)
 - 2. Premise 2: $\forall k [[\forall j \leq k, P(j)] \rightarrow P(k+1)]$
 - 3. Conclusion: $\forall n P(n)$

Product of Primes Example

- Theorem: every integer > 1 is a product of prime numbers
 - 1. Define predicate: P(n) ::= "n is a product of primes"
 - 2. Base case: P(2) is true since 2 is prime (product of length 1)
 - 3. Inductive hypothesis: assume that for all integers less than an arbitrary (integer) $k \ge 2$, k is a product of primes
 - 4. Inductive step: show that k + 1 must be a product of primes

Proof idea:

- If k+1 is itself prime, then it is a product of length 1 by definition
- 2. If k+1 is not prime, then by definition k+1 = a*b. By Ind. Hyp. {a,b} are products of primes

Recursion

Recursively Defined Functions

- Problem: given a sequence $(a_0, a_1, ..., a_k)$ construct a consistent rule to determine any (nth) term:
 - By recursion
 - Closed form (can be difficult!)
 - A function f(n) is the same as a sequence where $f(i) = a_i$
- Recursive definition:
 - 1. Basis step: specify the value of the function at zero
 - Recursive step: give a rule for finding its value at an integer from its values at smaller integers.

Recursively Defined Functions (examples)

Example 2.4.5: $1, 3, 5, 7, 9, 11, \dots$

recursion: $a_0 = 1$; $a_n = a_{n-1} + 2$ for $n \ge 1$

closed form: $a_n = 2n + 1$

Example 2.4.6: $1, 3, 7, 13, 21, 31, 43, \dots$

recursion: $b_0 = 1$; $b_n = b_{n-1} + 2n$ for $n \ge 1$

closed form: $b_n = n^2 + n + 1$

Example 2.4.7: $1, 1, 2, 3, 5, 8, 13, 21, 34, \dots$

recursion: $c_0 = 1, c_1 = 1;$

$$c_n = c_{n-1} + c_{n-2} \text{ for } n \ge 1$$

closed form: $c_n = \frac{1}{\sqrt{5}} [G^{n+1} - g^{n+1}]$ where $G = \frac{1 + \sqrt{5}}{2}$ and $g = \frac{1 - \sqrt{5}}{2}$

More Functions (examples)

Example 5.3.1: n-factorial n!

(B)
$$0! = 1$$

$$(R) (n+1)! = (n+1) \cdot n!$$

Example 5.3.5: partial sums of sequences

$$\sum_{j=0}^{n} a_j = \begin{cases} a_0 & \text{if } n = 0\\ \sum_{j=0}^{n-1} a_j + a_n & \text{otherwise} \end{cases}$$

Example 5.3.3: Hanoi sequence 0, 1, 3, 7, 15, ...

$$h_0 = 0$$

$$h_n = 2h_{n-1} + 1 \text{ for } n \ge 1$$

Recursively Defined Sets

- To define a set recursively:
 - 1. Basis step: specify initial collection of elements
 - 2. Recursive (constructor) step: give a rule for forming new elements from old ones
- Example: the natural numbers N
 - (B) Basis step: $0 \in \mathbb{N}$
 - (R) Recursive step: If n is in N, then n + 1 is in N

Strings (definition)

- Definition: a set of characters/letters/symbols is called an *alphabet*
- Definition: a sequence in an alphabet is a string

Example 2.4.3: Some common alphabets:

- $\{0,1\}$ the binary alphabet
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$ the decimal digits
- $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F\}$ the hexadecimal digits
- $\{A, B, C, D, \dots, X, Y, Z\}$ English uppercase
- ASCII

Strings (recursive definition)

- Given alphabet A, define recursive data type A* of strings over A:
 - (B): $\lambda \in \mathbf{A}^*$ (λ is the empty string)
 - (R): If $a \in A$ and $s \in A^*$, then sa $\in A^*$
- Example:
 - \rightarrow A = {0,1}
 - \triangleright A*: all bit strings, λ , 0, 1, 00, 01, 10, 11, etc.
- Example:
 - $ightharpoonup A = \{a,b\}$ show that aab $\in A^*$
 - 1) $\lambda \in A^*$ and $a \in A \rightarrow a \in A^*$
 - 2) $a \in A^*$ and $a \in A \rightarrow aa \in A^*$
 - 3) $aa \in A^*$ and $b \in A \rightarrow aab \in A^*$

Strings (examples)

Example 5.3.12: binary strings of even length

- (B) $\lambda \in S$
- (R) If $b \in S$, then $b00, b01, b10, b11 \in S$.

Example 5.3.13: binary strings of even length that start with 1

- (B) $10, 11 \in S$
- (R) If $b \in S$, then $b00, b01, b10, b11 \in S$.

Example 5.3.16: set of binary palindromes

- (B) $\lambda, 0, 1 \in S$
- (R) If $x \in S$ then $0x0, 1x1 \in S$.

String Concatenation

- Given alphabet A, and a set of strings A*, define the concatenation of two strings, denoted by · , recursively
 - (B): If $w \in A^*$ then $w \cdot \lambda = w$
 - (R): If $w_1 \in A^*$, $w_2 \in A^*$, and $x \in A$, then $w_1 \cdot (w_2 \cdot x) = (w_1 \cdot w_2) x$

String Length

- Given alphabet A, and a set of strings A^* , recursively define the *length* of string w denoted by |w|:
 - (B): $|\lambda| = 0$
 - (R): |wx| = |w| + 1, where $w \in A^*$, $x \in A$

Structural Induction

- Goal: prove that P(r) -- predicate on recursively defined set R -- is true for all elements of the set $r \in R$
 - 1. Base case: show that P(b) is true for base case elements $b \in R$
 - 2. Inductive hypothesis: assume that P(k) holds for all elements used to construct new elements in the recursive step
 - 3. Inductive step: show that the result holds for the newly constructed elements

Algorithm (definition)

- Definition: an algorithm is a finite set of precise instructions for performing computation or solving a problem
- General considerations:
 - Running time, resources
 - Average/worst/best case scenarios
 - When do we terminate the algorithm?
 - How do we compare algorithms?

Pseudocode (definition)

 Pseudocode: representation of an algorithm in prose + code. Preparation step before implementation

```
Algo 3.1.1: Find Maximum

Input: unsorted array of integers a_1, a_2, \ldots, a_n
Output: largest integer in array

{Initialize} max := a_1

For i := 2 to n

If max < a_i then max := a_i

Continue with next iteration of for-loop.

Return (max)
```

Binary Search (idea)

Problem definition:

• Given sorted list (vector) of numbers V, and a number X. Find the index k such that V(k) = X. Return k = -1 if X is not in V.

Solution approach:

- Scan through the list and compare X to each element
- Linear running time, does not take advantage of the list being sorted

Better approach:

- *Divide and conquer* algorithms
- Break problem into subproblems of the same type
- Constant time to cut problem size by a fraction (usually ½)

Binary Search (algorithm)

Pseudocode:

- Input: sorted (ascending order) vector V with N elements, element X
- Goal: find index k where V(k) = X or return -1
- **Assumption**: > < operators exist
- Algorithm:

```
    low_k = 1, high_k = N
    while low_k <= high_k  % we still have indices to check m = (low_k + high_k) / 2  % middle element compare X to V(m)
        If X == V(m) → stop, return k = m
        If X > V(m) → search right half: low_k = m + 1;
        if X < V(m) → search left half: high_k = m - 1;</li>
```

3. Return k = -1

% we failed to find X in V

Sorting (selection sort algorithm)

Pseudocode:

- **Input**: vector V with N elements
- Goal: sort vector in ascending order
- Assumption: comparison based sorting (> < operators exist)
- Algorithm:
 - 1. Set k = 1
 - 2. Locate minimum element in (sub)vector V(k..N)
 - 3. Switch (swap) that element with element at index k
 - 4. Increment k (k = k+1) and go to step 2, stop when k = N-1

Selection Sort (analysis)

Estimate efficiency of sorting algorithm:

- Number of element comparisons
- Number of element exchanges

Selection sort:

- First iteration of the loop: N-1 comparisons, 1 exchange
- Some iteration: N-k comparisons, 1 exchange
- Last iteration: 1 comparison, 1 exchange
- Total comparisons: $(N-1) + (N-2) + \dots + 2 + 1 = N \times (N-1) / 2$
- Total exchanges: N-1 (at most)

Big-O Notation (idea)

- Estimate efficiency of algorithm, relative to other algorithms for identical task
 - Difficult to get precise measure
 - Approximate effect on change of number of items (N) processed
 - Compare growth rates
 - Order of magnitude (O)

Big-O Notation

Comparing growth rates:

DEF: Let f and g be functions $\mathbb{R} \to \mathbb{R}$. Then f is **asymptotically dominated** by g if $(\exists K \in \mathbb{R}) (\forall x > K) [f(x) \leq g(x)]$

NOTATION: $f \leq g$.

Function classes:

DEF: Let f and g be functions $\mathbb{R} \to \mathbb{R}$. Then f is in the **class** $\mathcal{O}(g)$ ("**big-oh of g**") if $(\exists C \in \mathbb{R}) [f \preceq Cg]$

NOTATION: $f \in \mathcal{O}(g)$.

Witnesses

DEF: Let f and g be functions $\mathbb{R} \to \mathbb{R}$. Then f is in the **class** $\mathcal{O}(g)$ ("**big-oh of g**") if

$$(\exists C \in \mathbb{R}) (\exists K \in \mathbb{R}) (\forall x > K) [f(x) \le Cg(x)]$$

DEF: In the definition above, the multiplier C and the location K on the x-axis after which Cg(x) dominates f(x) are called the **witnesses** to the relationship $f \in \mathcal{O}(g)$.

Big-O Notation (example)

Example 3.2.1:
$$4n^2 + 21n + 100 \in \mathcal{O}(n^2)$$

Pf: First suppose that $n \geq 0$. Then

$$4n^2 + 21n + 100 \le 4n^2 + 24n + 100$$

 $\le 4(n^2 + 6n + 25)$
 $\le 8n^2$ which holds whenever

 $n^2 \ge 6n + 25$, which holds whenever $n^2 - 6n + 9 \ge 34$, which holds whenever $n - 3 \ge \sqrt{34}$, which holds whenever $n \ge 9$.

Thus,

$$(\forall n \ge 9)[4n^2 + 21n + 100 \le 8n^2]$$

Witnesses (example 1)

$$(\forall n \ge 9)[4n^2 + 21n + 100 \le 8n^2]$$

$$C = 8$$
 and $K = 9$

are witnesses to the relationship

$$4n^2 + 21n + 100 \in \mathcal{O}(n^2)$$

Larger values of C and K could also serve as witnesses. However, a value of C less than or equal to 4 could not be a witness.

Witnesses (example 2)

Example 3.2.4:
$$2^n \in \mathcal{O}(n!)$$
.

Pf:

We have used the witnesses C=2 and K=0.

Algorithmic Complexity

- Complexity is a measure of resource (time/space) consumption
- Time complexity: number of computational steps required to execute an algorithm as a function of input size
- Estimate running time of algorithm:
 - Worst case scenario: bound
 - Average case scenario: hard to compute
 - Analysis pinpoints bottlenecks
 - No particular units of time
 - Analyze inside out

P vs NP

- "P": class of problems which can be solved with polynomial time algorithms
- "NP": (nondeterministic polynomial time, exponential) class of problems whose solution can be verified in polynomial time
- Implications of P = NP:
 - Complete chaos
 - Can solve problems as quickly as we can verify the solution
 - Cryptography breaks
 - Mathematicians replaced by machines

Factorial

Algo 5.4.5: factorial

recursive function: factorial(n)

Input: integer $n \ge 0$

Output: n!

If n = 0 then return (1) else return $(\operatorname{prod}(n, \operatorname{factorial}(n-1)))$

Fibonacci Numbers

- $F_0 = 1$, $F_1 = 1$, $F_2 = 2$, $F_3 = 3$, $F_4 = 5$,..., $F_i = F_{i-1} + F_{i-2}$
- Clever use of recursion?

```
function F = fib(N)
if N <= 1
    F = 1;
else
    F = fib(N-1) + fib(N-2);
end</pre>
```

Fibonacci Function (call tree)

Binary Search (analysis)

- Binary search is a recursive algorithm, we can define and solve a recurrence relation:
 - Base case: T(0) = constant
 - Recursive case: T(N) = T(subproblems) + T(combine solutions)
- Running time depends on:
 - Number of subproblems
 - Size of subproblems
 - Cost of combining solutions

Mergesort (idea)

Classic divide and conquer strategy:

- Divide list into 2 halves (each half = subproblem)
- Apply algorithm recursively to sort each half
- Merge the two sorted lists

Merging two sorted lists:

- One pass through the input (N elements)
- Linear running time, at most N-1 comparisons
- Requires a temporary array (additional resource)

Mergesort (algorithm)

Pseudocode:

- **Input**: vector V with N elements
- Goal: sort vector in ascending order
- Assumption: comparison based sorting (> < operators exist)
- Algorithm:

```
    left = 1, right = N
```

```
    2. if left < right % we still need to sort m = (left + right) / 2 % middle element mergeSort(V, left, m, T) → sort left half mergeSort(V, m+1, right, T) → sort right half merge(V, left, m+1, right, T) → merge sorted halves</li>
```

3. Return V

% finished