W3203
Discrete Mathematics

Induction, Recursion, & Algorithms

Spring 2015
Instructor: llia Vovsha

http://www.cs.columbia.edu/~vovsha/w3203

Outline

Induction Principle

Strong Induction

Recursive definitions

Structural Induction

Simple algorithms

Big-O notation, complexity
Recursive algorithms

Text: Rosen 3,5.1-5.4,
Text: Lehman5.1-5.3,6.1-6.3

“P(r)oof” by Picture

o o 000000
00 00 000000
000 000 000000
000000
0000 0000 000000
00000 00000 o000

\/ \/
| | 1

T, blue dots and T, red dots for a grand total of 27, dots
2T, = Total Dots = n(n+ 1)

Sum of Odd Integers

.+ (2k — 1) = K2

14+3+5+--

Proof.

Sum of Squares

25, Black Dots + S, Color Dots = 35,Total Dots = 27+

n(n+1)/2

)(2n+1)

2

Guidelines

In general, a picture is a proof only if:
@ The picture represents an abstract idea

(T+2+-+mM+(+(-1)+-+1)=
(n+1)+(+1)+---(n+1)=n(n+1)

n

@ The specific drawing of the picture isn’t actually important
@ The picture can be “scaled up” to as big an n as necessary

Remember: it's not the picture that’s the proof-it's the idea that the
picture is representing that really counts

Mathematical Induction (idea)

= Suppose we have an
infinite ladder:

1. We can reach the first
rung of the ladder

2. If wecanreacha
particular rung of the
ladder, then we can
reach the next rung

Ordinary Induction (principle)

= @Goal: prove that P(n) -- predicate on
nonnegative integers -- is true for all n
1. Basis step: show that P(0) is true

2. : assume that P(k)
holds for an arbitrary (integer) k
3. : show that P(k) = P(k + 1)

holds for all k

Induction (rule)

= Rule of inference:
1. Premise 1: P(0)
2. Premise 2: Vk[P(k) = P(k+1)]
3. Conclusion: Vn P(n)
" Note: in a proof by mathematical induction, we

don’t assume that P(k) is true for all positive
integers!

Sum of Integers (proof)

k(k +1)

k
Ind Hyp. Z] =

j=1

Zj + (n+1)

1
n<n2+) 4 (n+1) by ind hyp
1 2 1
n(n2—|—) + (n+1) by arithmetic

nin+1)+2(n+1)

by arithmetic

2 1
(n+2)n+1) distrib in numerator

2
(n+1)(n+2)

5 commutativity &

when k = n.

Sum of Odd Integers (proof)

2
Basis Step. |:Z(2j — 1) = k2:| when £ =0

j=1

Ind Hyp. {Zk:(Qj — 1) = kz} when k£ =n

ji=1
Ind Step. Consider the case £k = n + 1.

n+1

2(23' — 1) = 2(23' — 1) + [2(n + 1) — 1]

= E (27 —1)+2n+1
j=1

= n? + 2n + 1 by ind. hyp.
= (n + 1)? by factoring <

Tiling Boards

= Problem: can we tile a 2k— by — 2X board with one
covered square with L-shaped tiles?

Different Base Case

Example 5.2.2: 2" > n? for all n > 5.
Basis Step. 2° > 52
Ind Hyp. Assume 2¥ > k2 for k > 5

Ind. Step.
2Tl = 2.92% arithmetic
— 2k 4 ok arithmetic
> k?+ k° ind. hyp.
> k? 4+ (2k+1) by Example 5.2.1

(k +1)? arithmetic &

Postage Example

Example 5.2.3: Prove that any postage of 8¢ or
more can be created from nothing but 3¢ and 5¢
stamps.

Basis Step. 8 = 1-3¢ +1-5¢
Ind Hyp. Assume n¢ possible from 3’s and 5’s.

Ind. Step. Try to make (n + 1)¢ postage.
Suppose that n = r -3¢ + s - 5¢

Casel: s>1. Thenn+1 = ...

Case 2: s =0. Thenn+1 = ...

Strong Induction (rule)

= @Goal: prove that P(n) -- predicate on nonnegative
integers -- is true for all n
: show that P(0) is true

. assume that P(k) holds for all integers
less than an arbitrary (integer) k

: show that [P(0),P(1), ... ,P(k)] = P(k + 1) holds
for all k
= Rule of inference:
1. Premise 1: P(0)
2. Premise 2: VK[[V]j <k P(j)] = P(k+1)]
3. Conclusion: Vn P(n)

Product of Primes Example

" Theorem: every integer > 1 is a product of prime numbers
1. Define predicate: P(n) ::= “nis a product of primes”
2. Base case: P(2) is true since 2 is prime (product of length 1)

3. . assume that for all integers less than an
arbitrary (integer) k =2 2, k is a product of primes

4. : show that k + 1 must be a product of primes
" Proofidea:
1. If k+1isitself prime, then it is a product of length 1 by
definition
2. Ifk+1is not prime, then by definition k+1 = a*b. By Ind. Hyp.
{a,b} are products of primes

Recursion

Recursively Defined Functions

* Problem: given a sequence (a,, a4,...,a,) construct a
consistent rule to determine any (nth) term:

» By recursion

» Closed form (can be difficult!)

» A function f(n) is the same as a sequence where f(i) = a;
= Recursive definition:

1. Basis step: specify the value of the function at zero

2. Recursive step: give a rule for finding its value at an
integer from its values at smaller integers.

Recursively Defined Functions (examples)

Example 2.4.5: 1,3,5,7,9,11, ...
recursion: ag =1; a, =a,—1+2forn>1

closed form: a, =2n+1

Example 2.4.6: 1,3,7,13,21,31,43,...
recursion: bg =1; b, =b,_1+2ntforn >1
closed form: b, =n”*+n+1

Example 2.4.7: 1,1,2,3,5,8,13,21,34,...

recursion: cg = 1,¢1 = 1;

Cp = Cp—1 + Cp_o forn >1

1
closed form: ¢, = — [G”H — g”“] where G =

V5

145

2

More Functions (examples)

Example 5.3.1: n-factorial n!

(B) ol=1

(R) m+1)!=Mn+1) n!

Example 5.3.5: partial sums of sequences
i ao ifn=20
]Z:%aj B {Z;:Ol aj + a, otherwise

Example 5.3.3: Hanoi sequence 0,1,3,7,15,...
ho = 0
h, = 2h,_1+1 for n>1

Recursively Defined Sets

" To define a set recursively:

1. Basis step: specify initial collection of elements

2. Recursive (constructor) step: give a rule for forming
new elements from old ones

= Example: the natural numbers N
 (B) Basis step: 0 €N

* (R) Recursive step: IfnisinN,thenn+1isinN

Strings (definition)

= Definition: a set of characters/letters/symbols is
called an

= Definition: a sequence in an alphabet is a

Example 2.4.3: Some common alphabets:
e {0,1} the binary alphabet
e {0,1,2,3,4,5,6,7,8,9} the decimal digits

e {0,1,2,3,4,5,6,7,8,9,A,B,C,D,FE,F}
the hexadecimal digits

e {AB,C,D,... , X,Y, Z} English uppercase
e ASCII

Strings (recursive definition)

= Given alphabet A, define recursive data type A” of

strings over A:

 (B): Ae A" (\isthe empty string)

* (R):IfaeAands€A’, thensaeA”
= Example:

» A={0,1}

> A”":all bit strings, A,0,1, 00,01,10, 11, etc.
= Example:

> A={ab} showthataab €A’

1) AeA*anda €A — g eA*

2) aeA*anda €A — gg EA*

3) aa eA*andbeA — aab eA*

Strings (examples)

Example 5.3.12: binary strings of even length
(B) A e S
(R) If b € S, then 000, 501,510,011 € S.

Example 5.3.13: binary strings of even length
that start with 1

(B) 10,11 € S
(R) If b € S, then b00,0601,010,011 € S.

Example 5.3.16: set of binary palindromes
(B) A\,0,1€ S
(R) If x € S then 0x0,1xz1 € S.

String Concatenation

= Given alphabet A, and a set of strings A,
define the concatenation of two strings,
denoted by -, recursively
« (B): IfweA” thenw-A=w
* (R): Ifw,€A”,w,eA", andx €A, then

w, (W, x)= (w; - w,) X

String Length

= Given alphabet A, and a set of strings A,
recursively define the length of string w
denoted by |w|:

« (B): |\ =0
* (R): |wx|=|w|+1, wherewe A", xeA

Structural Induction

= @Goal: prove that P(r) -- predicate on recursively defined
set R -- is true for all elements of the setr €R

: show that P(b) is true for base case elements b € R

. assume that P(k) holds for all elements
used to construct new elements in the recursive step

: show that the result holds for the newly
constructed elements

Algorithm (definition)

Definition: an is a finite set of precise
instructions for performing computation or
solving a problem

General considerations:

* Running time, resources

* Average/worst/best case scenarios

* When do we terminate the algorithm?
* How do we compare algorithms?

Pseudocode (definition)

" Pseudocode: representation of an algorithm in
prose + code. Preparation step before
implementation

Algo 3.1.1: Find Maximum

Input: unsorted array of integers a1, as,...,a,
Output: largest integer in array

{Initialize} max = a;

For::=2ton
If max < a; then max := a;
Continue with next iteration of for-loop.

Return (maz)

Binary Search (idea)

= Problem definition:

e Given sorted list (vector) of numbers V, and a number X. Find the
index k such that V(k) = X. Return k=-1if Xis notin V.

= Solution approach:
* Scan through the list and compare X to each element
* Linear running time, does not take advantage of the list being sorted

= Better approach:
algorithms
* Break problem into subproblems of the same type
* Constant time to cut problem size by a fraction (usually %)

Binary Search (algorithm)

= Pseudocode:

Input: (ascending order) vector V with N elements, element X
Goal: find index k where V(k) =X or return -1
Assumption: > < operators exist

Algorithm:
1. low_k=1, high k=N
2. while low_k <= high k % we still have indices to check

m = (low_k + high k) /2 % middle element
compare X to V(m)
If X ==V(m) = stop, return k=m
If X >V(m) =» search right half: low_k=m + 1;
if X < V(m) =» search left half: high_k=m-1;
3. Returnk=-1 % we failed to find XinV

Sorting (selection sort algorithm)

" Pseudocode:
* Input: vector V with N elements
e @Goal: sort vector in ascending order
 Assumption: comparison based sorting (> < operators exist)

* Algorithm:
1. Setk=1
2. Locate minimum element in (sub)vector V(k..N)

w

Switch (swap) that element with element at index k

s

Increment k (k = k+1) and go to step 2, stop when k = N-1

Selection Sort (analysis)

= Estimate efficiency of sorting algorithm:

Number of element comparisons
Number of element exchanges

= Selection sort:

First iteration of the loop: N-1 comparisons, 1 exchange
Some iteration: N-k comparisons, 1 exchange

Last iteration: 1 comparison, 1 exchange

Total comparisons: (N-1) + (N-2)+....+2+1 = Nx(N-1)/2
Total exchanges: N-1 (at most)

Big-O Notation (idea)

" Estimate efficiency of algorithm, relative to other
algorithms for identical task
* Difficult to get precise measure

* Approximate effect on change of number of items (N)
processed

 Compare growth rates
e Order of magnitude (O)

Big-O Notation

* Comparing growth rates:

DEF: Let f and g be functions R — R. Then
f is asymptotically dominated by g it

(BK e R) (Vx> K) [f(x) < g(2)]

NOTATION: f <X g.
" Function classes:

DEF: Let f and ¢ be functions R — R. Then
f is in the class O(g) (“big-oh of g") if

(AC eR)[f 2 Cyl

NOTATION: f € O(g).

Witnesses

DEF: Let f and g be functions R — R. Then
f is in the class O(g) (“big-oh of g") if

(3C € R) (3K € R) (Vo > K)[f(z) < Cg(z)

DEF: In the definition above, the multiplier C and
the location K on the z-axis after which Cg(x)
dominates f(x) are called the witnesses to the
relationship f € O(g).

Big-O Notation (example)

Example 3.2.1: 4n? + 21n + 100 € O(n?)
Pf: First suppose that n > 0. Then

A4n? + 21n + 100 < 4n? + 24n + 100
4(n? + 6n + 25)

8n? which holds whenever

IAIA

n? > 6n + 25, which holds whenever
n? — 6n + 9 > 34, which holds whenever
n—3 > \/3_4, which holds whenever n > 9.
Thus,
(Vn > 9)[4n® + 21n + 100 < 8n~]

Witnesses (example 1)

(Yo > 9)dn* + 2 +100< 8] ¢

(=8 and K=9
are witnesses to the relationship
dn* 4+ 20n + 100 € O(n*)

Larger values of C' and K could also serve as
witnesses. However, a value of C less than or equal
to 4 could not be a witness.

Witnesses (example 2)

Example 3.2.4: 2" € O(n!).
Pf:

n times n—1 times

N N
2.9..9=2.1.2.2...9

<2:1:2:3n =2
We have used the witnesses C =2 and K =0. {

Algorithmic Complexity

= Complexity is a measure of resource (time/space)
consumption

= Time complexity: number of computational steps
required to execute an algorithm as a function of input
Size
= Estimate running time of algorithm:
 Worst case scenario: bound
¢ Average case scenario: hard to compute
* Analysis pinpoints bottlenecks

* No particular units of time
* Analyze inside out

P vs NP

= “P”: class of problems which can be solved with
polynomial time algorithms

= “NP”: (nondeterministic polynomial time,
exponential) class of problems whose solution can be
verified in polynomial time

" |mplications of P = NP:

 Complete chaos
* Can solve problems as quickly as we can verify the solution

* Cryptography breaks
 Mathematicians replaced by machines

Factorial

Algo 5.4.5: factorial

recursive function: factorial(n)
Input: integer n > 0
Output: n!

If n =0 then return (1)
else return (prod(n,factorial(n —1)))

Fibonacci Numbers

" Fpb=1,F=1F=2,F;=3,F,=5,.,F=F_;+F,
= Clever use of recursion?

function F = fib(N)
if N <=1
F=1;
else
F = fib(N-1) + fib(N-2);
end

43

Fibonacci Function (call tree)

Fib(0) Fib(1) 1 / \

Binary Search (analysis)

" Binary search is a recursive algorithm, we can define
and solve a recurrence relation:

 Base case: T(0) = constant
* Recursive case: T(N) = T(subproblems) + T(combine solutions)

" Running time depends on:
 Number of subproblems
* Size of subproblems
* Cost of combining solutions

Mergesort (idea)

= Classic divide and conquer strategy:
* Divide list into 2 halves (each half = subproblem)
* Apply algorithm recursively to sort each half
* Merge the two sorted lists

= Merging two sorted lists:
* One pass through the input (N elements)
* Linear running time, at most N-1 comparisons
* Requires a temporary array (additional resource)

Mergesort (algorithm)

= Pseudocode:

Input: vector V with N elements
Goal: sort vector in ascending order
Assumption: comparison based sorting (> < operators exist)

Algorithm:
1. left=1, right=N
2. if left <right % we still need to sort
m = (left + right) / 2 % middle element

mergeSort(V, left, m, T) =>» sort left half

mergeSort(V, m+1, right, T) =2 sort right half

merge(V, left, m+1, right, T) =2 merge sorted halves
3. ReturnV % finished

