W1005 - Fall 2014
Homework 3

* Due by Friday 4pm (Oct. 17t%).
* See submission instructions.
* Always include your name and UNI at the top of your submitted files.

1. The greatest common divisor (gcd) of two integers is the largest
integer that divides them both. For example, the gcd of 20 and 5 is 5;
the gcd of 20 and 15 is also 5.

Implement a recursive function ‘my_gcd’ which takes two input
integers (m,n) and returns the gcd (g) as output.

Write your code for the case m >=n.

If m is less than n, you should warn the user (warning
command) and then swap their values before proceeding.

You should check that m,n are both positive integers

Hint: writing down the stopping case and the recursive call can
simplify implementation.

The problem consists of multiple parts. You should include the

solutions to these parts in a single script called ‘eq_solver.m’. Make
sure to precede each part with a comment.

Given a system of 4 equations with variables x1,x2,x3,x4:
7xx1 + 4xx2 + 2%x3 +7xx4=7
3xx1 + 4*xx2 + 5xx3 +8*xx4 =2
10*xx1 + 8xx2 + 4xx3 +3*xx4=1

8xx2 + 6*x3 +7xx4=75

Solve this system in two different ways.

Using a single matrix multiplication, confirm that the values for
x1,x2,x3,x4 yield the proper solutions to the system.

Note: you can hard-code the system in your script



3. Recall the lecture slides on random numbers. Below we use some of
the commands to generate random data.

a) Write a function ‘rgauss’ which takes as input two uniformly
distributed numbers (ul,u2) and outputs two standard normally
distributed random numbers (z1,z2). You should use the
equations in the relevant lecture slide.

To make sure that part (b) below is easier to solve, ‘rgauss’ should
accept either scalars or vectors/matrices of numbers (ul,u2) and
correspondingly output scalars/vectors/matrices (z1,z2).

b) Write a function ‘rdata’ which takes two input arguments (N,K)
and generates random K-dimensional data as follows:

The function generates a set of N data points (each point has
K attributes/dimensions, point = row of returned matrix)
The function makes calls to the ‘rgauss’ function to generate
each point.

For simplicity assume that K is an even integer

You need to generate uniformly distr. numbers before
calling ‘rgauss’

The function returns a matrix D with the N random data
points that were generated.

c) Write a function ‘data_sample’ which has at least one input
argument (S), and performs the same operation on each
subsequent argument (if they exist):

You can assume that each subsequent (potential) input
argument is a matrix of data points (see part b).

For each data matrix, the function selects a random sample
of size ‘S’ and returns a matrix of only the sampled data
points.

Store your sampled data matrices in a cell array (see hint)
Use ‘randperm’ to choose your random sample. Choose any
settings to your generator (rng), but do NOT use the default
ones.



* You can assume that the number of points in each data
matrix is at least ‘S’ (i.e. there are no errors in the
argument). But the exact number can vary from matrix to
matrix.

* Hint: use varargin, varargout

4. Recall the game from HW2:
Choose any positive integer (1,2,...), call it X.
If X is an even integer you divide X by 2.
If X is an odd integer you multiply X by 3 and add 1.
You continue this procedure until at some point you get 1 as your
next integer. At that point you stop.

a) Write a function named ‘game3’ which has one input argument
{N}, and one output argument {A}. Your function should do the
following:

You are going to play the game in reverse order. So starting from
1 you will backtrack:

512

32 64 128 256 ac

112 4|8]16 21 42 gg
5 10 20 40 13

3 6 12

Note: we ignore the cycle {1,2,4}.

The input parameter N is the number of steps you are going to
backtrack. For each step, you should store all the integers you
reach in the corresponding element of your cell array A.

For example, element 5 of A should be 16, element 6 of A should
be the vector [5, 32].



5. Write a function ‘add_grades’ which takes as input a cell array (G),
an integer (N, which denotes row number) followed by (name,
hw1,hw2, mt) which denote name of each student (string), and their
grades for hw1, hw2, and midterm (all numbers).

Your function should return a single variable (G) which is the
updated cell array with the information entered in the appropriate
row (N).

Your function should accommodate the case when the user calls
add_grades with fewer input arguments than indicated (2 or more
instead of 6). In this case, you should set the value of G in the
appropriate row/column to []. For example, if the user only uses 5
input arguments, you should set the midterm grade to [].

Your zip folder should include the following files:
my_gcd.m
eq_solver.m
game3.m
rgauss.m
rdata.m
data_sample.m
add_grades.m



