W1005 Intro to CS and Programming in MATLAB

Plotting & Visualization

Fall 2014

Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w1005

Outline

- Plots (2D)
- Plot properties
- Figures
- Plots (3D)

2D Plots

- The general function we will use is plot()
 - The function automatically generates a figure for you
- There are many options available:
 - Can specify the properties of the plot in detail
 - Can have multiple curves on the same plot
 - Can have multiple plots in one figure
 - More interesting plots are possible with bar(), pie()

2D Plots (options)

- Option 1: plot(X, Y)
 - Assuming X & Y are vectors, plots Y vs. X
 - A solid curve connecting the points
 - Y & X must have the same length
- Option 2: plot(Y)
 - Similar to option 1, but plots Y vs. 'index'
- Option 3: plot(X, Y, S)
 - 'S' is an optional parameter
 - A character string that controls plot appearance

2D Plots (options)

- Option 3: plot(X, Y, S)
 - Example: S = 'rs:' → plots a red, dotted, line with a square at each data point on the curve
 - 'help plot' for all the string options
- Option 4: plot(X, Y, S, <param>, <val>)
 - Additional plot properties can be specified with different parameters and values
 - Example: plot(X,Y, S, 'LineWidth', 2) set the line-width to size 2
 - Type 'doc plot' for a list of these properties

2D Plots (more options)

More options:

- Can set as many parameters as you wish (just call the function with more parameter-value pairs)
- Can combine plots: plot(X1, Y1, X2, Y2)
- Can 'duplicate' a plot: plot(X, Y, S1, X, Y, S2)
- Plot combination is fine, but not the most elegant approach

Figures (purpose)

- Problem:
 - plot(x,y); plot(x,z); replaces 1st plot with 2nd
- Solution: 'figure' command
 - plot(x,y); figure; plot(x,z);
 - figure(1);
 figure with handle #1
- Close figures:
 - Specific figure: close 1
 - All figures: close all
- MATLAB stores a handle to each figure

Figures (subplots)

- Multiple plots:
 - plot(x,y); hold on; plot(x,z); hold off;
- Multiple plots, same figure:
 - subplot() command
 - figure(1); subplot(2,2,1);

Plots (appearance)

- Many options, can modify plots using the GUI
- Commands: title(), xlabel(), ylabel(), axis(), legend()
- Example:

```
    figure(1);
    title('test');
    xlabel('quantity'); ylabel('price');
    axis([1 5 1 10]);  % AXIS([XMIN XMAX YMIN YMAX])
    grid on;  % Show grid lines
    xlim([1 3]);  % Change x-axis limits
```

Figures (control)

- You have created multiple figures. Which one is the 'current figure'?
- Answer: last figure you clicked on
- Better answer: use gcf() to get the handle
- Use figure(#) to make '#' the current handle
- Commands: gcf(), gca(), clf()
- Set 'object' properties using the set() command:
 - set(gca, 'XTick',[1 2 3]) % To set 'ticks' on the x-axis
- Get 'object' properties using the get() command

Figures (saving & loading)

- MATLAB has a special figure format: '.fig'
- Use savefig(h, 'name.fig') to save figure 'h' (handle)
- Use openfig('name.fig') to open a saved figure
- Saving figures: use print command
 - General Form
 - print -dformat filename
 - Example
 - print –depsc 'figure.eps'
- 'eps' is a format that stores your image in a vectorized way,
 which avoids quality loss after rescaling. It's particularly useful when used within LaTeX

Exercise (in class)

- Simple plot
- Write a function that has one input parameter M, a matrix with 3 columns. Columns {1,2} of M are the {x,y} coordinates of points in the plane. Column 3 is the class to which the point belongs. The values of column 3 are one of two unknown integers
- Your function should plot all points, points in one class should be dots in red, points in the 2nd class should be squares in green. Adjust your axes properly so that the furthest points are not on the edge

3D Line Plots

- Very similar to 2D plotting
- Keyword: plot3()
- Example:

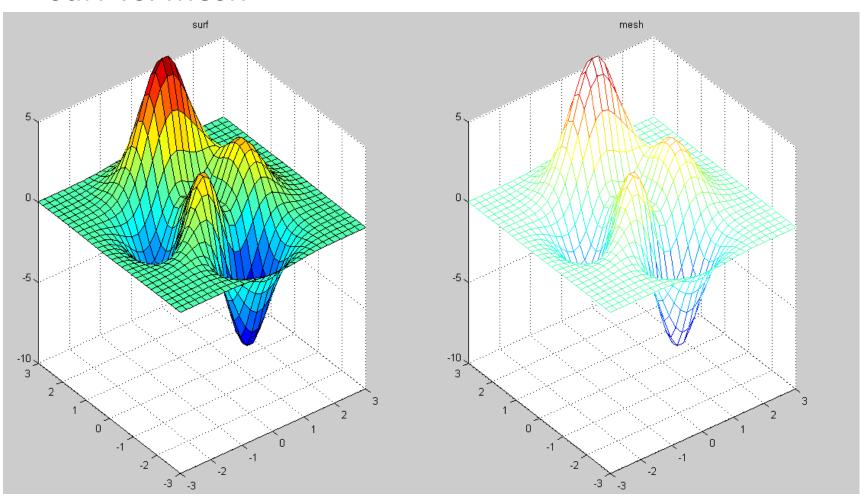
```
    X = 0:0.1:1; Y = X; Z = X.^2+Y.^2;
    plot3(X,Y,Z);
    xlabel('locX'); ylabel('locY'); zlabel('power');
    xlim([0 1]); zlim([0 40]);
```

3D Plots (surface)

- 'plot' functions produce line plots. Suppose we wish to display a 3D surface
- Keywords: meshgrid(), mesh(), surf()
- The command meshgrid(X,Y) creates a grid (domain) with all combinations of {X,Y} elements.
 mesh(X,Y,Z) / surf() are then used to plot the surface

Z = f(X,Y) over the grid

3D Surface (example)


Example:

```
    X = 1:4; Y = 1:3;
    [Xg, Yg] = meshgrid(X,Y); % produce a grid
    Z = Xg.^2 + Yg.^2; % Z = f(X,Y)
    mesh(X,Y,Z); % plot
    surf(X,Y,Z); % plot
```

- 'mesh' plots wireframe. 'surf' plots with shading.
- Can pass a 4th parameter specifying color e.g. "surf(X,Y,Z,C)".
 Otherwise, color is proportional to mesh height.

3D Surface – Example

surf vs. mesh

