W1005
Intro to CS and Programming in MATLAB

Project Example

Instructor: llia Vovsha

http://www.cs.columbia.edu/~vovsha/w1005

The MATLAB Heist

= Suppose you are trying to steal a valuable object
from a room. The room is protected by a laser grid
which functions as a cloak of invisibility. Each laser
dot is connected to every other dot, and each triple
of dots ensures that the triangle defined by them is
invisible

" You have a map which specifies the location of each
laser dot in the room. Your goal is to turn off parts of
the grid until the object becomes visible. To turn off
a part, you need to “unravel” each dot in the triangle

The MATLAB Heist

However, unraveling some dots requires more time
than others. This is reflected by a value (in seconds)

attached to each dot.

Moreover, you need to unravel a given dot each time
you wish to turn off a triangle for which it is a vertex

Not to be misled, you should check whether the area
you are searching is indeed visible

You can stop when the object is found. That is, you
may not need to turn off every triangle

Heist — Problem Formulation

"= More specifically:

The room is defined by the 2D square [0.0,1.0],[0.0,1.0]
The grid is defined by a set of N laser dots (N > 3)
Each dot ‘n’, requires C(n) seconds to unravel

The location of each dot ‘n’ is specified by two coordinates {x,, y,}
Both coordinates are in the range [0.0,1.0]

To visualize the grid, we can connect every pair of dots with a straight
line

= Given the complete grid, how do you choose which parts of

the grid to turn off? How much time does it take to find the
object?

Heist — Problem Formulation

Assumptions:
* Misan N-by-2 (N > 3) matrix specifying the grid
e Columns {1,2} of M are the {x,y} coordinates of the dots respectively
« (C(time)is an N-by-1 (column) vector of positive real values
M consists of real values in the range [0.0,1.0]

All the relevant info is given. That is, {M,N,C} must be known
Note: no guarantee that the parameters are set correctly

Note: there is no a priori information about the location of
the object in the room

15t Step — Approach

" Approach:

1.
2.

Collect and verify all parameters {M,N,C}

Generate some plots: grid (2D), grid vs. time (3D), progress (2D
triangles)

Decide on a search strategy:

|. Determine whether the starting point is in the convex hull for
the grid.

ll. Choose which triangle to turn off (e.g. minimize effort or
maximize triangle area)

lll. Check whether the area you are searching is visible
IV. Update your strategy if necessary and keep track of progress
Evaluate your strategy in hindsight

Convex Set

Definition: a set of points C is convex, if the line
segment between any two pointsin Cliesin C

Formally, if for any {x,y}inCandanyO<w<1,
wx + (1-w)y is in C, then C is convex

Implicitly assuming that C is a subset of the n-
dimensional real space

We can generalize the definition to hold for more
than two points

Convex Hull

Definition: we call a point ‘p’ of the form p = w,x, +
W,X, +...+ W, X,, where w,; + w, +..+ w, =1 and w, >0
(V'i), a convex combination of the points {x,...,X,}.

Convex combination: weighted average of the points

Definition: the set of all convex combinations of
points in C is called the convex hull of C

Convex hull: The smallest convex set that contains C

These notions can be applied to infinite sums and
non-Euclidean spaces as well

2"d Step — Concrete Tasks

" Problems & relevant functionality:
Generate plots: grid (plot, triplot), grid vs. time (plot3)
2. Compute convex hull: use grid data (convhull)

Choose a triangle to turn off: maximize area (polyarea) or minimize

effort by recording every triangle and value and then sorting
(sortrows)

4. Check if area is visible: verify whether a given location is inside a
triangle (inpolygon)

5. Keep track of progress: mark visible triangles (fill)

2"d Step — Remark

= Built-in functionality simplifies work considerably

= The alternative is to define and solve linear
equations (mldivide, linprog)

10

Plotting Grid & Triangles

Recall that M is an N-by-2 (N > 3) matrix specifying
the coordinates of the grid. Every pair of dots is
connected

To plot every triangle, we first need to create a list of

triples. Each triple specifies three (non-collinear)
dots on the grid

Built-in function to plot triangles:
Built-in function to compute triples without loops:

combntns()

= Syntax: combos = combntns(set, subset)

= Action: returns a matrix whose rows are the various
combinations of elements from vector ‘set’. Each
combo (row) is of length ‘subset’

= Example:

combos = combntns (1:3,2) % “3 choose 2”
combos:
[12

13

23]

12

triplot()

= Syntax: triplot(TRI, x, y)
* ftriplot(TRI, x, y, color)
* triplot(TRI, x, y, ‘param’, ‘value’)
= Action: displays the triangles defined in the N-by-3
matrix TRI. A row of TRI contains indices into the

vectors x,y that define a single triangle. The default
line color is blue

= Example:
x =rand(5,1); y =rand(5,1);
combos = combntns (1:5,3); % “5 choose 3”

triplot(combos, x, y);

13

3"d Step (Code) — Plots

= Code to generate plots:

© N O Uk W DN

X=M(;,1); Y =M(;,2);
figure(1);

plot(X,Y, ‘r.’, ‘MarkerSize’, 20);
figure(2);

plot3(X,Y, M(:,3), ‘r.”);
figure(1); hold on;

LT = combntns(1:length(X), 3);
triplot(LT, X, Y, 'black’);

% grid dots
% Create figure
% plot dots

% plot dots vs. time
% Reset to figure 1
% List all triangles
% Plot triangles

Computing Convex Hull

Given a set of points in N-D, computing the hull is
not a trivial task. Several algorithms are available

The optimal algorithm may depend on the properties
of the points

Built-in functions:

The hull is specified by a set of ‘outer boundary’
points

convhull()

= Syntax: [CH,V] = convhull(X,Y)

= Action: returns the 2D convex hull CH of the points
(X,Y), where X and Y are column vectors, and the
corresponding area/volume V bounded by K. ‘CH’ is a
vector of point indices arranged in a counter-
clockwise cycle around the hull

= Example:
x =[0,1,0.5,1,0]’; y=1[0,0,0.5,1,1];

[CH, A] = convhull (x,y); % CH=11,2,4,5,1]", A=1.0(area of
square)

plot(X(CH),y(CH),'r-', XIYIIb-I-l)

16

Polygon Interior Check

Polygon: a plane shape consisting of straight lines
that are joined together to form a circuit

The convex hull for a set of 2D points is a polygon. A
triangle is the simplest polygon

To check whether a point is inside the hull/triangle
we need to define the polygonal region and check if
the point is in the interior

Built-in function to check:

Another approach: solve a set of linear equations
using

inpolygon()

= Syntax: IN = inpolygon(X,Y, Px,Py)
* [IN ON] =inpolygon(X,Y, Px,Py)

= Action: returns a 0/1 matrix ‘IN’ the same size as X &
Y. IN(k) = 1 if {X(k), Y(k)} is inside the polygon or on
the boundary. The polygon vertices are specified by
the vectors {Px, Py}

= Example:
Px=1[0,1,1,0]"; Py=1[0,0,1,1]; % Polygon vertices
X=10.1,0.2,0.5,1]; Y=[0.1,0.2,1.1,0.8]; % Points to test
IN = inpolygon (X,Y,Px,Py); % IN =[1,1,0,1]

18

3"d Step (Code) — Interior Check

= Code to compute/plot convex hull and check

interior:
X=M(;1); Y =M(;,2);

=

plot(X,Y, ‘r.’, prop, 20);

[CH, A] = convhull (X,Y);

Px = X(CH); Py = Y(CH);
plot(Px,Py, ‘g-’, XY, ‘r.”, prop, 20);
IN_H = inpolygon (Ix,ly,Px,Py);

LT = combntns(1:length(X), 3);

Tx = X(LT(k,:)); Ty = Y(LT(k,:));

10. IN_T =inpolygon (Ix,ly,Tx,Ty);

O 0 N O U A WwN

figure(1); hold on; prop = ‘MarkerSize’;

% grid dots

% create figure
% plot dots
% compute hull
% polygon vertices
% plot hull
% {Ix,ly} starting point
% LT is the list of TRG
% triangle vertices
% check if inside triangle

Hull Interior Check — SLE

= Notice that every point inside the convex hull is a
convex combination (weighted avg.) of the points for
which the hull was computed

" |n other words, if pt = {ptx, pty} is inside the hull,

then for some set of weights {w,...w,}:
1. ptx=wX; + WoX, ...+ W X,
2. pty=wy; +w,y, +..t Wy,
3. wtw,+.+w =1
4. Vi,w, 20

" Need to solve a system of linear equations (SLE) with
lower bounds on the variables

Hull Interior Check — Notation

= Standard notation:

B w N e

PtX = W X, + W)X, +...+ WX
pty = W,y + Wy, +.+ WY,
W, +w,+.+w =1

Vi,w, 20

= \ector notation:

B w N

XTW = ptx
Y'W = pty
1™W =1
W2=>0

= Solver form:

1.
2.

[X;Y; 1]'W = [ptx; pty; 1]
0<W

Solving SLE

Given a system of linear equations Ax = b, does it
have a solution?

Depends on the matrix A:

1. If Ais asquare matrix: x =A'b

2. Else we have an under/over-determined system

3. Could have multiple/no solutions for either case
To compute the inverse of A efficiently, can decompose
the matrix. Multiple ways of doing this (LU,QR)

When A is not square, can minimize norm(A*X —B) i.e.,
the length of the vector AX — B. This is the least squares
solution

mldivide (\}

= Syntax: x = A\b
 x=mldivide(A,b)
« x=inv(A)*b
* Action: If A is a square matrix, A\b is roughly the
same as inv(A)*B. Otherwise, x = A\b is the least

squares solution. A warning message is displayed if A
is badly scaled or nearly singular

= Example:
e A=[X;Y;1]"; b=[ptx; pty; 1]; % Hull interior equations
X = A\b; % Solution to SLE

23

Choosing a Strategy

We need a strategy (set of rules) to select which
triangle to turn off next

Greedy algorithm makes the decision that gives the
maximum benefit in the immediate next step (locally
optimal). This decision might not be the best
considering more (all) steps (globally optimal)

Greedy strategy 1: choose the largest triangle

Built-in function to compute area:

Greedy strategy 2: choose the least-effort triangle

Sum the time to unravel the vertices for each triangle

polyarea()

= Syntax: A = polyarea(X,Y)
= Action: returns the area of the polygon specified by
the vertices in the vectors Xand Y. If Xand Y are

matrices of the same size, then the area is computed
for each column (polygon) of {X,Y}

= Example:

e TSx = X(LT); TSy = Y(LT); % Vertices for every triangle
T area=polyarea(TSx', Tsy'); % Area for every triangle

25

3"d Step (Code) — Strategy

= Code to implement strategy:

1. X=M(;,1);Y=M(;2); T=M(,3); % grid dots & time

2. LT =combntns(1:length(X), 3); % LT is the list of TRG

3. TSx =X(LT); TSy = Y(LT); % vertices VTRG

4. T _area = polyarea(TSx', Tsy'); % area VTRG

5. Tot_effort = sum(T(LT),2); % total effort VTRG

6. choice =[LT, T _area', Tot_effort]; % Combine into one mtx
7. top_choice = sortrows (choice,-4); % sort rows by area

8. top_choice =sortrows (choice,[-4,5]); % sort by area then by time

= Syntax: A = fill(X,Y,C)

= Action: fills the polygon whose vertices are specified
in {X,Y} with the constant color specified in C (C can
be a single character string chosen from the list
{r,g,b,c,m,y,w,k} or an RGB row vector triple, [r g b])

= Example:

(X(LT(1,:)),Y(LT(1,:)), 'm"); % fill one triangle
(X(LT)",Y(LT)",'m"); % fill every triangle

3"d Step (Code) — Tracking

= Code to track progress:

N O U A wWwbhRe

X=M(;,1); Y =M(:;,2); T=M(:,3);

LT = combntns(1:length(X), 3);
figure(1); hold on;

All(X(LT)", Y(LT)",'m");

triplot(LT, X, Y, 'black');

[CH, A] = convhull (X,Y);
plot(X(CH),Y(CH), ‘g-’, X,Y, ‘r.”, prop, 20);

% grid dots & time
% LT is the list of TRG
% create figure
% fill every triangle
% Plot triangles
% compute hull

% plot hull

