W1005
Intro to CS and Programming in MATLAB

Optimization

Fall 2014
Instructor: llia Vovsha

http://www.cs.columbia.edu/~vovsha/w1005

Outline

= Problem Formulation
= Optimization
= Toolbox

Writing a Best Seller

= Consider the following scenario: you are an aspiring
writer trying to publish the next best-seller. You
come across a secret report describing the “quality”
of each word in the English vocabulary with respect
to many characteristics (aspects)

= Each word also has a “popularity penalty” associated
with it (people don’t like long and complicated text)

" Your goal is to choose your words wisely ensuring
that they complement each other in terms of
characteristics while minimizing the penalty

WBS — Problem Formulation

"= More specifically:

Your text is represented by fraction (%) of each word in it
You have a vocabulary of N words to choose from
Each word ‘X', has a penalty of C(x)

The quality report consists of K marks for each word. Each mark is a
real value in the range [0.0,1.0] indicating the word’s quality with
respect to an aspect (i.e. 0.0 is ‘no effect’, 1.0 is ‘maximum effect’)

To ensure that your text is well written, you require that the total
quality of all words for every aspect ‘k’ is at least some value B(k)

= Given all the relevant info (vocabulary, penalty, quality

report), which words do you choose and how often (%), to
make your text a best-seller?

WBS — Problem Formulation

Assumptions:

Each word 0 <x <1, vocabularysize=N
C (penalty) is an N-by-1 (column) vector of positive real values

R is an N-by-K matrix of real values in the range [0.0,1.0]. Each row
represents a word. Each column represents an aspect

B (total quality) is a 1-by-K (row) vector of positive real values

All the relevant info is given. That is, {N,C,R,B} must be
supplied to us

Note: no guarantee that the parameters are set correctly

Note: words are represented by percentages, hence the
lower/upper bounds on ‘X’

Optimization

“Do things best under the given circumstances”

Applications in almost every field imaginable:
planning, scheduling, resource allocation,
management, traffic control

Optimization problem:

Make a decision

Express/control the quality of the decision by the objective function
Typically a minimization/maximization task

Express “circumstances” that affect the decision as constraints

The type of opt. prob. is determined by the nature of the objective
function and the constraints

Optimization — General Form

General From:
minimize F(x)
subjectto: g(x)<b, i=1,..,m

" The problem is characterized by the objective
function F(x), and the constraints g.(x)

*= The variable or vector x, belongs to some domain/set
S specified by the constraints

" Linear and Quadratic programs are the most
frequent problems you are likely to encounter

MATLAB Optimization Toolbox

= Extensive package. Many routines, options. Plenty of
documentation (‘help’ is not sufficient)

First step: define your problem clearly, write down your
equations

Second step: find the appropriate solver (what type of
problem are you solving?)

Third step: convert your problem to solver form. This
might require combining equations, switching sign of
equations & objective, adding equations

Fourth step: set options, call solver, examine the solution

15t Step — Approach

" Approach:
1. Collect all parameters {N,C,R,B} % Input/load data
2. Verify that parameters are set correctly % Error checking
3. State the problem in mathematical notation:

* We are clearly solving a constrained optimization problem

« We are trying to minimize a linear objective (minimize the total
penalty), subject to:

* One equality constraint, total fractions of words sum to 1

 Klinear inequality constraints (total quality for some aspect is
one constraint, we have K aspects)

Ourvariables must be real [0,1], text may consist of a single
word or not contain a given word at all

Output/verify the solution % Output/save solution

15t Step — Notation

Mathematical notation:
1. Let X be the variable/solution (column) vector, X € [0,1]N
2. We wish to minimize the objective function C'X
3. One equality constraint: 3 x, = 1
4. Klinear inequality constraints: R™X > BT
5. Complete form:

minimize C™X

subject to: R'X > BT
1™X=1
Vi, X. € [0,1]

2"d Step — Choose Solver

" Find appropriate solver:
http://www.mathworks.com/help/optim/index.html

* Frequent solvers: linprog(), quadprog(), fmincon()

= Solver form example:
* Linear program

[A-x = b,
min ' x suchthat I Aeq-x = beq,
Ib=x=ub

11

3"d Step — Solver Form

= MATLAB Toolbox notation:

Appropriate solver:

Why? Solution vector is a vector of real numbers (with bounds),
objective is linear and the constraints are linear

Convert to solver form:

1. f=C;

2. A=-R) % Change sign, transpose

3. b=-B % Change sign, column vector

4. Aeq=ones(1,N); %1'X=1

5. beq=1; ([A-x=s b,
6. Ib=zeros(N,1); mxinfo suchthat] Aeq:x = beq,
7. ub=ones(N,1); Ib<x<ub

Ath Step — Call Solver

= Converted to solver form, variables {f, A, b, Aeq, beq,
b, ub}

" Function call options (syntax):

X = linprog(f)

x = linprog(f,A,b)

x = linprog(f,A,b,Aeq,beq)

x = linprog(f,A,b,Aeq,beq,lb,ub)

x = linprog(f,A,b,Aeq,Beq,lb,ub,x0,options)
X = linprog(problem)

[x,fval] = linprog(...)

[x,fval,exitflag] = linprog(...)
[x,fval,exitflag,output] = linprog(...)

General Solver Rules

= Syntax rules (for all solvers):

Parameter not passed, assume it is empty
Parameter order is important

To include a subsequent parameter, but omit a preceding one, pass
an empty array []

‘options’ is a struct specifying optimization method details. Ignore it,
unless you know a thing or two about the field

Instead of passing many parameters, can pass a single struct
‘problem’ with appropriate fields

Output parameters include solution (x), value of objective function at
the solution (fval), flag indicating outcome of call (exitflag), and details
about the execution (output)

linprog() — Examples

" Parameter not passed, assume it is empty:
e x=linprog(f) % Minimize objective without constraints

" Include subsequent parameter, omit preceding one:
 x=linprog(f, [], [1,Aeq,beq) % No inequality constraints

= Pass asingle struct:
problem.f =C;
problem.Aineq = -R’;
problem.solver = ‘linprog’;

B w N e

X = linprog(problem);

Notice that field names are slightly different
Must set all fields except x0 (set to empty if doesn’t exist)

15

linprog() — Examples

= Qutput parameters:

‘x’: the solution vector
‘exitflag’: if returns 1, problem solved successfully

‘output’: a structure with solution details. For example, output.time is
execution time

Can name parameters in any way you wish
[soln, fval, the flag, soln_details] = linprog(problem)

If solution vector is not what it should be, you must check all output
parameters to discover the problem. You should start with the
‘exitflag’, though there is no prescribed approach to detect a problem

16

