W1005 Intro to CS and Programming in MATLAB

Math

Fall 2014

Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/w1005

Outline

- Random numbers
- Linear algebra
 - Linear equations
 - Least squares
- Numeric errors

Random Numbers (purpose)

- Sampling and simulation (statistics)
- Cryptography (security)
- Algorithms
- Games

Random Numbers (generation)

- Two methods:
 - Measure physical phenomena
 - Computational algorithms
- Pseudo-Random Number Generator: algorithm which generates a sequence of predictable values if the initial <u>seed/key</u> is known
- Default generator: Mersenne Twister
- Issues:
 - Eventually the sequence repeats
 - The sequence converges to some number
 - Not (cryptographically) secure

Middle-Square Method

- Simple (but poor quality) PRNG:
 - Goal: generate sequence of n-digit numbers
 - Seed: n-digit number
 - Algorithm:
 - Initial value = seed
 - 2. Square initial value (V) producing a 2*n-digit number (P)
 - 3. If result is less than 2*n digits, add leading zeros
 - 4. The middle n digits of P would be the next number in the sequence.
 - 5. Set V = P and go to step (2)
- Example: 0540 -> 2916 -> 5030 -> 3009

Random Numbers (commands)

Relevant built-in functions:

- rng(<seed>, '<generator>'): set generator
- rand(m,n): uniformly distr. random numbers (0,1)
- randi([imin,imax],m,n): uniformly distr. Integers from the interval
- randn(m,n): normally distr. random numbers (mean = 0, var = 1)
- randperm(n): random permutation of integers from 1 to n

Box-Muller Transform

Method for generating standard, normally distr.
 random numbers given uniformly distr. numbers

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp^{\frac{-(x-\mu)^2}{2\sigma^2}} \Rightarrow f(x) = \frac{1}{\sqrt{2\pi}} \exp^{-x^2/2}$$

• Given U_1, U_2 , get Z_1, Z_2 :

$$Z_1 = \sqrt{-2 \ln U_1} \cos(2\pi U_2)$$

$$Z_2 = \sqrt{-2 \ln U_1} \sin(2\pi U_2)$$

Linear Equations (notation)

- Common linear algebra problem: find solution for a set of linear equations
- Notation:

$$\begin{bmatrix} ax_1 + by_1 = c \\ ax_2 + by_2 = c \end{bmatrix} \equiv \begin{bmatrix} x_1 & y_1 \\ x_2 & y_2 \end{bmatrix} \begin{bmatrix} a/c \\ b/c \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\equiv \begin{bmatrix} e_{1,1} & e_{1,2} \\ e_{2,1} & e_{2,2} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
$$\equiv A\vec{x} = \vec{b}$$

Linear Equations (concepts)

Fundamental questions:

- Does the solution exist?
- 2. Is the solution unique?
- 3. Approach for finding the solution?

General considerations:

- 1. Rank of matrix (linear independence)
- 2. Number of equations vs. number of unknowns
- 3. Gaussian elimination, LU factorization, computing inverse

$$A\vec{x} = \vec{b}$$

Linear Equations (solution)

- Rank of matrix: # of linearly independent columns
- Fewer eqtns than vars (under-determined) → inifintely many solutions
- Fewer vars than eqtns (over-determined) → no solution
- Does 'A' have an inverse?

$$A\vec{x} = \vec{b}$$

$$\vec{x} = A^{-1}\vec{b}$$

Linear Equations (commands)

- Rank of matrix: rank(A) == rank([A,b])
- If augmented matrix has same rank, then A has an inverse, and the solution is unique $A\vec{x} = b$
- Find inverse:
 - $inv(A) \rightarrow x = inv(A)*b;$
 - Better approach (LU factorization): x = A b;

$$\vec{x} = A^{-1}\vec{b}$$

- Over-determined case: *least squares* solution
- **Under-determined case:**
 - Maximally sparse solution \rightarrow x1 = A\b;
 - Smallest norm solution \rightarrow x2 = pinv(A)*b;
 - Compare norms: norm(x1)

Least Squares (commands)

- Over-determined case: least squares solution
- Minimize norm of the squared residual error
- Least squares problems:
 - Linear least squares

$$\vec{e} = A\vec{x} - \vec{b}$$

- Weighted least squares (weight for each example)
- Nonlinear least squares (fit nonlinear model to data)
- Commands: x = A\b, Iscov(), Isqnonneg()

Numeric Errors

- Sources of numerical inaccuracies in computation
- Representational error:
 - Some numbers can't be represented exactly
 - Errors depend on storage bits
- Cancellation error:
 - Large numbers can cancel out smaller numbers (addition)
- Arithmetic underflow/overflow error:
 - Multiplication of two very small numbers is zero (underflow)
 - Multiplication of two very large numbers is infinity (overflow)

Numeric Computation (examples)

Representational error:

- a = 0.42 0.5 + 0.08
- b = 0.08 0.5 + 0.42
- a == b?
- sin(0) == sin(pi) ?