W1005
Intro to CS and Programming in MATLAB

Functions

Fall 2014
Instructor: llia Vovsha

http://www.cs.columbia.edu/~vovsha/w1005

Outline

" Functions
B Recursion
" Errors

Functions

Three Types: M-file, anonymous, inline

The body of a function is just a set of statements (no
different from a script)

1st line (function-declaration line) defines the
function (name & input/output variables)

Function name and file name should be identical

Functions (rules)

" The keyword is function. There are multiple ways of
defining (M-file) functions:
function < name > (<var>)
function < name > (<varl>, <var2>)
function < out_var > = <name> (<var>)

function [<out_varl>, <out_var2>] = <name> (<varl>,<var2>)
" You can use the keyword end to terminate a
function, but this is not required

" The first set of contiguous comment lines after
declaration line are the ‘help text’

Functions (rules)

|dentified input and output variables are /ocal to the
function

Can’t pass data back through input variables

Can make calls with fewer input/output arguments
than specified.

Can’t make calls with more

Function terminates at the last statement unless a
‘return’ statement is encountered

Functions (example)

function wakeup(N)

if N> 10
pause(N);
disp(‘Alarm’);
beep;

end

function s =total(A,B)

if length(A) == length(B)
s=A+B;

else
s =A(1) + B(1);

end

Functions (arguments)

" |tis possible to have a ‘variable’ number of (input or
output) arguments:

function < name > (<var>, varargin)

function [<out_varl>, varargout] = <name> (<varl>,<var2>)

= varargin, varargout are cell arrays (we discuss these
later)

" You can check the number of declared input (output)
arguments for the function using nargin, nargout:

Example: nargin(‘mean’)

Recursion

Recursive function: function that calls itself

After last function call: “collect” return values or
unwind the recursion

Template:
* Identify stopping case and return value

* |f stopping case is not reached, make call (recursive call) to function
itself with different arguments

Examples: Fibonacci numbers, factorial function

Recursion Example (factorial)

Count the number of ways in which n objects can be
permuted (arranged)

The factorial (n!) is defined for a positive integer n as
n! =n*(n-1)...2*1

Special case: 0! =1 (one way to arrange zero
objects)

Template:
e Ifn=0orn=1: Return1
* Recursive call: Returnn * (n-1)!

Factorial (code)

function v =recfact(n)
if n <=1

v=1;
else

v = n*recfact(n-1);
end

10

Exercise (In Class)

" Functions & matrix manipulation

= Suppose M is a {0,1} matrix that represents a
directed graph. If M(i,j) = 1, then there exists a
directed edge from i to j. Write a function that takes
M as input, and (for every edge) prints the word
‘edge’ followed by the vertices of the edge. The
function should return the total number of edges in
the graph in the variable T.

Errors

= General error types:
* Syntax: violation of grammar rules, during compilation
* Run-time: during execution of program
* Logic: faulty algorithm

= Error messages:

 Compiler-generated (syntax errors)
» Self-error-checking (logic errors)

12

Error Checking

To abort operation use error function

To report a warning and then continue operation use
warning function

Warnings can be turned on and off

Terminate execution before reaching end of file: use
keyword return

Factorial (code + error checking)

function v =recfact(n)
if n <0

error(‘n must be positive’);
elseifn > 20

warning(‘too big %d’, n);
end

if n <=1

v=1;
else

v = n*recfact(n-1);
end

14

Try-Catch Blocks

= User-controlled trapping of errors

= Execute (try) some block of code, if no errors, skip to
end statement, otherwise execute code after catch

statement (catch error)

try
% code block

catch
% code block

end

