W1005
Intro to CS and Programming in MATLAB

Control Flow

Fall 2014
Instructor: llia Vovsha

http://www.cs.columbia.edu/~vovsha/w1005

Outline

" Array Manipulation
= Control Flow

Array Manipulation

" Special functions for arrays:
e sum(), prod(), mean(), max(), min()
* First argument we pass to each function is the array
 What if array is a matrix, what does sum(X) mean?

= Useful routines:
* sort(), find(), sortrows(), any()

 Same issue as above, what does sort a matrix mean?

Array Manipulation

" Special functions for arrays:

sum(), prod(), mean(), max(), min()

= Suppose M is a matrix, then:

TScol = sum(M); TScol is a row vector, each element is the column sum

TSrow = sum(M,2); TSrow is a column vector, each element is the row sum

TS = sum(sum(M)); TS is the total sum of all elements in the matrix

Can also obtain the location of the max/min value (if argument is a vector):
[val, loc] = min(M);

Array Manipulation

= Useful routines:

* sort(), find(), sortrows(), any()

" Function sort() sorts elements in ascending (default)

order. Can specify the order explicitly:
e sort_list = sort(M, ‘descend’);
e |f Mis a matrix, sorts each column independently
* Asabove, can sort across columns: sort(M,2, ‘ascend’)
* |f consistency between rows is required, use sortrows()

Array Manipulation

= Function find() returns indices of elements which
satisfy some condition:

* find(M) Return indices of nonzero elements of M (default)
* find(M==1) Return indices of elements of M equal to one
 find(M>=2&M<6) Return indices that satisfy both conditions

= |f M is a matrix, the returned index is a single value which is a
bit annoying. Solution: use ind2sub(), sub2ind() to convert
between indices

= [r,c] = ind2sub(size(M),index)

Control Flow

Without flow, the scripts have no life

In general: a control flow statement begins with
some keyword and ends with the keyword end

General Form (|f) if (conditional statement)
body
end
Example:
if x==1
y=5;
end

Control Flow — Cond. Statement

General Form (if):

if (conditional statement)
body
end

Conditional statements can be with or without ()

Typically use logical and relational operators in the condition:
* | (OR), & (and), ~ (NOT)
Good idea to use () when the statement is a long one
Alternative: define a variable in the previous line
e T=(x==2||y==3)&x>5;
e if(T) ..

Control Flow (if — else)

"= General Form (if - else): = Example:

if (conditional statement) if x==
bodyl y = 5;
else else
body2 y = 2;
end end

Control Flow (if — elseif)

= General Form (if — elseif): = Example:

if (cond. statementl)
bodyl

elseif (cond. statement2)
body2

else
body3

end

if x==
y:
elseif x
y:
else
y:
end

10

Control Flow — Loops (for)

= Used for repetition = Notice how the
= General Form (for): iteration variable is
—— , iterated over a row
for “iteration variable”
body vector
end
= Example:
for i =1:5
disp(i+1);
end

Control Flow — Loops (while)

"= General Form (while): = Example:
while (cond. statement) x=0;
body while x<5
end X =x+1;
disp(x);
end

Control Flow — Loops (break)

= Example (continue): = Example (break):
y=0; y=0;
for x = 1:10 for x = 1:10
if (x==3) if (x==3)
continue; break;
end end
y=y+1, y=y+1,
end end
= Whatisy="7

= Whatisy="7

Control Flow — Caveat

" Loops are extremely inefficient in MATLAB, avoid
them like the plague!

= Alternatives?
e Built-in functions (find, sort, rand)
* Pre-allocate memory (initialize array before entering loop)

Exercise (In Class)

" Control flow & array manipulation

= Write a script that takes two (hard-coded) vectors
{A,B}. For every element of A, print the element of B
at the corresponding index (index = element of A). At
the end of the procedure, print the sum and product
of the printed elements

Switch Statement — Usage

When?

e More than 2-3 choices

* Choice is based on a common expression

How?

switch switch_expr % Expression is a scalar or a string
case case_expr % Match ‘case_expr’
statement(s)
case {case_exprl,case expr2} % Match any case in the array
statement(s)
otherwise
statement(s)
end

Switch Statement — Usage

Brackets {} are not required unless you wish to
execute the same code for more than one case

‘break’ statements are redundant. Unlike C++ for
example, there is no ‘falling through’

‘otherwise’ is optional

