W1005
Intro to CS and Programming in MATLAB

Algorithms

Fall 2014
Instructor: llia Vovsha

http://www.cs.columbia.edu/~vovsha/w1005

Algorithms (part 1)

= Selection sort algorithm
e Subfunctions
e Scope of variables

" Running time, big-O notation
e forloops, if-else statements

* Short-circuiting

" |nsertion sort algorithm

 Comparison of algorithms
* Function handles

Algorithms

" General considerations:
e Set of rules to accomplish a specific task
* Process information into ideal format (e.g. sort before displaying)
* Running time, resources (memory)
* Average/worst/best case scenarios

* Possible approach: break down complicated problem into simpler
sub-problems. Solve sub-problems with existing, tested components

* When do we terminate the algorithm?
e How do we compare algorithms?

Selection Sort

" Pseudocode:
* Input: vector V with N elements
e @Goal: sort vector in ascending order
 Assumption: comparison based sorting (> < operators exist)

* Algorithm:
1. Setk=1
2. Locate minimum element in (sub)vector V(k..N)
3. Switch (swap) that element with element at index k
4. Incrementk (k =k+1) and go to step 2, stop when k = N-1

Selection Sort (code)

function V =ssort(V)
N = length(V);

for k=1:N-1
% locate minimum index
idx = locate_min(V,k,N);
% swap elements
V = swap(V,idx,k);

end

Subfunctions

= Typically one function for one file (file name =
function name)

= Also possible to include multiple functions in one file:

* Main function and sub-functions

e Sub-functions are only “visible” to other functions in the
same file

e Useful when you have many minor and very specific
routines

* Type ‘help function’ to see an example

Selection Sort (subfunctions)

function V = ssort(V)

N = length(V);

for k=1:N-1
idx = locate_min(V,k,N);
V = swap(V,idx,k);

end

function idx = locate_min(V,k,N)
% body of subfunction

function V = swap(V,E1,E2)

% body of subfunction

Scope

Scope of name: region where particular meaning of a
name is visible or can be referenced

Each function has a separate “workspace” (scope),
but they can share variables if they are declared
within each desired scope

 global my_cell

Selection sort example:

= Add: declaration to main function and “swap” subfunction

NOT recommended! (alternative: nested functions)

Selection sort (analysis)

= Estimate efficiency of sorting algorithm:

Number of element comparisons
Number of element exchanges

= Selection sort:

First iteration of the loop: N-1 comparisons, 1 exchange
Some iteration: N-k comparisons, 1 exchange

Last iteration: 1 comparison, 1 exchange

Total comparisons: (N-1) + (N-2)+....+2+1 = Nx(N-1)/2
Total exchanges: N-1 (at most)

Big-O Notation

= Estimate efficiency of algorithm, relative to other
algorithms for identical task

Difficult to get precise measure

Approximate effect on change of number of items (n) processed
Compare growth rates

Order of magnitude (O)

» Definitions:
T(N) = O(f(N)) =>» {existc,ny>0}: T(N) < cf(N) when N 2n,
T(N) = Q(f(N)) =>» {existc,ny>0}: T(N) > cf(N) when N 2n,
T(N) = 6(f(N)) €=> T(N) = O(f(N)) and T(N) = Q(f(N))

Big-O Notation (rules)

= Conventions:

* T(N) = O(f(N)) =>» fupperboundonT
* T(N) = Q(f(N)) =>» flower boundon T
 Choose tightest bound

 Don’tinclude constants, or lower order terms
* Using L'Hopital’s rule is usually overkill

= Rules: T1(N) = O(f(N)), T2(N) = O(g(N))
a) T1(N)+T2(N) = max{O(f(N)), O(g(N)) }
b) T1(N) * T2(N) = O(f(N)* g(N))

Running Time Calculations

= Estimate running time of algorithm:
* Worst case scenario: bound
e Average case scenario: hard to compute
* Analysis pinpoints bottlenecks

* No particular units of time
* Analyze inside out

= General rules (worst case)
* For Loops: RT(statements inside loop) x (# iterations)
* Nested Loops: RT(inner for loop) x (sizes of outer loops)

* Consecutive Statements: add RT (maximum counts)
* If/Else: RT(condition test) + max{RT(if code block),RT(else code block)}

Logical Short-Circuiting

" Logical operators for conditional statements: with
logical short-circuiting, the second operand is
evaluated only when the result is not fully
determined by the first operand

" &&, ||

* logical operation with short-circuiting behavior
* Each expression must evaluate to a scalar logical result

 Using the & and | operators for short-circuiting can yield unexpected
results when the expressions do not evaluate to logical scalars

Insertion Sort

= Pseudocode:

Input: vector V with N elements
Goal: sort vector in ascending order
Assumption: comparison based sorting (> < operators exist)
Algorithm:
1. Setk=2
2. Sort (sub)vector V(1..k)
=>» Using fact that subvector V(1..k-1) is already sorted
= Move element in position k left until correct place found
3. Increment k (k =k+1) and go to step 2, stop when k=N

Insertion Sort (code)

function V =isort(V)
N = length(V);

for k=2:N
% find where to move left
idx = move_left(V,k);
% swap elements
V = swap(V,idx,k);
end

Insertion Sort (example)

34 8 64 51 32 21 Original

8 34 64 51 32 21 After k=2
8 34 64 51 32 21 After k=3
8 34 51 64 32 21 After k=4
8 32 34 5164 21 After k=5
8 21 32 34 51 64 After k=6

Function Handles @

= Function handle: a variable that stores an identifier
for a function

e hl=@min; % ‘h1’ can now be used instead of ‘min’
 val =h1(rand(3)) % Same as val = min(rand(3))

= Can use handles in cell arrays or structs, but not in
regular arrays:
e C={@min, @max, @mean};

e S.a=@min;S.b=@max; S.c= @mean;

* A={@min@max}; WRONG!

Function Handles @

" Purpose of function handles:

Suppose the user should be able to choose which sub-

routine to use. Thus, a mechanism to pass a parameter
which specifies the sub-routine is required

Example: which sorting algorithm to use
Can’t pass a function, so pass a handle instead

Also possible to define functions on the fly (
functions):

1. sqr= @(x) x."2;
2. a=sqgr(5);

Algorithms (part 2)

" Binary Search
= Mergesort algorithm

Debugging, time functions
Profiling

" Running time for recursive functions
Fibonacci numbers
P vs NP

Binary Search

= Problem definition:

= Given sorted list (vector) of numbers V, and a number X. Find the
index k such that V(k) = X. Return k=-1if Xis notin V.

= Solution approach:
= Scan through the list and compare X to each element
= Linear running time, does not take advantage of the list being sorted

= Better approach:
algorithms
= Break problem into subproblems of the same type
= Constant time to cut problem size by a fraction (usually 7%)

Binary Search (algorithm)

= Pseudocode:

Input: (ascending order) vector V with N elements, element X
Goal: find index k where V(k) =X or return -1
Assumption: > < operators exist

Algorithm:
1. low_k=1, high k=N
2. while low_k <= high k % we still have indices to check

m = (low_k + high k) /2 % middle element
compare X to V(m)
If X ==V(m) = stop, return k=m
If X >V(m) =» search right half: low_k=m + 1;
if X < V(m) =» search left half: high_k=m-1;
3. Returnk=-1 % we failed to find XinV

Binary Search (analysis)

" Binary search is a recursive algorithm, we can define
and solve a recurrence relation:

 Base case: T(0) = constant
* Recursive case: T(N) = T(subproblems) + T(combine solutions)

" Running time depends on:
 Number of subproblems
* Size of subproblems
* Cost of combining solutions

Mergesort (idea)

= Classic divide and conquer strategy:
* Divide list into 2 halves (each half = subproblem)
* Apply algorithm recursively to sort each half
* Merge the two sorted lists

= Merging two sorted lists:
* One pass through the input (N elements)
* Linear running time, at most N-1 comparisons
* Requires a temporary array (additional resource)

Mergesort (algorithm)

= Pseudocode:

Input: vector V with N elements
Goal: sort vector in ascending order
Assumption: comparison based sorting (> < operators exist)

Algorithm:
1. left=1, right=N
2. if left <right % we still need to sort
m = (left + right) / 2 % middle element

mergeSort(V, left, m, T) =>» sort left half

mergeSort(V, m+1, right, T) =2 sort right half

merge(V, left, m+1, right, T) =2 merge sorted halves
3. ReturnV % finished

Mergesort (example)

34 8
34 8
34 8

0O OO0 00 OO (0]

(00)

34
34
34
34
34
34

34

64
64

51

51
51
51
51

51

51
51

64

64
64
64
64

64

32
32
32
32

32
32
32
32
21

21

21 99
21 99
21 99
21 99

w w w w

21 99 3

21 99 3
21 99 3
21
32

32 3 99

Original
[split][sort L]
[split][sort LL]
merge(LL)
sort(LR)
merge(LR)

merge(L)
sort(R)
[split][sort RL]
merge(RL)
sort(RR)
merge(RR)

25

Mergesort (code)

function SV = msort(V)
N = length(V);
if N==
SV =V;
else
m = floor(N/2);
VL = msort(V(1:m));
VR = msort(V(m+1:N));
SV = merge(VL,VR);
end

function M = merge(L,R)
% body of subfunction

% Middle element
% Sort left half

% Sort right half
% Merge

Time Functions

" Time a sequence of operations:
e Start stopwatch: tic
e Stop stopwatch, display elapsed time: toc
e Related functions: clock, etime, cputime

* To track time progress include multiple ‘toc’ commands (but a single
‘tic’ command)

« Example: tic; SV =msort(V); toc; SV
* ‘tic’ /‘toc’ inside ‘msort’ =¥ different purpose (due to recursive calls)

Profiling

= Optimize execution of M-files:

Turn it on: profile on

Run the code / functions

View generated report in HTML format: profile viewer

Create report without GUI: profsave(profile(‘info’), ‘dir_name’)

Helpful functions for Debugging:

Give control to keyboard (user): keyboard
Parse file for syntax errors: mlint ftest
‘doc debug’

28

Binary Search (solve recurrence)

" Binary search is a recursive algorithm, we can define
and solve a recurrence relation:

T(1) = C
T(N) = TN2)+C N> 1

T(N) = T(NM4)+C+C
T(N) = T(N/8) + 3C
T(N) = T(N/2¥ +k*C
T(N) = T(1) + C*logN
T(N) = O(logN)

Factorial (analysis)

* What is the running time? Just a thinly veiled “for
loop”, hence O(N)

* Poor use of recursion (easy to convert into a loop)

function v =recfact(n)
if n <=1

v=1;
else

v =n * recfact(n-1);
end

Fibonacci Numbers (code)

" Fp=1,F=1F=2,F=3,F,=5,.,F=F +F,
= Clever use of recursion?

function F = fib(N)
if N <=1
F=1;
else
F = fib(N-1) + fib(N-2);
end

Fibonacci Function (call tree)

Fib(0) Fib(1) 1 / \

Fibonacci Numbers (analysis)

" F,=1,F,=1,F,=2,F;=3,F,=5,...,F.=F_;+F,
* Running time: T(N) = fib(N)

T(0) = T(1) = C N=0,N=1
T(N) = T(N-1)+ T(N-2)+2 N> 1

T(N)
T(N)

Fy < (5/3)N
Fy > (32N N> 4

" Proof by induction:
 Demonstrate simple (base) case
e Assume inductive hypothesis is correct up to some k
* Prove statement for k+1

Proof by Induction

" Fo=1,F=1,F,=2,F;=3,F,=5,.,F=F_+F,,

Given: Fy=Fy, + Fao
Prove: Fy < (5/3)N

Fy = Fao +Fao
< (5/3)N-1 4 (5/3)N-2
< (B/5(5/3)N+ (3/5)*(5/3)N
< (3/5+9/25)(5/3)N
< (24/25)(5/3)N
< (5/3)N

Fibonacci Numbers (summary)

" Fpb=1,F=1F=2,F=3,F,=5,.,F=F +F,

T0) = T(1) = C N=0,N=1
T(N) = T(N-1) + T(N-2)+2 N> 1

T(N) = Fy, < (5/3)N

T(N) = Fy, = (32N N >4
T(N) = O((5/3)")

T(N) = Q((3/2)")

T(N) = 06(rN), wherer=(1+V5)/2

= Exponential, very inefficient!
= Don’t throw away work!

Mergesort (analysis)

= Similar to Binary Search, we can define and solve a
recurrence relation:

T(1) = C
T(N) = 2T(N/2) + N N> I

T(N/2) = 2T(N/4) + N/2

2T(N/2) = 2[2T(N/4) + N/2 | = 4T(N/4) + N
T(N) = 4T(N/4) + 2N

4T(N/4) = 8T(N/8) + N

T(N) = 8T(N/8) + 3N

T(N) = 2KT(N/2%) + k*N

T(N) =NT(1) + N logN N =2k

T(N) =O(N logN)

P vs NP

= “P”: class of problems which can be solved with
polynomial time algorithms

= “NP”: (nondeterministic polynomial time,
exponential) class of problems whose solution can be
verified in polynomial time

" |mplications of P = NP:

 Complete chaos
* Can solve problems as quickly as we can verify the solution

* Cryptography breaks
 Mathematicians replaced by machines

Algorithms (part 3)

= Quicksort algorithm
* Picking the pivot
* Partitioning strategy

Quicksort (idea)

* Divide and conquer recursive algorithm:
* Pick some “pivot” element “x” in the original list (vector)

e Partition the remaining elements in the list “V — {x}” into two disjoint
groups: { elements less than x, elements greater than x }

* Apply algorithm recursively to sort each group
* Return sorted list: “group 1” then “x” then “group 2”

= Partition step:
 What should we do with elements equal to the pivot?
* Linear running time, at most N-1 comparisons

 Why better than mergesort?

Quicksort (running time)

= Running time:

Like mergesort, quicksort solves two subproblems and the
combination step requires linear time

Issue: subproblems not guaranteed to be of equal size!
Worst case running time is O(N?)

Can ensure worst case is highly unlikely with proper strategy to pick
pivot

Partition step can be performed in place (efficient, does not require
an additional vector)

Quicksort (picking the pivot)

* Simple (but not recommended) approach:
* Choose first element of vector as the pivot
 Works fine if input is random (order)
 Quadratic running time if input is presorted!

= Better approach:

* Good partition means subproblems are of close to equal size
 Choose random element of vector as pivot (safe)
 Compute median of {first, middle, last} elements of vector

Quicksort (example)

34 8 64 45 51 32 21 99 3 Original

34 8 64 45 51 32 21 99 3 Select pivot
34 8 64 45 51 32 21 99 3 Partition
[832213] 34 [64455199] Recursive call
[382132] 34 [45516499] Return

Quicksort (partitioning strategy)

= Purpose:
* We have picked some “pivot” element: X =V(p)
e Partition the remaining elements into two disjoint groups {G1, G2}
 What should we do with elements equal to the pivot?

= Strategy:
* Get pivot out of the way: swap pivot with last element
 Track two pointers {L=1, R = N-1} until they cross (R < L)
« While V(L) < X, increment L. While V(R) > X, decrement R.

* Push large elements right and small elements left when you stop: If L
< R, swap V(L) & V(R)
 When pointers cross: swap pivot with V(L)

Partitioning Strategy (example)

34 8

34 8

64 45 51

64 45 51

64 45 51

64 45 51

64 45 51

21 45 51

32

32

32

32

32

32

21 99 3

21 99 3

21 99 34

21 99 34

21 99 34

64 99 34

Original

Select pivot
Swap pivot & last
Track:L=1,R=8
Stop: L=3,R=7

Swap: L=3,R=7

Partitioning Strategy (example)

34 8

64 45 51 32

21 45 51 32

21 45 51 32

21 32 51 45

21 32 51 45

21 32 34 45

21 99 3

64 99 34

64 99 34

64 99 34

64 99 34

64 99 51

Original

Swap: L=3,R=7
Stop: L=4,R=6
Swap: L=4,R=6
Stop: L=5,R=4

Swap pivot back

Strategy (equal elements)

" |[ncrement pointer?

Pointer “L” should behave as pointer “R” (stop or don’t stop)

To ensure O(N logN) running time, must create nearly equal
subproblems (groups)

Consider a list of N identical elements, which approach (stop or don’t
stop) is better?

Unnecessary swaps cost less than very uneven groups

Best strategy: stop when pivot is equal to current element (left or
right)

Quicksort (algorithm)

= Pseudocode:

Input: vector V with N elements
Goal: sort vector in ascending order
Assumption: comparison based sorting (> < operators exist)

Algorithm:
1. lo=1,hi=N
2. if lo < hi % we still need to sort

p = pick_pivot(V, lo, hi) % pick pivot

np = partition(V, lo, hi, p) % partition strategy

quicksort(V, lo, np-1) =>» sort group 1 (small)

quicksort(V, np+1, hi) =>» sort group 2 (large)
3. ReturnV % finished

