COMS 3101
Programming Languages: Per|

Lecture 5

Fall 2013
Instructor: Illia Vovsha

http://www.cs.columbia.edu/~vovsha/coms3101/per]

Lecture Outline

Packages & Modules
Concepts:

= Subroutine references
= Symbolic references

= Garbage collection

= Saving structures

Objects and Classes
Next: More OOP, CPAN

5.2

Remarks

= Pattern matching “cage” can be any character:
e m//or// is equivalentto m{}

* s/// isequivalentto s{}{}

e //are just customary quote characters for pattern matching
behavior. In fact you could choose your own character instead

of {} (e.g. m! 1)
e Convenient if lots of slashes in the pattern
= ref function: returns type of reference (a string)
e Srtype = ref(Shref); # returns “HASH”
e Srtype = ref(Saref); # returns “ARRAY”
o if (ref(Shref) eq “HASH”) {... }

53

Packages & Modules

Why do we need them?

Package or module, what is the difference?
‘use’ vs. ‘require’

Importing from another package
Pragmatic modules (pragmas)

54

Packages (purpose)

sub parse_text {

Scount = Scount++;

}

sub normalize {
Scount++;

}

Use both functions:
parse_text();
normalize();

print “Scount\n”;

code from one file

code from another file

Which Scount? What is its value?

55

Packages (definition)

Balanced code: abstraction + reuse

Every chunk of code has its own namespace. In Perl, a
namespace is called a package

Independent of files:
e Multiple packages in one file
* Single package spanning multiple files
e Most common: one package per file

Best approach: one package per file where file name is
package name + extension ‘.pm’

‘om’ = perl module
Each package has its own symbol table
Default current package: ‘main’

Packages (example)

package Parse;
sub parse_text {
Scount = Scount+1;

}

package Process;
sub normalize {
Scount++;

}

package main;
Parse::parse_text();
Process::normalize();
print “SParse::count\n”;

print “Scount , Smain::Scount\n”;

H# namespace: Parse

H# namespace: Process

code from another file

Implicit if no package declaration

count from Parse package
global variable count

5.7

Modules (definition)

Fundamental unit of code reusability in Perl

Module: one package in one file where file name is
package name + extension ‘.pm’

Two types:
e Traditional: define vars/subs for caller to import / use

* Object oriented: specify class definitions, and accessed
through method calls

To include module in code: ‘use’ or ‘require’
Naming convention: upper case letters

5.8

Modules (example)

code.pl
use Parse;
use Process;

Parse::parse_text();
Process::normalize();

print “SParse::count\n”;

Parse.pm

package Parse;

Scount = 0;

sub parse_text {
Scount = Scount+1;

use must succeed!

Process.pm

package Process;

Scount = 0;

sub normalize {
Scount++;

Modules (use vs. require)

To include module in code: ‘use’

Preload at compile-time: compiler loads module before compiling rest of
file (can change behavior, visibility)
Imports requested symbols (Exporter module):

* Specify explicitly

* Import symbols from @EXPORT and @EXPORT_OK

* Once imported, can be used without package name qualifier
Access imported vars/subs with “::”

* Process::normalize(); # With qualifier

 normalize(); # No qualifier
Searching for modules:

* In each directory listed in @INC array

e Modify @INC at compile time with lib pragma
‘require’ loads module at run-time

Actually, no compelling reason to prefer ‘require’ over ‘use’

Importing from Package

= Modules export symbols by inheriting the ‘import’ method from the
Exporter module

= Symbols exported by default: @EXPORT
= Symbols exported by request: @EXPORT_OK

Parse.pm # code.pl

package Parse; use Parse;

use Exporter; # use Parse qw(%h @arr)
our @ISA = (“Exporter”); # Inheritance

parse_text();
our @EXPORT = qw(Scount &parse_text); %Parse::h =();

our @EXPORT_OK = gw(%h @arr);

sub parse_text {...}
1;

Pragmas

Pragmatic modules (pragmas) are hints to compiler
Only work with ‘use’/ ‘no’ (seen at compile time)
Convention: names in lowercase letters

Lexically scoped (just like my variables), effects
limited to enclosing block

Invoke: ‘use <pragma>’
Disable: ‘no <pragma>’

Pragmas (usage)

= Recall, to show warnings: #!/usr/local/bin/perl -w
" Pragmas are preferable

use warnings;
Enable warnings till end of file

{
no warnings;
Disable warnings till end of block

}

warnings are enabled back

5.13

Pragmas (examples)

= warnings: Perl complains about variables that are used only
once, variable re-declarations, improper conversions etc.

use warnings;
use warnings qw(io syntax);

= strict: Perl is strict about what is legal code (subs,vars,refs)
e vars: variable must be predeclared
e refs: can’t use symbolic references

e subs: “barewords” are syntax errors (must quote strings)

use strict; # all three
use strict “vars”; # variables only

Pragmas (more examples)

= constant: declare named symbol an immutable constant,
requires separate declaration for each symbol

use constant ARR_SIZE => 100;
use constant ARR_REF => [1,2,3,4];

Can’t interpolate ARR_SIZE into string (no S sign in front)!

= [ib: add directories to default search path, at compile-time

use lib “/myperl/code/”; # Add to @INC
no lib “/yourperl/code/”; # Delete from @INC

You should delete only directories you added

Concepts

Subroutine references
Copying referent
Symbolic references
Garbage collection
Saving structures

5.16

Subroutine References

m Reference to a sub follows similar rules
= Can use backslash or anonymous

sub max {...} # Anonymous
Ssub_ref = \&max; Ssub_ref = sub {...};

Calling subroutine
&Ssub_ref();
Ssub_ref -> ();
Ssub_ref ->(1,4,6,8);

Call sub using string

my %cmds = (“process” =>\&process_data, “clear” => \&clear_data,
“any” => sub {...});

Scmds{Sstr} -> ();

5.17

Copy Referent

= To copy referent for another reference:

Sarefl =[1,2,31;
Saref2 = [4,5,6 |;

Saref2 = Sarefl # Not a copy! Rather refers to the same location!

Saref2 = [@Sarefl |; # Create a new anonymous reference
Shref2 = { %{Shrefl}}; # Same approach for hashes

5.18

Symbolic References

= Refers to the name of a variable
= |f we try to dereference, we get access to variable!
= Can be dangerous! (use strict ‘refs’ to prohibit)

SN = “V”;

SSN = 5; # Set scalar SV =5

SN ->[0] = 6; # Set element O of array Vto 6
SN -> {key} = 7; # Set key of hash Vto 7

&SN; # Call sub V

Garbage Collection

High-level language: don’t worry about de-allocating
memory

Garbage collection = automatic reclamation process
Block exited: locally scoped variables are freed up
Don’t hide your garbage! (circular references)

Using multiple large hashes in the same scope? Loop
through the keys and ‘delete’ each one

For objects: use destroy methods

Saving Data Structures

Save any DS to use later: Data::Dumper module

Turn DS into a string, save externally to a file, read in the file and recover
DS with eval / do

CPAN module Storable: more efficient, but cannot be shared across
different architectures

use Data::Dumper;

open (OUTFILE, “> filename”);

print OUTFILE Data::Dumper->Dump([\%hash], [*hash’]);

open (INFILE, “< filename”);

undef S/; # undef record separator, read entire file
eval <INFILE>; # recreate %hash

use Storable;

store(\%hash, “filename”);

Shref = retrieve(“filename”);
%hash = % { retrieve(“filename”) };

5.21

OOP

Review of concepts: objects, classes, methods
Object Oriented Programming in Perl
Method invocation

Object construction:
e constructor

e bless function

* initialization

e destructor

Inheritance

5.22

OOP (concepts)

Program: collection of objects
Object: data structure with collection of behaviors
Object: instance of a class

Class: defines attributes (variables) and methods
(functions), i.e. behavior applied to class/instances

Each instance of class (object) keeps track of its own
attribute values

Instance methods refer to actions of specific object

Class methods refer to actions of entire class of (many)
objects

To generate a new object we use a constructor method

5.23

OOP (more concepts)

Can share methods between classes: inheritance

Derived / sub class inherits methods from base / parent /
super class

The derived class can “update” the behavior of the
parent class

Given an (derived) object, how do we select the most
appropriate method for it? Polymorphism

General design principle: when using the object, the
object is a black box (we shouldn’t manipulate attributes
/ methods directly)

Encapsulation: access objects through methods alone

5.24

OOP in Perl

Perl supports OOP, but does not enforce the “rules”: you
can break encapsulation

Not the best choice for extensive OOP projects (not
native). OOP is slower than a non-OOP solution

Can often write good code without using all OOP
techniques

Supports OOP techniques: single/multiple inheritance,
method overriding, destructors, operator overloading

No special syntax for objects:
e Objects are references / referents

e Classes are packages (usually modules)
e Methods are subroutines

OOP (method invocation)

= To access an object indirectly, invoke method

= |nvocation:
e locate sub (method) determined by class of invocant and method name

e Call the sub, passing invocant as its first argument
e Explicit invocation: using arrows INVOCANT->METHOD()

= |nvocant can be package name or reference (to object)
* package name: 1%t argument to class method is class name (string)
o reference: 1%t argument to instance method is reference (to object)

Smazda = Car -> new(); # Class: Car, Method: new, Object: Smazda
Smazda -> drive(“slow”); # Instance: Smazda, Method: drive
Smethod = “new”; # Don’t know method name ahead of time
Smazda = Car -> Smethod();

5.26

OOP (constructor)

Note: method’s package is resolved at run-time (don’t know invocant)
Note: regular sub’s package is resolved at compile-time

Constructor is just a subroutine....err...method (typically invoked by the
package name) that returns an object reference

Car.pm
package Car;

sub new { # Constructor
my Sinvocant = shift; # 1stargument is always invocant
my Sself = {}; # Reference to empty hash
bless (Sself, Sinvocant);
return Sself; # Return reference to object

}

5.27

OOP (bless function)

To work on an object, reference must be “marked” with its class name
The act of “marking” (turning ref into object ref) is called blessing

bless function: 15t argument is ref, 2"9 argument is class name to bless into
(default: current package)

Car.pm
package Car;

sub new { # Constructor (hides the bless)
my Sinvocant = shift;
my Sself = {};
bless (Sself, Sinvocant); # bless (REF, “Car”);

return Sself;

}

5.28

OOP (initialization)

Typical approach: use reference to an anonymous hash (but could be any

type of reference)

Hash can be non-empty: maintain internal information (attributes) which
are only manipulated by the object’s methods

bless function: 15t argument is ref, 2"d argument is class name to bless into

(default: current package)

Car.pm
package Car;

sub new {
my Sclass = shift;
my Sself = {@_};
bless (Sself, Sclass);
return Sself;

}

Call: Slexus = Car -> new(maker=>“lexus”);
sub new {
my Sclass = shift;
my Sself = {
maker => “mazda”,
color => “black”,

5.29

OOP (destructor)

= Destructors are rarely needed in Perl (automatic memory management)
= Define a subroutine DESTROY (required name, unlike new)
= Explicitly calling DESTROY is possible but seldom needed

Car.pm
package Car;

sub new {.... # Constructor}
sub DESTROY { # Destructor
my Sself = shift;
Attend to filehandles, databse connections

5.30

OOP (inheritance)

We can define a hierarchy of classes to share methods between them
Derived / sub class inherits methods from base / parent / super class

The super-classes are specified in the @ISA array (declared with our) of
the derived class. Each element of the array is a package (class) name

Single Inheritance: one parent class (search parent for methods)

Multiple Inheritance: multiple parent classes (search left-to-right
through @ISA array, depth-first order)

Once method is found, store in cache for efficiency
If @ISA is changed, the cache is invalidated (avoid it if you can!)

Constructor Inheritance: no automatic call to base class constructor

5.31

OOP (method search)

= |f method not defined in class: search @ISA at runtime when a call is made

= Search order given multiple parent classes: left-to-right through @ISA
array, depth-first

Nissan.pm
package Nissan;
our @ISA = (Car, Truck);

Call: Nissan->new()->build(“sedan”);

Search order:

1. Check if method (build) is defined in class (Nissan)

2. Check if method is defined in “SNissan::ISA[0]” (Car class)

3. Check if method is defined in @Car::ISA (Car’s @ISA array)

4. When done with ISA[0], repeat steps 2,3, for ISA[1] (Truck class)

Scoped Variables

my

creates private variable visible only within block

hidden from outside of enclosing scope, and hides previously declared variables with identical
name

confines name & value to scope
suitable for scalar/array/hash variables

confines name only to scope (no effect on visibility)

suitable for scalar/array/hash variables

used to access global variables, their initial value inside block unchanged
effects or assignment persist after the scope of declaration (block)

confines value only to scope

suitable for scalar/array/hash + more variables

initial value for variable is () or undef

value of variable is restored no matter how you exit the block (changes thrown away)
“dynamic” scope: value of variable depends on scope & changes during run-time
‘my’ is preferable over ‘local’

APP

Scoped Variables (example)

Soffice = "global";
&say();

&barney();

&fred();

&say();

sub say {print "Soffice\n"; }

sub barney {
my Soffice = "barney";
print "Soffice "; &say(); }

sub fred {
local Soffice = "fred";

print "Soffice "; &say(); }

Global Soffice

prints "global"

prints "barney global", lexical scope;
prints "fred fred", dynamic scope,

prints "global", restored after &fred()

print the Soffice

APP

