COMS 3101
Programming Languages: Per|

Lecture 4

Fall 2013
Instructor: Illia Vovsha

http://www.cs.columbia.edu/~vovsha/coms3101/per]

Lecture Outline

Pattern Matching (continued)
Concepts:

= More on files
= Scoped variables
= Special variables

References
Data Structures
Next: Packages & Modules

4.2

Remarks

= Extract substring: start at “offset”, return “length”
characters:
e Ssub _name = substr(Sname, 4, 5); # start at 4, return 5
* Ssub _name =substr(Sname, 4, 5, “AA”); # same but replace

= Formatted string:

e SFSTR = sprintf(“%.3f”, Shnumber); # %s,%d, %f

o printf “%.3f”, Snumber; # print FH sprintf(FORMAT, LIST)
= Get key/value pair of a hash:

* while ((Skey, Svalue) = each %hash) { # Random order

4.3

Pattern Matching

= Regular Expressions (REGEX)
= QOperators (cages): match, substitute

= Elements:
e Metacharacters
e Pattern modifiers
e Character classes (classic, Unicode)
e Quantifiers
* Assertions
* Grouping & capturing
e Alternation
e Magic dot
e Return values

= General advice

4.4

PM (grouping & capturing)

Group and remember sub-patterns using ()

After the pattern: SN denotes the Nth group from start
Within the pattern: \N denotes the Nth group from start
Dynamic scope until end of block or next match

Can use them with s/// as replacement

Nested (()): counting by location of left parenthesis ‘(

Special variables:
e S all to left of match
e S& entire matched string
Y all to right of match

Grouping & Capturing (examples)

= Examples:

1.

N =

Lk W e

if (Sline ="~ /<(.*?) >.*¥?<\/\1>/)

matches any tags <xyz>.....</xyz>

if ($line = /<(.*?) >*2<\/\1>/) {
print “S1 : 527; }

Sline =~ s/A(\w+), (\w+)/52, S1/; # swap two words
Sline =~ s/((\w+), (\w+))/; # nested (())

Sline = “perlis fun, orisit”;

Sline =~ m/((\w+), (\w+))/;

print “pre - match — post: S \tS&\t5'\n”;

prints “....perlis fun, or isit”

4.6

PM (alternation)

Specify a set of possibilities (|)

For overlapping matches, place longer string first

Extends only to the innermost enclosing ()

Examples:

1.
2.
3.

if ($line =~ /bank|banker/)

always matches bank!

if (Sline =~ /(banker|bank)/) # banker can match

if (Sline =~ /ban(k|b)er/)

banker or banber

PM (magic .)

* The dot. matches any character (wildcard)

* Turn maximal (greedy) matching into minimal matching
by adding a ‘?’

= Examples:

1.

ol S

if (Sline =~ /<xml>(.*)<\/xml>/)
match any text between two xml tags

Sline = "Want this <bold>content's tag<bold> matched ";

if (Sline =~/<(.*)>/) # matches "bold>content’s tag <bold"
if (Sline =~/<(.*?)>/) # matches "bold“

if (Sline =~/<(.+?)>/) # matches only if its non empty

4.8

PM (return values)

= Match (m//):
e scalar context - returns true (1) if successful, else false (

II”)

e |ist context - returns a list of matched groups

= Substitute (s///):
e returns number of times it succeeded (scalar & list context)

Sline = "<text>this is the text</text>";
(Stag, Scontent) = Sline =~ /A<(.*?)>(.*?)<\/\1>$/;

if (@perls = Stext =~ /perl/gi) {
print "Number of times Perl mentioned : ", scalar(@perls); }

Sstring = "name=xyzzy id=9 score=0";
%hash = Sstring =~ /(\w+)=(\w+)/g;

Snum = Stext =~ s/perl/PERL/g;

4.9

PM (general advice)

When matching multiple regex, list common case first

When writing a long regex, simplify with variables
(interpolation)

Consider using || (logical) instead of | (regex) to be more
efficient

Avoid S& S° $’ if you can (slows down execution).
However, if used once, use all the time without penalty

Not every problem should be solved with regex: consider
functions to manipulate strings (substr) instead

Start by writing down all the patterns you need to
identify, then proceed to contrive the regex

More Examples

while (<>) {
next if Sline =~ /A#/;

from: vp2198@columbia.edu

to: vp2198@columbia.edu

date: Sun, Apr 1, 2012 at 11:08 PM

subject: COMS W3101.004 Office Hours Change (this week only)
mailed -by: columbia.edu

while (<>) {
S_ = [MIFR)NS*()S/;
Shash{$1} = S2;

Concepts

"= More on files
" Scoped variables
= Special variables

4.12

< ...> Rules

= “Angle operator”: apply to a filehandle to read the next line

= Auto assignment to S_ only in while loop! (not if, unless,...)

= Examples:

1.

2.

3.

while (< INFILE >) {
print S_;

if (<INFILE>) {
print S_;

while (<IN1> && <IN2>) {
print S_;

next line

WRONG
prints whatever in S_ before

WRONG (throw away lines)
prints whatever in S_ before

4.13

Scoped Variables

my

creates private variable visible only within block

hidden from outside of enclosing scope, and hides previously declared variables with identical
name

confines name & value to scope
suitable for scalar/array/hash variables

confines name only to scope (no effect on visibility)

suitable for scalar/array/hash variables

used to access global variables, their initial value inside block unchanged
effects or assignment persist after the scope of declaration (block)

confines value only to scope

suitable for scalar/array/hash + more variables

initial value for variable is () or undef

value of variable is restored no matter how you exit the block (changes thrown away)
“dynamic” scope: value of variable depends on scope & changes during run-time
‘my’ is preferable over ‘local’

4.14

Scoped Variables (example)

Soffice = "global";
&say();

&barney();

&fred();

&say();

sub say {print "Soffice\n"; }

sub barney {
my Soffice = "barney";
print "Soffice "; &say(); }

sub fred {
local Soffice = "fred";

print "Soffice "; &say(); }

Global Soffice

prints "global"

prints "barney global", lexical scope;
prints "fred fred", dynamic scope,

prints "global", restored after &fred()

print the Soffice

4.15

Special Variables

" Predefined variables with a special meaning:

e S @ @ARGV SaSb
51,52,...: matched groups in pattern (outside pattern)

\1,\2,... : matched groups in pattern (in pattern)

S&, S, S’ : match, pre-match, post-match pattern

SO : program/script file name

4.16

References

Motivation
Definition

 Hard references

e Symbolic references

Creating (initialization)

e Backslash \

e Anonymous [], {}

Using references (de-referencing / access)

e Braces {}
* Arrows ->

4.17

References (motivation)

= City — State listing

%hash = |
“Albany” => “NY”,
“Boston” => “MA”,
“Buffalo” => “NY”,
“Salem” =>“MA”,
“Dallas” =>“TX”,

);

= Problem: how do we represent State — City listing?
= Solution: merge all cities for each state into one string?

%hash = |
“NY” => “Albany,Buffalo”,
“MA” => “Boston,Salem”,
“TX” => “Dallas”,

4.18

References (motivation)

= Solution: merge all cities for each state into one string?

%hash = |
“NY” => “Albany,Buffalo”,
“MA” => “Boston,Salem”,
“TX” => “Dallas”,

);

= Why? Arrays & hashes can only hold scalars
= Why not? Cumbersome to maintain/access elements
= Better approach: hashes of arrays

foreach Sstate (keys %hash) {
print “\n Cities in Sstate";
@cities = split (/,/, Sstate);
print “S_\t” foreach (@cities);

}

4.19

References (definition)

Scalar types: strings, numbers, references
Pointer to location of variable (scalar, array, hash)
Unlike pointers in C:

e Perl reference can refer to data and functions (subs)

e Can’t access raw memory location

Can access entire array/hash by dereferencing the
reference to the structure

Hash of arrays is a hash where each value is a
reference (pointer) to an array

References (definition)

Hard & Symbolic references:
e Hard (real): refers to location (actual value) of variable

e Symbolic: refers to the name of variable

Create hard ref: SR =\SV;

*

>

Create symbolic ref: SR = “V”;

“text”

=> If we try to dereference SR we get access to variable SV!

IIVII

“text”

4.21

Creating References (backslash)

Sa_scalar = “boom”;
@an_array = (“Al”, “B2”, “C3");
% a_hash = (“Albany” => “NY”, “Boston” => “MA");

Sscalar_ref = \Sa_scalar;
Sarray_ref = \@an_array ;
Shash_ref = \% a_hash;
Refs can be used like any other scalar
Sone_ref = Sanother_ref;
Sarr [3] = Sa_ref;
sh{si} = Sa_ref;

Use backslash on a list of refs

@refs = \(Sone,Stwo,Sthree);
@refs = (\Sone,\Stwo,\Sthree); # Same as previous line
@refs = \(Sa_scalar, @an_array, %a_hash);

@refs = (\Sa_scalar, \@an_array, \%a_hash); # Same as previous line

Creating References (anonymous)

Ssc_ref = \"word”;
Ssc_ref2 = \123;

Sar—ref = \(IIAl’)’ IIBZ’) , IIC3II);
Sar—ref = [IIAlII’ IIBZII’ IIC3II];
Shs_ref =\(APR =>4, MAY =>5);

Shs_ref — { ”April" => 4’ ”May” =>5 }’

% a_hash = (“April” =>4, “May” =>5);
Shs_ref = \% a_hash;

@AOA - ([1’ 2]’ [IIAlII’ IIBZH’ IIC3H]);
SAoA_ref =[[1, 2], [“A1”, “B2”, “C3" | |;

Arrays:
WRONG!
Square brackets, different from Sa[1]

Hashes:
WRONG!
Braces, different from Sh{Skey}

Backslash instead of anonymous

Array of arrays
Reference to array of arrays

4.23

Using References (braces)

Ssc_ref = \“word”;
Sar—ref = [IIAlII’ IIBZII’ IIC3II];
Shs_ref — { uapriln = 4’ umayn =>5 }’

print S{ Ssc_ref };
S{Ssc_ref } = “Number";
@ar2 = @{ Sar_ref };

S{ Sar_ref }[2] = “D4”;
%hs2 = %{ Shs_ref };
S{Shs_ref { may} = 99;

SSsc_ref = “Number";

@ar2 = @Sar_ref;

SSar_ref [2] = “D4”;

%hs2 = %Shs_ref ;

SShs_ref { may } = 99;

S{ Sar_ref[2] } NOT THE SAME AS

prints “word”
prints “number”, if we print
ar2 now has (A1,B2,C3) ;
Sar_ref now refers to array (A1,B2,D4)
hs2 now has (april ,4,may ,5);
Shs_ref now refers to hash with may => 99

equivalent to above

.S{ Sar_ref }[2]

4.24

Using References (arrows)

= Arrows are syntactic sugar to simplify access
= Type of dereference is determined by what follows the arrow:

e [or{or(array or hash or subroutine

equivalent statements:
S{ Sar_ref }[2] = “D4”;
SSar_ref [2] = “D4”;
Sar_ref ->[2] = “D4”;

equivalent statements:
S{ Shs_ref {may} = 99;
SShs_ref {may} = 99;
Shs_ref ->{may} = 99;

Sar_ref ->[2] NOT THE SAME AS Sar_ref [2]

4.25

Data Structures

= Data Structures (DS):
e Array of Arrays (AoA)
e Hash of Arrays (HoA)
e Array of Hashes (AoH)
e Hash of Hashes (HoH)

" Functionality:
a) Initialization (composition)
b) Adding elements (generation)

c) Printing elements (access)
d) Slice (arrays), sort (hashes)

4.26

AoA & HoA (initialization)

@AOA - ([1’ 2]’ [IIAlII’ IIBZH’ IIC3H]);
SAoA_ref =[[1, 2], [“A1”, “B2”,“C3"]];

print SAoA[1] -> [1];

print SAoA[1] [1];

print SAoA ref -> [1] -> [1];
print SAoA ref -> [1][-2];

Array of arrays
Reference to array of arrays

prints “B2”

Arrows not required between [], {}
Same thing, using ref

Using negative indices

%HOA = (
“NY” => [Albany,Buffalo],
“MA” => [Boston,Salem],
“TX” => [Dallas],

);

print SHoA{NY}-> [1];
print SHoA{NY} [1];

instead of “Albany,Buffalo”

prints “Buffalo”
Arrows not required between [], {}

4.27

AoA & HoA (adding elements)

@AoA = ([1, 2], “A1”, “B2”, “C3" |); # Array of arrays

push @AO0A, [3,4];
push SAoA[1], “D4”, “E5”;
push @{ SAoA[1]}, “D4”, “E5”;

for Sx (0..2) {
SAOA[SX] [2] = 5;
}

Add row (anon array ref)
WRONG! (append to row)
Append to row

For each row
Set 3" column

%HOA = (“NY” =>[A,B], “MA”
SHoA{Sstate} = [C,D];
push @{ SHoA{TX}}, “C”, “D”;

while (<>) {
next unless m/M(.*?),\s*//;
Shash{S1} = [split];

}

=>[B,S], “TX” =>[D],);
Add array (anon array ref)
Append to array for key “TX”

skip other lines
#splitS on//

4.28

AoH & HoH (initialization)

@AoH = (
{“NY” =>1, “MA” =>2, “TX” =>40, },
{ HNYH = 40’ ”MA” => 45, ”TX” => 1; }I
);

print SAoA[1] -> {NY}; # prints “40”
print SAoA[1] {NY}; # Arrows not required between [], {}
% HoH = |

python => {instructor => “NA”, room => “TBA"},
java => {instructor => NA2, room => TBA2},

);

print SHoH{ python ¥ instructor }; # Prints NA
print SHoH{ java H room }; # Prints TBA2

AoH & HoH (adding elements)

Srec = {};
Srec->{Skey} = Svalue
push @AoH, Srec;

push @AoH, { @fields };

Ref to anon hash
Populate hash
Add hash-ref to array

Add anon hash-ref to array

Srec = {}
SHoH{Skey1} = Srec
Srec->{Skey2} = Svalue

SHoH{Skey1H{Skey2} = Svalue
SHoH{Skey} = { @fields };

Ref to anon hash
Add ref as element for Skey1
Populate hash for Skey1

Populate hash from scratch
Add anon hash-ref to hash

Common Mistakes

Printing values without dereferencing (get “stringifed” references!)
With AoA: not composing new references for sub-arrays
With loops: taking references to the same memory location

@AoA = ([1,2],[“A1”, “B2”, “C3" |); # Array of arrays
print “@AoA”; # WRONG! “ARRAY(#) ARRAY(#)...”
for Si (0..2) { for Si (0..2) {

@A = somefunc(Si); @A = somefunc(Si);

SAOA[SI] = @A; } SAOA[SI] = \@A; } #BOTH WRONG!
for Si (0..2) { for Si (0..2) {

@A = somefunc(Si); my @A = somefunc(Si);

SAOA[SI] = [@A]; } SAOA[SI] = \@A; } #BOTH CORRECT

HoA & HoH (sorting)

Sort arrays (hash elements) by # of elements in each (decreasing)

foreach Skey (sort { @{ SHoA{Sb}} <=> @{SHoA{Sa}}} keys %HoA) {

Sort hashes of hashes first by keys of outer hash), then by keys of inner hash

foreach Skeyl (sort keys %HoH) {
foreach Skey2 (sort keys %{ SHoH{Skeyl}}) {

4.32

