COMS 3101
Programming Languages: Per|

Lecture 3

Fall 2013
Instructor: Illia Vovsha

http://www.cs.columbia.edu/~vovsha/coms3101/per]

Lecture Outline

Array / Hash manipulation (continued)
Pattern Matching (examples and rules)
Concepts:

= More on files
= Scoped variables
= Special variables

Next: References
Next: Data Structures

3.2

Remarks

“Ivalue”: left-value, left side of an assignment, storage
location (address) you can assign a new value to

Conditional operator “?” (if-then-else):
e EXP17?EXP2:EXP3;
e |f EXP1==TRUE, then EXP2, else EXP3

Functions:
* unlink @Files; # Delete all files in array
e Sstr=lc(SSTR): # lower case expression

e @items = splice(@arr,2,3) # Remove from middle of array

3.3

Exercise Solution (min sub)

sub min {
my Scur_min = shift;
foreach (@_) {
if (S_ < Scur_min) {
Scur_min = S_;
}
}

return Scur_min;

3.4

Array & Hash Manipulation

= Arrays:
e Add, remove elements
e Concatenate, join, split arrays
e Loop through, sort arrays
= Hashes:
e Loop through (in sorted order)

e Check keys
= Related functions: map, grep

3.5

Arrays (con, join, split)

Concatenate arrays:,
Join array elements into a string: join
Split a string into elements of array: split

Examples:

1. @numsl = (1..4); @nums2 = (5..8);
2. @allnums = (@numsl, @nums2);

3. print join (%", @numsl);

4. @words = qw (dogs cats pets);

5. Ssentence = join (“_”, @words);

6. @words = split (/_/, Ssentence);

7. @words = split (‘s’, Ssentence);

3.6

Arrays (sort)

= Default order: alphabetical ascending

" Flip array: reverse

= Examples:
1. @numbers = (11,13,2);
2. @names = (SF, LA, NY, Z);
3. @sorted = sort (@names); # order: alpha asc
4. @sorted = sort (@numbers); # order: alpha asc (WRONG!)
5. @sorted = sort {Sa <=> Sb} (@numbers); # numeric asc
6. @sorted = sort {Sb <=> Sa} (@numbers); # numeric desc
7. @sorted = sort {Sb cmp Sa}(@names); # alpha desc
8. @reversed = reverse (@numbers); # flip

3.7

Hashes (size, delete, reverse)

Number of pairs: scalar

Remove entry: delete

Swap keys and values: reverse (values must be
unique!)

Examples:

B W e

%h1l = (a=>1, b=>2, c=>2);

Snum = scalar (keys %h1);

delete Sh1{“aa”}; # delete key “aa”

%h2 = reverse (%h1l); # swap keys & values (WRONG!)

3.8

Hashes (check keys)

" Does the key exist? exists
= |s the value defined? defined

= Examples:
1. %hs = (a3, 1, b); #a=>1, b=>undef
2. |If (exists Shs{a}){ # key “a” exists
3. If (defined Shs{a}){ # value for key “a” is defined (true)
4. If (defined Shs{b}){ # value for key “b” is undef (false)

3.9

map & grep

= Transform list element-wise: map

e @new_list = map {CODE} @old_list;

e CODE is applied to an element of old_list, return value is stored in new_list
= Filter list element-wise: grep

e @new_list = grep{ CODE} @old_list;
 CODE is executed for each element of old_list, if code returns true,
element is placed in new_list

= Examples:
1. @n2 =map {S_* S_} @numbers; # square each element
2. @names2 = map {lc} @names; # lower case each element

3. @n2=map {S_*S }grep {S_ > 5} @numbers;
square each element if > 5.
‘map’ returns different number of elements!

3.10

Exercise (In Class)

= Compute the average grade for a list of students

= Suppose you have a file with a list of {student,grade}
pairs (each pair on a separate line separated by a
comma). Write a program that receives the file-name
as a command line argument, computes the average
grade for the class and prints the result to the
screen.

Exercise Solution (average grade)

open (IN, SARGVI[0]);

@lines = <IN>;

Ssum = Scount = O;

foreach Sline (@lines) {
(Sstudent, Smark) = split (/ /, Sline) ;
Ssum += Smark;
Scount++;

}

Savg = Ssum / Scount;

close (IN);

3.12

Pattern Matching

= Regular Expressions (REGEX)
= QOperators (cages): match, substitute

= Elements:
e Metacharacters
e Pattern modifiers
e Character classes (classic, Unicode)
e Quantifiers
* Assertions
* Grouping & capturing
e Alternation
e Magic dot
e Return values
= General advice

3.13

Pattern Matching (purpose)

= MS degree requirement

Fulfill the 12-credit core requirement. One of the core requirements must be CSOR
W4231. In addition, COMS W3261 or past equivalent is a required pre-requisite
(No MS credit for W3261).

1 required course: COMS W4236.

1 course chosen from the “Electives |” list: COMS W4203, COMS W4205, COMS
W4241, COMS W4252, COMS W4261, or COMS W4281.

= Task: list all course mentions
= Solution: array of all numbers and check if its in each line?

@allcourses = ("COMS W3000",...,"CSOR W3000",...);
while (<>) {
foreach Sx (@allcourses) {
if (index (S_, Sx)>0) { # returns index of Sxin S_

print Sx, ", "; } o}

3.14

Pattern Matching (regex)

Objective: search large data efficiently, extract useful
info

PERL is “Practical Extraction & Report Language”

Approach: create a language to specify patterns
 Engine to determine if pattern matches data

e REGEX: easy to understand unlike long code

General language which can be extended to
accommodate new characters & patterns

Pattern Matching (match, substitute)

PM operators: “cages” for regex
Match: m/PATTERN/ (m optional)
Substitute: s/PATTERN/REPLACEMENT

Bind match/substitute to a variable:
e Sline =~ m/PATTERN/
e Sline !~ m/PATTERN/

Two-pass parsing: interpolate before interpreting
regex

Inside cage: power of “” Interpolation

3.16

Pattern Matching Example

Fulfill the 12-credit core requirement. One of the core requirements must be CSOR
W4231. In addition, COMS W3261 or past equivalent is a required pre-requisite
(No MS credit for W3261).

1 required course: COMS W4236.

1 course chosen from the “Electives I” list: COMS W4203, COMS W4205, COMS
W4241, COMS W4252, COMS W4261, or COMS W4281.

= Task: list all course mentions
= Solution: match a pattern

while (<>) {
if (5_ =~ m/PATTERN/) {
print S&, ", "; } # S& contains the matched part

3.17

PM Example (character class)

Fulfill the 12-credit core requirement. One of the core requirements must be CSOR
W4231. In addition, COMS W3261 or past equivalent is a required pre-requisite
(No MS credit for W3261).

1 required course: COMS W4236.

1 course chosen from the “Electives I” list: COMS W4203, COMS W4205, COMS
W4241, COMS W4252, COMS W4261, or COMS W4281.

= Match target: any digit

u OUtpUt: COMS W3261, COMS W4236, COMS W4203,

while (<>) {
if (S_ =~ m/CcOMS W\d\d\d\d/) {
print S&, ", "; } # S& contains the matched part

3.18

PM Example (quantifier)

Fulfill the 12-credit core requirement. One of the core requirements must be CSOR
W4231. In addition, COMS W3261 or past equivalent is a required pre-requisite
(No MS credit for W3261).

1 required course: COMS W4236.

1 course chosen from the “Electives I” list: COMS W4203, COMS W4205, COMS
W4241, COMS W4252, COMS W4261, or COMS W4281.

= Match target: four digits

u OUtpUt: COMS W3261, COMS W4236, COMS W4203,

while (<>) {
if (5_ =~ m/COMS W\d{4}/) {
print $&, ", "; }

3.19

PM Example (alternation)

Fulfill the 12-credit core requirement. One of the core requirements must be CSOR
W4231. In addition, COMS W3261 or past equivalent is a required pre-requisite
(No MS credit for W3261).

1 required course: COMS W4236.

1 course chosen from the “Electives I” list: COMS W4203, COMS W4205, COMS
W4241, COMS W4252, COMS W4261, or COMS W4281.

= Match target: one of two strings

u OUtpUt: CSOR 4231, COMS W4236, COMS W4203,

while (<>) {
if (5_ =~ m/(COMS|CSOR) W\d{4}/) {
print S&, ", "; }

3.20

PM Example (modifier)

Fulfill the 12-credit core requirement. One of the core requirements must be CSOR
W4231. In addition, COMS W3261 or past equivalent is a required pre-requisite
(No MS credit for W3261).

1 required course: COMS W4236.

1 course chosen from the “Electives I” list: COMS W4203, COMS W4205, COMS
W4241, COMS W4252, COMS W4261, or COMS W4281.

= Match target: all patterns

u OUtpUt: CSOR 4231, COMS W3261, COMS W4236, COMS W4203, COMS W4205,
COMS W4241, COMS W4252, COMS W4261, COMS W4281,

while (<>) {
while (S_ =~ m/(COMS|CSOR) W\d{4}/g) {
print $&, ", "; }

3.21

PM Example (character class)

Fulfill the 12-credit core requirement. One of the core requirements must be CSOR
W4231. In addition, COMS W3261 or past equivalent is a required pre-requisite
(No MS credit for W3261).

1 required course: COMS W4236.

1 course chosen from the “Electives I” list: COMS W4203, COMS W4205, COMS
W4241, COMS W4252, COMS W4261, or COMS W4281.

= Match target: all patterns (four letter word)

u OUtpUt: CSOR 4231, COMS W3261, COMS W4236, COMS W4203, COMS W4205,
COMS W4241, COMS W4252, COMS W4261, COMS W4281,

while (<>) {
while (5_ =~ m/[A-Z){4} [A-Z\d{4}/g) {
print $&, ", "; }

3.22

PM Example (grouping / capturing)

Fulfill the 12-credit core requirement. One of the core requirements must be CSOR
W4231. In addition, COMS W3261 or past equivalent is a required pre-requisite
(No MS credit for W3261).

1 required course: COMS W4236.

1 course chosen from the “Electives I” list: COMS W4203, COMS W4205, COMS
W4241, COMS W4252, COMS W4261, or COMS W4281.

= Match target: all patterns + capture the pattern

u OUtpUt: CSOR 4231, COMS W3261, COMS W4236, COMS W4203, COMS W4205,
COMS W4241, COMS W4252, COMS W4261, COMS W4281,

while (<>) {
while (S_ =~ m/([A-Z){4} [A-Z]\d{4})/g) {
print $1, ", "; }

3.23

PM Example (more grouping)

Fulfill the 12-credit core requirement. One of the core requirements must be CSOR
W4231. In addition, COMS W3261 or past equivalent is a required pre-requisite
(No MS credit for W3261).

1 required course: COMS W4236.

1 course chosen from the “Electives I” list: COMS W4203, COMS W4205, COMS
W4241, COMS W4252, COMS W4261, or COMS W4281.

= Match target: all patterns + capture part of the pattern

u OUtpUt: 4231, 3261, 4236, 4203, 4205, 4241, 4252, 4261, 4281,

while (<>) {
while (5_ =~ m/([A-Z]{4}) ([A-Z])(\d{4})/g) {
print $3, ", "; }

3.24

Pattern Matching

* Elements:
 Metacharacters
e Pattern modifiers
e Character classes (classic, Unicode)
e Quantifiers
e Assertions
e Grouping & capturing
e Alternation
e Magic dot

e Return values

3.25

PM (metacharacters)

Same “Dirty Dozen” characters

Longer sequences: metasymbols

Backslash \ : escapes MC
Types of metasymbols:

General
Quantifiers
Alphanumeric
Wildcard

Specific, Extended

» \ - next character has special meaning
» | - alternator

» (-grouping

») -grouping

» | - character class

» { - quantifier

» " - match at the beginning

» S - match at the end

» *-zero or more times

» +-one or more times

» ? - optional (zero or one time)
» . - match anything

3.26

PM (modifiers)

= Modifier (flag, option): following final delimiter

o /i ignore case

e /g globally find all matches

e /X improve legibility (permit ws, comments)

e /cg continue search after (global) match failed
= Examples:

1. if (Sline =~ m/CS\d{4}/i) {..}
2. while (Sline =~ /CS\d{4}/gi) {...}
3. if (Sline =~ /CS \w\d{4}/x) {..}

3.27

PM (character classes)

= Match ONE character with (without) particular property
e Custom: list of characters inside | |
e (lassic: shortcuts for common classes \d \D \w \W \s \S
e Unicode: industry standard for representation \p{PROP}
= Rules:
e Specify range with -: [a-z], [A-DO0-9]
e |nvert class with ‘': [fabc] [a-d”e]
e Upper-case shortcut inverts classic class: [*0-9] \D "\d
e Metasymbols lose meaning
= Examples:
1. if (Sline =~ /[a-z]\D \d{1,3}/) # Icletter, nondigit, 1-3 digits
2. if (Sline =~ /ab\t[ab]\W\s/) # ab,tab,(a or b),nonword,ws

3.28

PM (quantifiers)

How many times something may match (once by default)
Effectively loops in regex programs
Greedy matching by default (match as many as possible)

Minimal instead of maximal (greedy) by placing a ? after
the quantifier

Leftmost matching (the earliest match wins)

Rules:
o {MIN,MAX} {MIN,} {COUNT} “atleast-at most....at least....exactly”
o * 47 “O or more....1 or more....0 or 1 time”

« * +7? equivalentto {0,} {1,} {0,1}

3.29

Quantifiers (examples)

= Examples:
1. if (Sline =~ /abc/) # abc
2. if (Sline =~ /abc*/) # ab, abccc, but not abcabc
3. if (Sline =~ /abc+/) # abccc, but not ab or abcabc
4. if (Sline =~ /(abc)+/) # abc, abcabc etc.
5. if (Sline =~ /abc?/) # ab and abc
6. if (Sline =~ /abc{2}/) # abcc and nothing else
7. if (Sline =~ /(abc){2}/) # abcabc and nothing else
8. if (Sline =~ /abc{2,}/) # abcc, abccc and so on
9. if (Sline =~ /abc{2,4}/) # abcc, abccc or abceccce

3.30

PM (assertions)

= Positions in the string to be matched (tie pattern to
position)
= Do not correspond to a character (“zero-width”)
o A beginning of string (line if using ‘m” modifier)
e S end of string (line if using ‘m’” modifier)
e \b any word boundary (\wW\W or \W\w)
e \B NOT a word boundary

= Examples:
1. if (Sline =~ /AS\d{4}/) # line starts with S followed by digits
2. if (Sline =~ /\dS$/) # line ends with digit
3. if (Sline =~ /\bis\b/) # “whatisit” but NOT “artist”

PM (grouping & capturing)

Group and remember sub-patterns using ()

After the pattern: SN denotes the Nth group from start
Within the pattern: \N denotes the Nth group from start
Dynamic scope until end of block or next match

Can use them with s/// as replacement

Nested (()): counting by location of left parenthesis ‘(

Special variables:
e S all to left of match
e S& entire matched string
Y all to right of match

Grouping & Capturing (examples)

= Examples:
1. if (Sline =~ /<(.*?) >.*?<\/\1>/)
matches any tags <xyz>.....</xyz>

if ($line = /<(.*?) >*2<\/\1>/) {
print “S1 : 527; }

N =

Sline =~ s/A(\w+), (\w+)/52, S1/; # swap two words
Sline =~ s/((\w+), (\w+))/; # nested (())

Sline = “perlis fun, orisit”;

Sline =~ m/((\w+), (\w+))/;

print “pre - match — post: S \tS&\t5'\n”;

prints “....perlis fun, or isit”

Lk W e

3.33

PM (alternation)

Specify a set of possibilities (|)

For overlapping matches, place longer string first

Extends only to the innermost enclosing ()

Examples:

1.
2.
3.

if ($line =~ /bank|banker/)

always matches bank!

if (Sline =~ /(banker|bank)/) # banker can match

if (Sline =~ /ban(k|b)er/)

banker or banber

PM (magic .)

* The dot. matches any character (wildcard)

* Turn maximal (greedy) matching into minimal matching
by adding a ‘?’
= Examples:

1. if (Sline =~ /<xml>(.*)<\/xml>/)
match any text between two xml tags

1. Sline = "Want this <bold>content's tag<bold> matched ";

2. if (Sline =~/<(.*)>/) # matches "bold>content’s tag <bold"
3. if (Sline =~/<(.*?)>/) # matches "bold“

4,

if (Sline =~/<(.+?)>/) # matches only if its non empty

3.35

PM (return values)

= Match (m//):
e scalar context - returns true (1) if successful, else false (

II”)

e |ist context - returns a list of matched groups

= Substitute (s///):
e returns number of times it succeeded (scalar & list context)

Sline = "<text>this is the text</text>";
(Stag, Scontent) = Sline =~ /A<(.*?)>(.*?)<\/\1>$/;

if (@perls = Stext =~ /perl/gi) {
print "Number of times Perl mentioned : ", scalar(@perls); }

Sstring = "name=xyzzy id=9 score=0";
%hash = Sstring =~ /(\w+)=(\w+)/g;

Snum = Stext =~ s/perl/PERL/g;

3.36

PM (general advice)

When matching multiple regex, list common case first

When writing a long regex, simplify with variables
(interpolation)

Consider using || (logical) instead of | (regex) to be more
efficient

Avoid S& S° $’ if you can (slows down execution).
However, if used once, use all the time without penalty

Not every problem should be solved with regex: consider
functions to manipulate strings (substr) instead

Start by writing down all the patterns you need to
identify, then proceed to contrive the regex

More Examples

while (<>) {
next if Sline =~ /A#/;

from: vp2198@columbia.edu

to: vp2198@columbia.edu

date: Sun, Apr 1, 2012 at 11:08 PM

subject: COMS W3101.004 Office Hours Change (this week only)
mailed -by: columbia.edu

while (<>) {
S_ = [MIFR)NS*()S/;
Shash{$1} = S2;

Concepts

"= More on files
" Scoped variables
= Special variables

3.39

< ...> Rules

= “Angle operator”: apply to a filehandle to read the next line

= Auto assignment to S_ only in while loop! (not if, unless,...)

= Examples:

1.

2.

3.

while (< INFILE >) {
print S_;

if (<INFILE>) {
print S_;

while (<IN1> && <IN2>) {
print S_;

next line

WRONG
prints whatever in S_ before

WRONG (throw away lines)
prints whatever in S_ before

3.40

Scoped Variables

my

creates private variable visible only within block

hidden from outside of enclosing scope, and hides previously declared variables with identical
name

confines name & value to scope
suitable for scalar/array/hash variables

confines name only to scope (no effect on visibility)

suitable for scalar/array/hash variables

used to access global variables, their initial value inside block unchanged
effects or assignment persist after the scope of declaration (block)

confines value only to scope

suitable for scalar/array/hash + more variables

initial value for variable is () or undef

value of variable is restored no matter how you exit the block (changes thrown away)
“dynamic” scope: value of variable depends on scope & changes during run-time
‘my’ is preferable over ‘local’

3.41

Scoped Variables (example)

Soffice = "global";
&say();

&barney();

&fred();

&say();

sub say {print "Soffice\n"; }

sub barney {
my Soffice = "barney";
print "Soffice "; &say(); }

sub fred {
local Soffice = "fred";

print "Soffice "; &say(); }

Global Soffice

prints "global"

prints "barney global", lexical scope;
prints "fred fred", dynamic scope,

prints "global", restored after &fred()

print the Soffice

3.42

Special Variables

" Predefined variables with a special meaning:
«$ @ @ARGV $ash
e $1,52,...: matched groups in pattern
* S&,S°, S : match, pre-match, post-match pattern
* SO : program/script file name

3.43

