COMS 3101
Programming Languages: Per|

Lecture 1

Fall 2013
Instructor: Illia Vovsha

http://www.cs.columbia.edu/~vovsha/coms3101/per]

What is Perl?

Perl is a high-level language initially developed as a
scripting language to make report processing easier

Scripting language designed for “gluing together”
computations
Written in C

Many features from shell programming, Lisp (lists),
AWK (hashes), sed (regular expressions)

1.2

Why Perl?

Powerful built-in text processing functionality
Easy to extend using modules/packages

Can embed perl in other languages

Intuitive, easy to use

Automatic data-typing, memory management

Comprehensive Perl Archive Network (CPAN)
modules

Open source development

Course Info — Instructor

= |lia (Eli) Vovsha
e Email:iv2121@columbia.edu

e Office Hours:
e Friday (1:00 — 2:00pm), TA room (Mudd 122A)

e Monday (3:00 — 4:00pm), notify by email
= PhD student in Machine Learning (final year)

= MLis afield in which we develop algorithms/systems with a learning
component
= Major ML applications in Natural Language Processing (NLP)

= Algorithms + Text Data + Experiments =2 Perl

1.4

Course Info — Goals

= [earn PERL to:

e Perform simple manipulations on data
 Handle language and text processing

e |ntegrate multiple tools/interfaces
 Implement prototypes to solve toy problems

= We will focus on the formulation and
implementation of (simple) natural language (text)
problems

Course Info — Syllabus

Basics:
e \ariables, data structures, operators
e Arrays, hashes, lists

Control Flow:
e If, while, for
e Unless, until, foreach

Subroutines
Input/Output

Regular expressions, pattern matching:
e Matching, substitution
e Quantifiers, grouping, classes

1.6

Course Info — Syllabus

= Array / Hash manipulation:
e Built-in functions
e References
e Array of hashes, hash of hashes

" Packages & Modules:

 Definition and use of external code

" Object Oriented Programming (OOP):

* Inheritance, methods, pragmas

Course Info — Grading

= 4 Homeworks (4 x 15%)

 Posted on Monday morning. Due the following Mon, by
start of class

e See course website for submission instructions
e Extra HW to make up / replace lowest grade
* Final Project (40%)

e Solve a toy problem of your choice. Submit a write-up and
your code

#!

" |nterpreter directive
 Run interpreter program, pass path as argument

e Lineignored by interpreter since ‘#' character is a
comment marker

" First line of a any perl script (usually):
e #!1/usr/local/bin/perl

= Perl file extension: .pl

" Check syntax without executing script:
o S perl—c test.pl

Basic Elements

= Variables:
e Scalars
* Arrays
e Hashes
= QOperators:

e Numeric, String, Logical

1.10

Scalars

Singular value denoted by S (dollar sign)

No need to declare the exact type of scalar, as perl
converts types based on the context

Common types: integers, strings, floating-point
numbers, references

Examples:

1. Sage =42;

2. $pi=3.14;

3. Sperson = “Rob”;

4. Sdays[0] = “Sunday”;
5. Svarref = \Sperson;

1.11

Arrays

= Can hold a set of ordered scalars
" Denoted by @

= Examples:
1. @names = ();
2. @names = (“Ben”, “Jen”, “Ken”);
3. @mixed =(123,“Rob”,3.14);
4, print Snames[1];

empty

initialization

different types
prints Jen

1.12

Array Operations: Initializing

= Examples:
1. @names = (“Ben”, “Jen”, “Ken”);
2. @names = (Ben,Jen,Ken);
3. @ages=(37, 34, 4);
4. @words = qw(a short sentence);
5. @digits =(0..9);
6. @chars=(a..z);
7. @chars = (ax..bb);

Strings

without quotes

numbers

quoted words

range

range

range (ax,ay,az,ba,bb)

1.13

Array Operations: Indexing & Slicing

= Examples:
1. print Snames[1], “: “ Sages[1];
2. print Snames|[-1];
3. @parents = @names[0,1];
4. @schars = @chars[1..3,7,9];
5. print S#names;
6. print @names;

Print ‘Jen: 34’

Print ‘Ken’

Slice (Ben,Jen)

Slice (b,c,d,h,j)

Print last index

Print all elements

1.14

Hashes

= Can hold a set of unordered scalars indexed by
strings (keys)

" Denoted by %

= Examples:
1. %names = ();
2. %names = (“Ben”, 37, “Jen”, 34, “Ken”, 4);
3. %names = (Ben => 37, Jen => 34, Ken => 4);
4. print Snames{“Ken”};

empty

initialization
initialization
prints 4

1.15

Hash Operations

= Examples:
1. %agehash = (Ben => 37, Jen => 34, Ken => 4); # initialization
2. Sage = Sagehash{Ken}; # Sage =4
3. @p_age = @agehash{Ben,Jen}; # Slice (37,34)
4. @names = keys %agehash; # Random order of keys
5. @vals = values %agehash; # Random order of values

1.16

Operators (Numeric, String)

= Numeric: the usual arithmetic operators
* {+I) */ ’ %1 **}

= String: concatenation, repetition Numeric:

* {, x}

= Examples:
1. Sn =Sa OP Sb;
2. Sn =Sa ** Sb;
3. Ss =Sa . Sb;
4. Ss =Sa x Sbh;

1.17

Operators (Example)

= Examples:
1. $a=30; $h=2;
2. print Sa + Sb; # 32
3. print Sa . Sb; # 302
4. print Sa * Sb; # 60
5. print Sa x Sb; #3030
6. print “-” x Swidth; s S——

1.18

More Operators

= Assignment:

1. Ss =Sa + Sb;
2. Ss =S5a=5b=0;
3. Sa += 2;
= Unary:
1. Sa++; ++Sa;
2. Sa-; --Sa;
= Logical:
1. Ss =Sa && Sb;
2. Ss=Sa || Sb;
3. Ss =1Sa;
4. Ss =Sa and Sb;
5. Ss =Sa or Sb; Ss =Sa xor Sb;
6. Ss =not Sa;

#all get O

1.19

Concepts

Quotes
Interpolation
Context
Arrays vs. Lists

1.20

Quotes

Single quotes: use it literally

Double quotes: interpolate before processing
Back-quotes (backtick, gx): execute commands

Examples:
1. print “Sperson is \”Sage\” years old”;
2. print ‘Is it worth $50?’;
3. print ‘Is-l;
4. qgx(ls-l)

1.21

Interpolation

Disambiguation among alpha-numeric characters

Array interpolation

Escape characters

Examples:

1. print “S{user}id”;

2. print @names; print “@names”;

3. print “Sperson is \”Sage\” years \t old”;

1.22

Context

= Scalar / List

1. Sx = somefun();

2. @x = somefun();

3. Sx[1] = somefun(); @x[1] = somefun();
= Void: no return value (perl warning)

" Boolean

e Condition / Expression is evaluated to “true” or “false”

ao»$»

e False: null string (“”), zero (0), string zero (“0”), undefined

value (undef)

1.23

Context (Examples)

= Examples:

o Uk W e

@familyl = @family2;
(Snamel, Sname2) = @family;

(Sname) = @family;
Snum = @family;
print @names;
while (@files) {

list context
Slice of array
list, 15t element of array
scalar, size of array
list context (no spaces)
boolean, checks if array is empty

1.24

Arrays vs Lists

" List: ordered set of scalars, separated by commas

= Array: can hold a list

= Examples:
1. @numbers = (1,2,4,5,8);
2. print Snl, Sn2, Sn3;
3. (Snum) = @number; # 15t element of array
4. Snum=(1,2,4,5,8); # last element of list
5. Snum = @number + 1; # scalar, size of array + 1

1.25

Control Flow

= Statements:
e if & unless
e while & until
e for & foreach
e |ast & next

1.26

Statements: if & unless

= ‘if’ Examples:

1. Sres = Sa <=> Sb; # returns 0 (==), 1 (>), -1 (<)
2. If (Sres == 0) { # required braces mark blocks
print “Sa eq Sb”; } # end of block
elsif (Sres < 0) {
print “Sa le Sb”; } # end of block
else {
print “Sa gt Sb”; } # end of block

" ‘unless’ Example:

1. unless (Stime eq Smoney) {
print “We should play more Angry Birds”;

1.27

Statements: while & until

= ‘while’ Example:
1. while (@names) {
Sname = pop(@names);
print “Sname\n”;

= ‘until’ Example:
1. Scount = 0;
2. until (Scount ==100) {
print “Keep counting”;
Scount++;

1.28

Statements: for & foreach

" ‘for’ Example:
1. for (Si = 0; Si <= S#nums; Si++) {
print “Snums[Si]\n”;

}
= ‘foreach’ Examples:
1. foreach Sdigit (@number) { # Sdigit refers to the element
print “Sdigit\n”;
}

2. foreach Skey (sort keys %agehash) {
print “Sagehash{Skey\n”;
}

1.29

Statements: last & next

= ‘last’ Example:

1. foreach Skey (sort keys %book) {
if (Sbook{Skey} eq Sfavorite) {
print “Found it!”;
last; }

}

" ‘next’ Examples:
1. foreach Skey (sort keys %book) {

it (Sbook{Skey} eq Sboring) {
next; }

print “Read the book!”;
Code goes here

1.30

Code Example (1)

#!/usr/bin/perl
use Cwd;

my Sbase_dir = cwd();
my Shome_dir = SENV{"HOME"};

Read raw data from file and return lines in an array
sub read_data {

my (Spname, Ssname) = @ ;
my Sfname = Spname . "Ssname.txt";

open FILE, "Sfname" or die "could not read 'Sfname'\n";
my @lines = <FILE>;

chomp @lines;

close FILE;

return @lines;

131

Code Example (2)

Print the data separated by Snsep

sub print_data {
my (Soutfile, Saref, Sosep, Snsep) = @ ;

for my Sline (@Saref) {
Assuming fields are separated by Sosep

my @fields = split Sosep, Sline;
Print line

print Soutfile join(Snsep, @fields), "\n";

1.32

Code Example (3)

Count the number of categories for an attribute

sub count_categories {
my (Saref, Ssep, Sncol) = @ ;
my %categ = ();
my Scount = O;

for my Sline (@Saref) {

Assuming fields are separated by Ssep

my @fields = split Ssep, Sline;

my Sval = Sfields[Sncol];

unless (exists Scateg{Sval}) {
Scateg{Sval} = Scount;
Scount++;

}

}

return %categ;

}

1.33

