Math S1201 Calculus 3 Chapter 14.8

Summer 2015

Instructor: Ilia Vovsha

http://www.cs.columbia.edu/~vovsha/calc3

Outline

- CH 14.8 Lagrange Multipliers
 - Maximizing / minimizing function subject to equality constraint
 - General approach for any dimension
 - Geometrical interpretation and proof
 - Method of Lagrange Multipliers
 - Two equality constraints

Guiding Eyes (14.8)

A. How do you find the extrema of a function subject to an equality constraint?

B. How do you justify the Method of Lagrange Multipliers?

C. How do you find the extrema of a function subject to *multiple* equality constraints?

Extrema of function subject to one equality constraint

Consider functions of two variables: f(x,y)

We wish to find the extrema of f where (x,y) is restricted to lie on the level

curve g(x,y) = k.

 $\max_{x,y} f(x,y)$ subject to: g(x,y) = k

Formally stated, we have a more general problem:

$$\max_{\mathbf{x}} f(\mathbf{x}) \quad \text{s.t. } g(\mathbf{x}) = 0$$

Approach for functions of two variables:

- 1) Use the constraint g(x,y) = 0 to exress y in terms of x: y = h(x)
- 2) Substitute y = h(x) into f(x,y) and obtain a function of a single variable.
- 3) Differentiate to find critical points (\mathbf{x}^*) , verify extrema.
- 4) Substitute back to get $y^* = h(x^*)$.
- Q. Would this approach work for functions of three variables?
- Q. Would this approach work for any function f and constraint g?

What is the distance between a point and a plane?

Problem: find the shortest distance from the point $P(p_1, p_2, p_3)$ to the plane ax + by + cz + d = 0.

Solution: Recall, we solved this problem $D = \frac{\left|ap_1 + bp_2 + cp_3 + d\right|}{\sqrt{a^2 + b^2 + c^2}}$ Consider this as an optimization problem:

$$f(x,y,z) = \sqrt{(x-p_1)^2 + (y-p_2)^2 + (z-p_3)^2}$$

$$g(x,y,z) = ax + by + cz + d$$

$$\min_{x,y,z} f(x,y,z) \quad \text{s.t. } g(x,y,z) = 0$$

- 1) Use the constraint g(x,y,z) = 0 to exress z in terms of x,y: z = h(x,y)
- 2) Substitute z = h(x,y) into f(x,y,z) and obtain a function of two variables.
- 3) Compute partial derivatives to find critical points $(\mathbf{x}^*, \mathbf{y}^*)$, verify extrema.
- 4) Substitute back to get $z^* = h(x^*, y^*)$.

What is the distance between a point and a plane?

Problem: find shortest distance from $P(p_1, p_2, p_3)$ to ax + by + cz + d = 0.

$$f(x,y,z) = \sqrt{(x-p_1)^2 + (y-p_2)^2 + (z-p_3)^2}$$

$$g(x,y,z) = ax + by + cz + d$$

$$\min_{x,y,z} f(x,y,z) \quad \text{s.t. } g(x,y,z) = 0$$

$$1) z = (-ax - by - d)/c$$

$$2) f(x,y) = (x-p_1)^2 + (y-p_2)^2 + (\frac{-ax - by - d - p_3}{c})^2$$

$$3) f_x = 2(x-p_1) - 2a(\frac{-ax - by - d - p_3}{c}) = 0$$

$$f_y = 2(y-p_2) - 2b(\frac{-ax - by - d - p_3}{c}) = 0$$

$$\Rightarrow x = x^*, y = y^*$$

$$4) z^* = \frac{-ax^* - by^* - d}{c} \Rightarrow d = f(x^*, y^*, z^*)$$

What is the maximum volume of a box?

Problem: find the max volume of a box without lid made from T(m²) amount of material.

Solution: consider this as an optimization problem, where x,y,z are the dimensions of the box.

$$V(x, y, z) = xyz \qquad g(x, y, z) = 2xz + 2yz + xy - T$$

$$\max_{x, y, z} f(x, y, z) \quad \text{s.t. } g(x, y, z) = 0$$

$$z = \frac{T - xy}{2(x + y)} \Rightarrow V = xy \left(\frac{T - xy}{2(x + y)}\right) = \frac{Txy - x^2y^2}{2(x + y)}$$

$$\frac{\partial V}{\partial x} = \frac{y^2(T - 2xy - x^2)}{2(x + y)^2} \quad \frac{\partial V}{\partial y} = \frac{x^2(T - 2xy - y^2)}{2(x + y)^2}$$

$$\frac{\partial V}{\partial x} = \frac{\partial V}{\partial y} = 0 \quad x \neq 0, y \neq 0 \Rightarrow T - 2xy - x^2 = 0, T - 2xy - y^2 = 0$$

$$\Rightarrow x^2 = y^2, x > 0, y > 0 \Rightarrow x = y \Rightarrow T - 3x^2 = 0$$

$$\Rightarrow x^* = y^* = \sqrt{T/3} \Rightarrow z^* = 0$$

Extrema of function subject to one equality constraint

Q. Would previous approach work for any function f and constraint g?

A. No! Too "crude", sometimes can't express variable in terms of others.

Better approach: consider the geometry of the problem.

- 1) Suppose we have a function f(x) of n-variables. The constraint g(x) = 0 is a level surface in n-dimensional space.
- 2a) At any point on the constraint (level) surface, $\nabla g(x) \perp \{g(x) = 0\}$
- 2b) For any curve **r(t)** on the level surface, at any point, $\nabla g(\mathbf{x}_0) \perp r'(t_0)$
- 3) If f(x) has extreme value at point x_0 on the constraint surface,

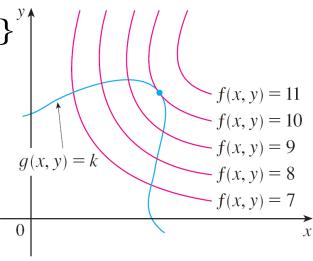
$$\nabla f(\mathbf{x}_0) \perp r'(t_0) \text{ or } \nabla f(\mathbf{x}_0) \perp \{g(\mathbf{x}_0) = 0\}^{y}$$

Otherwise can increase value of f(x) by moving along the constraint surface.

4) There must exist a parameter λ :

$$\nabla f(\mathbf{x}_0) \, || \, \nabla g(\mathbf{x}_0) \Rightarrow \lambda \neq 0$$

$$\nabla f(\mathbf{x}_0) + \lambda \nabla g(\mathbf{x}_0) = 0$$



Method of Lagrange Multipliers

- A. Define a function: **L** is the Lagrangian, λ is the Lagrange multiplier
- B. Find the critical points of L w.r.t $\{x, \lambda\}$
- C. Obtain n+1 equations (n = dimension)
- \rightarrow n equations to determine extremum \mathbf{x}^* (one equation for λ)
- \rightarrow might not care about λ , hence can be eliminated (undetermined multiplier)

A)
$$L(x,\lambda) = f(x) + \lambda g(x), \ \lambda \neq 0$$

B)
$$\nabla_x L = 0$$
, $\frac{\partial L}{\partial \lambda} = 0 \Rightarrow \nabla f(x) + \lambda \nabla g(x) = 0$, $g(x) = 0$

What is the maximum volume of a box?

Problem: find the max volume of a box without lid made from T(m²) amount of material.

Solution: use Method of Lagrange Multipliers.

$$\max_{x} f(x) \quad \text{s.t. } g(x) = 0$$

$$f(x) = V(x, y, z) = xyz$$

$$g(x) = g(x, y, z) = 2xz + 2yz + xy - T$$

$$A) \quad L(x, \lambda) = f(x) + \lambda g(x), \quad \lambda \neq 0$$

$$B) \quad \nabla f(x) + \lambda \nabla g(x) = 0, \quad g(x) = 0$$

$$\nabla f(x) = \langle yz, xz, xy \rangle \quad \nabla g(x) = \langle 2z + y, 2z + x, 2x + 2y \rangle$$

$$C) \quad \langle yz, xz, xy \rangle = -\lambda \langle 2z + y, 2z + x, 2x + 2y \rangle$$

$$2xz + 2yz + xy - T = 0$$

Extrema of function subject to two equality constraints

Q. Can we generalize the Method of Lagrange Multipliers?

Suppose we seek the extrema of a function $f(\mathbf{x})$ of n-variables subject to \mathbf{J} number of constraints $g_j(\mathbf{x}) = 0$ (each is a level surface in n-dimensions). Geometrically, \mathbf{x} is restricted to lie on the surface (curve) of intersection of the level surfaces $g_j(\mathbf{x})$.

At any point, the gradients of the constraint surfaces are orthogonal to the surface of intersection.

The gradient of $f(\mathbf{x})$ is in the space (plane) defined by the gradients of $g_i(\mathbf{x})$.

Formally stated, we have a more general problem:

$$\max_{x} f(x)$$
 s.t. $g_{j}(x) = 0$, $j = 1,...,J$

$$L(x,\lambda) = f(x) + \sum_{j=1}^{J} \lambda_j g_j(x), \ \forall j, \lambda \neq 0$$

$$\nabla_{x}L=0, \ \nabla_{\lambda_{j}}L=0$$

$$\nabla f(\mathbf{x}) + \sum_{j=1}^{J} \lambda_j \nabla g_j(\mathbf{x}) = 0, \ g_j(\mathbf{x}) = 0$$

