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Abstract

In many computer vision applications, machines will
need to reason beyond the present, and predict the future.
This task is challenging because it requires leveraging ex-
tensive commonsense knowledge of the world that is diffi-
cult to write down. We believe that a promising resource
for efficiently obtaining this knowledge is through the mas-
sive amounts of readily available unlabeled video. In this
paper, we present a large scale framework that capitalizes
on temporal structure in unlabeled video to learn to antic-
ipate both actions and objects in the future. The key idea
behind our approach is that we can train deep networks to
predict the visual representation of images in the future. We
experimentally validate this idea on two challenging “in the
wild” video datasets, and our results suggest that learning
with unlabeled videos significantly helps forecast actions
and anticipate objects.

1. Introduction

What will the man do next in Figure 1?7 Although pre-
dicting the future is difficult, you can find several clues in
the image if you look carefully. The young couple seems
to be at an open house, the real estate agent is holding pa-
perwork, and the man’s arm is starting to move. You might
wager that this couple has bought a house, and therefore, to
finalize the deal, the man will soon shake hands.

While computer vision systems can now recognize ob-
jects, actions, and scenes with astounding accuracy [34, 40,
51, 16], an unsolved problem is how to create machines that
predict what will happen in the future. Developing the ca-
pability for machines to anticipate events before they start
would enable several real-world applications. For example,
to make plans or interact with humans, robots will require
predictions of the future [19]. Recommendation systems
can suggest products or services based on what they antici-
pate a person will do. Predictive models can also find abnor-
mal situations in surveillance videos, and alert responders.

Developing an algorithm to anticipate the future is chal-
lenging. Humans can rely on extensive knowledge accu-

Figure 1: What will happen next? By learning from mas-
sive amounts of unlabeled video, we train models that an-
ticipate the future.

mulated over their lifetime to infer that the man will soon
shake hands in Figure 1. How do we give prediction models
access to this commonsense knowledge?

Our insight is to exploit the regularities inherent in video
to train models that predict the future. Videos come with the
temporal ordering of frames “for free”, which is a valuable
asset because machines can look forward in time to learn to
predict the future. However, annotating videos with com-
monsense knowledge is likely too expensive [47, 43] and
difficult to define.

We believe that a promising resource to train these mod-
els are abundantly available unlabeled videos. Although
lacking ground truth annotations, they are attractive for
training vision systems because they are cheap to obtain at
massive scales and still contain rich signals. Foundational
work in computer vision has explored the challenging task
of visualizing the future using unlabeled videos [29, 45, 48].
However, in many applications, we are interested in predict-
ing the presence of concepts in the future, which may be
easier than predicting low level signals.

Rather than predicting pixels, the main idea in this paper
is to predict the visual representations of future frames. Re-
cent progress in computer vision has built rich visual rep-
resentations for recognition. Although going from these
abstract representations to exact pixel values is not easy
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Figure 2: Predicting Future Representations: The egocentric video above shows a person walking into a kitchen, preparing
cereal, and starting to sit down [30]. Below each frame, we visualize an example hidden representation with [52]. While
predicting the exact pixel values in the future may be too difficult in the wild, often predicting the representation is easier
because it encodes images at a more abstract level. In this paper, we anticipate objects and actions seconds before they appear

by learning to predict visual representations in the future.

[24, 49, 42], they capture the signals necessary for recog-
nizing several high level concepts. Pioneering work has
forecasted high level semantics before [17, 21, 13], but they
have required supervision, which makes it difficult to scale.
Representations have the advantage that they scale to unla-
beled videos because they are automatic to compute. More-
over, these representations have been empirically shown to
work on a large variety of tasks [33, 5, 50]. In this paper,
we anticipate both actions and objects seconds before they
appear by applying recognition models on predicted future
representations, illustrated in Figure 2.

In our largest experiment, we collect and learn a predic-
tion model with over 600 hours of unlabeled video down-
loaded from the web. To handle data at these magnitudes,
we propose to use deep networks to construct our mod-
els. Deep networks are well suited for this problem be-
cause their capacity can grow with the size of data avail-
able and be trained efficiently with large-scale optimization
algorithms. Although we are still far from human perfor-
mance at this task, our experiments suggest that learning
with large amounts of unlabeled videos can significantly
help machines predict the future. We validate our approach
on forecasting actions and objects on two challenging in-
the-wild datasets of human actions in television shows [26]
and egocentric videos for activities of daily living [30].

The primary contribution of this paper is showing that

extracting signals from massive amounts of unlabeled video
can help machines anticipate concepts in the future. The re-
mainder of the paper discusses this contribution in detail. In
section 2, we first review related work. In section 3, we then
present our deep network to predict visual representations
in the future. Since anticipating the future is an ambiguous
task, we extend our network architecture to produce multi-
ple predictions. In section 4, we show several experiments
to forecast both actions and objects. In our most difficult
setting, we forecast objects five seconds before they appear
with reasonable performance.

2. Related Work

The problem of predicting the future in images and
videos has received growing interest in the computer vision
community, and our work builds upon this foundation:

Prediction with Unlabeled Videos: Perhaps the ideas
most similar to this paper are the ones that capitalize on the
wide availability of big video collections. In early work,
Yuen and Torralba [48] propose to predict motion in a sin-
gle image by transferring motion cues from visually similar
videos in a large database. Building on the rich potential
of large video collections, Walker et al. [45] demonstrate a
compelling data-driven approach that animates the trajec-
tory of objects from a single frame. Ranzato et al. [32] and
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Figure 3: Multiple Futures: Since predicting the future is ambigious, models need to anticipate multiple possibilities.

Srivastava et al. [38] also learn predictive models from large
unlabled video datasets to predict pixels in the future. In this
paper, we also use large video collections. However, unlike
previous work that predicts low-level pixels or motions, we
develop a system to predict high-level concepts such as ob-
jects and actions by learning from unlabeled video.

Predicting Actions: There have been a few promising
works on predicting future action categories. Lan et al. [21]
propose a hierarchical representation to predict future ac-
tions in the wild. Ryoo [35] and Hoai and De la Torre [ 1]
propose models to predict actions in early stages. Vu et
al. in [44] learn scene affordance to predict what actions
can happen in a static scene. Pei et al. [27] and Xie et al.
[46] infer people’s intention in performing actions which is
a good clue for predicting future actions. We are different
from these approaches because we use large-scale unlabeled
data to predict a rich visual representation in the future, and
apply it towards anticipating both actions and objects.

Predicting Human Paths: There have been several
works that predict the future by reasoning about scene se-
mantics with encouraging success. Kitani et al. [17] use
concept detectors to predict the possible trajectories a per-
son may take in surveillance applications. Lezema et al.
[23], Gong et al. [9] and Kooij et al. [18] also predict the
possible future path for people in the scene. Koppula and
Saxena [19] anticipate the action movements a person may
take in a human robot interaction scenario using RGB-D
sensors. Our approach extends these efforts by predicting
human actions and objects in images in the wild.

Predicting Motions: One fundamental component of
prediction is predicting short motions, and there have been
some investigations towards this. Pickup et al. in [28] im-
plicitly model causality to understand what should happen
before what in a video. Fouhey and Zitnick [8] learn from
abstract scenes to predict what objects may move together.
Pintea et al. [29] predict the optical flow from single im-
ages by predicting how pixels are going to move in future.
We are hoping that our model learns to extrapolate these

motions automatically in the visual representation, which
is helpful if we want to perform recognition in the future
rather than rendering it in pixel space.

Big Visual Data: We are inspired by recent work that
leverages the large wealth of visual data readily available
online. Torralba et al. [41] use millions of Internet images
to build object and scene recognition systems. Chen et al.
[2] and Divvala et al. [3] build object recognition systems
that have access to common sense by mining visual data
from the web. Doersch et al. [4] use large repositories of
images from the web to tease apart visually distinctive ele-
ments of places. Zhou et al. [51] train convolutional neural
networks on a massive number of scene images to improve
scene recognition accuracy. In our work, we also propose
to mine information from visual media on the web, how-
ever we do it for videos with the goal of learning a model to
predict the future.

Unsupervised Learning in Vision: To handle large-
scale data, there have been some efforts to create unsuper-
vised learning systems for vision. Ramanan et al. [31] uses
temporal relationships in videos to build datasets of human
faces. Ikizler-Cinbis et al. [14] propose to use images from
the web to learn and annotate actions in videos without su-
pervision. Le et al. [22] show that machines can learn to
recognize both human and cat faces by watching an enor-
mous amount of YouTube videos. Chen and Grauman [1]
propose a method to discover new human actions by only
analyzing unlabeled videos., and Mobbhai et al. [25] simi-
larly discover objects. Fouhey et al. [7] propose to watch
people with minimal supervision in order to learn room ge-
ometry. This paper also proposes to use unlabeled data, but
we differ from previous works because we do it for predict-
ing visual representations.

3. Anticipating Visual Representations

We now present our large-scale learning framework for
predicting visual representations in the future.
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Figure 4: Network for Predicting Future Representations: We visualize the network architecture of our full model. During
training, our network uses videos to learn to predict the representation of frames in the future. Since predicting the future is
ambiguous, our network predicts K futures. Blue layers are the same for each output while green layers have hidden units
that are interleaved between the K outputs. During inference, we only input the current frame, and the network estimates K
representations for the future. Please see section 3 for full details.

3.1. Self-supervised Learning

The key idea of our method is that we can use large
amounts of unlabeled video to train models that predict the
visual representation in the future. The temporal structure
of video automatically provides self-supervision to train
models to anticipate events.

Given a video frame z! at time ¢ from video 7, our goal
is to predict the visual representation for the future frame
x, A Let ¢(x}, o) be the representation in the future. Us-
ing videos as training data, we wish to estimate a function
g(x}) that closely predicts ¢(z}, A ):

w' = argminz Hg (gcfk,w) -9 (mi+A) ’ ’2 (1

it

where our prediction function g(+) is parameterized by w.

Although our method is general to any visual representa-
tion, in our experiments we train g(-) to predict the popular
fc7 hidden layer of AlexNet [20]. We chose this layer be-
cause it empirically obtains state-of-the-art performance on
several recognition tasks [33, 5, 50].

3.2. Deep Regression Network

Since we do not require data to be labeled for learning,
we can collect massive amounts of training data. In order to
use large-scale data, we need a model with a large learning
capacity and efficient training algorithm. We propose to use
deep regression networks for this task because their model
complexity can easily expand and can be trained with large
scale data efficiently with stochastic gradient descent.

Our network architecture is five convolutional layers fol-
lowed by five fully connected layers. The last layer is the
output vector, which makes the prediction for the future rep-
resentation. In training, we use the Euclidean loss in Equa-

tion 1 to minimize the distance between our predictions
g(x¢) and the representation of the future frame ¢ (x4 )-

Our choice of architecture is inspired by the recent suc-
cesses of the AlexNet architecture for visual recognition
[20, 51]. Note, however, that our architecture differs by
having a regression loss function and three more fully con-
nected layers (because we have more training data than typ-
ical supervised problems).

Our method focuses on predicting the future given only
a single frame. However, we note that our method can be
optionally extended with most sequence models in order to
forecast the future given a video clip. In experiments, we
explored replacing the last three layers with long short term
memory [12] since it is a state-of-the-art sequence model
for language tasks [39].

3.3. Regression with Multiple Outputs

Given an image, there are often multiple plausible fu-
tures, illustrated in Figure 3. To model scenarios like these,
our network should produce multiple outputs given one in-
put. While classification networks naturally produce multi-
ple outputs with confidence values, standard regression net-
works typically produce only one output vector.

We propose to extend deep regression networks to pro-
duce multiple outputs. Suppose that there are K possible
output vectors for one input frame. One way to support
multiple outputs is to train a mixture of K networks, one
for each output. Given input z¢, network & will produce
one of the outputs gy, (?).

However, in learning, there are two problems with this
approach. Firstly, videos only show one of the possible fu-
tures (videos like Figure 3 are rare). Secondly, we do not
know to which of the K mixtures each frame belongs. We
can overcome both problems by treating the mixture assign-
ment for a frame as latent. Let 2} € {1,..., K} be a latent



variable indicating this assignment for frame ¢ in video .
We could train each network independently, however the
number of parameters would scale linearly with K, which
makes learning difficult and prone to overfitting. To effi-
ciently train our model, we interleave the hidden units be-
tween the K networks. We randomly commit each hidden
unit to a network with probability p = %, which controls
the amount of sharing between networks. Note that we do
this assignment once, and do not change it during learning.
In contrast to dropout [37] that uses an ensemble of an ex-
ponential number of networks to solve a single task, we use
K fixed interleaved networks each tuned for their own task.

3.4. Learning

If we knew the ground truth z for which future frames
belong, then we would be able to train our networks with
standard methods. Since we do not have access to this in-
formation, we can instead treat it as latent during learning.
We first initialize z uniformly at random. Then, we alternate
between two steps. First, we solve for the network weights
w end-to-end using backpropagation assuming z is fixed:

2
w* = argmin E ‘
w .
1,t

g (@hiw) 0 (aia)| @

Then, we re-estimate z using the new network weights:

di= argmin [|gx (v50) — ¢ (wiia)|l; B
ke{l,...,.K}
We alternate between these two steps until the mixture as-
signments z and network weights w sufficiently converge.
We illustrate this type of loss function in Figure 4.
Although we train our network offline in our experi-
ments, we note our network can be also trained online with
streaming videos. Online learning is attractive because the
network can continuously learn how to anticipate the future
without storing frames. Additionally, the model can adapt
in real time to the environment, which may be important for
some applications such as robotics.

3.5. Predicting Categories

Since our network uses unlabeled videos to predict an
abstract representation in the future, we need a way to at-
tach semantic category labels to our predicted representa-
tions. To do this, we use a relatively small set of labeled
examples from the target task to indicate the category of in-
terest. As the representation that we predict is the same that
is used by state-of-the-art recognition systems, we can then
just apply standard recognition algorithms to our predicted
representation in order to forecast a category.

We explore two strategies for using recognition algo-
rithms on our forecasted representations. The first strategy
uses a visual classifier trained on the standard features (we

. _ el :
Figure 5: Unlabeled Video Repository: We collected more
than 600 hours of unlabeled video from YouTube. We show
a sample of the frames above. We use this data to train deep
networks that predict visual representations in the future.

use £c7) from frames containing the category of interest,
but applies it on our predicted representation. The second
strategy trains the visual classifier on our predicted repre-
sentations as well. The second strategy has the advantage
that it can adapt to the structure in our predictions.

During inference, our model will predict multiple repre-
sentations of the future. By applying category classifiers to
each predicted representation, we will obtain a distribution
for how likely categories are to happen in each future repre-
sentation. We marginalize over these distributions to obtain
the most likely category in the future.

3.6. Implementation Details

Our network architecture consists of 5 convolutional lay-
ers followed by 5 fully connected layers. We use ReLU
nonlinear activations throughout the network. The convo-
lutional part follows the popular AlexNet architecture [20].
The number of hidden units for each convolutional layer
are: 96, 256, 384, 384, 256. There is pooling after layer
1, layer 2, and layer 5. After the convolutional layers, we
have 5 fully connected layers each with 4096 hidden units.
For multiple output mixtures, the last three fully connected
layers have interleaved hidden units. The rest of the layers
are tied between networks.

We trained the networks jointly with stochastic gradient
descent. We used a Tesla K40 GPU and implemented the
network in Caffe [15]. We modified the learning procedure
to handle our interleaved hidden units with latent variables.
We initialized the first seven layers of the network with the
Places-CNN network weights [51], and the remaining lay-
ers with Gaussian white noise and the biases to a constant.
During learning, we also used dropout [37] with a dropout
ratio of % on every fully connected layer. We used a fixed
learning rate throughout the experiments.



Method Accuracy
Chance 25.00
Human T71.77 £ 4.26
Identity (Middle of Action) 28.78 £ 6.09
Identity (Start of Action) 36.25 +4.93
SVM 35.89 +4.39
MMED [11] 34.03 £ 7.03
Nearest Neighbor [48], Off-the-shelf  29.98 4 4.63
Nearest Neighbor [48], Adapted 34.99 £4.73
Linear, Off-the-shelf 32.87 +6.14
Linear, Adapted 34.10 +4.81
Ours: Deep K=3, Adapted 43.38 +4.70

Table 1: Single Frame Action Prediction: Classification
accuracy for predicting actions one second before they be-
gin given only a single frame. The standard deviation across
cross-validation splits is next to the accuracy. Our results
suggest that training deep networks to predict the future
from unlabeled video can improve action forecasts.

4. Experiments

In this section, we quantify how well our predicted repre-
sentations can forecast both actions and objects before they
appear. We present several experiments to evaluate the per-
formance of our framework on these tasks.

4.1. Unlabeled Repository

In order to train our network to predict features, we need
a large amount of unlabeled video. We downloaded over
600 hours of publicly available videos from YouTube by
querying for videos of television shows and movies. The
videos generally consist of people performing a large vari-
ety of everyday actions, such as eating or driving, as well as
interactions with objects and other people. We show a few
example frames of these videos in Figure 5. This dataset
is unique for its size as, to our knowledge, it is the largest
available unlabeled training set for action forecasting.

4.2. Forecasting Actions

To evaluate how well our method can forecast actions,
we use the TV Human Interactions dataset [26], which
consists of people performing four different actions (hand
shake, high five, hug, and kissing). There are a total of 300
videos, with each clip ranging from 1 to 20 seconds. As
the videos are collected from television shows, the uncon-
strained nature of the videos makes this dataset challenging
to anticipate people’s actions. Since the starting time of ac-
tions are annotated, we can run our predictor on the frames
before the action begins. We use the provided train-test
splits with 25-fold cross validation. We evaluate classifi-
cation accuracy (averaged across cross validation folds) on
making predictions one second before the action has started.

Method Accuracy

Deep K=1, ActionBank [36] 34.08 £ 6.16
Deep K=3, ActionBank [36] 35.78 £ 6.25
Deep K=1, fc7, Off-the-shelf 36.13 £6.45
Deep K=3, fc7, Off-the-shelf 35.44 + 5.23
Deep K=1, £c7, Adapted 40.01 £4.92
Deep K=3, fc7, Adapted 43.38 + 4.70

Table 2: Breakdown Diagnostic for Actions: We show
performance of our model with different components turned
on. By learning to produce multiple predictions, we are able
to improve performance by 3%.

Method Accuracy

Mean Pooling 28.99 +4.93
Mean Pooling, Adapted 32.38 £6.20
Max Pooling 36.72 £ 4.95
Max Pooling, Adapted 33.72 +£6.93
Conv Max Pooling, Adapted 38.50 +4.39
Deep Feedforward K=1, Off-the-shelf 36.13 £ 6.45
Deep Feedforward K=1, Adapted 40.01 +4.92
Deep LSTM K=1, Off-the-shelf 33.20 £5.18
Deep LSTM K=1, Adapted 43.11 £5.20

Table 3: Multiple Frame Action Prediction: Classifica-
tion accuracy for predicting actions one second before they
begin given a four second video clip. The standard devi-
ation across cross-validation splits is next to the accuracy,
and chance is 25%. By learning recurrent networks that
fuse signals across frames, we improve action forecasts.

We train our full network on our unlabeled video reposi-
tory to predict the future representation one second into the
future. Since several works have empirically shown fc7
features to perform well on diverse visual recognition tasks
[33, 5, 50], we predict the £c7 of the future. To attach se-
mantic meaning to our representation, we use the labeled
examples from the training set in [26]. As we make multi-
ple predictions, for evaluation purposes we consider a pre-
diction to be correct only if the ground truth action is the
most likely prediction under our model.

We compare the performance of our model against sev-
eral baselines. Identity: One baseline is to assume that the
visual features of the present are the same as the future. We
can train a classifier to recognize actions using the frames
containing the actions, but apply it on the frames before the
action. We explored two strategies: training this classifier
on the middle frame of the action, and on the starting frame.
SVM: A fully supervised approach can train a classifier on
the frames before the action starts to anticipate the cate-
gory label in the future. This baseline is able to adapt to
contextual signals that may suggest the onset of an action.
MMED: We can extend the SVM to handle sequential data
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Figure 6: Forecasting Actions: We show some examples of our forecasts of actions one second before they begin. The left
most column shows the frame before the action begins, and our forecast is below it. The right columns show the ground truth
action. Note that our model does not observe the action frames during inference.

in order to make early predictions. We use the code out-
of-the-box provided by [ 1] for this baseline. Note MMED
is not designed for this task because it predicts actions as
they are starting. Rather, our task is forecasting an action
before it even starts. Nearest Neighbor: Since we have
a large unlabeled repository, one reasonable approach is to
search for the nearest neighbor, and use the neighbor’s fu-
ture frame, similar to [48]. Linear: Rather than training
a deep network to make the prediction, we can also train a
linear regression on our unlabeled repository to predict £c7
in the future. Adaptation: We also examine two strategies
for training the final classifier. One way is to train the clas-
sifier only on frames containing the action and test it on our

inferred representations. The second way is to adapt to the
predictions by training the visual classifier on the prediction
output. Unfortunately, we are unable to compare to Lan et
al. [21] because their method uses an annotated bounding
box around people. In contrast, our approach is designed
to be mostly automatic for situations where bounding boxes
are not available.

Table 1 shows the classification accuracy of our full
method versus the baselines for predicting the future action
one second into the future given only a single frame. Our
results show that training deep models to predict future rep-
resentations with massive amount of unlabeled videos are
able to significantly help machines forecast actions, beating



Method dish door utensil cup oven person soap tap tbrush tpaste towel trashc tv remote|mean
Chance 12 28 11 24 16 08 15 21 02 03 06 11 05 03] 1.2
Identity 26154 29 50 94 69 115176 16 10 15 6.0 20 59| 64
SVM 3.0 82 52 36 83 120 6.711.7 35 15 49 13 09 41| 53
Scene, Off-the-shelf 33185 56 36182 108 92 68 80 81 51 57 20 103 | 82
Scene, Adapted 46 9.1 6.1 57154 139 50157 136 3.7 65 24 18 1.7 | 7.5
Linear, Off-the-shelf 75 93 72 59 28 16 136152 39 56 22 29 23 78| 63
Linear, Adapted 28135 38 36115 112 58 49 54 33 34 16 21 10| 53
Deep K=1, Off-the-shelf| 4.4 17.9 3.0 148 119 9.6 17.7151 63 69 50 50 13 88| 9.1
Deep K=1, Adapted 3.5 11.0 9.0 6.5 16.7 164 84222 124 74 50 19 16 05| 87
Deep K=3, Off-the-shelf| 4.1 22.2 5.7 164 175 84 195206 92 53 56 42 80 2.6 [10.7
Deep K=3, Adapted 3.5 147 142 6.7 149 158 8.629.7 126 46 109 1.8 14 19 |10.1

Table 4: Object Prediction: We show average precision for forecasting objects five seconds before they appear in egocentric
videos. For most categories, our method significantly improve performance. The last column is the mean across all categories.
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Figure 7: Multiple Predictions: Given a single input frame
(left), our model predicts multiple representations in the fu-
ture that can each be classified into actions (middle). When
the future is ambiguous, each network can predict a differ-
ent representation, allowing for multiple action forecasts.
To obtain the most likely future action, we can marginalize
the distributions from each network (right).

the best baseline by over 7%. To establish an upper expecta-
tion for the performance on this task, we also had 12 human
volunteers study the training sets and make predictions on
our testing set. Human accuracy is high, but not perfect due
to the ambiguous nature of the task, which motivates the
need for models to make multiple predictions.

We breakdown the performance of our method in Table
2. If we train our model with only K = 1 output, perfor-
mance drops by a few percent. We also tried to train a deep
network to forecast ActionBank [36] in the future instead
of £c7, which performed worse. Representations are richer
than action labels, which provides more constraints during
learning that may help build more robust models [10].

We also experimented in Table 3 with forecasting given
video clips instead of a static frame by changing the last
three layers of our network to long short term memory units
[12, 6]. We train and tested this recurrent network on 8
frames sampled at 2 frames per second. We compared this
approach with a few baselines. Mean Pooling: Given a
sequence of frames, we take the mean of the fc7 acti-
vations to obtain a 4096 dimensional vector, and train an
SVM. Max Pooling: Instead of averaging features, we in-
stead take max of the £c7 activations, and train an SVM.
Conv Max Pooling: Both the previous baselines lose the
arrow of time. To capture this directionality, we take the
max of £c7 over a sliding temporal window. Each window
produces a 4096 dimensional vector. We then concatenate
adjacent windows. Feedforward Network: We compare
against a network that makes a prediction given only a sin-
gle frame for K = 1. Overall, our results suggest that our
model can be improved by observing several frames, likely
because the extra frames provide some motion cues.

We qualitatively show some of our predictions in Figure
6, which in many cases are reasonable. For example, our
model correctly predicts that a man and woman are about
to kiss or hug or that men in a bar will high five. Moreover,
the failures are sensible. The second to last row shows a
comic scene where one man is about to handshake and the
other is about to high five, which our model confuses. In
the last row of Figure 6, our model incorrectly forecasts a
hug because a third person unexpectedly enters the scene.

Since we learn a mixture of networks, our model will
make diverse predictions when the future is ambigious. To
analyze this, Figure 7 shows a scene and a distribution of
possible future actions. For example, consider the first row
where the man and woman are about to embrace, however
whether they will kiss or hug is ambiguous. In our model,
two of the networks predict a representation where kissing
is the most likely future action, but one network predicts a
representation where the most likely action is hugging.
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4.3. Forecasting Objects

Since our method predicts a visual representation in the
future that is generic to several recognition tasks, we wish to
understand how well we can anticipate concepts other than
actions. We experimented with forecasting objects in ego-
centric videos five seconds before the object appears. We
use the videos from Activities of the Daily Living dataset
[30], which is one of the largest in-the-wild datasets of ego-
centric videos from multiple people. The dataset is very
challenging due to the unconstrained nature of the videos,
and even recognizing objects in this dataset is difficult [30].

In order to train our deep network on egocentric videos,
we reserved three fourths of the dataset as our repository for
self-supervised learning. While collecting orders of magni-
tude more unlabeled egocentric video is easy (just wear a
camera and hit record), we use existing datasets. We eval-
uate on the remaining one fourth videos, performing leave-
one-out to learn future object category labels. Since multi-
ple objects can appear in a frame, we evaluate the average
precision for forecasting the occurrence of objects five sec-
onds before they appear, averaged over leave-one-out splits.

We compare against baselines that are similar to our ac-
tion forecasting experiments. However, we add an addi-
tional baseline that uses scene features [51] to anticipate ob-
jects. Since most objects are strongly correlated with their
scene, recognizing the scene may be a good cue for pre-
dicting objects. We use an SVM trained on state-of-the-art
scene features to create this baseline.

Table 4 shows average precision for our method versus
the baselines on forecasting objects five seconds into the
future. For the most of the object categories, our model
consistently outperforms the baselines at anticipating ob-
jects, occasionally with large margins. Moreover, model
with multiple outputs improves over a single output net-
work, suggesting that handling ambiguity in learning is im-
portant. The adapted and off-the-shelf networks perform
similarly to each other in the average. Finally, as shown
in Figure 8, performance generally improves as we make
predictions closer to the onset of an object, and our model

Trash Can

Figure 9: Forecasting Objects: We show examples of our
high scoring forecasts for objects in egocentric videos. The
left most frame is five seconds before the object appears.

outperforms the baselines for most temporal offsets.

We show some of our high scoring predictions in Fig-
ure 9. These qualitative results seem to suggest that our
model anticipates objects using several different cues. For
example, some objects can be predicted largely with scene
signals (outdoors is correlated with doors) while other ob-
jects require some action understanding to forecast (such as
cleaning implies soap or trash cans).

5. Conclusion

We hypothesize that in order to build models that reli-
ably forecast the future, machines will need access the same
knowledge that humans accumulate over their lifetimes. We
believe abundantly available unlabeled videos are an effec-
tive resource we can use to acquire this knowledge. Our
hope is that this paper will spur progress on building new
methods to anticipate the future with unlabeled video.

The capability for machines to anticipate future events
before they begin is a key problem in computer vision that
will enable many real-world applications in robotics, rec-
ommendation systems, and healthcare. Our insight in this
paper has been to capitalize on the temporal regularities of
unlabeled video to learn to predict visual representations of
the future. By training on truly massive amounts of unla-
beled data, we can capture some commonsense knowledge
about the world that is valuable for anticipating the future.
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