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Abstract—People can recognize scenes across many different modalities beyond natural images. In this paper, we investigate how to
learn cross-modal scene representations that transfer across modalities. To study this problem, we introduce a new cross-modal scene
dataset. While convolutional neural networks can categorize scenes well, they also learn an intermediate representation not aligned
across modalities, which is undesirable for cross-modal transfer applications. We present methods to regularize cross-modal
convolutional neural networks so that they have a shared representation that is agnostic of the modality. Our experiments suggest that
our scene representation can help transfer representations across modalities for retrieval. Moreover, our visualizations suggest that
units emerge in the shared representation that tend to activate on consistent concepts independently of the modality.

Index Terms—cross-modal perception, domain adaptation, scene understanding.

* denotes equal contribution.

1 INTRODUCTION

AN you recognize the scenes in Figure 1, even though
C they are depicted in different modalities? Most people
have the capability to perceive a concept in one modality,
but represent it independently of the modality. This cross-
modal ability enables people to perform some important
abstraction tasks, such as learning in different modalities
(cartoons, stories) and applying them in the real-world.

Unfortunately, visual representations do not yet have
this cross-modal capability. Standard approaches typically
learn a separate representation for each modality, which
works well when operating within the same modality.
However, the representations learned are not aligned across
modalities, which makes cross-modal transfer difficult.

Two modalities are strongly aligned if, for two images
from each modality, we have paired data and correspon-
dence at the level of objects. In contrast, weak alignment is if
we have only unpaired data and a coarse global label that is
shared across both images. For instance, if we have a picture
of a bedroom and a line drawing of a different bedroom, the
only thing that we know is shared across these two images
is the scene type. However, they will differ in the objects
and viewpoint inside.

In this paper, our goal is to learn a representation for
scenes that has strong alignment without using paired data.
We seek to learn representations that will connect objects
(such as bed, car) across modalities (e.g., a picture of a car,
a line drawing of a car, and the word “car”) without ever
specifying that such a correspondence exists.

To investigate this, we assembled a new cross-modal
scene dataset, which captures hundreds of natural scene
types in five different modalities, and we show a few ex-
amples in Figure 1. Using this dataset and only annotations
of scene categories, we propose to learn an aligned cross-
modal scene representation.
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We present two approaches to regularize cross-modal
convolutional networks so that the intermediate represen-
tations are aligned across modalities, even when only weak
alignment of scene categories is available during training.
Figure 2 visualizes the representation that our full method
learns. Notice that our approach learns hidden units that
activate on the same object, regardless of the modality.
Although the only supervision is the scene category, our
approach enables alignment to emerge automatically.

Our approach builds on a foundation of domain adap-
tation [38], [18] and multi-modal learning [15], [32], [39]
methods in computer vision. However, our focus is learn-
ing cross-modal representations when the modalities are
significantly different (e.g., text and natural images) and
with minimal supervision. In our approach, the only su-
pervision we give is the scene category, and no alignments
nor correspondences are annotated. To our knowledge, the
adaptation of intermediate representations across several
extremely different modalities with minimal supervision
has not yet been extensively explored.

We believe cross-modal representations can have a large
impact on several computer vision applications. For exam-
ple, data in one modality may be difficult to acquire for
privacy, legal, or logistic reasons (eg, images in hospitals),
but may be abundant in other modalities, allowing us to
train models using accessible modalities. In search, users
may wish to retrieve similar natural images given a query
in a modality that is simpler for a human to produce (eg,
drawing or writing). Additionally, some modalities may be
more effective for human-machine communication.

Our experiments suggest our network is learning an
aligned cross-modal representation without paired data. We
show four main results. Firstly, we show that our method
enables better representations for cross-modal retrieval than
a fine-tuning approach. Secondly, we experimented with
zero-shot recognition and retrieval using our representation,
and results suggest our approach can perform well even
when training data for that category is missing for some
modalities. Thirdly, we visualize the internal activations of
our network, and we demonstrate that units automatically
emerge that activate on high-level concepts agnostic of the
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There is a bed with a striped bedspread. Beside
this is a nightstand with a drawer. There is also a
tall dresser and a chair with a blue cushion. On
the dresser is a jewelry box and a clock.

Bedroom

| am inside a room surrounded by my favorite
things. This room is filled with pillows and a
comfortable bed. There are stuffed animals
everywhere. | have posters on the walls. My
jewelry box is on the dresser.

There are brightly colored wooden tables with
little chairs. There is a rug in one corner with
ABC blocks on it. There is a bookcase with
picture books, a larger teacher's desk and a
chalkboard.

Kindergarten classroom

The young students gather in the room at their
tables to color. They learn numbers and letters
and play games. At nap time they all pull out
mats and go to sleep.
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Fig. 1: Can you recognize scenes across different modalities? Above, we show a few examples of our new cross-modal
scene dataset. In this paper, we investigate how to learn cross-modal scene representations.

modality. Finally, we show that our learned representation
enables us to reconstruct images across other modalities.
The remainder of this paper describes and analyzes our
cross-modal representations in detail. In section 2, we first
discuss related work that our work builds upon. In section 3,
we introduce our new cross-modal scene dataset. In section
4, we present two complementary approaches to regularize
convolutional networks so that intermediate representations
are aligned across modalities. In section 5, we present our
visualizations and experiments in cross-modal transfer.

2 RELATED WORK

Domain Adaptation: Domain adaptation techniques ad-
dress the problem of learning models on some source data
distribution that generalize to a different target distribu-
tion. [38] proposes a method for domain adaptation us-
ing metric learning. In [18] this approach is extended to
work on unsupervised settings where one does not have
access to target data labels, while [41] uses deep CNNs
instead. [12] learns a transformation between source and
target subspaces and utilizes that for domain adaptation.
[40] shows the biases inherent in common vision datasets
and [23] proposes models that remain invariant to them.
[28] learns an aligned representation for domain adaptation
using CNNs and the MMD metric. Our method differs
from these works in that it seeks to find a cross-modal
representations between highly different modalities instead
of modelling close domain shifts.

One-Shot/Zero-Shot Learning: One-shot learning tech-
niques [11] have been developed to learn classifiers from
a single or a few examples, mostly by reusing classifier
parameters [13], using contextual information [30], [20] or
sharing part detectors [4]. In a similar fashion, zero-shot
learning [27], [34], [10], [3], [43] addresses the problem
of learning new classifiers without training examples in a
given domain, by using additional knowledge in the form
of textual descriptions or attributes. The goal of our method
is to learn aligned representations across domains, which
could be used for zero-shot learning.

Cross-modal content retrieval and multi-modal embed-
dings: Large unannotated image collections are difficult to
explore, and retrieving content given fine-grained queries
might be a difficult task. A common solution to this issue is
to use query examples from a different modality in which it
is easy to express a concept (such as a clip art images, text
or a sketches) and then rank the images in the collection
according to their similarity to the input query. Matching
can be done by establishing a similarity metric between
content from different domains. [9] focuses on recovering
semantically related natural images to a given sketch query
and [44] uses query sketches to recover 3D shapes. [21] uses
an MRF of topic models to retrieve images using text, while
[36] models the correlations between visual SIFT features
and text hidden topic models to retrieve media across both
domains. CCA [19] and variants [37] are commonly em-
ployed methods in cross-modal content retrieval. Another
possibility is to learn a joint embedding for images and text
in which nearest neighbors are semantically related. [15],
[32] learn a semantic embedding that joins representations
from a CNN trained on ImageNet and distributed word rep-
resentations. [24], [46] extend them to include a decoder that
maps common representations to captions. [39] maps visual
features to a word semantic embedding. Our method learns
a joint embedding for many different modalities, including
different visual domains and text. Another group of works
incorporate sound as another modality [31], [33], [1]. Our
joint representation is different from previous works in that
it is initially obtained from a CNN and sentence embeddings
are mapped to it. Furthermore, we do not require explicit
one-to-one correspondences across modalities.

Learning from Visual Abstraction: [49] introduced cli-
part images for visual abstraction. The idea is to learn
concepts by collecting data in the abstract world rather than
the natural images so that we are not affected by mistakes in
mid-level recognition such as incorrect objection detections.
[14] learns dynamics and [50] learns sentence phrases in this
abstract world and transfer them to natural images. Our
work can complement this effort by learning models in a
representation space that is invariant to modality.



Unit 13: ]

Tower Roof I
1

1 -
Unit 241: | o
Plants : b

Modal

Shared Cross-Modal
Representation

religious, church, plants,
impressive, monks

land, mint

1
1
1
plants, fruits, basil, 1
1
1
-

Specific CNNs
[ [ [ [

Natural Images Sketches

Clip Art

Spatial Text Descriptions

Fig. 2: We learn low-level representations specific for each modality (white and grays) and a high-level representation
that is shared across all modalities (red). Above, we also show masks of inputs that activate specific units the most [47].
Interestingly, although the network is trained without aligned data, units emerge in the shared representation that tend to

fire on the same objects independently of the modality.

3 CROSS-MoDAL PLACES DATASET

We assembled a new dataset' to train and evaluate cross-
modal scene recognition models called CMPlaces. It covers
five different modalities: natural images, line drawings,
cartoons, text descriptions, and spatial text images. We show
a few samples from these modalities in Figure 1. Each
example in the dataset is annotated with a scene label. We
use the same list of 205 scene categories as Places [48],
which is one of the largest scene datasets available today.
Hence, the examples in our dataset span a large number
of natural situations. Note that the examples in our dataset
are not paired between modalities since our goal is to learn
strong alignments from weakly aligned data. Furthermore,
this design decision eased data collection.

We chose these modalities for two reasons. Firstly, since
our goal is to study transfer across significantly different
modalities, we seek modalities with different statistics to
those of natural images (such as line drawings and text).
Secondly, these modalities are easier to generate than real
images, which is relevant to applications such as image
retrieval. For each modality we select 10 random examples
in each of the 205 categories for the validation set and
the rest for the training set, except for natural images for
which we employ the training and validation splits from
[48] containing 2.5 million images.

Natural Images: We use images from the Places 205
Database [48] to form the natural images modality.

Line Drawings: We collected a new database of sketches
organized into the same 205 scene categories through Ama-
zon Mechanical Turk (AMT). The workers were presented
with the WordNet description of a scene and were asked to
draw it with their mouse. We instructed workers to not write
text that identifies the scene (such as a sign). We collected
14,830 training examples and 2,050 validation examples.

Descriptions: We also built a database of scene descrip-
tions through AMT. We once again presented users with the
WordNet definition of a scene, but instead we asked them

1. Dataset is available at http:/ /projects.csail. mit.edu/cmplaces/

to write a detailed description of the scene that comes to
their mind after reading the definition. We specifically asked
the users to avoid using trivial words that could easily give
away the scene category (such as writing “this is a bed-
room”), and we encouraged them to write full paragraphs.
We split our dataset into 9,752 training descriptions and
2,050 validation descriptions. We believe Descriptions is a
good modality to study as humans communicate easily in
this modality and allows to depict scenes with great detail,
making it an interesting but challenging modality to transfer
between.

Clip Art: We assembled a dataset of clip art images
for the 205 scene categories defined in Places205. Clip art
images were collected from image search engines by using
queries containing the scene category and then manually
filtered. This dataset complements other cartoon datasets
[49], but focuses on scenes. We believe clip art can be an
interesting modality because they are readily available on
the Internet and depict everyday situations. We split the
dataset into 11,372 training and 1,954 validation images
(some categories had less than 10 examples).

Spatial Text: Finally, we created a dataset that combines
images and text. This modality consists of an image with
words written on it that correspond to spatial locations
of objects. We automatically construct this dataset using
images from SUN [45] and its annotated objects. We created
456,300 training images and 2,050 validation images. This
modality has an interesting application for content retrieval.
By learning a cross-modal representation with this modality,
users could use a user interface to write the names of objects
and place them in the image where they want them to
appear. Then, this query can be used to retrieve a natural
image with a similar object layout.

4 CROSS-MODAL SCENE REPRESENTATION

In this section we describe our approach for learning cross-
modal scene representations. Our goal is to learn a strongly
aligned representation for the different modalities in CM-
Places. Specifically, we want to learn a representation in


http://projects.csail.mit.edu/cmplaces/

which different scene parts or concepts are represented in-
dependently of the modality. This task is challenging partly
because our training data is only annotated with scene labels
instead of having one-to-one correspondences, meaning that
our approach must learn a strong alignment from weakly
aligned data.

4.1

We extend single-modality classification networks [26] in
order to handle multiple modalities. The main modifications
we introduce are that we a) have one network for each
modality and b) enforce higher-level layers to be shared
across all modalities. The motivation is to let early layers
specialize to modality specific features (such as edges in
natural images, shapes in line drawings, or phrases in
text), while higher layers are meant to capture higher-
level concepts (such as objects) in a representation that is
independent of the modality .

We show this network topology in Figure 3 with modal-
specific layers (white) and shared layers (red). The modal-
specific layers each produce a convolutional feature map
(pool5), which is then fed into the shared layers (f£c6
and fc7). For visual modalities, we use the same convolu-
tional network architecture (Figure 3a), but different weights
across modalities. However, since text cannot be fed into a
CNN (descriptions are not images), we instead encode each
description into skip thought vectors [25] and use a multiple
layer perceptron to map them into a representation with
the same dimensionaly as poolS (Figure 3b). Note that,
in contrast to siamese networks [6], our architecture allows
learning alignments without paired data.

We could train these networks jointly end-to-end to
categorize the scene label while sharing weights across
modalities in higher layers. Unfortunately, we empirically
discovered that this method by itself does not learn a robust
cross-modal representation. This approach encourages units
in the later layers to emerge that are specific to a modality
(e.g., fires only on cartoon cars). Instead, our goal is to have
a representation that is independent the modality (e.g., fires
on cars in all modalities).

In the rest of this section, we address this problem
with two complementary ideas. Our first idea modifies the
popular fine-tuning procedure, but applies it on modalities
instead. Our second idea is to regularize the activations in
the network to have common statistics. We finally discuss
how these methods can be combined.

Cross-Modal Scene Networks

4.2 Method A: Modality Tuning

Our first approach is inspired by finetuning, which is a pop-
ular method for transfer learning with deep architectures
[71, [17], [48]. The conventional approach for finetuning is
to replace the last layer of the network with a new layer
for the target task. The intuition behind fine-tuning is that
the earlier layers can be shared across all vision tasks (which
may be difficult to learn otherwise without large amounts of
data in the target task), while the later layers can specialize
to the target task.

We propose a modification to the fine-tuning procedure
for cross-modal alignment. Rather than replacing the last
layers of the network (which are task specific), we can
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Fig. 3: Scene Networks: We use two types of networks. a)
For pixel based modalities, we use a CNN based off [48] to
produce pool5. b) When the input is a description, we use
an MLP on skip-thought vectors [25] to produce pool5 (as
text cannot be easily fed into the same CNN).
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Fig. 4: Statistical Regularization. We illustrate this regu-
larization with an example. Above, the feature distribution
p(z;) learned from Places network is modeled with a GMM,
and on incorporated as a prior on z; while optimizing the
deep model in line drawings modality.

instead replace the earlier layers of the network (which
are modality specific). By freezing the later layers in the
network, we transfer a high level representation to other
modalities. This approach can be viewed as finetuning the
network for a modality rather than a task.

To do this, we must first learn a source representation
that will be utilized for all five modalities. We use the
Places-CNN network as our initial representation. Places is
a reasonable representation to start with because [47] shows
that high-level concepts (objects) emerge in the later layers.
We then train each modal-specific network to categorize
scenes in its modality while holding the shared higher layers
fixed. Consequently, each network will be forced to produce
an aligned intermediate representation so that the higher
layers will categorize the correct scene.

Since the higher level layers were originally trained with
only one modality (natural images), they did not have a
chance to adapt to the other modalities. After we train the
networks for each modality for a fixed number of iterations,
we can unfreeze the later layers, and train the full network
jointly, allowing the later layers to accommodate informa-
tion from the other modalities without overfitting to modal-
specific representations.

Our approach is a form of curriculum learning [5]. If



we train this multi-modal network with the later layers
unfrozen from the beginning, units tend to specialize to a
particular modality, which is undesirable for cross-modal
transfer. By enforcing a curriculum to learn high level
concepts first, then transfer to modalities, we can obtain
representations that are more modality-invariant.

4.3 Method B: Statistical Regularization

Our second approach is to encourage intermediate layers
to have similar statistics across modalities. Our approach
builds upon [16], [2] who transfer statistical properties
across object detection tasks. Here, we instead transfer sta-
tistical properties of the activations across modalities.

Let x,, and ¥, be a training image and the scene label
respectively, which we use to learn the network parameters
w. We write h;(2,; w) to refer to the hidden activations for
the ith layer given input z,,, and z(z,;w) is the output of
the network. During learning, we add a regularization term
over hidden activations h:

min » L(z(zp;w),yn) + > A Ri(hi(zn;w 1
i 32 £0sCani ) )+ 35 s R (o)
where the first term L is the standard softmax objective and
the second term R is a regularization over the activations.”
The importance of this regularization is controlled by the
hyperparameter A; € R.

The purpose of R is to encourage activations in the
intermediate hidden layers to have similar statistics across
modalities. Let P;(h) be a distribution over the hidden
activations in layer i. We then define R to be the negative
log likelihood:

Ri(h) = —log Pi(h; 0;) 2

Since P; is unknown we learn it by assuming it is a paramet-
ric distribution and estimating its parameters with a large
training set. To that goal, we use activations in the hidden
layers of Places-CNN to estimate F; for each layer. The only
constraint on P; is that its log likelihood is differentiable
with respect to h;, as during learning we will optimize Eqn.1
via backpropagation. While there are a variety of types of
distributions we could use, we explore two:

Multivariate Gaussian (B-Single). We consider model-
ing P; with a normal distribution: P;(h; u,¥) ~ N(p, X).
By taking the negative log likelihood, we obtain the regular-
ization term R;(h) for this choice of distribution:

1
Ri(h; pi, 24) = i(h*m‘)TEfl(h*m) 3)

where we have omitted a constant term that does not affect
the optimum of the objective. Notice that the derivatives
d 67,% can be easily computed, allowing us to back-propagate
this cost through the network.

Gaussian Mixture (B-GMM). We also consider using
a mixture of Gaussians to parametrize FP;, which is more
flexible than a single Gaussian distribution. Under this

model, the negative log likelihood is:

K

Ri(hia, 1, 2) = —log ¥ ag - Pe(hs e, k) (4)
k=1

2. We omitted the weight decay from the objective for clarity. In
practice, we also use weight decay.
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such that Py(h;p,X) ~ N(p,X) and >, ar = 1 for
oy, > 0 Vi. Note that we have dropped the layer subscript i
for clarity, however it is present on all parameters. Since 572"
can be analytically computed, we can efficiently incorporate
this cost into our objective during learning with backpropa-
gation. To reduce the number of parameters, we assume the
covariances X, are diagonal.

We fit a separate distribution for each of the regularized
layers in our experiments (pool5, £c6, £c7). During learn-
ing, the optimization will favor solutions that categorize the
scene but also have an internal shared representation that is
likely under P;. Since P; is estimated using Places-CNN, we
are enforcing each modality network to have similar higher
layers statistics to those of Places-CNN.

4.4 Method C: Joint Method

The two proposed methods (A and B) operate on com-
plementary principles and may be jointly applied while
learning the networks. We combine both methods by first
fixing the shared layers for a given number of iterations.
Then, we unfreeze the weights of the shared layers, but
now train with the regularization of method B to encourage
activations to be statistically similar across modalities and
avoid overfitting to a specific modality.

4.5

We implemented our network models using Caffe [22]. Both
our methods build on top of the model described in [26],
with the modification that the activations from layers pool5
onwards are shared across modalities, and layers before
are modal-specific. Architectures for method A only use
standard layer types found in the default version of the
framework. In contrast, for model B we implemented a layer
to perform regularization given the statistics of a GMM as
explained in the previous sections. In our experiments the
GMM models are composed by K = 100 different single
gaussians. In method B each modality network is trained
individually and same statistical properties extracted from
natural images are enforced on each model.

For each model we have a separate CNN initialized
using the weights of Places-CNN [48]. The weights in the
lower-layers can adapt independently for each modality,
while we impose restrictions in the higher layer weights
as explained for each method. Because CNNs start training
from a good initialization, we set up the learning rate to
Ir = 1e~3 (higher learning rates made our models diverge).
We train the models using Stochastic Gradient Descent.

To adapt textual data to our models we use the network
architecture described here. First, we represent descriptions
by average-pooling the Skip-thought [25] representations
of each sentence in a given description (a description con-
tains multiple sentences). To adapt this input to our shared
representation we employ a 2-layer MLP. The layer size
is constant and equal to 4800 units, which is the same
dimensionality as that of a Skip-thought vector, and we
use ReLU non-linearities. The weights of these layers are
initialized using a gaussian distribution with std = 0.1.
This choice is important as the statistics of the Skip-thought
representations are quite different to those of images and
inadequate weight initializations prevent the network from

Implementation Details



Cross Modal Query NAT CLP SPT LDR DsC Mean
Retrieval Target|| CLP SPT LDR DSC|| NAT SPT LDR DSC|| NAT CLP LDR DSC|| NAT CLP SPT DSC|| NAT CLP SPT LDR|| mAP
BL-Individual 179 119 100 13| 122 103 92 13| 70 91 52 11} 57 88 54 12| 09 14 15 12 6.1
BL-Shared-Upper-Scratch 70 78 41 109| 55 50 32 92| 52 45 27 89| 31 30 30 52| 58 51 63 32 54
BL-Shared-Upper 104 124 45 146 91 72 37 101} 68 55 30 89| 33 38 36 46| 43 48 66 33 6.5
Subsp. Align. [12] + PlacesNet|| 9.4 0.8 3.1 -l 82 09 24 -l 07 09 09 -l 27 33 09 - - - - - -
Subsp. Align. [12] + HacesNet)l 163 102 104 12| 141 94 105 15| 86 94 51 12| 79 101 57 14| 1.0 14 12 11 6.4
A: Tune 133 11.3 67 219|| 101 85 57 158|| 63 48 34 114| 54 52 45 95| 89 55 90 36 8.5
A: Tune (Free) 140 16.0 79 206 96 81 47 148| 113 80 52 18.0|| 52 46 45 87| 77 42 94 34 9.3
B: StatReg (Gaussian) 17.3 119 101 16| 126 89 97 13|| 66 86 49 14| 54 80 53 12| 12 18 18 16 6.1
B: StatReg (GMM) 18.2 113 105 12| 145 10.7 101 12| 70 79 49 12|| 79 99 65 10 08 10 12 1.0 6.4
C: Tune + StatReg (GMM) || 132 16.9 72 24.5|| 109 104 57 16.5| 101 83 50 188( 57 57 60 88| 195 158 214 8.0 11.9

TABLE 1: Cross-Modal Retrieval mAP: We report the mean average precision (mAP) on retrieving images across modalities
using fc7 features. Each column shows a different query-target pair. On the far right, we average over all pairs. For
comparison, chance obtains 0.73 mAP. Best performances in each column are highlighted as bold in both this table and the
others. Our methods perform better on average than the finetuning baselines with method C performing the best.

Cross Modal Query NAT CLP SPT LDR DSC Mean
Retrieval Target|| CLP SPT LDR DSC|| NAT SPT LDR DSC|| NAT CLP LDR DSC|| NAT CLP SPT DSC|| NAT CLP SPT LDR|| PR@10
BL-Individual 17.8 120 104 05 229 102 98 06| 123 88 53 04| 101 84 51 05| 07 07 08 07 6.9
BL-Shared-Upper-Scratch 71 76 47 104 111 49 34 84| 97 43 27 81| 54 29 28 46| 103 58 63 31 6.2
BL-Shared-Upper 11.1 126 49 142 168 70 41 99| 120 61 29 81|| 59 36 34 38| 59 49 64 33 74
Subsp. Align. [12] + PlacesNet|| 10.0 04 3.1 -|| 130 05 23 -l 04 04 05 -l 36 31 05 - - - - - -
Subsp. Align. [12] + FlcesNet)) 160 92 108 0.7|| 248 83 111 07| 127 87 50 06| 128 96 46 07| 06 07 07 05 6.9
A: Tune 143 106 7.8 20.7|| 181 82 6.1 145/ 96 48 34 104|| 88 51 37 84| 148 55 86 38 9.4
A: Tune (Free) 150 164 89 19.8| 168 81 49 138|| 21.1 9.0 56 174|| 84 46 43 81| 122 45 98 39 10.6
B: StatReg (Gaussian) 169 116 108 09 228 9.1 104 06| 121 86 50 07| 95 77 51 06| 14 13 13 13 6.9
B: StatReg (GMM) 18.2 10.8 113 05| 239 99 104 05| 11.0 74 47 05| 130 91 62 05| 07 05 07 06 7.0
C: Tune + StatReg (GMM) || 14.1 16.6 7.9 23.2|| 178 10.0 6.1 151} 181 87 52 17.7|| 88 54 54 79| 335 171 209 9.2 13.4

TABLE 2: Cross-Modal Retrieval PR@10: We report the precision at top 10 retrieval of images across modalities using
fc7 features. Each column shows a different query-target pair. On the far right, we average over all pairs. Our methods
perform better on average than the finetuning baselines with method C performing the best.

Cross-Modal Retrieval vs Layers| pool5 fc6 fc7
BL-Individual 2.0 40 6.1
BL-Shared-Upper-Scratch 15 38 54
BL-Shared-Upper 1.6 32 65
A: Tune 42 84 85
A: Tune (Free) 41 84 93
B: StatReg (Gaussian) 20 42 6.1
B: StatReg (GMM) 20 55 64
C: Tune + StatReg (GMM) 34 111 11.9

TABLE 3: Mean Cross-Modal Retrieval mAPs across Lay-
ers: Note that the baseline results decrease drastically as
we go lower levels (e.g. £c7 to f£c6) in the deep network.
However the alignment approaches are much less affected.

adapting textual descriptions to the shared representation.
Finally, the output layer of the MLP is fully-connected to
the first layer (poo15) of our shared representation.

5 EXPERIMENTAL RESULTS

Our goal in this paper is to learn a representation that
is aligned across modalities. We show four main results
that evaluate how well our methods address this problem.
First, we perform cross-modal retrieval of semantically-
related content. Secondly, we analyze the network’s abil-
ity to recognize scene categories which are absent from

modality. Thirdly, we show visualizations of the learned
representations that give a qualitative measure of how this
alignment is achieved. Finally, we show we can reconstruct
natural images from other modalities using the features in
the aligned representation as a qualitative measure of which
semantics are preserved in our cross-modal representation.

5.1

In this experiment we test the performance of our models to
retrieve content depicting the same scene across modalities.
Our hypothesis is that, if our representation is strongly
aligned, then nearest neighbors in this common represen-
tation will be semantically related and similar scenes will be
retrieved.

We proceed by first extracting features for the valida-
tion set of each modality from the shared layers of our
cross-modal representation. Then, for every modality, we
randomly sample a query image and compute the cosine
distance to the extracted feature vectors of all content in
the other modalities. We rank the documents according
to the distances and compute the Average Precision (AP)
when using the scene labels. We repeat this procedure 1000
times and report the obtained mean APs for cross-modality
retrieval in table 1. We also report mean precision at top
10 (PR@10) results in table 2. For completeness, we show
examples of retrievals in Figure 5. We compare our results
against finetuning baselines:

Cross-Modal Retrieval
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Fig. 5: Cross-Modality Retrieval : An example of cross-modal retrieval given a query from each of the modalities. For each
row, the leftmost column depicts the query example, while the rest of the columns show the top 2 ranked results in each

modalitiy.

Finetuning individual networks (BL-Individual): In
this baseline we finetune a separate CNN for each of the
modalities. The CNNs follow the AlexNet [26] architecture
and are initialized with the weights of Places-CNN. We
then finetune each one of them using the training set from
the corresponding modality. This is the current standard
approach employed in the computer vision community, but
it does not enforce the representations in higher CNN layers
to be aligned across modalities explicitly.

Finetuning with shared upper layers (BL-Shared-
Upper): Similarly to our method A, we force networks
for each modality to share layers from pool5 onwards.
However, as opposed to our method, in this baseline we do
not fix the weights in the shared layers and instead let them
be updated by backpropagation. We also include a version
of this model that is trained from scratch (no finetuning)
which is referred to as BL-Shared-Upper-Scratch.

Subspace alignment methods (Subsp. Align. [12]): In
addition to the finetuning baselines, we also compare our
results against a state of the art domain adaptation method
referred to as subspace alignment (SA) [12]. SA learns a
transformation between two domains by aligning source
and target subspaces. This transformation provides a cross-
modal similarity metric that can be used for cross-modal
retrieval. We used the code provided by the authors [12]
and adapted it for our setting. SA requires a set of features
to operate over. One option is to train a deep model for each
modality individually from scratch, however, the deep mod-
els overfits miserably for three of the modalities for which
we have limited training data (i.e. clipart, line drawings,
descriptions). Hence we applied SA on top of two deep
features that we can obtain. First we picked the original
PlacesCNN features (i.e. fc7) [48] extracted in all visual
modalities except the descriptions. The pairwise transforma-
tions between each pair of modalities are learned over the

training set and then applied for the retrieval experiments
on the test set. We also fine-tuned the original PlacesCNN
for each modality using the training set and then extracted
fc7 features for each modality. Note that this is somewhat
similar to modality tuning since the upper layers are also
migrated from the PlacesCNN during finetuning, however,
the weights are not fixed. Also note that SA only provides
pairwise alignments, that is 10 separate transformations
for each pair of modalities, and it does not align all five
modalities at once on the same representation.

CCA approaches are common for cross-modal retrieval,
however past approaches were not directly comparable to
our method. Standard CCA requires sample-level align-
ment, which is missing in our dataset. Cluster CCA [37
works for class-level alignments, but the formulation is
intended for only two modalities. On the other hand, Gener-
alized CCA [19] does work for multiple modalities but still
requires sample-level alignments. Concurrent work with
ours extends CCA to multi-label settings [35].

As displayed in table 1 and table 2 both method A
and B improve over baselines, suggesting that the pro-
posed methods have a better semantic alignment in fc7
across all modalities. Furthermore, method C outperforms
all other reported methods on average. Particularly, we can
observe how method C is able to obtain a comparable
performance for retrievals using descriptions to method
A, while retaining the superior performance of method B
for the other modalities. Note that in our experiments the
baseline methods perform similarly to our method in all
modalities except for descriptions, as they were not able to
align the textual and visual data very well. Also note that
the performance gap between our method and the baselines
increases as modalities differ from each other (see DSC
results). For statistical regularization, using GMM instead
of a single Gaussian also notably improves the performance,



Cross-Modal Transfer Classification CLP SPT LDR DSC
BL-PlacesNet 29.1 2.2 7.1 2.2
BL-Shared-Upper-Scratch 173 160 126 319
BL-Shared-Upper 221 220 14.9 434
Subsp. Align. [12] + PlacesNet 35.6 15 9.7 -
Subsp. Align. [12] + PlacesNet Ftune 451 175 22.8 1.6
A: Modality Tuning 18.6  20.0 14.6 51.0
B: StatReg (Gauss) 50.5 209 24.8 4.2
B: StatReg (GMM) 328 233 204 22
C: Tune + StatReg (GMM) 163 21.1 13.3 49.7

TABLE 4: Zero-Shot Scene Classification: We hold out 55
scene categories during training for the clip art, spatial
text, line drawings, and text descriptions modalities, and
evaluate the network’s ability to still classify them on the
validation set. Since categories were not removed from
the natural images, the network can still solve the scene
classification task by finding a strong alignment between
modalities. Our results suggest that our approach enables
better scene classification with missing data, suggesting the
network is learning a more robust alignment.

arguably because of the increased complexity of the model.

5.2 Zero-Shot Recognition and Retrieval

One important application of cross-modal transfer is learn-
ing in one modality (e.g., natural images), but leveraging it
in a different modality (e.g., sketches or text). For example,
some domains may be easier to acquire training data (due to
privacy or cost), but the model will eventually be tested in a
different domain. Here, we experiment using our approach
for scene recognition when some modalities lack training
data of some categories.

We train our models the same way as before, except we
remove some categories from the clip art, sketches, spatial
text, and textual description modalities. To do this, we
randomly chose 55 scene categories to remove from these
modalities’ training data. Hence, only the natural image
modality has access to all 205 categories

Although most modalities lack any training data for
some categories, our hope is the network’s alignment
between data-limited modalities and natural images will
be robust enough that it can still recognize the removed
categories at inference time. Table 4 shows classification
accuracy on the held-out categories for the data-limited
modalities. For visual modalities, statistical regularization
outperforms the baseline non-regularized network, suggest-
ing this approach helps an alignment to emerge that is
useful for classification. However, for textual descriptions,
modality tuning provides a better alignment. We believe
this is because text is a significantly different modality from
images, making it harder to align. We also show perfor-
mance using the pre-trained PlacesCNN, which never saw
the other modalities during training. Our approach tends to
outperform the PlacesCNN on the modalities that are very
different to natural images.

We also compare our results against the subspace align-
ment [12] methods. The cross-modal similarity metric pro-
vided by SA allows us to train an SVM in the source
domain and successfully adapt it to the target domain.
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First we experimented with PlacesCNN features extracted
from four visual modalities. The pairwise transformations
between natural images and each modality is learned over
the training set and then applied for zero-shot recognition
on the test set. As shown in the table 4, SA gives good results
when adapted from natural images to clip-arts (two similar
domains). However performance degrades rapidly for line
drawings, and does not even work for the spatial text
modality. Similar to other domain adaptation methods, SA
is also designed for moderate domain changes and it fails
to align domains with extreme changes as results suggest in
table 4.

In order for SA to work better, we fine-tuned the original
PlacesCNN for each modality using the training set (150
categories version) and then extracted £c7 features for each
modality. Then we applied the SA on top of these better
aligned features. Although the classification results are more
competitive in this case, they still are not reaching the best
result in each task.

Another critical point is that SA and Method B variants,
including both StatReg(Gauss) and StatReg(GMM), learn
pairwise alignment between natural images and the target
modality as opposed to the joint training of all modalities.
Although this enables them to have a better alignment
between the two modalities when they are similar (see clip-
art in table 4), the alignment is not necessarily shared by all
five modalities at the same time. In methods A and C, the
alignment is shared in all five modalities.

We also experimented with cross-modal retrieval on the
held-out categories. Table 5 shows mean average precision
for retrieval on these missing categories. While modality
tuning provides a slight improvement over baselines on
average, combining both of our approaches yields better
retrievals in the absence of missing categories. SA baselines
also achieve good performances in a couple of cases but in
the overall method C yields the best performance.

Table 4 and table 5 both suggest our network is starting
to learn an alignment even the absence of categories for
some modalities. However, they also suggest a trade-off
that depends on the task. If the task is classification, then
our experiments suggest one of statistical regularization or
modality tuning is better. However, if the task is retrieval,
then combining both methods is better. We believe this is
because the both our methods can be seen as a cross-modal
regularization. Stronger regularization on the internal ac-
tivations helps retrieval performance because it helps the
features to be more specific to instances. Nevertheless, such
regularization also adds more constraints during learning
that may hurt classification performance.

5.3 Hidden Unit Visualizations

We now investigate what input data activates units in our
shared representation. For visual data, we use a visualiza-
tion similar to [47]. For textual descriptions, we compute
the paragraphs that maximally activate each filter, and then
we employ tf-idf features to determine the most common
relevant words in these paragraphs.

Figure 6 shows, for some of the 256 filters in pool5, the
images in each visual modality that maximally activated the
filter with their mask superimposed, as well as the most
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Fig. 6: Visualizing Unit Activations: We visualize pool5 in our cross-modal representation above by finding masks of
images/descriptions that activate a specific unit the most [47]. Interestingly, the same unit learns to detect the same concept
across modalities, suggesting that it may has learned to generalize across these modalities.

Cross Modal Query CLP SPT LDR DsC Mean

Retrieval Target SPT LDR DSC CLP LDR DSC CLP SPT DsC CLP SPT LDR mAP
BL-Shared-Upper-Scratch 5.4 6.0 10.9 6.1 5.6 10.5 6.2 4.6 8.4 7.3 6.3 6.1 6.9
BL-Shared-Upper 5.6 6.1 11.8 6.7 5.7 11.4 6.0 5.0 8.8 6.9 7.5 5.7 7.3
Subsp. Align. [12] + PlacesNet 3.3 7.6 - 3.0 3.1 - 8.9 3.1 - - - - -
Subsp. Align. [12] + PlacesNet Finetune 10.3 15.0 48 10.9 7.6 44 13.7 8.7 5.5 44 4.8 44 7.9
A: Tune (Free) 5.1 59 14.5 49 52 10.6 49 6.0 11.7 5.5 6.5 58 72
B: StatReg (Gauss) 83 11.1 39 9.0 6.9 3.8 11.9 5.9 3.7 39 4.2 3.9 6.4
B: StatReg (GMM) 11.3 10.8 3.6 9.3 8.2 3.7 115 8.8 35 3.7 4.4 33 6.8
C: Tune+StatReg (GMM) 7.0 6.7 12.3 6.1 6.0 111 6.2 6.9 9.7 12.3 12.5 9.7 8.9

TABLE 5: Zero-Shot Scene Retrieval: We hold out 55 scene categories during training for the clip art, spatial text, line
drawings, and text descriptions modalities, and evaluate the network’s ability to still retrieve these categories. Our results
suggest that our approach outperforms baselines even when the retrievals are done with missing training data.

common words in the paragraphs that maximally activated
the units. We can observe how the same concept can be
detected across modalities without having explicitly aligned
training data. These results suggest that our method is
learning some strong alignments across modality only using
weak labels coming from the scene categories.

To quantify this observation, we set up an experiment.
We showed human subjects activations of 100 random units
from pool5. These activations included the top five re-
sponses in each modality with their mask. The task was to
select, for each unit, those images that depicted a common
concept if it existed. Activations could be generated from
either the baseline BL-Ind or from our method A, but this
information is hidden from the subjects.

After running the experiment, we selected those results
in which at least 4 images for the real modality were
selected. This ensured that the results were not noisy and
were produced using units with consistent activations, as
we empirically found this to be a good indicator of whether
a unit represented an aligned concept. We then computed
the number of times subjects selected at least one image
in each of the other modalities. With our method, 33% of
the times this process selected at least one image from each

modality, whereas for the baseline this only happened 25%
of the times. Furthermore, 19% of the times we selected at
least two images for each modality as opposed to only 14%
for the baseline. These results suggest that, when a unit
is detecting a clear concept, our method outperforms the
best finetuning method and can strongly align the different
modalities.

5.4 Analyzing Modality Invariance

A representation is invariant to modality if the feature vector
does not store information about the origin modality. Since
modality invariant representations would be useful cross-
modal transfer, we wish to analyze the degree to which
modality-specific information is contained in the represen-
tation. Using examples from the validation set, Figure 7
shows a two-dimensional embedding of the representation
from our networks using t-SNE [29]. To do this, we ran-
domly sample 1,000 examples from each modality and
compute t-SNE of the fc7 features. We then color each
point by the modality. The visualization shows that the
baseline network (without any cross-modal regularization)
clearly separates the representation by modality, which is
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Fig. 7: t-SNE Embedding of Cross-Modal Representation: We visualize the embedding for £c7 of representations from
different networks using t-SNE [29]. Colors correspond to the modality. If the representation is agnostic to the modality,

then the features should not cluster by modality. These visualizations suggest that our full method does a better job at

discarding modality information than baselines.

Inversion Inversion

Inversion Inversion

Fig. 8: Inverting features across modalities: We visualize some of the generated images by our inverting network trained
on real images. Top row: reconstructions from real images. These preserve most of the details of the original image
but are blurry because of the low dimensionality of the pool5 representation. Second row: reconstructions from line
drawings, where the network adds colors to the reconstructions while preserving the original scene composition. Third
row: inversions from the spatial text modality. Reconstructions are less detailed but roughly preserve the location, shape
and colors of the different parts of the input scene. Fourth row: inversions from the clip-art modality; and inversions from

natural image to line drawing modality.

undesirable. Statistical regularization offers some invariance
to modality, except for text. While our representation is not
completely invariant to modality, the visualization suggests
the full approach tends to be better at discarding modality
information than baselines.

5.5 Feature Reconstructions

Here we investigate if we can generate images in differ-
ent modalities given a query. The motivation is to gain
some visual understanding of which concepts are preserved
across modalities and which information is discarded [42].
We use the reconstruction approach from [5] out-of-the-box,
but we train the network using our features. We learn an
inverting network for each modality that learns a mapping
from features in the shared pool5 layer to downsampled
reconstructions of the original images. We refer readers to

[8] for full details. We employ pool5 features as opposed
to £c7 features because the amount of compression of the
input image in the latter produces worse reconstructions.

If concepts in our representation are correctly aligned,
our hypothesis is that the reconstruction network will learn
to generate images that capture the statistics of the data
in the output modality and while show same concepts
across modalities in similar spatial locations. Note that one
limitation of these inversions is that output images are
blurry, even when reconstructing images within a same
modality, due to the data compression in pool5. However,
our reconstructions have similar quality to those in [8] when
reconstructing from pool5 features within a modality.

Figure 8 shows some successful examples of reconstruc-
tions. We observed this is a hard, arguably because the
statistics of the activations in the common representation



are very different across modalities despite the alignment,
which might be due to the reduced amount of information
in some of the modalities (i.e. clipart and spatial text im-
ages contain much less information that natural images).
However, we note that in the examples the trained model
is capable of reproducing the statistics of the output modal-
ity. Moreover, the reconstructions usually depict the same
concepts present in the original image, indicating that our
representation is aligning and preserving scene information
across modalities.

6 CONCLUSION

Humans are able to leverage knowledge and experiences
independently of the modality they perceive it in, and a
similar capability in machines would enable several im-
portant applications in retrieval and recognition. In this
paper, we proposed an approach to learn aligned cross-
modal representations without paired data. Interestingly,
our experiments suggest that our approach encourages
alignment to emerge in the representation automatically
across modalities, even when the training data is unaligned.
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