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Abstract

We present a new approach to constructing pseudorandom generators that fool low-
degree polynomials over finite fields, based on the Gowers norm. Using this approach,
we obtain the following main constructions of explicitly computable generators G :
Fs → Fn that fool polynomials over a prime field F:

1. a generator that fools degree-2 (i.e., quadratic) polynomials to within error 1/n,
with seed length s = O(log n),

2. a generator that fools degree-3 (i.e., cubic) polynomials to within error ε, with
seed length s = O(log|F| n)+ f(ε, F) where f depends only on ε and F (not on n),

3. assuming the “Gowers inverse conjecture,” for every d a generator that fools
degree-d polynomials to within error ε, with seed length s = O(d · log|F| n) +
f(d, ε, F) where f depends only on d, ε, and F (not on n).

We stress that the results in (1) and (2) are unconditional, i.e. do not rely on any un-
proven assumption. Moreover, the results in (3) rely on a special case of the conjecture
which may be easier to prove.

Our generator for degree-d polynomials is the component-wise sum of d generators
for degree-1 polynomials (on independent seeds).

Prior to our work, generators with logarithmic seed length were only known for
degree-1 (i.e., linear) polynomials (Naor and Naor; SIAM J. Comput., 1993). In fact,
over small fields such as F2 = {0, 1}, our results constitute the first progress on these
problems since the long-standing generator by Luby, Veličković and Wigderson (ISTCS
1993), whose seed length is much bigger: s = exp

(
Ω
(√

log n
))

, even for the case of
degree-2 polynomials over F2.
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1 Introduction

A pseudorandom generator G : Ds → Dn for a class of tests T is an efficient procedure that
stretches s input domain1 elements into n � s output elements such that the distribution
of the output of the generator fools any test T ∈ T , T : Dn → D, in the sense that the
statistical distance between T (X) and T (G(X)) is small.

Pseudorandom generators are a central object of theoretical computer science that has
found a striking variety of applications in complexity theory, algorithm design, and cryptog-
raphy, and we refer the reader to the excellent book by Goldreich [Gol] for background.

A fundamental class of tests T is that of low-degree polynomials over a finite field D = F.
The special case of linear polynomials over F2 = {0, 1} was first studied by Naor and Naor
[NN] who gave a generator with seed length s = O(log n) (for error ε = 1/n), which is optimal
up to constant factors (cf. [AGHP]). This generator, also known as small-bias generator, has
been one of the most celebrated results in pseudorandomness, with applications ranging from
derandomization [NN], to PCP’s [BSSVW], and to lower bounds [BNS, VW], just to name
a few (cf. references in [BSSVW]).

Subsequently, Luby, Veličković, and Wigderson (Theorem 2 in [LVW]; cf. [Vio2]) built a
generator that in particular fools constant-degree polynomials over small fields (e.g., F2).
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However, the seed length of their generator is much worse that that of Naor and Naor;
specifically, it is s = exp

(
O
(√

log n
))

(for ε = 1/n). (Alternatively, n = sΩ(log s) in [LVW],

whereas n = 2Ω(s) in [NN].) Bogdanov [Bog] also constructed generators, but only over large
fields; in particular the field size must be superlogarithmic in n.3 Over small fields such as F2,
previous to our work there had been no progress on constructing generators for polynomials
since the ’93 paper [LVW], even for the case of quadratic polynomials.

1.1 Our results

In this work we construct the following generators.

Theorem 1. Over any prime field F, there exist the following efficiently computable gener-
ators G : Fs → Fn:

1. a generator that fools quadratic (d = 2) polynomials with error 1/n and seed length
s = O(log n),

2. a generator that fools cubic (d = 3) polynomials with error ε and seed length s =
O(log|F| n) + f(ε, F), where f depends on ε and F only (not on n). For constant |F|,
the seed length is s = O(log|F| n) + exp(1/εO(1)).

1The case D = {0, 1} is of particular interest, but in this work we will consider both D = {0, 1} as well
as other domains.

2Their generator actually fools a certain class of depth-2 circuits that in particular can implement poly-
nomials whose number of terms is bounded by nO(1), such as constant-degree polynomials.

3[Bog] also gives generators over small fields, but in this case the seed length is worse than what can be
obtained from [LVW].
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Note that for the case of quadratic polynomials (Item 1 in Theorem 1) and the case of cu-
bic polynomials (Item 2 in Theorem 1) where ε and |F| are constants, we obtain optimal seed
length up to constant factors. In fact, the dependence on n is nearly optimal, cf. Appendix
A.

As we explain later, our results are based on the “Gowers norm.” Under (a special
case of) a conjecture known as “Gowers inverse conjecture,” we obtain generators for higher
degree polynomials.

Theorem 2. Assume that the “d vs. d−1 Gowers inverse conjecture” (Conjecture 21) holds
for a field F and every degree d. Then there exists an efficiently computable generator G :
Fs → Fn that fools degree-d polynomials with error ε and seed length O(d · log|F| n)+f(d, ε, F),
for some function f that depends on d, ε, and F, but not on n.

We remark that the d vs. d− 1 Gowers inverse conjecture may be significantly easier to
prove than the general one (cf. discussion after Conjecture 21). We also point out that a
strengthening of known “inverse results” [GT, Sam] would improve the term exp

(
1/εO(1)

)
in Item (2) in Theorem 1 to 1/εO(1).

1.2 Techniques

Our generator for degree d polynomials is the component-wise sum of d independent copies
of generators for degree-1, i.e. linear, polynomials. The explicitness of our generator im-
mediately follows from known constructions of generators for linear polynomials, such as
[NN, AGHP, ABN+].

Our proof technique is new and is based on the so-called “Gowers norm,” which we call
“degree norm.” This norm was introduced by Gowers [Gow1, Gow2] and independently by
Alon et al. [AKK+], and has found a wide variety of applications, ranging from arithmetic
combinatorics [Gow1, Gow2, GT], property testing [AKK+], PCP’s [ST, Sam], and lower
bounds [Vio1, VW]. For simplicity we focus on the case of F2 = {0, 1}; this case shows all
our main ideas and avoids technicalities regarding complex numbers. However, we stress
that our techniques apply over arbitrary prime fields.

The degree-d norm of a function f : Fn
2 → F2 is a real number between 0 and 1 that we

denote Ud (f). The key idea of this norm is that

Ud(f) is an estimate of the maximum correlation of f with degree d− 1 polynomials. (?)

The notion of “correlation” in (?) is standard and simply means how well the function f
can be approximated by degree-(d− 1) polynomials: It equals the maximum over all degree
d− 1 polynomials q of the quantity

Correlation(f, q) :=
∣∣PrX∈Fn

2
[f(X) = q(X)]− PrX∈Fn

2
[f(X) 6= q(X)]

∣∣.
In other words, (?) says that Ud (f) is as close to 1 as f is close to a degree d−1 polynomial.
In particular, Ud (f) = 1 if f has degree d − 1, while for a random function f we expect
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Ud (f) to be close to 0. Specifically, it is known that Ud (f)1/2d

always upper bounds the
correlation with degree d − 1 polynomials (cf. [Gow1, Gow2, GT, VW]); the converse is
known to hold for d = 2 with polynomial slackness in the parameters (see, e.g., [GT, Sam]),
for d = 3 with exponential slackness in the parameters [GT, Sam], and is conjectured to hold
for any fixed d (see [GT, Section 13] and [Sam]). This latter conjecture is usually referred
to as the “Gowers inverse conjecture.” In this discussion we ignore both the status and the
quantitative aspect of (?) and we proceed with the intuition behind our approach.

We now explain how we establish the correctness of our generator. We take d independent
outputs W1, . . . ,Wd of a linear generator with sufficiently small bias. Our goal is to show
that the distribution

W := W1 + W2 + · · ·+ Wd

fools any degree-d polynomial p, where the sum denotes bit-wise xor:

Goal: PrX∈Fn
2
[p(X) = 0] ≈ PrW [p(W ) = 0]. (1)

The main idea of our analysis is a case analysis based on the value Ud (p).

Case Ud (p) small, fooling the Gowers norm: If Ud (p) is small then the bias of the
polynomial is small, where the bias is simply the average value of the polynomial (over truly
random input X): Bias(p(X)) := |PrX [p(X) = 0]− PrX [p(X) = 1]|. This fact immediately
follows from (?): The bias of the polynomial p is simply the correlation of p with the degree-0
constant function 0, and thus it must be small if Ud (p) is small:

Bias(p(X)) ≤ Ud (p) . (2)

Our approach in this case is to show that Equation (2) stays true even under the pseudoran-
dom distribution W . Specifically, we show that

Bias(p(W )) ≤ Ud (p) , (3)

and from these two equations (2) and (3) our goal (1) follows easily (both probabilities in
(1) are close to 1/2).

To prove Equation (3) we make two observations. The first is that the degree-d norm
of a polynomial p of degree d equals the bias of a block-linear polynomial qp(y1, y2, . . . , yd),
where each yi is a block of n variables, and by block-linear we mean that for every i the
function qp(y1, y2, . . . , yd) is a linear function in yi. The second observation is that the proof
of (2) is based on a Cauchy-Schwarz argument which generalizes to any distribution that
can be written as the XOR of d independent distributions, such as W . The combination of
these two observations enables us to essentially prove that

Bias(p(W )) ≤ Bias(qp(W1, W2, . . . ,Wd)) ≈ Bias(qp(Y1, Y2, . . . , Yd)) = Ud (p) ,

where the approximation holds because qp is block-linear and each of the Wi fools linear tests
(using a hybrid argument). This proves Equation (3) and concludes the proof in the case of
small Ud (p).
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Case Ud (p) large. The basic idea in the case that Ud (p) is large is that by (?) the
polynomial p is correlated to a degree-(d−1) polynomial, and thus we can argue by induction.
More specifically, we will write p as a function of few degree-(d−1) polynomials, and then we
use the fact – not too hard to show – that a generator that fools degree-(d− 1) polynomials
also fools any function of few degree-(d−1) polynomials, where the loss in the error naturally
depends on the number of degree-(d−1) polynomials. To get the best parameters, we perform
a special analysis in the case of d = 2.

1. Subcase d = 2, canonical representations of quadratic polynomials: For quadratic poly-
nomials, we use a structural result from the theory of quadratic forms that shows that
any degree-2 polynomial p is equivalent, up to an invertible linear transformation A, to
a degree-2 polynomial where all the t quadratic terms are on disjoint sets of variables :

(p ◦ A)(x) = x1x2 + x3x4 + . . . + x2t−1x2t + `(x),

where `(x) is of degree 1. As it turns out, the degree norm is invariant under invertible
linear transformation and shifts, and depends exponentially on the number t of disjoint
quadratic terms. This gives

U2 (p) = U2 (p ◦ A) = U2 (x1x2 + x3x4 + . . . + x2t−1x2t + `(x)) = 2−2t.

Since U2 (p) was assumed to be large, t is small. Applying the inverse linear transfor-
mation A−1, this means that p can be written as a function of at most 2 · t + 1 linear
functions (specifically, as a sum of products of 2 linear functions, plus a linear function).
This gives the desired compact representation of p in terms of linear polynomials, and
concludes the proof for d = 2.

2. Subcase d > 2, self-correcting polynomials: For degree d > 2 no structural result as
the one above is known to our knowledge. Our approach in this case is to use the
self-correcting property of polynomials. Specifically, from (?) we know that there is a
degree d− 1 polynomial q that correlates well with p. From this we infer that p can be
approximated by a function of few degree d − 1 polynomials up to a small error (the
gain is that this latter error is much smaller than the error of the original correlation).
For this we use the following self-correcting property of low-degree polynomials: The
evaluation of the degree-d polynomial p at a given point x can be obtained as the
evaluation p(x + a) of the polynomial p at a random shift x + a, for which we use q,
minus the “derivative” Da p of the polynomial p, Da p(x) = p(x + a)− p(x) which is a
polynomial of lower degree in x. In short:

p(x) = p(x + a)−Da p(x) ≈ q(x + a)−Da p(x),

where ≈ denotes nontrivial correlation. Over F2, this means that p(x) equals q(x +
a) − Da p(x) with probability 1/2 + ε over a. Thus we can compute p(x) with high
probability by taking the majority over several random choices of a. This analysis does
not quite work over larger fields, and seems to require additional ideas.
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The results by Shachar Lovett. Subsequently to our results, Shachar Lovett [Lov]

showed unconditionally that the sum of 2O(d) generators that ε2O(d)
-fool linear functions fools

degree-d polynomials with error ε. Some of the ideas in [Lov] can also be used in our analysis
to obtain better parameters for d ≥ 3.

Organization. This paper is organized as follows. In Section 3 we deal with the case
of small Ud (p), in Section 4 with the case of large U2 (p), and in Section 5 we show our
generator for quadratic polynomials. In Section 6 we deal with the case of large Ud (p) and
show how to self-correct polynomials. In Section 7 we show our generators for higher degree
polynomials. It is natural to ask whether the seed length of our generators can be improved
by using fewer than d independent copies of the linear generator. In Appendix A we show
this is not possible: The sum of d − 1 copies of generators that fool linear polynomials in
general does not fool degree d polynomials.

2 Preliminaries

In this paper we work over arbitrary prime fields F. Although all our main ideas are already
present in the results for the fundamental case F2 = {0, 1}, we will obtain results about
arbitrary prime fields at essentially no additional cost, and thus we present our results in
generality. For this generality, it is useful to introduce the following notation.

Notation 3. For a prime field F and x ∈ F, we denote by e(x) ∈ C the value ωx, where ω
is the primitive root of unity e2πi/|F|. The field will always be clear from the context. For a
random variable X ∈ F, we extensively use the notation

EX e [X] := EX [e(X)].

The notion of pseudorandomness that we use is the following.

Definition 4 (Pseudorandomness). We say that a distribution W on Fn fools degree-d poly-
nomials with error ε if for every degree-d polynomial p we have

|EX∈Fn e [p(X)]− EW e [p(W )]| ≤ ε.

A generator G : Fs → Fn fools degree-d polynomials with error ε if the distribution G(X)
does (for random X ∈ Fs).

Remark 5 (On Definition 4). We point out that pseudorandomness is often defined in
terms of statistical distance. However, the algebraic Definition 4 is more convenient for the
purposes in this paper. Our results are easily seen to be equivalent to results in terms of
statistical distance, and we formally prove this in Appendix B.

The basic building block of our construction is a generator for degree-1 polynomials. This
generator was first obtained for F2 in [NN]. Then [AGHP] gave other constructions over F2,
and it has since been observed by several researchers that constructions exist over any prime
field. In particular, we have the following.
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Lemma 6 ([NN], Proposition 4.1 in [BKL]). For every ε, prime field F, and sufficiently large
n, there is an explicit generator G : Fs → Fn that fools linear polynomials with error ε with
seed length s = c · log|F|(n/ε), where c is an absolute constant.

By explicit in the above lemma we mean that given an input seed and an index i ≤ n, the
i-th output field element can be computed in time polynomial in |F| and s. We note that the
construction in Proposition 4.1 in [BKL] is a straightforward extension of the “powering”
construction in [AGHP] to larger fields. This construction requires to find an irreducible
polynomial of degree s over F, which can be done in time polynomial in F and s [Sho].
If such a polynomial is given or preprocessed, then the generator is computable in time
polynomial in log2 |F| and s.

2.1 The degree norm

In this section we discuss the degree-d norm. For a function f : Fn → F, we define its
directional derivative Dy f in the direction of y ∈ Fn to be the function

Dy f(x) := f(x + y)− f(x).

When f is a polynomial of degree d, all its directional derivatives are polynomials of degree
at most d− 1. We can take multiple derivatives too: We write Dy1,...,yk

f(x) for the function

Dy1 . . . Dyk
f(x) =

∑
S⊆[k]

(−1)k−|S|f

(
x +

∑
i∈S

yi

)
,

which we call a derivative of order k. If f is a polynomial of degree d, this will be a polynomial
of degree at most d− k, and this does not depend on the order in which the derivatives are
taken. The following claim, which is not hard to verify, states this formally.

Fact 7. For every polynomial f : Fn → F of degree d and every y1, . . . , yk ∈ Fn, the function
x → Dy1,...,yk

f(x) is a polynomial of degree d− k.

We now give the definition of the norm. Although this is syntactically defined as the
expectation of a complex-valued random variable, it is always a non-negative real number
(see, e.g., [ST]).

Definition 8 (Degree-k norm4). Let f : Fn → F be a function and k ≥ 1 an integer. The
degree-k norm of f is defined as

Uk (f) := EY1,Y2,...,Yk,X∈Fn e [DY1,...,Yk
f(X)] .

4In general the degree-k norm is defined for functions Fn → C. Functions from Fn to C form a vector
space over C and the degree-d norm is indeed a norm of this space when raised to the power of 1/2d; see,
e.g., [GT].
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3 When Ud (f ) is small: Fooling the Gowers norm

In this section we prove a generalization of the following fact relating the bias of a polynomial
to its degree norm (cf. [VW, Lemma 2.3]): For every degree-d polynomial p : Fn → F over a
prime field F,

|EX e [p(X)]| ≤ Ud (p)1/2d

. (4)

The generalization that we prove is the following.

Lemma 9. Let p : Fn → F be a degree-d polynomial over a prime field F. Let W1, . . . ,Wd

be d independent distributions that fool linear tests over F with error ε. Then

|EW1,...,Wd
e [p(W1 + · · ·+ Wd)]| ≤ (Ud (p) + d · ε)1/2d

.

Before discussing the proof of Lemma 9 we make some remarks.

Remark 10. We observe the following. (1) Lemma 9 indeed generalizes Fact (4), because
the uniform distribution fools linear tests with error ε = 0, and XOR’ing together independent
uniform distributions simply results in the uniform distribution. (2) Lemma 9 shows that the
distribution W1 + · · · + Wd fools degree-d polynomials if their degree-d norm is small. This
is because in this case both |EX e [p(X)]| and |EW1,...,Wd

e [p(W1 + · · ·+ Wd)]| are small, and
so is their difference by the triangle inequality.

We now discuss the proof of Lemma 9. For the proof we need some claims.

Definition 11. A function f : Fn×d → F in variables y1,1, . . . , yd,n is block-linear if for every
i, it is a linear function of the variables yi,1, . . . , yi,n.

Claim 12. Let p : Fn → F be a degree-d polynomial over a prime field F. Then the function
qp(y1, . . . , yd) := Dy1,...,yd

p(x) is block-linear.5.

Claim 13. For every function f : Fn → F and every distribution D over Fn,∣∣EW1,...,Wd
e [f(W1 + · · ·+ Wd)]

∣∣2d

≤ EW1,...,Wd

W ′
1,...,W ′

d

e
[
DW ′

1−W1,...,W ′
d−Wd

f(W1 + · · ·+ Wd)
]
,

where W1, . . . ,Wd, W
′
1, . . . ,W

′
d are independent samples from D.

Before proving the above claims, let us see why they imply the main result of this section,
Lemma 9.

5Note that Dy1,...,yd
f(x) does not depend on x anymore because we are taking d derivatives of a degree-d

polynomial; see Section 2.1

7



Proof of Lemma 9 from Claims 12 and 13. Let qp(y1, . . . , yd) := Dy1,...,yd
p(x).

EW1,...,Wd
e [p(W1 + · · ·+ Wd)]

2d

≤ EW1,...,Wd

W ′
1,...,W ′

d

e
[
DW ′

1−W1,...,W ′
d−Wd

p(W1 + · · ·+ Wd)
]

by Claim 13

= EW1,...,Wd

W ′
1,...,W ′

d

e [qp(W
′
1 −W1, . . . ,W

′
d −Wd)]

≤ EY1,...,Yd∈Fn e [qp(Y1, . . . , Yd)] + ε · d (5)

= Ud (p) + ε · d,

which proves the lemma, except for Inequality (5) which we now justify. The inequality
holds because qp is a block-linear polynomial by Claim 12, and each of the W ′

i − Wi fools
linear tests with error ε. Specifically, letting Hi denote the i-th hybrid

Hi := Y1, . . . , Yi, W
′
i+1 −Wi+1, . . . ,W

′
d −Wd

we have

EW1,...,Wd

W ′
1,...,W ′

d

e [qp(W
′
1 −W1, . . . ,W

′
d −Wd)]− EY1,...,Yd

e [qp(Y1, . . . , Yd)]

= EH0 e [qp(H0)]− EHd
e [qp(Hd)] =

d−1∑
i=0

EHi
e [qp(Hi)]− EHi+1

e [qp(Hi+1)] ≤ ε · d.

Proof of Claim 12. The claim follows from the fact that taking j derivatives decreases the
degree by j (Fact 7), and the fact that the operation of taking derivatives is invariant under
different orders for the directions, i.e. taking a derivative with respect to y and then another
one with respect to z is the same as taking a derivative with respect to z and then another
one with respect to y. This latter fact follows easily from the definition of derivative in
Section 2.1. (See Fact 16 for examples.)

Proof of Claim 13. We proceed by induction on d. When d = 1 we have∣∣EW1 e [f(W1)]
∣∣2 = EW1,W ′

1
e [f(W ′

1)− f(W1)] = EW1,W ′
1
e
[
DW ′

1−W1
f(W1)

]
.

For d > 1 we have, using the fact that |EZ [Z]|2 ≤ EZ [|Z|2] for any complex random variable
Z,∣∣EW1,...,Wd

e [f(W1 + · · ·+ Wd)]
∣∣2d

≤ EW1,...,Wd−1

[∣∣EWd
e [f(W1 + · · ·+ Wd)]

2
∣∣2d−1

]
= EW1,...,Wd−1

[
EWd,W ′

d
e
[
DW ′

d−Wd
f(W1 + · · ·+ Wd)

]]2d−1

by the case d = 1

≤ EWd,W ′
d

[∣∣EW1,...,Wd−1
e
[
DW ′

d−Wd
f(W1 + · · ·+ Wd)

]∣∣2d−1
]

≤ EWd,W ′
d

[
EW1,...,Wd−1

W ′
1,...,W ′

d−1

e
[
DW ′

1−W1,...,W ′
d−Wd

f(W1 + · · ·+ Wd)
]]

by inductive hypothesis

= EW1,...,Wd

W ′
1,...,W ′

d

e
[
DW ′

1−W1,...,W ′
d−Wd

f(W1 + · · ·+ Wd)
]
.
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4 When U2 (p) is large: Canonical forms of quadratics

In this section we prove the following lemma.

Lemma 14. Let p : Fn → F be a quadratic polynomial over a prime field F. Let W be a
distribution that fools linear polynomials with error ε. Then

|EX e [p(X)]− EW e [p(W )]| = O
(
ε/U2 (p)

)
.

Note that Lemma 14 shows that the distribution W fools degree-2 polynomials p if their
degree-2 norm is large. The proof of the lemma is based on two other results, discussed in
the next subsections.

4.1 Canonical representations of quadratic polynomials

In this subsection we prove the following lemma.

Lemma 15. Every quadratic polynomial p over a prime field F is a function of log|F|(1/U2 (p))+
1 linear functions.

To get a sense of the parameters, note that if p is linear then U2 (p) = 1 and indeed p is
a function of 1 linear function, namely p itself.

To prove the lemma we make use of a some auxiliary results. The following Fact lists
some simple and useful properties of the degree norm. The proofs follow easily from the
definition of the degree norm, and are given at the end of this section.

Fact 16 (Properties of the degree norm). Let F be a prime field and let f : Fn → F be a
function. The following hold.

1. For a function f ′ : Fn′ → F, let (f + f ′) : Fn+n′ → F be the function (f + f ′) (x, x′) :=
f(x) + f ′(x′). Then Uk (f + f ′) = Uk (f) · Uk (f ′) .

2. For an invertible matrix A, let f ◦ A : Fn → F denote the function (f ◦ A) := f(Ax).
Then Uk (f) = Uk (f ◦ A) .

3. For every polynomial q of degree k − 1 or less, Uk (f + q) = Uk (f) .

4. Let f : F → F, |F| odd, be f(x) := a · x2 for a ∈ F, a 6= 0. Then

U2 (f) = EY1,Y2∈F e [2 · a · Y1 · Y2] = 1/|F|.

5. Let f : F2
2 → F2 be f(x1, x2) := x1 · x2. Then

U2 (f) = EY11,Y12,Y21,Y22∈F2 e [Y11 · Y22 + Y21 · Y12] = 1/4.

The next lemma is a standard result in the theory of quadratic forms according to which
every quadratic form is equivalent, up to an invertible linear transformation of the variables,
to a quadratic form where no two quadratic monomials share a variable. The statement (and
proof) of these results differ according to whether the field has even size or not.
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Lemma 17 (Theorems 6.21 and 6.30 in [LN]). For every quadratic polynomial p : Fn → F
over a prime field F there exists an invertible matrix A, a linear polynomial `, and field
elements c1, c2, . . . , cn (some of which may be 0) such that:

1. If q = 2 then (p ◦ A)(x) =
∑

1≤i≤bn/2c ci · x2i−1 · x2i + `(x),

2. If q is odd then (p ◦ A)(x) =
∑

1≤i≤n ci · x2
i + `(x).

Armed with the above results, we now present the proof of Lemma 15.

Proof of Lemma 15. We present the proof for the case in which |F| is an odd prime because
this case shows the dependence on the field size and the case F = F2 is analogous. By Lemma
17, there exists an invertible matrix A, a linear polynomial `, and field elements c1, c2, . . . , cn

(some of which may be 0) such that: (p ·A)(x) =
∑

1≤i≤n ci ·x2
i +`(x). Let us assume without

loss of generality that exactly the first s c′is are non-zero, i.e. ci = 0 if and only if i > s. We
now have:

ε ≤ U2 (p) by assumption

= U2 (p ◦ A) = U2

(∑
1≤i≤n

ci · x2
i + `(x)

)
by Fact 16.2

= U2

(∑
1≤i≤n

ci · x2
i

)
= U2

(∑
1≤i≤s

ci · x2
i

)
by Fact 16.3

=
∏

1≤i≤s
U2

(
ci · x2

i

)
by Fact 16.1

= 1/|F|s by Fact 16.4.

The above derivation shows that, up to a linear transformation A, the original polynomial p
is equivalent to a quadratic polynomial where at most s = log|F|(1/ε) variables appear in a
degree-2 monomial. Taking into account the linear part `, we have that p is a function of at
most t := s + 1 linear polynomials which proves the lemma.

Proof of Fact 16. Item (1) follows by linearity of the directional derivative operator and
statistical independence of the variables of f and f ′. For item (2) we have

Uk (f ◦ A) = EY1,Y2,...,Yk,X∈Fn e

∑
S⊆[k]

(−1)k−|S|f ◦ A(X +
∑
i∈S

Yi)


= E e

∑
S⊆[k]

(−1)k−|S|f(AX +
∑
i∈S

AYi)

 = E e

∑
S⊆[k]

(−1)k−|S|f(X +
∑
i∈S

Yi)

 = Uk (f) .

Item (3) follows from the fact that q vanishes after taking k directional derivatives. The
second equality in Item (4) is justified as follows. Whenever Y1 6= 0, the value 2 · a · y1 · y2 is
uniform, for random Y2, over the |F| complex roots of unity (recall that a 6= 0). Consequently,
in this case the expectation is 0. Since Y1 6= 0 with probability 1− 1/|F|, and when Y1 = 0
the expectation, for random Y2, is 1, the last inequality above is indeed justified. Item (5)
is proved analogously.

10



4.2 Fooling functions of few linear polynomials

In this subsection we show that a distribution that fools linear polynomials also fools func-
tions of few such polynomials. This, in combination with Lemma 15 proves the main Lemma
14 of this section.

We need some basic Fourier analysis, which we now briefly recall. Every function h :
Fk → C can be written in the form h(x) =

∑
a∈Fn ĥaχa(x), where χa is the function χa(x) :=

e(a1x1 + · · ·+ akxk) and the Fourier coefficients ĥa are given by ĥa = Ex

[
h(x) · χa(x)

]
. The

Fourier coefficients satisfy Parseval’s identity∑
a∈Fk

|ĥa|2 =
1

|F|k
∑
x∈Fk

|h(x)|2.

We state the following lemma in more generality because it will be used for higher degrees
later on. For now we are only interested in the case when F is the class of linear polynomials.

Lemma 18. Suppose that W is ε-pseudorandom for any class F of functions Fn → F that
forms a linear space. Then for every function h : Fk → C and every collection of functions
f1, . . . , fk ∈ F ,∣∣EX∼Fn [h(f1(X), . . . , fk(X))]− EW [h(f1(W ), . . . , fk(W ))]

∣∣ ≤ ε · L(h),

where L(h) :=
∑

a∈Fn|ĥa| is the `1 norm of (the Fourier transform of) h.

Before proving Lemma 18, let us see how it can be used to prove the main Lemma 14 of
this section. We are going to use the following trivial bound on the `1 norm of a function,
which just uses the number of variables it depends on.

Proposition 19. Let h : Fk → C be a function such that |h(x)| = 1. Then L(h) ≤ |F|k/2.

Proof. By Cauchy-Schwarz and Parseval’s identity, we have that

L(h) = |F|k Ea[ĥa] ≤ |F|k
√

Ea[ĥ2
a] = |F|k/2.

Proof of Lemma 14 assuming Lemma 18. By Lemma 15 we have that p = f(`1(x), . . . , `t(x))
where the `’s are linear polynomials, f : Ft → F and t = O(log|F|(1/U2 (p))). By Lemma 18
and Proposition 19 we have that

|EX e [p(X)]− EW e [p(W )]| ≤ |F|t · ε = O

(
ε

U2 (p)

)
.

It now only remains to prove Lemma 18.

Proof of Lemma 18. For every distribution Y on Fk, we have that

EY [h(Y )] =
∑
a∈Fk

ĥa EY [χa(Y )]. (6)

11



Now fix a ∈ Fk, and consider the case Y = (f1(Z), . . . , fk(Z)), where Z is now sampled from
some distribution on Fn. We have that

EY [χa(Y )] = EY e [a1Y1 + · · ·+ akYk] = EZ e [a1f1(Z) + · · ·+ akfk(Z)] .

By linearity, a1f1 + · · ·+ akfk ∈ F , so because W is pseudorandom for F we have∣∣EX [χa(X)]− EW [χa(W )]
∣∣ ≤ ε.

where X is uniformly random in Fk and W is pseudorandom. By equation (6),∣∣EX e [h(X)]−EW e [h(W )]
∣∣ ≤ ∑

a∈Fk

ĥa

∣∣EX e [h(X)]−EW e [h(W )]
∣∣ ≤ ε ·

∑
a∈Fk

ĥa = ε ·L(h).

5 Fooling quadratic polynomials

Theorem 20 (Pseudorandom generators for quadratic polynomials). There is an absolute
constant c such that the following holds for every n and prime field F. Let W1, W2 be 2
independent distributions over Fn that fool linear tests with error 1/nc. Then W := W1 +W2

fools quadratic tests with error 1/n: For every quadratic polynomial p over F we have

|EX∈Fn e [p(X)]− EW e [p(W )]| ≤ 1/n.

In particular, there exists an efficiently computable generator G : Fs → Fn that fools
to within 1/n quadratic polynomials over F, where F is a prime field, with seed length s =
O(log|F| n).

Proof. We argue by case analysis, according to the value of U2 (p) . Let τ := 1/n (note that
the error of the W ’s is τ c).

Case U2 (p) ≤ τ c/2. In this case we have

|EX e [p(X)]− EW e [p(W )]| ≤ |EX e [p(X)]|+ |EW e [p(W )]| by the triangle inequality

≤ (τ c/2)1/4 + (τ c/2 + 2 · τ c)1/4 by using Lemma 9 twice,

which, for sufficiently large c, proves the lemma in this case.

Case U2 (p) ≥ τ c/2. In this case Lemma 14 gives

|EX e [p(X)]− EW e [p(W )]| = O(τ c/U2 (p)) = O(τ c/2).

The above case analysis concludes the proof of the theorem, except for the “in particular”
part. This part follows by taking the sum of two independent linear generators (Lemma
6).

12



6 When Ud (p) is large: Correlation amplification

In this section we prove a lemma which is similar to Lemma 14 but works for higher degrees.
For degree 3 we obtain an unconditional result, while for higher degrees the lemma relies on
a special case of the “Gowers inverse conjecture,” which we now describe.

Conjecture 21 (d vs. d− 1 Gowers inverse conjecture over F). For every τ ≥ 0 there exists
a real number IGd

F(τ) > 0 such that for every n and every polynomial p : Fn → F of degree
d the following is true:

Ud (p) ≥ τ ⇒ max q : Fn→F
of degree d− 1

|EX∈Fn e [p(x)− q(x)]| ≥ IGd
F(τ).

Remark 22. Conjecture 21 is usually stated for arbitrary functions p [GT, Sam]. However,
for the results in this work the special case where p has degree d is sufficient. We call this the
d vs. d− 1 Gowers inverse conjecture. It remains to be seen whether this case (d vs. d− 1)
is more difficult than the general one (n vs. d− 1).

The following lemma says that, if we believe the d vs. d−1 Gowers inverse Conjecture 21,
distributions that fool polynomials of degree d−1 also fool polynomials of degree d provided
their degree-d norm is large. We write IG(τ) for IGd

F(τ) when F and d are clear from the
context.

Lemma 23. Let p : Fn → F be a degree-d polynomial over a prime field F. Let W be a
distribution that fools degree d − 1 polynomials with error ε. Assume that Ud (p) ≥ τ and
that Conjecture 21 holds for F and d. Then∣∣EX e [p(X)]− EW e [p(W )]

∣∣ ≤ exp(B) · ε1/B,

where B ≤ (|F|/IG(τ))c for a universal constant c > 0.

To prove Lemma 23, we would like a stronger statement than what is given to us by the
Gowers inverse conjecture. The conjecture says that if Ud(p) > α then p has correlation at
least α′ with a degree d − 1 polynomial. We would like the stronger property that p has
correlation (1− ε) with a degree d− 1 polynomial. Although this is not true, we will show
that p does have correlation (1 − ε) with a function of few degree d − 1 polynomials. This
will be sufficient to prove Lemma 23 using Lemma 18.

6.1 Amplifying correlation via self-correction

The following lemma shows that if a function f is somewhat correlated to another function
g, then f is highly correlated with some function of evaluations of g minus a derivative of
f . In particular, if f has degree d and g has degree d− 1 then f has high correlation with a
function that depends on a small number of degree d− 1 polynomials.

13



Lemma 24. Let f, g : Fn → F, for a prime field F. Suppose that |Ex∈Fn e [f(x)− g(x)]| ≥ δ.
Then there is a in integer t and a function B : Ft → F such that for every x ∈ Fn

Pra1,a2,...,at∈Fn

[
f(x) 6= B

(
g(x + a1)−Da1 f(x), . . . , g(x + at)−Dat f(x)

)]
< γ,

where t ≤ (|F|/δ)O(1)(1 + log 1/γ).

Lemma 24 is relatively easy to obtain over F2, and in this case B can be taken to be
the majority function (or its negation). A somewhat more involved argument seems to be
required over larger fields.

Intuition for the proof of Lemma 24. Let us fix x and look at the following identity,
which holds for every a ∈ Fn:

f(x) = f(x + a)−Da f(x).

If we think of the right hand side as a function of a, this identity tells us that this function
always evaluates to the constant f(x) = r. Now suppose that instead of having access to
the function on the right, we can only look at the “corrupted” version

v(a) := g(x + a)−Da f(x) = r + (g(x + a)− f(x + a)). (7)

Let us look at this as a coding problem: Elements of F are encoded by functions from Fn to
F. The valid encoding of every r ∈ F is the constant function r. Instead of r, the decoder
has access to some corrupted v : Fn → F. We know that v satisfies Equation (7) and, by
our assumption, that |Ex∈Fn e [f(x)− g(x)]| ≥ δ. Can the decoder recover r using a small
number of queries to the corrupted codeword? If so, then the decoder is a function that
approximates f(x) in terms of a few copies of g(x+a)−Da f(x). We show that this recovery
is indeed possible provided that the decoder is given some side information, specifically the
distribution of values of g − f : Fn → F.

First, we need to see what the corrupted codeword will look like. Let us view g − f as
a function from Fn → F. Let p denote the distribution of values of g − f over F (namely
p(s) := Pra[g(a)− f(a) = s]).

Pra[v(a) = s] = Pra[g(x + a)− f(x + a) = s− r]

= Pra[g(a)− f(a) = s− r]

= p(s− r) = p−r(s), (8)

where p−i is the “shifted” distribution that assigns to y − i the probability p(y), namely
p−i(y − i) = p(y).

The key observation is that the value r is uniquely determined by equation (8). For
suppose that there were some r′ 6= r such that p−r′(s) = Pra[v(a) = s] for all s ∈ F.
Then p−r and p−r′ are the same distribution, and it is not difficult to see that this is only
possible if p is the uniform distribution, which can be shown to contradict our assumption
that |Ex∈Fn e [f(x)− g(x)]| ≥ δ (jumping ahead, via Claim 33).
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This suggests a natural approach to the decoding problem: On input x, compute the
probabilities Pra[v(a) = s] for every s ∈ F and decode to the unique r that satisfies equation
(8). This is infeasible, as to compute the probabilities exactly we have to query v everywhere,
but we can obtain very good estimates by sampling. We will need to argue that if the
estimates are sufficiently good, then r is still uniquely determined. Specifically we argue
that r is the value that minimizes the statistical distance between the distribution p−r(s)
and the empirical distribution of the sample.

The statistical distance between two distributions p, q is denoted by sd(p, q), and in the
following proof we use some standard facts about this quantity. A discussion of statistical
distance together with proofs of the relevant facts appears in Section B.

Proof of Lemma 24. First we present the algorithm for “decoding” f(x); then we prove its
correctness. Let p(s) := Pra[g(a)− f(a) = s].

Algorithm for computing f(x) given oracle access to v:
On input x, do the following.

1. Query v at t random locations a1, . . . , at.

2. Compute the empirical frequency of each y ∈ F among the answers to
the queries: Namely, compute the distrubion q on F where

q(y) :=
1

t
·
∣∣{i : v(ai) = y}

∣∣.
3. Return the value r′ ∈ F that minimizes sd(q, p−r′).

We now analyze the above algorithm. We must show that, for t as in the statement of
the lemma, with probability 1− γ we have

sd(p−r, q) < sd(p−r′ , q)

for every r′ 6= r (recall that r = f(x)). To show this, we make two claims.

Claim 25. For every r 6= r′, sd(p−r, p−r′) > δ/|F|.

Claim 26. With probability 1− γ, sd(p−r, q) ≤ δ/2|F|.

¿From the above two claims the lemma follows easily. Specifically, with probability 1−γ
for every r′ 6= r,

sd(p−r, q) ≤ δ/2|F| by Claim 26

< sd(p−r, p−r′)− δ/2|F| by Claim 25

≤
(
sd(p−r, q) + sd(p−r′ , q)

)
− δ/2|F| by the triangle inequality

≤ sd(p−r′ , q) by Claim 26.

To complete the proof it only remains to prove the above two claims.
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Proof of Claim 25. Let i = r′ − r. Then sd(p−r, p−r′) = sd(p, p−i). We will show that for
every i 6= 0 (and every distribution p),

sd(p, p−i) ≥
2

|F| − 1
· sd(p, u) >

2

|F|
· sd(p, u) (9)

where u is the uniform distribution on F. The assumption |Ex e [f(x)− g(x)]| ≥ δ implies
that sd(p, u) ≥ δ/2 (using Claim 33) which will conclude the proof.

We prove equation (9) by the following calculation, which repeatedly uses the triangle
inequality |a + b| ≤ |a|+ |b|. First, for every y ∈ F,

∣∣p(y)− u(y)
∣∣ =

∣∣∣∣ 1

|F|
∑
z∈F

(p(y)− p(z))

∣∣∣∣
≤ 1

|F|
∑
z 6=y

∣∣p(y)− p(z)
∣∣

=
1

|F|
∑
t6=0

∣∣p(y)− p(y − t · i)
∣∣

≤ 1

|F|
∑
t6=0

t−1∑
s=0

∣∣p(y − s · i)− p(y − (s + 1)i)
∣∣

=
1

|F|
∑
t6=0

t−1∑
s=0

∣∣p(y − s · i)− p−i(y − s · i)
∣∣.

It follows that

2 · sd(p, u) =
∑
y∈F

|p(y)− u(y)|

≤ 1

|F|
∑
y∈F

∑
t6=0

t−1∑
s=0

∣∣p(y − s · i)− p−i(y − s · i)
∣∣

=
1

|F|
∑
t6=0

t−1∑
s=0

∑
y∈F

∣∣p(y − s · i)− p−i(y − s · i)
∣∣

=
1

|F|
∑
t6=0

t−1∑
s=0

∑
y∈F

∣∣p(y)− p−i(y)
∣∣

=
1

|F|
(|F| − 1)|F|

2

∑
y∈F

∣∣p(y)− p−i(y)
∣∣

= (|F| − 1) · sd(p, p−i).

16



Proof of Claim 26. Set η := δ/(2 · |F|). By the definition of statistical distance we have that

Pra1,...,at [sd(p−r, q) > η] = Pra1,...,at

[
∃S ⊆ F : PrX [X ∈ S]− PrY [Y ∈ S] > η

]
≤
∑
S⊆F

Pra1,...,at

[
PrY [Y ∈ S] < PrX [X ∈ S]− η

]
,

where X and Y are random variables that denote a sample from p−r and q, respectively. We
will bound each term in the summation separately using the Chernoff bound. For this we
fix a1, . . . , at and write

PrY [Y ∈ S] =
∑
y∈S

q(y) =
∑
y∈S

|{i : v(ai) = y}|
t

=
|{i : v(ai) ∈ S}|

t
=

Z1 + · · ·+ Zt

t

where Zi is an indicator variable for the event v(ai) ∈ S.
If we now view Zi as random variables over the choice a1, . . . , at, we have that the Zi are

i.i.d with mean
Eai

[Zi] = Prai
[v(ai) ∈ S] = PrX [X ∈ S]

since each v(ai) is sampled from the distribution p−r. Therefore

Pra1,...,at

[
PrY [Y ∈ S] < PrX [X ∈ S]− η

]
= Pra1,...,at

[
Z1 + · · ·+ Zt < E[Z1 + · · ·+ Zt]− tη

]
≤ e−2η2t,

where the last inequality is a form of the Chernoff bound (e.g. [DP, Theorem 1.1]). It follows
that for t := (|F|/δ)c(1 + log 1/γ), where c is a sufficiently large absolute constant, we have

Pra1,...,at

[
sd(p−r, q) ≤ η

]
≥ 1− 2|F| · e−2η2t ≥ 1− γ.

6.2 Proof of Lemma 23

We now prove Lemma 23.

Proof of Lemma 23. By assumption and Conjecture 21, there is a polynomial q of degree
d− 1 such that

|EX e [p(x)− q(x)]| ≥ δ,

where δ := IG(τ).
To avoid notational clutter, let us set η := δ/|F|. We now set

γ := εηc

,

for a sufficiently large universal constant c to be determined later, and let h(a, x) :=
B (q(x + a1)−Da1f(x), . . . , q(x + at)−Datf(x)) be the function in Lemma 24 where a :=
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(a1, a2, . . . , at). First, we argue that h(A, Y ) approximates p(Y ) both when Y is random and
when Y is pseudorandom. In fact, let Y be an arbitrary distribution. Then∣∣EY e [p(Y )]− EA,Y e [h(A, Y )]

∣∣ ≤ EY EA

[
|e(p(Y ))− e(h(A, Y ))|

]
≤ EY

[
2 · PrA[p(Y ) 6= h(A, Y )]

]
< 2 · γ, (10)

where the last inequality follows from Lemma 24.
Next, we argue that the bias of h over truly random X is close to the bias of h over

pseudorandom W . For fixed a, h(a, x) is a function of t degree d− 1 polynomials g(x+ai)−
Dai

f(x). Since degree d− 1 polynomials form a linear space and W is ε-pseudorandom for
such polynomials, by Lemma 18 and Proposition 19 we have that

For every a,
∣∣EX e [h(a, X)]− EW e [h(a, W )]

∣∣ ≤ ε · |F|t/2. (11)

and therefore∣∣EX e [p(X)]− EW e [p(W )]
∣∣ ≤ ∣∣EX e [p(X)]− EA,X e [h(A, X)]

∣∣
+
∣∣EW e [p(W )]− EA,W e [h(A, W )]

∣∣
+
∣∣EA,X e [h(A, X)]− EA,W e [h(A, W )]

∣∣
≤ 4 · γ + EA

∣∣EX e [h(A, X)]− EW e [h(A, W )]
∣∣

≤ 4 · γ + ε · |F|t/2,

where the second inequality follows from (10) and the third one is inequality (11). To
conclude the proof, we only need to argue that the above error 4 ·γ +ε · |F|t/2 is of the desired
form. Indeed, recalling that Lemma 24 gives t ≤ (1/η)O(1)(1 + log 1/γ) and that our choice
of γ was γ = εηc

, we have

4 · γ + ε · |F|t/2 ≤ 4 · εηc

+ ε · |F|(1/η)O(1)(1+ηc·log 1/ε)

≤ 4 · εηc

+ ε · |F|(1/η)O(1) · εηc−O(1) ≤ exp(η−c′) · εηc′

,

for a sufficiently large universal constant c and another universal constant c′.

7 Fooling higher degree polynomials

In this section we show that, assuming the Gowers inverse conjecture, polynomials of degree
d in n variables can be ε-fooled by an explicit generator whose seed length is O(d · log|F| n)+
f(ε, d, F), where f is independent on n. For d = 3, the known Gowers inverse theorems
[GT, Sam] yield unconditional generators with explicit estimates of the function f . We
discuss the general d case and then we discuss the case d = 3. We state the theorems in
terms of distributions; the translation to the language of generators is simple.
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Theorem 27. Let a field F and a degree d be given. Assume Conjecture 21 for F and every
degree d′ ≤ d. Then for every ε > 0 there exists an ε1 > 0 such that if W1, . . . ,Wd are
independent and fool linear polynomials on n inputs over F with error ε1, then W1 + · · ·+Wd

fools degree-d polynomials on n inputs over F with error ε.

Proof. We argue by induction on d. The base case d = 1 holds trivially for ε = ε1. Now let
us assume that for every εd−1 > 0 there exists ε1 > 0 such that the sum of d independent
random variables that ε1-fool linear tests on n inputs εd−1-fools degree d−1 tests on n inputs.

Let W := W1 + · · · + Wd and p be an arbitrary degree-d polynomial. We proceed
analogously to Theorem 20, i.e. by case analysis according the the value of Ud(p). Let

τ := (εd/4)2d

.

Case Ud (p) ≤ τ . From Lemma 9 we have that∣∣EX e [p(X)]− EW e [p(W )]
∣∣ ≤ |EX e [p(X)]|+ |EW e [p(W )]|
≤ τ 1/2d

+ (τ + d · ε1)
1/2d

≤ εd.

where the last inequality holds by our choice of τ and sufficiently small ε1.

Case Ud (p) ≥ τ . From Lemma 23 we have∣∣EX e [p(X)]− EW e [p(W )]
∣∣ ≤ exp(B) · ε1/B

d−1,

where B ≤ (|F|/IG(τ))O(1). Note that here we use the simple fact that W (εd−1)-fools
degree d− 1 polynomials. (This is because for every degree d− 1 polynomial q(x) and every
fixed Wd = wd, the distribution W1 + · · ·+ Wd−1 by assumption (εd−1)-fools the polynomial

q(x+wd).) To conclude the proof in this case, we only need to argue that exp(B) · ε1/B
d−1 ≤ εd

for sufficiently small ε1. This is true because by inductive assumption εd−1 goes to 0 when
ε1 does.

7.1 Fooling cubic polynomials

For d = 3, the Gowers inverse conjecture was proved by Green and Tao [GT] and Samorod-
nitsky [Sam], though with exponential slackness in the parameters.

Theorem 28 ([GT, Sam]). Fix a prime field F.6 For every n and every function f : Fn → F
the following is true:

U3 (p) ≥ τ ⇒ max q : Fn→F
of degree 2

|EX∈Fn e [p(x)− q(x)]| ≥ IG3
F(τ),

6Green and Tao state their result for F5 but observe their argument extends over all odd prime fields.
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where
IG3

F(τ) ≥ C · exp
(
−1/τC

)
for an absolute constant C > 0.

Combining our approach with Theorem 28 we obtain the following unconditional gener-
ator for cubic polynomials.

Theorem 29. Fix a prime field F. Let W1, W2, W3 ∈ Fn be independent distributions that
exp(−2(2/ε)c

)-fool linear polynomials over F, for a sufficiently large universal constant c.
Then the distribution W1 + W2 + W3 ε-fools degree 3 polynomials over F.

Proof. We follow the proof of Theorem 27. Let us think of being given ε = ε3. In the proof
of Theorem 27 the total error is dominated by the error in the case of large norm. In this
case, the error is exp(B) · ε1/B

2 , where B ≤ (|F|/IG(τ))O(1). Since we are fixing the field, in
the expression for B we can replace |F| with 2 (at the price of a different constant in the
exponent). Recall that τ is polynomially related to ε3. Using Theorem 28 we obtain that

B ≤ C · exp
(
1/εC

3

)
for a universal constant C. Consequently, the error is at most ε3 if

exp(C · exp
(
1/εC

3

)
) · ε1/(C·exp(1/εC

3 ))
2 ≤ ε3.

The above inequality is satisfied for ε2 = exp
(
− exp

(
1/εC′

3

))
for a sufficiently large universal

constant C ′, where ε2 is such that W1+W2+W3 ε2-fools quadratic polynomials. The required
bound on ε2 follows by assumption (for sufficiently large c) using Theorem 20.
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A On the seed length and structure of generators for

degree-d polynomials

In this section we present two negative results on generators that fool degree-d polynomials
which complement our positive results. Before discussing these negative results, let us have
a closer look at the seed length of our generator. First, we note that there are “explicit”
generators G : Fs → Fn that fool linear polynomials with error ε that have seed length

s = log|F| n + O(log|F| 1/ε) + O(1).

(We comment below on what we mean by “explicit”.) These parameters can be obtained with
a probabilistic (i.e., non-explicit) construction, while an “explicit” construction for example
follows with some work from the coding-theoretic result in [ABN+], also using the standard
connection between codes and generators for linear polynomials (e.g., [NN, AGHP]). We

22



omit the details. Using such a construction, our generator for degree-d polynomials has seed
length

s = d · log|F| n + f(ε, |F|, d), (12)

for some function f . In other words, for fixed ε, F, and d, our seed length is d · log|F| n+O(1),
as opposed to O(d · log|F| n) + O(1) as stated in the introduction. We chose not to present
these better parameters in the introduction because these constructions (e.g. [ABN+]) do
not seem to achieve the same explicitness of other constructions (e.g. Lemma 6): It is not
obvious how to compute them in time polynomial in |F| and s. We believe that such strong
parameters can be achieved by constructions that are as explicit as the one in Lemma 6, but
to our knowledge this has not yet been pointed out.

After having discussed the seed length of our generator, we turn to the discussion of the
two results in this section. First, we prove a lower bound on the seed length of generators
that fool degree-d polynomials. Informally, the lower bound establishes that the seed length
of a generator that fools degree-d polynomials must be at least d · log|F| n − O(1). This
bound shows that the dependence on n of the seed length of our generator is optimal up to
an additive term (cf. Equation 12). We derive as a corollary that there is a generator that
fools linear polynomials with error tending to 0 (as n grows) such that the sum of d − 1
independent copies of the generator does not fool degree d polynomials with error tending to
0. This result shows that our approach of taking d copies of generators for linear polynomials
is necessary : d− 1 copies are not enough.

Second, we prove a finer result for the case of quadratic polynomials. We show a non-
explicit generator for linear polynomials with exponentially small error that does not fool
quadratic polynomials – not even up to error 0.9. We point out that this result is incom-
parable to the previous one, because a linear generator with exponentially small error will
have seed length s ≈ n.

The proofs of these results are fairly straightforward; we present them for completeness.

Claim 30 (Lower bound on the seed length). Every generator G : Fs → Fn that fools
degree-d polynomials with error |F|−d−3 must have seed length s ≥ log|F|

((
n
1

)
+ . . . +

(
n
d

))
. In

particular, s ≥ d · log|F| n− d · log|F| d.

Proof. The lemma follows by a dimension counting argument. Let us consider the system of
equations

p(w) = 0

where p is an indeterminate degree-d polynomial and w ∈ Fn ranges over all |F|s outputs of
G. This is a linear system of equations if we think of the coefficients of p as indeterminates.

The number of equations in the system equals the number of all possible outputs of G,
which is |F|s. On the other hand, the number of coefficients of p is at least

(
n
1

)
+ . . . +

(
n
d

)
.

So if |F|s <
(

n
1

)
+ . . . +

(
n
d

)
the system has a non-zero solution, which means that there is a

non-zero polynomial p such that p(G(x)) = 0 for every x ∈ Fs.
On the other hand, since p is non-zero, by the Schwartz-Zippel lemma (for small fields)

we have PrX [p(X) = 0] ≤ 1 − |F|−d. This means that the statistical distance between
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p(X), x ∈ Fn, and p(G(X)), x ∈ Fs is at least |F|−d and contradicts our assumption that G
|F|−d−3-fools degree-d polynomials (using Claim 33).

The last bound in the statement follows from the standard inequality
(

n
d

)
≥ (n/d)d.

As a corollary, we obtain that there is a generator that fools linear polynomials with error
tending to 0 (as n grows) such that the sum of d − 1 independent copies of the generator
does not fool degree d polynomials with error tending to 0.

Corollary 31. There exists a linear generator that o(1)-fools linear polynomials over Fn but
such that the sum of d − 1 independent copies of the generator does not o(1)-fool degree d
polynomials over Fn.7

Proof sketch. Consider a random generator, or the one that can be derived from [ABN+].
Such a generator ε-fools linear polynomials with seed s = log|F| n + O(log|F| 1/ε) + O(1). By
a suitable choice of ε = o(1), d copies of this generator will have seed length shorter than
the bound in Claim 30, and the result follows.

We now present our second result: There is a generator that fools linear polynomials
with exponentially small error but that does not fool quadratic polynomials.

Claim 32 (Generators for linear polynomials do not fool quadratic polynomials). For every
n there exists a distribution W that |F|−Ω(n)-fools linear polynomials over Fn but that does
not (0.9)-fool quadratic polynomials.

Proof. To simplify notation we will assume n is even; the calculation for odd n is practically
identical. Consider the quadratic polynomial

p(x1, . . . , xn) := x1x2 + · · ·+ xn−1xn,

often called inner product. It can be verified that, for uniformly random X, |EX e [p(X)]| ≤
|F|−n/4.

Define W to be the uniform over the set of all w ∈ Fn such that p(w) = 0. Clearly, W
does not 0.9-fool quadratic polynomials. Thus to complete the proof we only need to show
that W fools linear polynomials.

Let l be any nonzero linear function. Then for a random X ∼ Fn and every i ∈ F

EX e [l(X) + i · p(X)] =
∑
t∈F

EX e [l(X) + i · t | p(x) = t] Pr[p(X) = t]

=
∑
t∈F

e(i · t) · EX e [l(X) | p(x) = t] Pr[p(X) = t].

We can see the above set of equations (one for every i) as stating that I = F · T , where I is
the vector of EX e [l(X) + i · p(X)] (over i), F is the Fourier matrix, and T is the vector of
EX e [l(X) | p(x) = t] Pr[p(X) = t] (over t). By the inverse Fourier formula, for every t ∈ F,

EX e [l(X) | p(x) = t] Pr[p(X) = t] = |F| ·
∑
i∈F

e(−i · t) · EX e [l(X) + i · p(X)] .

7By saying that G “o(1)-fools” we mean that there is an ε = ε(n) = o(1) such that G ε-fools.
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Specializing to t = 0, and recalling that e(−i · t) has norm 1, we have

EX e [l(X) | p(x) = 0] ≤ |F| ·
∑

i∈F EX e [l(X) + i · p(X)]

Pr[p(X) = 0]
. (13)

We now calculate EX e [l(X) + i · p(X)] and Pr[p(X) = 0].
When i = 0, EX e [l(X) + i · p(X)] = 0 and when i 6= 0, using Equation (4) on Page 7

and Item (3) in Fact 16, we have

|EX e [l(X) + i · p(X)]| ≤ U2 (i · p + l)Ω(1) = U2 (p)Ω(1) = |F|−Ω(n).

It is also not hard to see that Pr[p(X) = 0] is exponentially close to 1/|F|: when x1 = x3 =
x5 = . . . = 0 then p(X) = 0, otherwise p(X) is uniformly distributed in F. In particular
Pr[p(X) = 0] ≥ 1/(2 · |F|).

Substituting in equation (13) we obtain

∣∣EX e [l(X) | p(X) = 0]
∣∣ ≤ |F| · |F| · |F|

−Ω(n)

(2 · |F|)−1
≤ |F|−Ω(n).

B Statistical distance and character distance

In this section we point that our results also apply to the definition of pseudorandomness in
terms of statistical distance, as opposed to our algebraic Definition 4.

If X and X ′ are random variables taking values in F, their statistical distance is the
quantity

sd(X, X ′) =
1

2

∑
x∈F

∣∣PrX [X = x]− PrX′ [X ′ = x]
∣∣

= maxS⊆F
(
PrX [X ∈ S]− PrX′ [X ′ ∈ S]

)
.

In contrast, our notion of pseudorandomness (Definition 4) is given in terms of the fol-
lowing quantity, which we think of as (maximum) character distance.

cd(X, X ′) = maxi∈F
∣∣EX e [iX]− EX′ e [iX ′]

∣∣. (14)

The statistical distance and character distance are related as follows.

Claim 33. For every random variables X and X ′ taking values in F we have

cd(X, X ′) ≤ 2 · sd(X, X ′) ≤
√
|F| − 1 · cd(X, X ′).

Using Claim 33 we can easily translate our results between statistical and character
distance, using the simple fact that if a generator fools all polynomials p, then it also fools
all polynomials i · p, for i ∈ F.
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Proof of Claim 33. Let p(x) = PrX [X = x] and p′(x) = PrX′ [X ′ = x].
For the first inequality, we have

∣∣EX e [iX]− EX′ e [iX ′]
∣∣ =

∣∣∣∣∑
x∈F

(p(x)− p′(x)) · e(ix)

∣∣∣∣ ≤∑
x∈F

|p(x)− p′(x)| = 2 · sd(X,X ′).

For the other one, let ∆ = cd(X, X ′). We think of p and p′ as functions from F to C.
Then equation (14) says that for all i ∈ F,

|p̂i − p̂′i| =
1

|F|
·
∣∣EX e [iX]− EX′ e [iX ′]

∣∣ ≤ ∆

|F|
.

(When i = 0, the difference is zero.) Applying Parseval’s identity to the function p− p′, we
have that

1

|F|
∑
x∈F

(p(x)− p′(x))2 =
∑
i∈F

(p̂i − p̂′i)
2 ≤ (|F| − 1) · ∆2

|F|2
.

It follows by the Cauchy-Schwarz inequality that(
sd(X, X ′)

|F|

)2

=

(
1

|F|
∑
x∈F

|p(x)− p′(x)|
)2

≤ 1

|F|
∑
x∈F

(p(x)− p′(x))2 ≤ |F| − 1

|F|2
·∆2.
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