
Hardness Amplification Proofs Require Majority

Ronen Shaltiel∗ Emanuele Viola†

March 3, 2008

Abstract

Hardness amplification is the fundamental task of converting a δ-hard function f : {0, 1}n →
{0, 1} into a (1/2 − ε)-hard function Amp(f), where f is γ-hard if small circuits fail to compute
f on at least a γ fraction of the inputs. Typically, ε, δ are small (and δ = 2−k captures the case
where f is worst-case hard). Achieving ε = 1/nω(1) is a prerequisite for cryptography and most
pseudorandom-generator constructions.

In this paper we study the complexity of black-box proofs of hardness amplification. A class of
circuits D proves a hardness amplification result if for any function h that agrees with Amp(f) on
a 1/2 + ε fraction of the inputs there exists an oracle circuit D ∈ D such that Dh agrees with f on
a 1− δ fraction of the inputs. We focus on the case where every D ∈ D makes non-adaptive queries
to h. This setting captures most hardness amplification techniques. We prove two main results:

1. The circuits in D “can be used” to compute the majority function on 1/ε bits. In particular,
these circuits have large depth when ε ≤ 1/poly log n.

2. The circuits in D must make Ω
(
log(1/δ)/ε2

)
oracle queries.

Both our bounds on the depth and on the number of queries are tight up to constant factors.
Our results explain why hardness amplification techniques have failed to transform known

lower bounds against constant-depth circuit classes into strong average-case lower bounds. When
coupled with the celebrated “Natural Proofs” result by Razborov and Rudich (J. CSS ’97) and
the pseudorandom functions by Naor and Reingold (J. ACM ’04), our results show that standard
techniques for hardness amplification can only be applied to those circuit classes for which standard
techniques cannot prove circuit lower bounds.

Our results reveal a contrast between Yao’s XOR Lemma (Amp(f) := f(x1) ⊕ . . . ⊕ f(xt) ∈
{0, 1}) and the Direct-Product Lemma (Amp(f) := f(x1) ◦ . . . ◦ f(xt) ∈ {0, 1}t; here Amp(f) is
non-Boolean). Our results (1) and (2) apply to Yao’s XOR lemma, whereas known proofs of the
direct-product lemma violate both (1) and (2).

One of our contributions is a new technique to handle “non-uniform” reductions, i.e. the case
when D contains many circuits.
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1 Introduction

Proving circuit lower bounds is a major goal of Complexity Theory. However, the celebrated
“Natural Proofs” result by Razborov and Rudich [RR], coupled with the pseudorandom
functions by Naor and Reingold [NR], marks the class of polynomial-size constant-depth
circuits with majority gates (TC 0) as a fundamental limit for most currently available lower
bounding techniques. This limitation already applies to worst-case lower bounds, where one
seeks a function that small circuits fail to compute on at least one input. In particular, it
applies to average-case lower bounds, where one seeks a function that small circuits fail to
compute on many inputs. Average-case hard functions are especially important as they are
a prerequisite for most modern cryptography and can be used to construct pseudorandom
generators [NW] which in turn have a striking variety of applications (see, e.g., the books
by Goldreich [Gol2, Gol3]). We stress that both these applications require strongly average-
case hard functions. That is functions that small circuits cannot compute with even a small
advantage over random guessing, for a randomly chosen input. (For concreteness, the reader
may think of a function f : {0, 1}n → {0, 1} that any small circuit fails to compute with
probability 1/2− 1/nω(1) over the choice of the input).

As we do not know how to prove unconditional lower bounds for general circuit classes, a
long line of research has focused on hardness amplification. This is the task of transforming
worst-case hard functions (or sometimes mildly average-case hard functions) into average-
case hard functions [Yao1, Lip, BF, BFL, BFNW, Imp, GNW, FL, IW1, IW2, CPS, STV,
TV, SU1, Tre1, O’D, Vio1, Tre3, HVV, SU2, GK, IJK, IJKW, GG]. This research was
largely successful in its goal. In particular, it provided worst-case to average-case connections
within many complexity classes. Many of these connections give strongly average-case hard
functions. This research also spurred fruitful interaction with coding theory (see, e.g., the
survey by Trevisan [Tre2]).

Complexity theory has produced many exciting and useful lower bounds for restricted
computational models, most notably against classes of circuits with unbounded fan-in and
constant depth with various gates [FSS, Yao2, H̊as, Raz, Smo, HG, HMP+, ABFR, HM].
In some of these classes we in fact can prove worst-case lower bounds, but cannot prove
strongly average-case lower bounds (e.g. [Raz, Smo, ABFR]). Several such examples are
surveyed in Section 7 and in [Vio3, Chapter 6]; for concreteness, an example is the lower
bound against constant-depth circuits with And, Or and Parity gates [Raz, Smo]. One would
expect that hardness amplification techniques could be used to produce strongly average-
case lower bounds from the known lower bounds (which would in turn give pseudorandom
generators for these classes [NW]). But in fact “standard hardness amplification techniques”
fail.

In this paper we show that:

“standard hardness amplification techniques” only apply when starting with hardness
against circuits that can compute the majority function.

This explains the following “lose-lose” phenomenon: For classes that are weaker than
TC 0 (e.g. constant-depth circuits, or constant-depth circuits with parity gates) we can prove
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CircuitTC 0

Cannot amplify hardness
[This work]

Cannot prove hardness results
[Razborov and Rudich’s natural proofs]

complexity

Figure 1: Reach of “standard techniques.” Recall TC 0 is the class of polynomial-size
constant-depth circuits with majority gates.

lower bounds, however we do not have hardness amplification theorems, while for classes at
least as powerful as TC 0 we have hardness amplification theorems but cannot prove circuit
lower bounds; see Figure 1.

A couple of remarks is in order. First, our results likely do not apply to “every con-
ceivable” class of circuits, but rather they apply to the most well-studied ones. Second, we
note that, just like Razborov and Rudich’s result [RR] is not claiming that it is impossible
to prove lower bounds for classes like TC 0, but rather that certain techniques will not do,
this work is not claiming that it is impossible to prove strong average-case hardness results
for circuit classes weaker than TC 0, but that we cannot obtain such results by “standard
hardness amplification techniques.” We elaborate on these techniques next.

1.1 Hardness amplification

In this section we review the notion of hardness amplification. Let us start by formalizing
our notion of hardness.

Definition 1.1 (Average-case hardness). A function f : {0, 1}k → {0, 1} is δ-hard for a class
of circuits C (e.g., all circuits of size s) if for every circuit C ∈ C we have Prx∈{0,1}k [C(x) 6=
f(x)] ≥ δ.

Hardness amplification is the generic task of transforming a given function f : {0, 1}k →
{0, 1} that is δ-hard for a class of circuits C into another function Amp(f) : {0, 1}n →
{0, 1} that is (1/2− ε)-hard for a related class of circuits C ′, where one wants ε as small as
possible and n not much larger than k. The first and most important example of hardness
amplification is Yao’s XOR lemma (cf. [GNW]), which works as follows. We let n := t · k
for a parameter t and on input (x1, . . . , xt) ∈

(
{0, 1}k

)t
= {0, 1}n we define

Amp(f)(x1, . . . , xt) := f(x1)⊕ · · · ⊕ f(xt),

where ⊕ denotes exclusive OR. The lemma states that if f is δ-hard for (the class of)
circuits of size s, then choosing t := O(log(1/ε)/δ) one has that Amp(f) is (1/2− ε)-hard for
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circuits of size s · poly(ε · δ/k). In particular, if f is 1/3-hard for circuits of superpolynomial
size s = nω(1), then by choosing a suitable t := ω(log n) we obtain a (1/2 − 1/nω(1))-hard
function, (recall that such a function is a prerequisite of most cryptography and can be used
to construct pseudorandom generators [NW]).

Yao’s XOR lemma is not useful when starting from worst-case hard functions, i.e., when
δ = 2−k. Hardness amplification from worst-case hardness is still possible (e.g., [Lip, BF,
BFL, BFNW, FL, CPS, STV, TV]) but is more difficult. This distinction is not relevant to
our work which, jumping ahead, proves limitations on hardness amplification that already
apply when amplifying from constant hardness δ = Ω(1) (and in particular apply when
amplifying from worst-case hardness δ = 2−k).

1.2 Black-box hardness amplification

We now explain what we mean by “standard techniques” for proving hardness amplification
theorems. To explain this, we use the classical notion of an oracle circuit Dh(x), where h :
{0, 1}n → {0, 1}. This is simply a circuit with special oracle gates that on input y ∈ {0, 1}n

return the value h(y) ∈ {0, 1}. We note that this notion also makes sense when restricting
the depth of the circuit D. It has been observed several times (see, e.g., [Tre1]) that most
proofs of hardness amplification in the literature are black-box in the following sense.

Definition 1.2 (Black-box hardness amplification). A δ → (1/2 − ε) black-box hardness
amplification with input lengths k and n is a pair (Amp,D) such that Amp is a map from
functions f : {0, 1}k → {0, 1} to functions Amp(f) : {0, 1}n → {0, 1}, D is a class of oracle
circuits on k input bits (e.g., all oracle circuits of size s), and the following holds:

For every function f : {0, 1}k → {0, 1} and every function h : {0, 1}n → {0, 1} such that

Pr
y∈{0,1}n

[h(y) 6= Amp(f)(y)] < 1/2− ε

there is an oracle circuit D ∈ D such that

Pr
x∈{0,1}k

[
Dh(x) 6= f(x)

]
< δ.

The black-box hardness amplification is non-adaptive q-query if every circuit D ∈ D
makes q non-adaptive queries to h. Finally, we say that a class of circuits D proves a
black-box hardness amplification (with certain parameters) if there is a map Amp such that
(Amp,D) is a black-box hardness amplification (with the same parameters).

Why black-box hardness amplification lets us amplify hardness. It is instructive
to verify that black-box hardness amplification indeed lets us amplify hardness. To see this,
suppose that (Amp,D) is a q-query δ → (1/2 − ε) black-box hardness amplification where
D is the class of circuits of size s. Now let f : {0, 1}k → {0, 1} be δ-hard for (the class
of) circuits of size t ≥ 2 · s. Observe that indeed the function Amp(f) : {0, 1}n → {0, 1}
is (1/2 − ε)-hard for circuits of size t/(2 · q) (where recall q is the number of oracle queries
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made by circuits in D). This is proven by a standard counterpositive argument. Suppose
for the sake of contradiction that there exists a circuit h of size t/(2 · q) that computes
Amp(f) on more than a 1/2 + ε fraction of the inputs. Then by definition of black-box
hardness amplification there is a circuit D ∈ D such that Dh computes f on more than a
1− δ fraction of the inputs. Since D has size s and makes q oracle queries, by replacing each
query with a copy of the circuit for h we see that Dh can be computed by a circuit of size
q · t/(2 · q) + s ≤ t/2 + s ≤ t, contradicting our assumption that f was δ-hard for circuits of
size t.

It is also instructive to remark that, in the language of Definition 1.2, Yao’s XOR lemma
is a δ → (1/2 − ε) black-box hardness amplification (Amp,D) with input lengths k and n,
where n = O(k · log(1/ε)/δ) and D is the class of circuits of size poly(k/(ε · δ)).

The complexity of D. We want to stress that the complexity of the class D plays a crucial
role when deriving average-case hardness results using a black-box hardness amplification.
Specifically, to obtain hardness amplification the initial function f : {0, 1}k → {0, 1} must
be hard for a class of circuits that contains D. This is a key point for our results which will
essentially show that D has to be at least as powerful as TC 0, the class of constant-depth
circuits with majority gates. Thus for hardness amplification we need to start from a lower
bound against TC 0.

Non-uniformity. Another aspect we wish to stress is the non-uniformity of the notion of
black-box hardness amplification. In Definition 1.2 the circuit D ∈ D is allowed to depend
arbitrarily on both the δ-hard function f and the function h that approximates Amp(f). It
can be shown that some non-uniformity is necessary for black-box hardness amplification:
|D| ≥ (1/ε)Ω(1) [TV]. Establishing hardness amplification results with small non-uniformity
(e.g. |D| = poly(1/ε)) is important for achieving “uniform hardness amplification within
NP” and is the focus of a lot of recent attention (see Section 1.4 on related work). In this
work we give impossibility results for black-box hardness amplification and therefore are
interested in handling any black-box hardness amplification, including ones which use large
non-uniformity (e.g. |D| = exp(1/ε)).

1.3 Our results

The main result of this paper applies to non-adaptive black-box hardness amplification and
can be stated informally as follows:

If a set of circuits D proves non-adaptive δ → (1/2− ε) black-box
hardness amplification then D “can be used” to compute majority on 1/ε bits.

(?)

The formal statement of the above result requires a bit of notation, and is deferred to
Theorem 1.6 at the end of this section where, intuitively, we show how oracle access to
the circuits D is sufficient to compute majority. For now we state a qualitatively weaker
result which requires less notation. Specifically, the next theorem shows that if D proves
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non-adaptive δ → (1/2− ε) black-box hardness amplification, then the depth of the circuits
in D must be large whenever ε is small (cf. Definition 1.2 for the definition of “proves”).
This weak form of the theorem intuitively follows from (?) by using the well-known fact
that computing the majority function on m := 1/ε bits by circuits of depth d requires size
s ≥ exp

(
mΩ(1/d)

)
= exp

(
(1/ε)Ω(1/d)

)
, i.e. exponential in 1/ε [H̊as, Raz, Smo].

Theorem 1.3 (Decoding requires majority, stated in terms of circuit depth). Suppose that
a class of non-adaptive oracle circuits D proves a (δ = 1/3) → (1/2− ε) black-box hardness
amplification (Amp,D) with input lengths k and n.

Suppose that every circuit D ∈ D has size s and depth d. Then

s ≥ min
{
exp

(
(1/ε)Ω(1/d)

)
, 2Ω(k)

}
.

In particular, Theorem 1.3 implies that poly(n)-size constant-depth circuits (i.e., d is
fixed and s = poly(n) grows) can only prove hardness amplification up to 1/2 − ε ≤ 1/2 −
1/poly log n. This should be contrasted with standard hardness amplifications (e.g., [GNW])
that show that if we do not put any restriction on the depth of the circuits in D then circuits
of size poly(n) can prove hardness amplification up to 1/2− 1/n.

We remark that, for constant-depth circuits, the size bound in Theorem 1.3 is tight. This
follows easily from Impagliazzo’s beautiful hard-core set theorem [Imp] when amplifying from
constant hardness δ = Ω(1). Moreover, Impagliazzo’s result [Imp] conceptually matches our
result (?) by showing that computing majority on poly(1/ε) bits is “all that is needed” for
proving hardness amplification. Precisely this feature was exploited a few times in complexity
theory, for example in Klivans’ elegant work [Kli]. When amplifying from worst-case hardness
δ = 2−k, the construction by Goldwasser et al. [GGH+]1 again matches the size bound in
our Theorem 1.3.

Our second main result is a lower bound on the number of queries made by circuits D
in any black-box hardness amplification (Amp,D). One reason for studying the number
of queries necessary for proving hardness amplification is the loss in circuit size, i.e. the
difference between the circuit sizes that come up in the assumption and conclusion of the
hardness amplification theorem. The question of how much loss is necessary has been raised
a number of times (see, e.g., [GNW, KS]) but was never answered in generality until this
paper. Additional motivation is discussed in Sections 7, 8.

Theorem 1.4 (Decoding requires many queries). There is a universal constant C > 1 such
that the following holds. Let (Amp,D) be a non-adaptive q-query δ → (1/2− ε) black-box
hardness amplification. Suppose that log |D| ≤ 2k/C , and n, k ≥ C2, and that both δ and ε
are between 2−k/C and 1/3.

Then

q ≥ 1

C
· log(1/δ)

ε2
.

1See Theorem 5.20 in the full version of [GGH+].
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We also note that the lower bound of Theorem 1.4 is tight (up to constants) even when
only considering XOR-lemmas. This is because Impagliazzo’s proof of the XOR-lemma [Imp]
can be made to work with q = O (log(1/δ)/ε2) queries matching our lower bound.2

It has been observed (see e.g. [Tre1]) that black-box hardness amplification is closely
related to list-decodable codes. Using this connection our results can be seen as lower
bounds on the “complexity of decoding” locally-decodable codes. We explain this view in
Section 8.

XOR lemma vs. direct product: A qualitative difference. So far we have discussed
hardness amplification where the amplified function Amp(f) is Boolean, i.e. its range is
{0, 1}, and our leading example was Yao’s XOR lemma which recall is defined as Amp(f) :=
f⊕t(x1, . . . , xt) = f(x1)⊕ . . .⊕ f(xt) ∈ {0, 1}, where ⊕ denotes exclusive-or.

Hardness amplification where the amplified function Amp(f) : {0, 1}n → {0, 1}t is not
Boolean, i.e. t ≥ 1, is also widely studied. The first and most important example of this is the
direct product which is defined as follows Amp(f) := f ◦t(x1, . . . , xt) = f(x1) ◦ . . . ◦ f(xt) ∈
{0, 1}t, where ◦ denotes concatenation. Recall that in XOR-lemmas we are interested in
amplifying hardness from δ to 1/2− ε, whereas in direct-product lemmas we are interested
in amplifying from δ to 1− ε.

The direct product and the XOR lemma, and more generally Boolean and non-Boolean
hardness amplification, have often been regarded as essentially interchangeable. In fact,
many proofs of Boolean hardness amplification proceed by proving the direct product first
and then transforming the amplified function f ◦t into a Boolean function (see, e.g., [GNW,
IW1, STV, O’D, Tre1, HVV]), often using the remarkable Goldreich-Levin Theorem [GL].
The converse, proving a direct product lemma from an XOR lemma, is much easier [VW].

By contrast, our results show that Yao’s XOR lemma and the direct product lemma are
qualitatively different.

The main difference is that the proof of Yao’s XOR lemma requires majority, whereas
the proof of the direct product lemma does not. Specifically, our results show that if a class
D proves a (δ = 1/3) → (1/2 − ε) black-box hardness amplification, such as Yao’s XOR
lemma, then “D can compute majority,” and in particular D requires either large depth or
exponential size in 1/ε (Theorem 1.3). On the other hand, there are black-box proofs of the
δ → (1− ε) direct-product lemma that can be implemented by small constant-depth circuits
for arbitrary ε > 0. For example, this is achieved by the proof of Goldreich et al. [GNW].3

Another difference can be seen in the number of queries. The proof of the direct-product
lemma in [GNW] uses q = O (log(1/δ)/ε) queries, and note that for small ε this beats our
Ω (log(1/δ)/ε2) lower bound that applies to XOR lemmas (Theorem 1.4).

2The proof in Impagliazzo’s paper gives q = O
(
log(1/εδ)/ε2

)
(when using the min-max proof for the

hard-core theorem). However, a more efficient version (in terms of queries) of the hard-core theorem is given
in [KS], and using it one can push the number of queries to q = O(log(1/δ)/ε2).

3 We remark that the proof that appears in [GNW] does not directly achieve this. However, several
researchers have independently observed that this is possible via a simple modification. We also mention
that an unpublished manuscript [SVW] gives an alternative proof of the direct-product lemma that is also
implementable by constant-depth circuits.
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Finally, we point out that the techniques in this paper show that q = Ω(log(1/δ)/ε)
queries are necessary for black-box proofs of the direct-product lemma (details omitted),
which again matches the upper bound in [GNW].

Our main result: The general form. We now state our main result that hardness
amplification requires majority in its full generality. Previously, we had stated a corollary of
it that was tailored to circuit depth (Theorem 1.3). The general form of our results shows
that the circuits D in a black-box hardness amplification (Amp,D) can be used to compute
the majority function by a small constant-depth circuit. The way in which we are going to
use a circuit D ∈ D is simple and explained next. First, let us remark that since the circuit
makes non-adaptive oracle queries, for a fixed x ∈ {0, 1}k the output of Dh(x) is a function
Dx : {0, 1}q → {0, 1} of q evaluations of h at fixed points y1, y2, . . . , yq ∈ {0, 1}n (again,
the yi’s depend on x only): Dh(x) = Dx(h(y1), . . . , h(yq)). Let us formally state this key
definition.

Definition 1.5. Let Dh(x) be an oracle circuit that makes q non-adaptive queries to its
oracle. For a fixed input x we denote by Dx : {0, 1}q → {0, 1} the function that maps the q
oracle answers to the output Dh(x) ∈ {0, 1}.

We are going to show that having access to the above functions Dx : {0, 1}q → {0, 1} for
a few distinct D ∈ D and x ∈ {0, 1}k is sufficient to compute majority.

Theorem 1.6 (Decoding requires majority). There is a universal constant C > 1 such that
the following holds. Let (Amp,D) be a q-query non-adaptive (1/2− γ) → (1/2− ε) black-
box hardness amplification. Suppose that q, log |D|, 1/γ ≤ 2k/C , and n, k ≥ C2, and that
γ ≥ 1/ log(1/ε).

Then there is a circuit of depth C and size (q/ε)C with oracle access to (at most (q/ε)C

of) the functions {Dx : {0, 1}q → {0, 1}}D∈D,x∈{0,1}k that computes majority on inputs of
length 1/ε.

To understand the above theorem, let us briefly see how to obtain Theorem 1.3 from
it. Suppose that D consists of circuits of size s and depth d, that 1/2 − γ = 1/3, and that
s ≤ 2γ·k for a suitable universal constant γ. First, we verify that the hypothesis of Theorem
1.6 is satisfied. This is because the circuits in D make at most q ≤ s ≤ 2γ·k ≤ 2k/C queries
– where the last inequality holds for a small enough γ – and |D| ≤ 2sO(1)

which implies
log |D| ≤ sO(1) ≤ 2k/C – where again the last inequality holds for a small enough γ. At this
point, observe that the functions Dx : {0, 1}q → {0, 1} are also computable by circuits of
size s and depth d. Substituting these circuits for the oracle gates in the circuit of depth C
and size (q/ε)C given by the above theorem, we obtain a circuit of depth C · d = O(d) and
size (q/ε)C · s = poly(s/ε) that computes the majority function on inputs of length 1/ε. As
we mentioned earlier, by known lower bounds for the majority function [H̊as, Raz, Smo] we
obtain Theorem 1.3: s ≥ exp

(
(1/ε)Ω(1/d)

)
.
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1.4 Related work

The inapplicability of hardness amplification techniques against low-complexity classes seems
to have been observed independently by several researchers, and is also pointed out in [Agr]
and in [Vio1, Section 10]. The latter paper informally conjectures the main result of this
work that proving hardness amplification requires computing majority (Theorem 1.6). A
preliminary version of this work [Vio3, Chapter 6] proves the conjecture in the special case
where the class D in Definition 1.2 is small. The main result in this paper addresses for the
first time the general case when there is no bound on the size of D. The same preliminary
version [Vio3, Chapter 6] also proved a qualitatively weaker lower bound on the number
of queries. We note that a recent work by Lu et al. [LTW4] addresses the necessity of
both majority and many queries in proofs of Impagliazzo’s hard-core set theorem [Imp].
Specifically, [LTW4] introduces two notions of black-box proof of the hard-core set theorem,
and shows that one proof cannot be implemented by small constant-depth circuits, and that
the other requires many oracle queries. Their arguments only apply to proofs of the hard-core
set theorem, whereas our work addresses arbitrary black-box hardness amplification.

We remark that there is a variety of features that it is interesting to study and optimize of
q-query δ → (1/2− ε) hardness amplification (Amp,D) with input lengths k, n. We discuss
the most relevant ones next.

Optimizing the ratio between k and n: E.g. [BFNW, Imp, IW1, STV]. This is in particular
relevant to obtain conclusions such as P = BPP under the assumption that E requires
exponential-size circuits [IW1].

Optimizing |D| = advice = list size: [IW2, STV, TV, Tre1, Tre3, IJK, IJKW]. This is in
particular relevant when D is a class of uniform machines (as opposed to circuits).

Optimizing the number of queries q: [Imp, KS], as well as the literature on locally-
decodable codes (see, e.g., [Tre2]). As discussed in Section 1.1, this is particularly relevant
to the loss in circuit size incurred by hardness amplification.

The complexity of Amp: [O’D, Tre1, Vio1, Vio2, Tre3, HVV, LTW, LTW3, LTW1, LTW2]
This line of research is orthogonal to this paper which studies the complexity of D and does
not place any restriction on Amp. For context, we mention that the complexity of Amp is a
key issue when we want to guarantee that the amplified function Amp(f) lies in a specific
class whenever the starting function f does. An example of this is the line of work on
hardness amplification within NP [O’D, Tre1, HVV, Tre3, LTW3] which started with the
remarkable result by O’Donnell [O’D].

Relaxed definitions of hardness amplification: There are other works that study different,
less demanding models of hardness amplification which are tailored to important questions
such as worst-case to average-case connections within NP [BT2, BT1, Vio2]. These works are
incomparable with ours, one key difference being that they impose computational restrictions
on the starting function f and the amplified function Amp(f), whereas our results do not.

Finally, we would like to mention that there is a long line of research that is devoted
to proving average-case hardness results for circuit classes below TC 0, e.g. [H̊as, HMP+,
Kli, AB, Bou, GRS, VW]. With a few exceptions (discussed below) this research has been
independent of hardness amplification, and our results may be interpreted as a partial ex-
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planation for this independence. The work by Klivans [Kli] stands out. Exploiting precisely
the fact that computing majority is all that is needed for hardness amplification, Klivans
uses a lower bound for constant-depth circuits with one majority gate [ABFR] to give an
alternative proof of the strong average-case hardness of parity for constant-depth circuits
without majority gates. We remark that [Kli] does not contradict the results in this paper,
but rather matches them by showing that a lower bound for a class with majority gates is
sufficient for hardness amplification; see Section 7 for more on the status of lower bounds for
constant-depth circuits with few (e.g. one) majority gates.

2 Overview of the proof

In this section we give a high level overview of the ideas that come into the proofs of our
main results (Theorems 1.6,1.4). Within this section we allow ourselves to oversimplify and
ignore some technicalities; the reader is referred to the formal proofs for precise details.

The Zoom Theorem. Both the result about the necessity of majority (Theorem 1.6)
and our lower bound on the number of queries (Theorem 1.4) rely on a theorem that we
call “the Zoom Theorem.” Let us first recall the setup. We are given a non-adaptive q-
query δ → (1/2− ε) black-box hardness amplification (Amp,D) where Amp maps functions
f : {0, 1}k → {0, 1} into functions Amp(f) : {0, 1}n → {0, 1} (think n = kO(1)). Recall
that D is a class of oracle circuits and that for any circuit D ∈ D and input x ∈ {0, 1}k,
Definition 1.5 defines a function Dx : {0, 1}q → {0, 1} which captures the way D uses the
answer to its q oracle queries to compute its output.

An informal statement of the Zoom Theorem follows (see Theorem 4.2 for a precise
statement).

Informal Theorem 2.1 (Zoom Theorem). There exists a circuit D ∈ D and an input
x ∈ {0, 1}k such that there is a function T : {0, 1}q → {0, 1} of roughly the same complexity
as Dx that satisfies:

1. Pr[T (N1
1/2, . . . , N

q
1/2) = 1] ≥ 0.49, where (N1

1/2, . . . , N
q
1/2) is a vector of q independent

bits with probability of being 1 equal to 1/2 (i.e., the vector is uniform in {0, 1}q).

2. Pr[T (N1
1/2−ε, . . . , N

q
1/2−ε) = 1] ≤ 2δ, where (N1

1/2−ε, . . . , N
q
1/2−ε) is a vector of q inde-

pendent bits with probability of being 1 equal to 1/2− ε.

We refer to the distributions (N1
1/2, . . . , N

q
1/2) and (N1

1/2−ε, . . . , N
q
1/2−ε) above as “uniform

noise” and “bounded noise,” respectively. Loosely speaking, the theorem says that T (which
has the same complexity as circuits in D) distinguishes between uniform noise and bounded
noise.
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Usefulness of the Zoom Theorem. Our two main results follow from the Zoom The-
orem. On an intuitive level, it seems that the natural way to decide whether a string
w ∈ {0, 1}q was chosen according to uniform noise or according to bounded noise is to com-
pute the Hamming weight of w (which we denote by weight(w)) and decide according to
whether weight(w) ≤ (1/2 − ε/2)q. Note that if T implements this strategy then it can in-
deed be used to compute majority. Furthermore note that when implementing this strategy,
a Chernoff-style bound shows that q = O(log(1/δ)/ε2) independent variables are sufficient
in order to distinguish uniform noise from bounded noise (at rate 1/2 − ε) with confidence
1− δ. Our bound on the number of queries essentially follows from the fact that this bound
on q is tight.

Let us be more precise in explaining how the “necessity of majority” Theorem 1.6 follows
from the Zoom Theorem. We would like to argue that T can be used to compute majority on
inputs z of length ` := 1/ε. For simplicity, we explain how to use T to accomplish a slightly
easier task, namely distinguishing between inputs z with weight(z) = `/2 and inputs z with
weight(z) = `/2 − 1 (in the formal proof we essentially show that computing majority can
be reduced to this simpler task). Given an input z ∈ {0, 1}` we generate a string w ∈ {0, 1}q

where wi is obtained by picking a random index j ∈ [`] and setting wi = zj. In words, each
bit in w is filled with a bit from a random position in z. Note that if weight(z) = `/2 then
w is distributed like uniform noise, whereas if weight(z) = `/2− 1 then w is distributed like
bounded noise, because weight(z)/` = 1/2 − 1/` = 1/2 − ε. It follows that we can use T
to distinguish between the two cases (and recall that T has roughly the same complexity as
circuits in D).

This key idea was communicated to us by Madhu Sudan.
Finally, we point out that although the above reduction is randomized, at the end we

obtain a deterministic circuit that computes majority. For this we also exploit that the
relevant probabilities in the above reduction are sufficiently bounded away that they can be
amplified using circuits of constant-depth by the result [Ajt1] (see also [Ajt2, Vio5]).

2.1 Proving the Zoom Theorem when D contains a single circuit

The proof of the Zoom Theorem is the main technical contribution of this paper. What
makes this problem challenging is that the class D can be very large (e.g. |D| = exp(k)). We
explain how we handle such large D later on. As a warm-up, we outline of the argument
in the case that D contains only one circuit D. We consider a probability space with four
independent random variables:

• A uniformly chosen function F : {0, 1}k → {0, 1}. We think of F as the original hard
function.

• An input X ∈ {0, 1}k that is uniformly distributed. We think of X as a random input
to F .

• A uniformly chosen function UN : {0, 1}n → {0, 1}. We refer to UN as “uniform noise
function.”

10



• A function BN : {0, 1}n → {0, 1} where for every y ∈ {0, 1}n, BN(y) is an independent
bit with probability of being 1 equal to 1/2 − ε. We refer to BN as “bounded noise
function.”

We first consider the setting in which D is run with oracle Amp(F ) ⊕ UN . (This is an
oracle that on input y ∈ {0, 1}n returns Amp(F )(y)⊕UN(y)). Note that the uniform noise
function UN “masks out” the values of Amp(F ) and therefore the circuit D receives no
information about F . Thus, D cannot possibly compute a function that is correlated with
F :

Pr
[
DAmp(F )⊕UN(X) 6= F (X)

]
= Pr

[
DUN(X) 6= F (X)

]
≥ 0.49. (1)

We also consider the setting in which D is run with oracle Amp(F )⊕BN . (This is an oracle
that on input y ∈ {0, 1}n returns Amp(F )(y)⊕BN(y)). Since BN corresponds to bounded
noise at rate 1/2− ε, we have that this oracle agrees with Amp(F ) on a (1/2 + ε) fraction of
inputs and therefore, by the definition of black-box hardness amplification:

Pr
[
DAmp(F )⊕BN(X) 6= F (X)

]
≤ δ. (2)

Intuitively, the inequalities (1), (2) are going to translate into the two items of the Zoom
Theorem. We now explain this part of the argument. Let us examine the computation of
D on an input x ∈ {0, 1}k with the two different oracles: In both cases D prepares the
same q queries y1, . . . , yq ∈ {0, 1}n to the oracle and receives answers a1, . . . , aq from the
oracle. It then outputs Dx(a1, . . . , aq). The high level idea is that when run on random
X ∈ {0, 1}k, DX distinguishes between the two oracles and therefore distinguishes between
uniform noise and bounded noise. More precisely, by an averaging argument we can fix the
random variables F and X and obtain a fixed function T that essentially equals DX and
distinguishes between bounded noise and uniform noise.

2.2 Extending the argument to the case when D is large

We would like to imitate the proof above when the class D contains many circuits. For
concreteness let us assume that D contains 2k2

circuits, i.e. |D| = exp (k2). In this general
case the definition of black-box hardness amplification only says that for any choice of f, h
where h agrees with Amp(f) on a (1/2 + ε) fraction of inputs there exists a circuit D ∈ D
such that Dh agrees with f on a 1−δ fraction of inputs. Note that the circuit D is a function
of both f and h, and let us denote this function by circuit(f, h).

We would like to imitate the previous argument. However, when we use oracle Amp(F )⊕
BN , we do not know which circuit D ∈ D is the “correct circuit”, i.e. circuit(F,Amp(F )⊕
BN). More formally, we have that circuit(F,Amp(F ) ⊕ BN) is a random variable that
in particular depends on BN . In the previous argument we applied a fixed function Dx

on the answers a1, . . . , aq that were returned by the oracle. However, the function Dx for
D = circuit(F,Amp(F )⊕BN) that we want to apply on a1, . . . , aq is now a random variable
that depends on a1, . . . , aq and we cannot use the argument above.
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Going back to the case of a single circuit. To avoid the aforementioned problem we
start by fixing the random variable circuit(F,Amp(F )⊕BN) to its most likely value. That
is, let D be the most likely value of circuit(F,Amp(F )⊕BN) and let E = E(F, BN) be the
event

E := {circuit(F,Amp(F )⊕BN) = D} .

Note that the probability of E is at least 1/|D| = 2−k2
(which is small but not too small).

We have that circuit(F,Amp(F )⊕BN) is fixed in E (which means that in E we only need
to consider one fixed circuit D). From now on we restrict our attention to E. That is, let
F ′, BN ′ denote the distribution of F, BN when conditioned on the event E. Note that this
conditioning can skew the distribution of F ′, BN ′ and that these variables are no longer
distributed like the original variables F, BN and in particular may become dependent. For
the purpose of explaining the argument let us assume the unjustified assumption that F ′

and BN ′ are independent. (In the actual argument we bypass this problem by fixing F to
some fixed function f before conditioning on the event E).

We would like to imitate the argument of the previous section in this new probability
space. Indeed, we are back to dealing with one fixed circuit D. However, the previous
argument critically relies on properties of BN : Most notably that for any y1, . . . , yq ∈ {0, 1}n,
the random variable (BN(y1), . . . , BN(yq)) is distributed like bounded noise. This may not
necessarily hold for BN ′.

An information-theoretic lemma. In order to handle this problem, we use the following
Lemma (stated informally; cf. Section 3 for a precise statement).

Informal Lemma 2.2. Let V1, . . . , Vt be independent and identically distributed random
variables. Let E be an event whose probability is “not too small.” Then for any integer
q there exists a “large” set G ⊆ [t] such that for every i1, . . . , iq ∈ G, the distribution
(Vi1 , . . . , Viq) “does not change significantly” when conditioning on E.

This lemma can be viewed as a generalization of a Lemma by Raz (in which q = 1) that
is used in his parallel repetition theorem [Raz]. We have recently found out that this lemma
follows easily from the results in [EIRS, Section 4].

We apply the lemma on the random variables {BN(y)}y∈{0,1}n . We conclude that there
exists a large set G ⊆ {0, 1}n such that for any y1, . . . , yq ∈ G the variable

(BN ′(y1), . . . , BN ′(yq))

is statistically close to
(BN(y1), . . . , BN(yq)).

This lemma intuitively helps us recover the previous argument in the new probability space:
We consider the operation of DAmp(F ′)⊕BN ′

on an input x ∈ {0, 1}k. If the queries y1, . . . , yq ∈
{0, 1}n that D makes are all in the “good set” G, then the rest of the proof essentially goes
through. This is because on these q queries the distribution of the bounded noise function is
statistically close to its initial distribution and we can continue with the previous argument.
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However, even though the set G of “good queries” is large, it may be the case that on
every input x ∈ {0, 1}k , D makes a “bad query” y′ 6∈ G. We have no control on the
distribution BN ′(y′) when y′ 6∈ G; for example, it may be correlated with the value of BN ′

on another query y, and so we cannot relate this distribution to that of bounded noise (in
which different coordinates are independent and distributed in the same way).

Fixing bad queries. In order to address this issue we further refine the probability space
by fixing the value of BN ′ at some bad queries. The high level idea is that by fixing the
bounded noise function on these queries we “remove dependencies” between the answers that
the circuit D sees when making its queries. This part of the argument is more technical and
we will not describe it in detail. However, we point out that fixing bad queries is a tricky
business as whenever we fix a bad query we change the probability space, which in turn
skews the distribution of the bounded noise function and may result in introducing new bad
queries (and it seems that we make no progress as we can never fully get rid of bad queries).
In the actual argument we fix the bounded noise function only on those queries that are
heavy in the sense that they are “asked frequently” by D. The rationale is that even if fixing
the bounded noise function on these queries skews the distribution and introduces new bad
queries we do make progress as the new bad queries are queries that are not asked frequently
by D. Finally, we argue that bad queries that are not asked frequently by D do not hurt us
too much when implementing the initial argument (because on an intuitive level, this means
that D asks good queries “most of the time”).

One technical point that we want to make is that for implementing the approach above we
must make sure that the number of bad queries that are introduced after fixing the frequent
queries does not depend on the number of frequent queries that we fix. This is because in
the actual argument we do a union bound over all bad queries and argue that the probability
that a random input queries any bad query (that is not already fixed) is low. This allows us
to ignore bad queries as the weight of inputs which query bad queries is small.

2.3 Organization of the paper

In Section 3 we state and prove the information-theoretic lemma (Informal Lemma 2.2). In
Section 4 we state and prove the Zoom Theorem which is the main technical theorem of
this paper. In Section 5 we show how our result on necessity of majority follows from the
Zoom Theorem. In Section 6 we show how our lower bound on the number of queries follows
from the Zoom Theorem. In Section 7 we explain the significance of our results to various
circuit classes. In Section 8 we explain that our results can be viewed as lower bounds on
the complexity of decoding locally (list-)decodable codes. Finally, Section 9 discusses some
open problems.
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3 The information-theoretic lemma

In this section we prove the following lemma which, loosely speaking, says that if one con-
ditions uniformly distributed random variables V1, . . . , Vt on an event that happens with
noticeable probability, then even following the conditioning most groups of q variables are
close to being jointly uniformly distributed. We need the following definition.

Definition 3.1. We say that two random variables V, W over the same set S are ε-close if
for every event E ⊆ S, |Pr[V ∈ E]− Pr[W ∈ E]| ≤ ε.

Given a random variable V over a set S and an event E we use (V |E) to denote the
probability distribution of V conditioned to E, that is for any event A ⊆ E, Pr(V |E)[A] =
Pr[V ∈ A|V ∈ E].

We are now ready to state the Lemma.

Lemma 3.2. Let V = (V1, . . . , Vt) be a collection of independent random variables where
each one of them is uniformly distributed over a set S. Let A ⊆ St be an event such that
Pr[V ∈ A] ≥ 2−a. Then for any η > 0 and integer q there exists a set G ⊆ [t] such that
|G| ≥ t−16 ·q ·a/η2 and for any i1, . . . , iq ∈ G the distribution (Vi1 , . . . , Viq |V ∈ A) is η-close
to uniform.

Lemma 3.2 can be viewed as a generalization of a Lemma by Raz [Raz, Section 3] that
implies Lemma 3.2 for the special case of q = 1. We mention again that we have recently
found out that Lemma 3.2 follows easily from results in [EIRS, Section 4].

We now discuss the proof of Lemma 3.2. The proof relies on the notion of entropy H of a
random variable X, defined as H(X) :=

∑
x Pr[X = x] · log(1/ Pr[X = x]) (cf. [CT, Chapter

2]). We list next a few standard properties of entropy that we will use in the proof.

Fact 1. Entropy satisfies the following.

1. Chain rule: For any random variables X1, . . . , Xn we have

H(X1, . . . , Xn) =
n∑

i=1

H(Xi|Xi−1, . . . , X1)

[CT, Theorem 2.5.1].

2. Conditioning reduces entropy: For any random variables X, Y, Z we have H(X|Y ) ≥
H(X|Y, Z) (follows easily from the definition).

3. High entropy implies uniform: Let V be a random variable taking values in a set S
and suppose that H(V ) ≥ log |S| − α; then V is 4

√
α-close to uniform [CK, Chapter

3; Exercise 17].

We now prove Lemma 3.2
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Proof of Lemma 3.2. Let n := log |S| and let V ′ := (V ′
1 , . . . , V

′
t ) := (V1, . . . , Vt|V1, . . . , Vt ∈

A). Note that V ′ is uniformly distributed over A and therefore H(V ′) = log |A| = log(2n·t ·
Pr[V ∈ A]) ≥ n · t− a. By the chain rule (Item (1) in Fact 1) for entropy we have that:

n · t− a ≤ H(V ′) = H(V ′
1 , . . . , V

′
t ) =

∑
1≤i≤t

H(V ′
i |V ′

1 , . . . , V
′
i−1). (3)

Let
`i = H(V ′

i |V ′
1 , . . . , V

′
i−1).

By (3) we have that 1
t
·
∑

1≤i≤t `i ≥ n− a/t. Let b := η2 · t/(16q · a). By a Markov argument
at most t/b of the indices i are such that `i < n− b · a/t. Let

G := {i : `i ≥ n− b · a/t} .

We have that |G| ≥ t− t/b = t− 16q · a/η2. Let i1 < i2 < . . . < iq be arbitrary indices in G.
By the chain rule for entropy:

H(V ′
i1
, . . . , V ′

iq) =
∑

1≤j≤q

H(V ′
ij
|V ′

i1
, . . . , V ′

ij−1
).

We now use the fact that “conditioning reduces entropy,” i.e. Item (2) in Fact 1, and
deduce that:

H(V ′
i1
, . . . , V ′

iq) ≥
∑

1≤j≤q

H(V ′
ij
|V ′

1 , . . . , V
′
ij−1) =

∑
1≤j≤q

`ij ≥ q · n− q · b · a
t

.

We have that (V ′
i1
, . . . , V ′

iq) is a random variable taking values in a set of size 2q·n and

that its entropy is at least q ·n− q·b·a
t

. By Item (3) in Fact 1 it then follows that (V ′
i1
, . . . , V ′

iq)

is 4
√

q·b·a
t

-close to uniform. To conclude, note that 4
√

q·b·a
t

= η.

4 Statement and proof of the Zoom Theorem 4.2

Both our result about the necessity of majority (Theorem 1.6) and our lower bound on the
number of queries (Theorem 1.4) rely on the following Zoom Theorem which is our main
technical contribution. This theorem shows that given a non-adaptive q-query black-box
δ → (1/2 − ε) hardness amplification (Amp,D) we can “zoom in” on a particular function
Dx : {0, 1}q → {0, 1}, where D ∈ D, x ∈ {0, 1}k (cf. Definition 1.5 for the definition of
Dx) that is distinguishing noise rate 1/2 from noise rate 1/2− ε. The distinguisher will not
quite be a function Dx but rather (a distribution on) projections of such functions, which are
simply functions that can be obtained from Dx by fixing some input variables to constants
and complementing others. We give the formal definition of a projection and then we state
the zoom theorem.
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Definition 4.1. Let d = d(y1, . . . , yq) : {0, 1}q → {0, 1} be a function. A projection of
d is a function d′ : {0, 1}q → {0, 1} that can be obtained from d by fixing some input
variables to constants and complementing others, and possibly complementing the output.
Formally, there are a1, . . . , aq, b1, . . . , bq, c ∈ {0, 1} such that for any y1, . . . , yq ∈ {0, 1},
d′(y1, . . . , yq) = d((y1 · a1)⊕ b1, . . . , (yq · aq)⊕ bq)⊕ c.

Theorem 4.2 (Zoom theorem). There is a universal constant C > 1 such that the following
holds. Let (Amp,D) be a non-adaptive q-query δ → (1/2− ε) hardness amplification scheme.
Suppose that q, log |D| ≤ 2k/C , and n, k ≥ C2.

Then there is a distribution T on functions t : {0, 1}q → {0, 1} such that

1. PrT,N1
1/2

,...,Nq
1/2

[T (N1
1/2, . . . , N

q
1/2) = 1] ≥ 1/2− 2−k/C, where (N1

1/2, . . . , N
q
1/2) is a vector

of q independent bits with probability of being 1 equal to 1/2 (i.e., the vector is uniform
in {0, 1}q),

2. PrT,N1
1/2−ε

,...,Nq
1/2−ε

[T (N1
1/2−ε, . . . , N

q
1/2−ε) = 1] ≤ δ +2−k/C , where (N1

1/2−ε, . . . , N
q
1/2−ε) is

a vector of q independent bits with probability of being 1 equal to 1/2− ε, and

3. each t ∈ T is a projection of a function Dx for some D ∈ D and x ∈ {0, 1}k. I.e.,
every t ∈ T can be obtained from Dx for some D ∈ D, x ∈ {0, 1}k by fixing some
input variables to constants and complementing others, and possibly complementing
the output.

4.1 Proof

Let a := log |D| and C > 1 be a constant to be determined later. Recall that we are only
interested in the case that q, a ≤ 2k/C , and n, k ≥ C2. We will assume that his holds
throughout the proof. In various places in the proof we will want certain inequalities to hold
and will observe that each one of them holds for a sufficiently large constant C > 1. In the
end, we will choose C to be sufficiently large so that all the conditions throughout the proof
hold simultaneously.

Let F be the uniform distribution on functions f : {0, 1}k → {0, 1}. We now would like
a distribution on “noise functions” that perturbs each bit with probability 1/2− ε. For the
later application of Lemma 3.2, which deals with random variables uniformly distributed, it
is convenient to adopt the following approach to define our noise function. Let M be the
uniform distribution on functions mapping {0, 1}n to [ε−1]; let Θ : [ε−1] → {0, 1} be the
function such that Θ(y) = 1 if and only if y ≤ ε−1/2− 1.4 We think of our noise function as
Θ ◦M : {0, 1}n → {0, 1}, which indeed satisfies PrM [(Θ ◦M)(y) = 1] = (ε−1/2 − 1)/ε−1 =
1/2−ε for every y ∈ {0, 1}n. For readability, we simply write ΘM for Θ◦M and also ΘM(y)
for Θ(M(y)).

We think of the circuits as trying to compute F from the oracle Amp(F )⊕ ΘM , whose
value at y is Amp(F )(y) ⊕ ΘM(y). We also think of ΘM as corrupting at most a 1/2 − ε

4If ε−1/2 is not an integer we can replace [ε−1] with [A] for a sufficiently large integer A and carry through
a similar argument: Our argument is not affected by the magnitude of A.
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fraction of the values of Amp(F ), namely those for which ΘM(y) = 1, but for this we have
to deal with the technicality that our Definition 1.2 of black-box hardness amplification puts
1/2− ε as a sharp threshold for the noise, whereas with some probability ΘM will map more
than a 1/2 − ε fraction of the inputs to 1. However, a loose bound, which is sufficient for
our purposes, shows that ΘM will indeed map at most a 1/2− ε fraction of the inputs to 1
with probability at least 1/2n.5

By assumption and the above, we have that

Pr
F,M

[
∃D ∈ D : Pr

x∈{0,1}k
[DAmp(F )⊕ΘM(x) 6= F (x)] ≤ δ

]
≥ 2−n. (4)

It is convenient for the rest of the proof to introduce the following notation for the error
made by a circuit D ∈ D on computing a function f : {0, 1}k → {0, 1} from an oracle
g : {0, 1}n → {0, 1}:

∆D (f, g) := Pr
x∈{0,1}k

[Dg(x) 6= f(x)].

This lets us rewrite Equation (4) as

Pr
F,M

[∃D ∈ D : ∆D (F,Amp(F )⊕ΘM) ≤ δ] ≥ 2−n. (5)

From Equation (5) we see that there must exist a fixed circuit D ∈ D such that

Pr
F,M

[∆D (F,Amp(F )⊕ΘM) ≤ δ] ≥ 2−a · 2−n ≥ 2−2·a, (6)

where the last inequality holds for a := log |D| ≥ n, which we can assume without loss of
generality.

For the rest of the proof we fix D ∈ D to the particular circuit given by the above
Equation (6). Since D is non-adaptive, the queries y ∈ {0, 1}n made by D depend only on
the input x. Again, note here we crucially use the non-adaptivity of D. Let us now call a
query y ∈ {0, 1}n heavy if a τ :=

√
2−k fraction of the x’s query y. That is, we make the

following definition.

Definition 4.3. We say that y ∈ {0, 1}n is heavy if

Pr
x∈{0,1}k

[Dg(x) queries g(y)] ≥ τ :=
√

2−k.

Claim 4.3.1. There are at most h := q/τ heavy queries y ∈ {0, 1}n.

5Specifically, the probability that ΘM maps exactly a 1/2 − ε fraction of its inputs to 1 is at least
1/
√

8 · 2n · (1/2− ε) · (1/2 + ε) (see, e.g., [CT, Lemma 17.5.1]), which is at least 1/2n for sufficiently large
n ≥ C. (Again, we assume without loss of generality that (1/2 − ε) · 2n is an integer.) This argument will
let us derive a conclusion which involves noise rate 1/2− ε, as opposed to 1/2−O(ε) which can be obtained
by modifying the definition of Θ and using a Chernoff Bound instead of the above bound.
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Proof.

q ≥ Ex∈{0,1}k [number of queries made by D(x)] ≥ (number of heavy y ∈ {0, 1}n) · τ.

Let r1, . . . , rh ∈ {0, 1}n be the heavy queries, and let us call light the other queries.
Conditioning on the values m1, . . . ,mh ∈ [ε−1] of M on the heavy queries r1, . . . , rh ∈ {0, 1}n,
we can write Equation (6) as follows

Em1,...,mh∈[ε−1]

[
Pr
F,M

[
∆D (F,Amp(F )⊕ΘM) ≤ δ

∣∣∣M(r1) = m1, . . . ,M(rh) = mh

]]
≥ 2−2·a.

(7)
Therefore, by an averaging argument, we see that there exists a fixing

M(r1) = m1, . . . ,M(rh) = mh

of the values of M on the heavy queries such that, if we denote by M̄ the distribution

M̄ := M
∣∣∣M(r1) = m1, . . . ,M(rh) = mh,

it still holds that
Pr
F,M̄

[
∆D

(
F,Amp(F )⊕ΘM̄

)
≤ δ
]
≥ 2−2·a. (8)

Now we would like to fix a particular choice for the function F = f that simultaneously
accomplishes two things. First, D should still sufficiently often compute f well over random
M̄ (as in Equation (8)), and second D should not compute f well when given access to only
the values of Amp(f) on the h heavy y’s in {0, 1}n. The next claim gives such an f . To
formalize our second point, namely the inability of D to compute f well when given access
only to the values of Amp(f) on the heavy y’s, let us make the following definition.

Definition 4.4. We denote by N̄1/2 : {0, 1}n → {0, 1} a uniformly distributed random
function consistent with our fixing of the noise on the heavy queries r1, . . . , rh, i.e. N̄1/2(ri) :=
ΘM̄(ri) = Θ(mi) ∈ {0, 1} for every i ≤ h.

Note that N̄1/2(y) is defined to be a random bit if y is light, thereby hiding the value of
Amp(f)⊕ N̄1/2 on y.

Claim 4.4.1. There exists f : {0, 1}k → {0, 1} such that both the following claims are true:

1. PrM̄

[
∆D

(
f,Amp(f)⊕ΘM̄

)
≤ δ
]
≥ 2−2·a/2, and

2. EN̄1/2

[
∆D

(
f,Amp(f)⊕ N̄1/2

)]
≥ 1/2− 2−k/C.
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The proof of Claim 4.4.1 is a relatively standard counting argument that is deferred to
the end of this section.

We now refine our probability space as follows. First, we fix F = f as given by Claim
4.4.1. Second, we condition M̄ on the event that D is successful, namely

M ′ := M̄
∣∣∆D

(
f,Amp(f)⊕ΘM̄

)
≤ δ.

From now on we look more locally to the action of D, and specifically we consider the
output of D on input x as the function Dx : {0, 1}q → {0, 1} that maps the output of the
q queries to the output bit (cf. Definition 1.5). It is convenient to introduce the following
shorthands. For x ∈ {0, 1}k we denote by Q(x) ∈ ({0, 1}n)q the vector (y1, . . . , yq) of the q
queries y1, . . . , yq ∈ {0, 1}n made by D on input x. For a function g : {0, 1}n → {0, 1} and
Q(x) = (y1, . . . , yq) ∈ ({0, 1}n)q we write g(Q(x)) ∈ {0, 1}q for the vector of the q evaluations
of g on the q vectors in Q(x). For example, Amp(f)(Q(x)) is the vector of the q evaluations
of Amp(f) on the queries made by D on input x.

Let us now proceed with our proof. We can express the success in computing f from
noise M ′ using the functions Dx and the above notation as follows (where we are just using
the above definition of M ′ and the fixing of f given by Claim 4.4.1):

Pr
M ′,x∈{0,1}k

[
Dx

(
Amp(f)(Q(x))⊕ΘM ′(Q(x))

)
6= f(x)

]
≤ δ. (9)

We now would like to assert that D also computes f well when Amp(f) is perturbed with
ΘM̄ , as opposed to ΘM ′ in Equation (9), where recall ΘM̄ is independent noise at rate
1/2 − ε on the light queries, and is fixed on the heavy queries. In other words, we want to
replace M ′ with M̄ in Equation (9). We argue this by showing that M ′ and M̄ look locally
the same. This is the step of the proof where we make use of the information-theoretic
Lemma 3.2. Specifically, let ` := 2n − h be the number of light y’s in {0, 1}n, and let
(z1, . . . , z`) be an enumeration of such y’s. Now consider the vector of ` random variables

(M̄(z1), . . . , M̄(z`)),

(which is just a vector of uniform and independent random variables in [ε−1]). Now recall
that M ′ is defined as M̄ conditioned on the event A := “∆D

(
f,Amp(f)⊕ΘM̄

)
≤ δ,” and

that Pr[A] ≥ 2−2·a/2 by Item (1) in Claim 4.4.1. Therefore we can apply Lemma 3.2 with

η :=
2−k/C

2
(10)

to conclude that there is a set G ⊆ {0, 1}n of size

|G| ≥ `− 16q · (2a + 1)/η2 (11)

such that for any i1, . . . , iq ∈ G, the vector

(M ′(i1), . . . ,M
′(iq)) is η-close to (M̄(i1), . . . , M̄(iq)), (12)
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where the distance is in statistical difference.
Let us now call x good if D, on input x, only makes queries that are either heavy or in

G.

Definition 4.5. An input x ∈ {0, 1}k is good if all the q queries y1, . . . , yq ∈ {0, 1}n made
by D(x) are either heavy or in the set G.

Since M ′ and M̄ agree on the heavy queries by definition, we have by Equation (12) that
for every good x ∈ {0, 1}k D performs as well with noise ΘM ′ as with noise ΘM̄ . Specifically,
we have the following inequality:∣∣∣Pr

M ′
[Dx(Amp(f)(Q(x))⊕ΘM ′(Q(x))) 6= f(x)]−

Pr
M̄

[
Dx(Amp(f)(Q(x))⊕ΘM̄(Q(x))) 6= f(x)

]∣∣∣∣ ≤ η

(
recall η =

2−k/C

2

)
. (13)

We now observe that most x’s in {0, 1}k are good. We have

Pr
x

[x is not good] = Pr
x

[∃y ∈ {0, 1}n : D(x) queries y and y is both light and not in G]

≤ (`− |G|) max
y light

Pr
x

[D(x) queries y]

≤ 16 · q · (2 · a + 1)

η2
· τ (By Equation (11) and the Definition 4.3 of heavy.)

≤ 16 · 2k/C · 3 · 2k/C

2−2·k/C/4
· 2−k/2

(By our assumption that a, q ≤ 2k/C , and Definitions (10) and (4.3).)

≤ 2−k/C

2
. (For sufficiently large C.) (14)

Note in the above calculation we make crucial use of the fact that the size of G is independent
from our choice of the threshold τ in the definition of heavy queries.

Using the above bound on the probability that x is good we now have

Pr
M̄,x

[
Dx(Amp(f)(Q(x))⊕ΘM̄(Q(x))) 6= f(x)

]
≤ Pr

M̄,x

[
Dx(Amp(f)(Q(x))⊕ΘM̄(Q(x))) 6= f(x)

∧
x is good

]
+ Pr

x
[x is not good]

≤ Pr
M ′,x

[
Dx(Amp(f)(Q(x))⊕ΘM ′(Q(x))) 6= f(x)

∧
x is good

]
+

2−k/C

2
+

2−k/C

2

(By Equations (13) and (14).)

≤ Pr
M ′,x

[Dx(Amp(f)(Q(x))⊕ΘM ′(Q(x))) 6= f(x)] + 2−k/C

≤ δ + 2−k/C (By Equation (9).) (15)
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The desired distribution T : {0, 1}q → {0, 1} on functions in the conclusion of the
theorem is defined as follows. On input z ∈ {0, 1}q, pick a random x ∈ {0, 1}k, and let
Q(x) = (y1, . . . , yq) ∈ ({0, 1}n)q be the vector of the q queries made by D(x). Output
T (z) := 1 if and only if Dx(Amp(f)(Q(x)) ⊕ z̄) 6= f(x) where z̄ is defined as follows: the
i-th bit z̄i equals zi if yi is light, and otherwise is set to ΘM̄(yi). To conclude the proof, we
verify the properties of T claimed in the statement of the theorem:

1. By Item (2) in Claim 4.4.1, PrT,N1
1/2

,...,Nq
1/2

[T (N1
1/2, . . . , N

q
1/2) = 1] ≥ 1/2− 2−k/C ;

2. by Equation (15), PrT,N1
1/2−ε

,...,Nq
1/2−ε

[T (N1
1/2−ε, . . . , N

q
1/2−ε) = 1] ≤ δ + 2−k/C ;

3. by definition of T , each t ∈ T is a projection of a function Dx for some x, or its
complement.

This concludes the proof of the theorem except for the proof of Claim 4.4.1, which is
given next.

Proof of Claim 4.4.1. From Equation (8) and a Markov argument we obtain

Pr
F

[
Pr
M̄

[
∆D

(
F,Amp(F )⊕ΘM̄

)
≤ δ
]
≥ 2−2·a/2

]
≥ 2−2·a/2. (16)

Thus, a random F satisfies Item (1) of the claim with probability at least 2−2·a/2. To
conclude the proof, we show by a counting argument that a random F satisfies Item (2)
of the claim with probability bigger than 1 − 2−2·a/2. This guarantees the existence of a
function f that satisfies both items.

We now proceed with the counting argument. For this, let

β :=
2−k/C

2

and define B to be the set of functions g : {0, 1}k → {0, 1} such that the probability over
N̄1/2 that D differs from g on less than a 1/2 − β fraction of the inputs is at least β. We
intuitively think of B as the set of functions for which, given random noise, unreasonably
often D computes g well on average. Formally:

B :=

{
g : Pr

N̄1/2

[
∆D

(
g,Amp(g)⊕ N̄1/2

)
≤ 1/2− β

]
≥ β

}
.

Note that if f 6∈ B then f satisfies Item (2) by Markov inequality:

EN̄1/2

[
∆D

(
f,Amp(f)⊕ N̄1/2

)]
≥ (1/2− β) · Pr

[
∆D

(
f,Amp(f)⊕ N̄1/2

)
≥ 1/2− β

]
≥ (1/2− β)(1− β) = (1/2− 2−k/C/2)(1− 2−k/C/2) ≥ 1/2− 2−k/C .

Thus, for our goal is enough to show that a random f ∈ F falls in B with low probability
at most 2−2·a/2. This bound is slightly complicated by the fact that D is getting some
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information about g, namely its values on the heavy queries. However, since there are only
few heavy queries, we can tolerate this information as the following standard argument
shows. Consider a uniform random function V : {0, 1}n → {0, 1}. Note that for every g we
have that (Amp(g)⊕ V )(y) is distributed like N̄1/2(y) if y is light, whereas if y is heavy we
have that, with probability 1/2 over V (y), V (y) = (Amp(g)⊕ N̄1/2)(y). Therefore:

B ⊆ B′ :=
{

g : Pr
V

[∆D (g, V ) ≤ 1/2− β] ≥ β/2h
}

.

We now bound the size of B′. Averaging over all g’s in B′ we see that we can fix a value
v = V so that a β/2h fraction of the g’s in B′ will fall in the set

B′′ := {g : ∆D (g, v) ≤ 1/2− β}

(here we are using that V is independent of g). By a standard Chernoff Bound (see, e.g.
[DP, Theorem 1.1]), the probability that a random function F : {0, 1}k → {0, 1} falls in B′′

is at most 2−β2·2k
. This is just the probability that, tossing 2k coins, one gets “heads” more

than 2k(1/2 + β) times, where in our case “heads” means “F (x) = Dv(x).” Consequently,
we can bound

Pr
F

[F ∈ B] ≤ Pr
F

[F ∈ B′] ≤ 2h/β · Pr
F

[F ∈ B′′] ≤ 2h/β · 2−β22k

.

To conclude, we need to verify that

2h/β · 2−β22k ≤ 2−2·a/2 ⇔ 2 · a + 1 + h + log(1/β) ≤ β22k.

Indeed, recalling our assumptions on the parameters q, a ≤ 2k/C , the definition of τ := 2k/2,
the bound on h ≤ q/τ ≤ 2k(1/2+1/C) from Claim 4.1, and the definition of β := 2−k/C

2
, we can

bound

2 · a + 1 + h + log(1/β) ≤ 2 · 2k/C + 1 + 2k(1/2+1/C) + 1 + k/C ≤ 4 · 2k(1−2/C) = β2 · 2k,

for sufficiently large C (recall k ≥ C2). This proves the claim.

5 Proof of Theorem 1.6 from the Zoom Theorem 4.2

In this section we prove Theorem 1.6. We restate the theorem for the reader’s convenience.

Theorem 1.6 (Decoding requires majority). There is a universal constant C > 1 such that
the following holds. Let (Amp,D) be a q-query non-adaptive (1/2− γ) → (1/2− ε) black-
box hardness amplification. Suppose that q, log |D|, 1/γ ≤ 2k/C , and n, k ≥ C2, and that
γ ≥ 1/ log(1/ε).

Then there is a circuit of depth C and size (q/ε)C with oracle access to (at most (q/ε)C

of) the functions {Dx : {0, 1}q → {0, 1}}D∈D,x∈{0,1}k that computes majority on inputs of
length 1/ε.

22



We present the proof as a series of claims that are based on the zoom theorem and lead
to the conclusion of Theorem 1.6. The outline of the sequence of claims is as follows.

1. First, in Claim 5.0.1 we exhibit, for every Hamming weight w, a distribution on (small
constant-depth) circuits that distinguishes balanced strings from strings of Hamming
weight w.

2. Then, in Claim 5.0.2 using standard amplification techniques coupled with Ajtai’s
small constant-depth circuits for approximate majority [Ajt1], we obtain, for every
Hamming weight w, a deterministic circuit that distinguishes balanced inputs from
inputs of weight w.

3. Applying the previous item for every w, we construct in Claim 5.1.1 a deterministic
circuit that distinguishes balanced inputs from inputs of any Hamming weight less than
1/2.

4. Finally, in Claim 5.1.2 we use the circuits from the previous item to compute majority.

We now proceed with the formal proof. Throughout, we speak of circuits with “oracle
access to {Dx}x,D.” What we mean by this is that such a circuit can have oracle gates for
the functions Dx : {0, 1}q → {0, 1} for any x ∈ {0, 1}k, D ∈ D, where of course the number
of such oracle gates is limited by the size of the circuit.

Claim 5.0.1. There is a universal constant c such that for every integer Hamming weight
w < ε−1/2, there is a distribution Sw on functions s : {0, 1}1/ε → {0, 1} such that

1. Each s ∈ Sw, s : {0, 1}1/ε → {0, 1} is computable by a circuit of depth c and size (q/ε)c

with oracle access to {Dx}x,D, and

2. Sw tells balanced strings from strings of Hamming weight w: There are α, β ∈ [0, 1] such
that |α−β| ≥ γ/2 and for every y ∈ {0, 1}1/ε of Hamming weight ε−1/2, Prs∈Sw [s(y) =
1] = α, whereas for every z ∈ {0, 1}1/ε of Hamming weight w, Prs∈Sw [s(z) = 1] = β.

Proof. Note that a δ → (1/2−ε) black-box hardness amplification is trivially also a δ → (w·ε)
black-box hardness amplification whenever w · ε ≤ 1/2− ε. Therefore, we are in the position
to apply the Zoom Theorem 4.2. By the zoom theorem, we can find a distribution Tw on
projections of the functions {Dx}x,D such that∣∣∣Pr[Tw(N1

1/2, . . . , N
q
1/2) = 1]− Pr[Tw(N1

w·ε, . . . , N
q
w·ε) = 1]

∣∣∣ ≥ γ − 2 · 2−k/CZ ≥ γ/2, (?)

where (N1
1/2, . . . , N

q
1/2) is a vector of q independent bits with probability of being 1 equal to

1/2 and (N1
w·ε, . . . , N

q
w·ε) is a vector of q independent bits with probability of being 1 equal to

w · ε. Above, CZ denotes the constant in the statement of the Zoom Theorem, and the last
inequality holds by our assumption that γ ≥ 2−k/C and for a choice of C that is sufficiently
larger than CZ .
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Now consider the following distribution Sw on functions mapping y ∈ {0, 1}1/ε to {0, 1}.
Let Y 1, . . . , Y q be independent random variables each of which is uniformly distributed over
the set of names of input variables {y1, . . . , y1/ε}. Then, Sw is defined as

Sw := Tw(Y 1, . . . , Y q).

In other words, Sw(y) selects q random bits from the input y and applies Tw to them. Item
(2) in the claim follows by (?). This is because for every input y of Hamming weight ε−1/2
the distribution of the evaluations of (Y 1, . . . , Y q) equals the distribution (N1

1/2, . . . , N
q
1/2),

and a similar argument applies to the case of an input z of weight w · ε.
Item (1) follows from the definition of Sw and the fact that Tw is a distribution on pro-

jections of Dx (possibly negated) where we use the straightforward fact that any projection
of Dx is easily implementable by a small constant-depth circuit with oracle access to Dx.

Claim 5.0.2. There is a universal constant c such that for every Hamming weight w < ε−1/2,
there is a deterministic circuit Cw of depth c and size (q/ε)c, with oracle access to {Dx}x,D

such that Cw tells balanced strings from strings of Hamming weight w: For every y ∈ {0, 1}1/ε

of Hamming weight ε−1/2, Cw(y) = 1, whereas for every y ∈ {0, 1}1/ε of Hamming weight
w, Cw(y) = 0.

The proof of the above claim follows by amplifying the success probability of the circuits
Sw given by the previous claim. This amplification is accomplished by the standard method of
taking several independent samples of Sw and then computing a majority of their outputs.
At first glance, taking a majority may seem problematic, since the whole point of this
proof is to turn the decoder into a circuit for majority. The key observation is that the
success probabilities of Sw (on balanced and unbalanced inputs) are sufficiently bounded
away that we can use the remarkable construction by Ajtai of small constant-depth circuits
for approximate majority [Ajt1] (see [ABO, Ajt2, Vio5] for alternative proofs of Ajtai’s
original construction.) It is the approximation in Ajtai’s circuits that forces upon us the
assumption that γ is large compared to ε, i.e. that γ ≥ 1/ log(1/ε).

Lemma 5.1 (Constant-depth circuits for approximate majority; [Ajt1]). There is a constant
c such that for every m, a ≤ m there is a circuit A of depth c and size mc satisfying the
following:

For every input x ∈ {0, 1}m of Hamming weight at least a + a/(100 · log m), A(x) = 1,
while

For every input x ∈ {0, 1}m of Hamming weight at most a− a/(100 · log m), A(x) = 0.

Proof of Claim 5.0.2. Let Sw, α, and β be as in the previous claim. Namely, α := Prs∈Sw [s(y) =
1] and β := Prs∈Sw [s(z) = 1], where y and z are any two strings with Hamming weights
ε−1/2/2 and w respectively. Also from the previous claim, we know that |α− β| ≥ γ/2, and
let us suppose that α < β without loss of generality.

Consider taking m independent copies of Sw, denoted by S1
w, . . . , Sm

w . By a Chernoff
bound (see, e.g. [DP, Theorem 1.1]) for m = poly (γ−1 · ε−1) we have that for every y of
weight ε−1/2 the probability that

∑
i S

i
w(y) ≥ m(α + γ/8) is less than 2−1/ε, and similarly
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for every z of weight w the probability that
∑

i S
i
w(y) ≤ m(β − γ/8) is less than 2−1/ε.

Therefore, by a union bound, we can fix a choice of s1
w = S1

w, . . . , sm
w = Sm

w such that for
every y of weight ε−1/2 we have

∑
i s

i
w(y) ≤ m(α + γ/8), whereas for every z of weight w we

have
∑

i s
i
w(y) ≥ m(β − γ/8).

Definition of the circuit Cw: Let A be the circuit from Lemma 5.1 with input length m,
and a := m(α + β)/2. The circuit Cw runs A on the outputs of the sw’s. Specifically,

Cw := A(s1
w, . . . , sm

w ).

The bounds on the size and depth of the circuit Cw follow easily from those for the sw’s
(in the previous claim) and for A (in Lemma 5.1).

Correctness of Cw: By Lemma 5.1, A distinguishes strings of weight at least a + a/(100 ·
log m) from those of weight at most a − a/(100 · log m). In particular, since a ≤ m, A
distinguishes strings of weight at least a + m/(100 · log m) from those of weight at most
a−m/(100 · log m). Now recall that γ ≥ 1/ log(1/ε) (cf. the statement of Theorem 1.6) and
that m ≥ 1/ε. Thus, γ ≥ 1/ log(m). Consequently, A distinguishes strings of weight at least
a + m · γ/100 from those of weight at most a − m · γ/100. To conclude, we only have to
verify that the precision given by Ajtai’s circuit is fine enough for the parameters given by
the above Chernoff bound. Specifically, we need to verify that

a + m · γ/100 ≤ m · (β − γ/8) and a− a · γ/100 ≥ m · (α + γ/8).

We now verify the first inequality above; the verification of the second is similar. Recalling
that a := m(α + β)/2 and that |α− β| = γ/2, we can verify the first inequality as follows

a + m · γ/100 ≤ m · (β − γ/8) ⇔ α + β

2
+ γ/100 ≤ β − γ/8 ⇔ γ/100 ≤ γ/4− γ/8,

which is true.

Claim 5.1.1. There is a universal constant c and a circuit C∗ : {0, 1}1/ε → {0, 1} of depth
c and size (q/ε)c, with oracle access to {Dx}x,D, that distinguishes balanced strings from
strings of relative weight less than 1/2: For every y ∈ {0, 1}1/ε of Hamming weight ε−1/2,
C∗(y) = 1, whereas for every y ∈ {0, 1}1/ε of Hamming weight w < ε−1/2, C∗(y) = 0.

Proof. For every weight w less than ε−1/2, run in parallel the circuit Cw from the previous
claim. Take the AND of these circuits. In other words,

C∗ := AND(C1, C2, . . . , Cε−1/2−1).

The bounds on the depth and size of C∗ are straightforward, so let us proceed with the
analysis of correctness. If y is balanced then all the circuits C1, . . . , Cε−1/2−1 evaluate to 1
and hence their AND C∗ also evaluates to 1. If y has weight w < ε−1/2 then Cw(y) = 0, and
hence C∗(y) = 0.
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Claim 5.1.2. There is a universal constant c and a circuit C : {0, 1}1/ε → {0, 1} of depth c
and size (q/ε)c, with oracle access to {Dx}x,D, that computes majority on 1/ε bits.

Proof. Given an input y ∈ {0, 1}1/ε we compute associated inputs y1, . . . , y1/ε, where yi is
obtained from y by setting the first i bits to 0. Thus, y0 = y and y1/ε = 01/ε. We then run
copies of the circuit C∗ from Claim 5.1.1 in parallel on each of the yi’s and we output their
OR. Namely,

C(y) := OR
(
C∗(y

0), C∗(y
1), . . . , C∗(y

1/ε)
)
.

Again, the bounds on the depth and size of C are straightforward, so let us proceed with the
analysis of correctness. If y has weight less than ε−1/2 then all the inputs y0, . . . , y1/ε also
have weight less than ε−1/2; thus the circuits C∗(y

0), C∗(y
1), . . . , C∗(y

1/ε all output 0 and so
does C(y).

Conversely, if y has weight at least ε−1/2, then for some i the input yi has weight exactly
ε−1/2, and thus C(y) = C∗(y

i) = 1.

Why this proof cannot be easily simplified. One may wonder whether the proof in
this section can be simplified. In particular, one may wonder whether it is really necessary
to argue separately for each Hamming weight w, by invoking Claim 5.0.1 several times. A
natural attempt to simplification would be to try to fix a particular Hamming weight w, then
directly use circuits that distinguish balanced inputs from inputs of weight w to compute
majority. In fact this cannot be done: The ability to distinguish two Hamming weights is
not enough to compute majority. As a simple example of this phenomenon, observe that the
parity function distinguishes inputs of Hamming weight w from inputs of Hamming weight
w+2·a+1, for every w, a, but it is known that small constant-depth circuits with parity gates
cannot compute majority. In conclusion, it is only the availability for every w of circuits
that distinguish balanced inputs from inputs of weight w that lets us compute majority.

Finally, we remark that in Theorem 1.6 the assumption γ ≥ log(1/ε) can be replaced by
γ ≥ logi(1/ε), where the depth of the circuit in the conclusion of the theorem depends on i.

6 Proof of queries lower bound (Theorem 1.4)

In this section we prove our queries lower bound (Theorem 1.4). We restate the theorem for
the reader’s convenience.

Theorem 1.4 (Decoding requires many queries). There is a universal constant C > 1 such
that the following holds. Let (Amp,D) be a non-adaptive q-query δ → (1/2− ε) black-box
hardness amplification. Suppose that log |D| ≤ 2k/C , and n, k ≥ C2, and that both δ and ε
are between 2−k/C and 1/3.

Then

q ≥ 1

C
· log(1/δ)

ε2
.
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The proof of the queries lower bound (Theorem 1.4) follows from the Zoom Theorem 4.2
and the next lemma.6

In this section we write N q
1/2−ε for a vector of q independent 0−1 random variables

whose probability of being 1 is 1/2− ε.

Lemma 6.1. Let T be a distribution on functions t : {0, 1}q → {0, 1} such that

1. PrT,Nq
1/2−ε

[
T (N q

1/2−ε) = 1
]
≤ p ≤ 0.4, and

2. PrT,Nq
1/2

[
T (N q

1/2) = 1
]
≥ 0.49.

Then q ≥ Ω(log(1/p)/ε2).

In the next section we prove Lemma 6.1, thus completing the proof of Theorem 1.4. We
remark that statements similar to Lemma 6.1 have appeared often in the literature, however
we are unaware of a simple self-contained proof. Our proof is inspired by an argument of
[CEG] that shows a lower bound on the query complexity of “sampling procedures” [Gol1].
While it does not seem that one can reduce our

setup to that of “sampling procedures” the approach of [CEG] can be applied in our
setup and gives the lower bound.

6.1 Proof of Lemma 6.1

The family T that we are given distinguishes N q
1/2 from N q

1/2−ε in the sense that it answers

“one” with probability at most p ≤ 0.4 on N q
1/2−ε, whereas it answers “one” with probability

at least 0.49 on N q
1/2. We would like to replace 0.49 with a constant that is larger than 1/2

(say 0.99). This can be achieved by “amplification.” More specifically, we can increase q to
c · q (for some universal constant c > 1), take c independent copies of T that are run on c
independent copies of the input (these copies are identically distributed and could come from
either N q

1/2−ε or N q
1/2), and combine the outputs appropriately. Performing this amplification

gives the following claim.

Claim 6.1.1. There is a universal constant c and a distribution T ′ on functions t : {0, 1}q′ →
{0, 1}, where q′ := c · q, such that

1. Pr
T ′,Nq′

1/2−ε

[
T ′(N q′

1/2−ε) = 1
]
≤ p/4, and

2. Pr
T ′,Nq′

1/2

[
T ′(N q′

1/2) = 1
]
≥ 0.99.

6We note that the Zoom Theorem can only be applied when q ≤ 2k/C , whereas the hypothesis of Theorem
1.4 does not place any restriction on q. This is not a problem because by choosing the constant C in Theorem
1.4 sufficiently larger than the constant C in the Zoom Theorem one has that if q does not satisfy the
conclusion of Theorem 1.4 then one is indeed in the position to apply the Zoom Theorem.
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Proof. Let d be a large constant to be determined later, and set b := log1/0.4 d + 3. The
constant c in the statement of the claim is defined as c := b · d. We think of the input as c
blocks of q bits. The distribution on functions T ′ is defined as follows. We take c independent
copies of T , and we evaluate each on the corresponding input block. This results in an output
vector of length c. We divide up this vector into d blocks of b bits each. We take the AND in
each block of b bits, then we complement the result and we take the AND over the d blocks.
Finally, for consistency in the notation we complement the result again.

Analysis. We have

Pr
T ′,Nq′

1/2−ε

[
T ′(N q′

1/2−ε) = 0
]
≥
(
1− pb

)d ≥ 1− d · pb = 1− d · pb−3 · p3

≥ 1− d · (0.4)b−3 · p · (0.4)2 = 1− p · (0.16) ≥ 1− p/4,

where we used that p ≤ 0.4 and b := log1/0.4 d + 3.

Also, for an integer K and d := (1/0.4)K (and hence b = K + 3), which we can set
without spoiling the above derivation, we have:

Pr
T ′,Nq′

1/2

[
T ′(N q′

1/2) = 0
]
≤
(
1− (0.49)b

)d
=

(
1− (0.49)K+3

)(1/0.4)K

< exp

(
−
(

0.49

0.4

)K

· (0.49)3

)
< 0.01,

for sufficiently large K.

Claim 6.1.2. There is a fixed function t : {0, 1}q′ → {0, 1} such that

1. Pr
Nq′

1/2−ε

[
t
(
N q′

1/2−ε

)
= 1
]
≤ p, and

2. Pr
Nq′

1/2

[
t
(
N q′

1/2

)
= 1
]
≥ 1/2 + 1/4.

Proof. We show by Markov arguments that a random t ∈ T ′ satisfies both items in the
conclusion of the lemma with positive probability.

First, by a Markov argument, the first item in the conclusion of the previous claim implies
that

Pr
T ′

[
Pr

Nq′
1/2−ε

[
T ′(N q′

1/2−ε) = 1
]
≥ p

]
≤ 1/4.

Second, another Markov argument shows that the second item in the conclusion of the
previous claim implies that

Pr
T ′

[
Pr

Nq′
1/2

[
T ′(N q′

1/2) = 0
]
≥ 1/4

]
≤ 4/100.

By a union bound, since 1/4 + 4/100 < 1, there is a t that satisfies the conclusion of the
claim.
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Claim 6.1.3. There is a set S ⊆ {0, 1}q′ of relative size 1/4 such that every string s ∈ S
satisfies: (1) t(s) = 1 and (2) the Hamming weight of s is at most q′/2.

Proof. From the previous claim we know that t evaluates to 1 on a 1/2 + 1/4 fraction of the
inputs in {0, 1}q′ . On the other hand, the strings with weight bigger than q′/2 have measure
exactly 1/2. Therefore such a set S exists.

We will conclude the proof by observing that N q′

1/2−ε falls in S with probability at least

exp (−O (ε2 · q′)), then recalling that on the other hand this probability must be at most p
by the first item in the conclusion of the previous claim. Details follow. First, note that

Pr
Nq′

1/2−ε

[
N q′

1/2−ε ∈ S
]

=
∑
s∈S

Pr
Nq′

1/2−ε

[
N q′

1/2−ε = s
]
≥ |S| · (1/2− ε)q′/2(1/2 + ε)q′/2

= |S| · 2−q′(1− 2ε)q′/2(1 + 2ε)q′/2 = (1/4)(1− 4ε2)q′/2 ≥ (1/4) · exp
(
−8 · ε2 · q′/2

)
. (?)

Above, we used that S has relative size 1/4, and that Pr
Nq′

1/2−ε

[
N q′

1/2−ε = s
]
≥ (1/2 −

ε)q′/2(1/2 + ε)q′/2 for every s ∈ S because strings in s have weight at most q′/2. Finally, the
last inequality holds whenever ε < 1/3.

The above (?) implies that Pr
Nq′

1/2−ε

[
t
(
N q′

1/2−ε

)
= 1
]
≥ (1/4) exp (−4 · ε2 · q′). On the

other hand, this probability must be at most p by the previous claim. Consequently,

(1/4) exp
(
−4 · ε2 · q′

)
≤ p.

Since q′ = c · q, this means that q = Ω (log(1/p)/ε2), concluding the proof of the lemma.

7 Case studies and significance of our results

In this section we give background on a few widely-studied circuit classes and we discuss
what our results have to say about them.

Constant-depth circuits AC 0: The class of constant-depth circuits with And, Not, and
Or gates is one of the central classes studied in circuit complexity. Lower bounds are known
for this class, and even strong average-case lower bounds. In particular, the celebrated result
in [H̊as] (cf. [FSS, Yao2]) shows that the parity function on n bits is (1/2 − 1/s)-hard for
AC 0 circuits of depth d and size s, where

s := exp
(
nΘ(1/d)

)
.

This result has a number of consequences, and in particular it was used to construct pseu-
dorandom generators that fool constant-depth circuits [Nis].

One can ask for stronger lower bounds, for example for lower bounds for size

s′ := exp (Θ(n)) .
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Such lower bounds are not known even for depth-3 circuits. It is natural to wonder whether
one can use hardness amplification techniques to relate average-case lower bounds for size
s′ to worst-case lower bounds for circuits of size s′. This kind of connection does hold for
circuits of unrestricted depth (e.g., [IW1, STV]) but fails when we restrict the depth of the
circuit. For more on this issue we refer the reader to the excellent discussion by Agrawal
[Agr].

Our results explain the above failure of hardness amplification techniques: Proving such
a connection using standard hardness amplification techniques would require the circuits to
compute majority, and in particular their depth to be large (see Theorems 1.6 and 1.3).

Constant-depth circuits with parity gates AC 0[2]: If we augment AC circuits with
parity gates we obtain the class of constant-depth circuits with And, Not, Or, and Parity
gates, denoted AC 0[2]. A long-standing open problem about this class is whether there is
an explicit function f : {0, 1}n → {0, 1} that is

(
1/2− 1/nω(1)

)
-hard for polynomial-size

constant-depth circuits with Parity gates,7 i.e. such that for any depth-d polynomial-size
AC 0[2] circuit C:

Pr
x∈{0,1}n

[C(x) 6= f(x)] ≥ 1/2− 1/nω(1).

This problem is perhaps most puzzling because we do know of explicit functions that are
Ω(1)-hard for depth-d AC 0[2] circuits of size 2nΩ(1/d)

. An example is the Mod 3 function,
i.e. counting the number of 1’s mod 3 in a given n-bit input (see [Raz, Smo] and the survey by
Beigel [Bei1, Corollary 22]). Even for this class, standard hardness amplification techniques
fail, and in particular we cannot amplify the hardness of the mod 3 function.

Our results again explain the above failure of hardness amplification techniques: Just like
before, proving such a connection using standard hardness amplification techniques would
require the circuits to compute majority, whereas AC 0[2] circuits cannot [Raz, Smo].

Similar consideration hold for classes with mod p gates for p prime (cf. [Smo]); we focus
on p = 2 for simplicity.

Constant-depth circuits with one Majority gate MAJ ◦ AC 0: Another puzzling case
is that of constant-depth circuits with one majority gate (MAJ ◦ AC 0 circuits), a class
which in particular contains the widely studied perceptrons. It is known that the n-bits
Parity function is Ω(1)-hard for MAJ ◦ AC 0 circuits of depth d and size 2nΩ(1/d)

[ABFR]
(see also [Kli, Theorem 6]). However, it is not known whether there is an explicit function

f : {0, 1}n → {0, 1} that is
(
1/2− 1/2nΩ(1)

)
-hard for MAJ ◦ AC 0 circuits of size 2nΩ(1)

, or

even
(
1/2− 1/nω(log n)

)
-hard for MAJ ◦ AC 0 circuits of size nω(log n) (think of a fixed large

depth). To the best of our knowledge, the strongest result in this direction is the one in [Vio6]

7For context, this problem is also open if C varies over GF(2) polynomials of degree 2 log(n). This is
a slightly different setting because these polynomials in general correspond to circuits of size nΩ(log n). On
the other hand, if the degree is ε log(n) then an explicit

(
1/2− 1/nω(1)

)
-hard function is known [BNS, HG,

Vio4, VW].
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that in particular gives a function that is
(
1/2− 1/nε·log n

)
-hard for MAJ ◦ AC 0 circuits of

size nε·log n.
Even though this class can compute majority, our query lower bound (Theorem 1.4)

explains why we cannot amplify hardness against MAJ ◦ AC 0 circuits. Specifically, it is
easy to see that if the circuits D in the black-box hardness amplification make q query,
then to obtain a function that is (1/2 − ε)-hard for circuits with 1 majority gate we must
start from a function that is δ-hard for circuits with q majority gates. Since q ≥ 1/ε by
our Theorem 1.4, we obtain that when ε ≤ 1/n we must start from a function that is hard
for constant-depth circuits with n majority gates, i.e. TC 0. (Our current lower bounding
techniques [Bei2] let us handle circuits with poly log majority gates, and this in turn lets us
amplify hardness up to 1/2− 1/poly log.)

A final remark about this class is in order. For the specific hardness amplification given
by Yao’s XOR lemma (cf. Section 1.1) one can prove the stronger result that this lemma
simply is false for MAJ ◦ AC 0 circuits (for context, we mention that whether this lemma
holds for other classes such as AC 0[2] and AC 0 is a major open problem). This failure
was pointed out to us by Adam Klivans (personal communication, 2002) and holds because
applying Yao’s XOR lemma to the parity function results again in the parity function, which
is provably not strongly average-case hard for MAJ ◦ AC 0 circuits. Our results apply more
generally to arbitrary hardness amplifications. Moreover, they also apply when the single
majority gate is replaced by a more powerful gate that can compute an arbitrary symmetric
function (including parity) cf. [HG, RW, HM, Vio6].

Finally, we mention that an important motivation for obtaining strong average-case hard-
ness results for these classes is that such results can be used to construct pseudorandom
generators that fool the same classes, cf. [Nis, LVW, NW, Vio6].

8 Relationship to error-correcting codes

It has been observed (e.g. [STV, Tre1] that black-box hardness amplification is closely re-
lated to list-decodable error correcting codes. In particular, our lower bounds on black-
box hardness amplification can be seen as lower bounds on the “complexity of decoding”
(list-decodable) locally-decodable codes. The purpose of this section is to explain these
connections at a high-level and we will not state precise theorems.

We start with the following definition of list-decodable codes.

Definition 8.1 (List-decodable codes). A map Amp : {0, 1}K → {0, 1}N is a (ρ, `)-list
decodable code if for every h ∈ {0, 1}N , |

{
f ∈ {0, 1}K : ∆(Amp(f), h) ≤ ρ

}
| ≤ `. (Here ∆

is the relative Hamming distance.) A code is uniquely decodable with radius ρ if it is (ρ, 1)-list
decodable.

Let (Amp,D) be a (δ = 2−k) → (1/2 − ε) black box hardness amplification, then the
map Amp is a (1/2− ε, |D|)-list decodable code. (Here we think of Amp as a mapping that
receives and outputs truth tables. That is we set K = 2k and N = 2n.)
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Our lower bounds immediately translate into lower bounds on the complexity of de-
coders of list-decodable locally decodable codes. Let us start with uniquely decodable locally
decodable codes.

Definition 8.2 (Locally decodable codes). A mapping Amp : {0, 1}K → {0, 1}N is a locally
decodable code with radius ρ that makes q queries and has error probability δ if Amp is a
uniquely decodable code with radius ρ and there exists a randomized oracle procedure D such
that for every f : {0, 1}k → {0, 1} and h : {0, 1}n → {0, 1} such that ∆(Amp(f), h) ≤ ρ and
every x ∈ {0, 1}k,

Pr[Dh(x) 6= f(x)] < δ (17)

(where the probability is over the coin tosses of D).

Let us write D = D(x, r) where x is the input of D and r is the coin tosses of D. We define:

D = {D′(x) : ∃r s.t. D′(x) = D(x, r)}

Note that |D| is bounded by the number of possible coin tosses of D. We now claim that
the pair (Amp,D) is a δ → ρ black box hardness amplification. This follows because by an
averaging argument for every h : {0, 1}n → {0, 1} such that ∆(Amp(f), h) ≤ ρ there exists
a fixed string r0 for which

Pr
x∈{0,1}k

[Dh(x, r0) 6= f(x)] < δ

Furthermore, the function D′(x) = D(x, r0) indeed appears in D.
Thus, our lower bounds on the complexity of black-box hardness amplification imme-

diately translate into lower bounds on the complexity of the decoding algorithm D. More
specifically, we show that D can be used to compute majority and that it needs to make
many queries.8

We now explain that the same lower bounds apply to a very general notion of list-
decodable locally decodable codes. Note that the argument above would work if instead of
having one randomized oracle procedure we allowed the decoding procedure to be chosen
from a “list” of many randomized oracle procedures {Dα}, and only required that for any
f and h there exists procedure D in the list is guaranteed to fulfill equation (17). (We only
need to take the size of the list into account when measuring the size of D.) We remark that
the argument applies even when different procedures in the list are allowed to use different
query distributions. Finally, our lower bounds apply even if the notion of decoding is relaxed
and instead of equation (17) the “correct procedure” D is only guaranteed to decode in a
weak sense, namely:

Pr
x∈{0,1}k

[Pr[Dh(x) 6= f(x)] < δ/2] > 1− δ/2

8It is important to note that black-box hardness amplifications become uninteresting when δ > 1/2 − ε
(and indeed our results only apply when δ < 1/2 − ε). In contrast, locally decodable codes are interesting
even when δ > ρ = 1/2− ε. However, in this case the transformation above is transforming the code into an
uninteresting black-box hardness amplification.
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This is because the argument above still gives that there exists a fixing r0 of the random
coins of D for which it decodes correctly on a (1− δ)-fraction of inputs x ∈ {0, 1}k.

9 Open problems

One weakness of our result is that we can only handle black-box hardness amplification
which use nonadaptive circuits. While to the best of our knowledge most known black-box
hardness amplification results use nonadaptive circuits, it is an interesting open problem to
extend the results in this work to the case of adaptive circuits. We remark that, for some
specific functions Amp, the techniques in this work already give some results on adaptive
circuits when the amount of non-uniformity |D| of the black-box hardness amplification is
small (e.g., |D| = poly(1/ε)). In particular, one can show that achieving the parameters of
the hardness amplification in [GL] (based on the Hadamard code) or the parameters of the
hardness amplification in [STV] (based on Reed-Muller codes), requires computing majority.
The details of these results appear in [Vio3, Chapter 6].

Another problem that deserves more investigation is whether something similar to our
results can be said about pseudorandom generator constructions. For example, is computing
majority necessary for a black-box construction of a pseudorandom generator with constant
error from a (1/3)-hard function?
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