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Abstract

We prove that the sum of d small-bias generators L : Fs → Fn fools degree-d
polynomials in n variables over a prime field F, for any fixed degree d and field F,
including F = F2 = {0, 1}. Our result builds on, simplifies, and improves on both the
work by Bogdanov and Viola (FOCS ’07) and the beautiful follow-up by Lovett (STOC
’08). The first relies on a conjecture that turned out to be true only for some degrees
and fields, while the latter considers the sum of 2d small-bias generators (as opposed
to d in our result).

1 Introduction

A pseudorandom generator G : Fs → Fn for polynomials of degree d over a prime field F is
an efficient procedure that stretches s field elements into n � s field elements that fool any
polynomial of degree d in n variables over F: For every such polynomial p, the statistical
distance between p(U), for uniform U ∈ Fn, and p(G(S)), for uniform S ∈ Fs, is at most a
small ε.

The fundamental case of linear, i.e. degree-1, polynomials is first studied by Naor and
Naor [NN] who give a generator with seed length s = O(log|F| n) (for error ε = 1/n), which
is optimal up to constant factors (cf. [AGHP]).1 This generator is known as small-bias
generator, and is one of the most celebrated results in pseudorandomness, with a myriad of
applications (see, e.g., the references in [BV]).

The case of higher degree is first addressed by Luby, Veličković, and Wigderson [LVW],
and a decade later by Bogdanov [Bog]. However, the generators in [LVW, Bog] have poor
seed length or only work over very large fields.

Recently, Bogdanov and the author [BV] introduce a new approach to attack this problem
over small fields, which we now describe. The work considers the generator Gk : Fs → Fn
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that is obtained by summing k copies of a small-bias generator L : Fs′ → Fn by Naor and
Naor [NN], which fools linear (i.e., degree-1) polynomials:

Gk(s1, . . . , sk) := L(s1) + · · ·+ L(sk),

where the sum is element-wise. [BV] shows that such a generator can be analyzed using the
so-called Gowers norms. It unconditionally shows that Gd fools polynomials of degree d for
d ≤ 3. For larger d > 3, the work proves a conditional result. Specifically, it introduces
a special case of a conjecture known as the Gowers inverse conjecture [GT1, Sam]. This
special case is called the “d vs. d− 1 Gowers inverse conjecture” and we subsequently refer
to it as “d-GIC.” Under d-GIC, [BV] shows that Gd fools polynomials of degree d for every
d. Moreover, a counting argument shows that Gd achieves the optimal dependence of the
seed length s on the number of variables n, up to additive terms. (In particular, Gd−1 does
not fool polynomials of degree d.)

Subsequently, Lovett [Lov] unconditionally shows that G2d fools polynomials of degree d,
for every d. Lovett’s proof does not use the theory of Gowers norms, but it applies to the
sum of an exponential number 2d of small-bias generators, as opposed to d in [BV].

Very recently, Green and Tao [GT2] prove that d-GIC is true when the field size |F| is
bigger than the degree d of the polynomial. Thus, in this case, the approach in [BV] works
and in particular one has that Gd fools polynomials of degree d. On the negative side, Green
and Tao [GT2], and independently Lovett, Meshulam, and Samorodnitsky [LMS], show that
d-GIC is false when the field size is much smaller than the degree of the polynomial (which
in particular falsifies the more general Gowers inverse conjecture [GT1, Sam]). This falsity
prevents the analysis in [BV] to go through for small fields, notably over F2 = {0, 1}. Still,
it was left open to understand whether, regardless of the Gowers inverse conjecture, the
generator Gd in [BV] fools polynomials of degree d over small fields such as F2. In this work
we answer this question in the affirmative.

1.1 Our results

In this section we state our results. We state them over F2 = {0, 1} for simplicity, though
they hold over any prime field (the necessary details appear in [BV]). Also, we state them
for distributions rather than generators; the translation into the language of generators is
immediate. Let us start by formalizing the standard notion of fooling.

Definition 1 (Fool). We say that a distribution W on {0, 1}n ε-fools degree-d polynomials
in n variables over F2 if for every such polynomial p we have:

|EW e [p(W )]− EU e [p(U)]| ≤ ε,

where U is the uniform distribution over {0, 1}n and e[x] := (−1)x.

The requirement in Definition 1 informally means that degree-d polynomials have advan-
tage at most ε in distinguishing a pseudorandom input W from a truly random input U .
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This requirement can be equivalently expressed in terms of statistical distance (cf. [BV]),
but the above formulation is more convenient for our purposes.

The following is our main theorem.

Theorem 2 (The sum of d small-bias generators fools degree-d polynomials). Let Y1, . . . , Yd ∈
{0, 1}n be d independent distributions that ε-fool degree-1 polynomials in n variables over
F2 = {0, 1}. Then the distribution W := Y1 + · · · + Yd εd-fools degree-d polynomials in n
variables over F2 where

εd := 16 · ε1/2d−1

.

Standard constructions of small-bias generators [NN, AGHP] has seed length O(log n/ε).
Plugging these in Theorem 2 gives an explicit generator Fs

2 → Fn
2 whose output distribution

(over random input) ε-fools degree-d polynomials with seed length s = O(d · log n + d · 2d ·
log(1/ε)). Folklore constructions of small-bias generators have the more refined seed length
log n+O(log(1/ε)). Plugging these in Theorem 2 gives a generator whose output distribution
ε-fools degree-d polynomials with seed length s = d · log n + O(d · 2d · log(1/ε)), which for
fixed d and ε is optimal in n up to an additive constant [BV].

Although Theorem 2 improves on previous work [BV, Lov], it still gives nothing for
degree d = log2 n. Whether this barrier can be broken is an interesting open problem that is
reminiscent of the analogous open problem in the literature on correlation bounds (cf. [VW]).

2 Proof of Theorem 2

The proof of Theorem 2 builds on and somewhat simplifies [BV, Lov]. Following [BV, Lov],
the proofs goes by induction on d. However, it differs in the inductive step. The inductive
step in [BV] is a case analysis based on the Gowers norm of the polynomial p to be fooled,
while the one in [Lov] is a case analysis based on the Fourier coefficients of p. The inductive
step in this work is in hindsight natural: It is a case analysis based on the bias of p, which
is the quantity

EU∈{0,1}n e [p(U)] ∈ [−1, 1].

The next Lemma 3 deals with polynomials whose bias is close to 0, whereas Lemma 4
deals with polynomials whose bias is far from 0. The analysis in the case of bias close to
0 (Lemma 3) is the main contribution of this work and departure from [BV, Lov]. The
simplification of the inductive step, mentioned above, is less crucial in the sense that one
could plug Lemma 3 in the analysis in [Lov] to obtain Theorem 2 with a slightly worse error
bound.

Lemma 3 (Fooling polynomials with bias close to 0). Let W ∈ {0, 1}n be a distribution
that εd-fools degree-d polynomials, and let Y ∈ {0, 1}n be a distribution that ε1-fools degree-1
polynomials. Let p be a polynomial of degree d + 1 in n variables over F2. Then

|EW,Y e [p(W + Y )]− EU e [p(U)]| ≤ 2 · |EU e [p(U)] |+ ε1 +
√

εd.
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Proof of Lemma 3. We start by an application of the Cauchy-Schwarz inequality which gives

EW,Y e [p(W + Y )]2 ≤ EW

[
EY e [p(W + Y )]2

]
= EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] , (1)

where Y ′ is independent from and identically distributed to Y . Now we observe that for
every fixed Y and Y ’, the polynomial p(U + Y ) + p(U + Y ′) has degree d in U , though p has
degree d + 1. Since W εd-fools degree-d polynomials, we can replace W with the uniform
distribution U ∈ {0, 1}n:

EW,Y,Y ′ e [p(W + Y ) + p(W + Y ′)] ≤ EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] + εd. (2)

At this point, a standard argument shows that

EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)] ≤ EU,U ′ e [p(U) + p(U ′)] + ε2
1 = EU e [p(U)]2 + ε2

1. (3)

Therefore, chaining Equations (1), (2), and (3), we have that

|EW,Y e [p(W + Y )]− EU e [p(U)]| ≤ |EW,Y e [p(W + Y )]|+ |EU e [p(U)] | ≤√
EU e [p(U)]2 + ε2

1 + εd + |EU e [p(U)] | ≤ 2 · |EU e [p(U)] |+ ε1 +
√

εd,

which concludes the proof of the lemma.

For completeness, we include a derivation of Equation (3) next. This equation makes no
assumption on p and can be thought of as a form of the so-called expander mixing lemma.
The derivation we present uses the Fourier expansion of p: e(p(x)) =

∑
α∈{0,1}n p̂α · χα(x),

where χα(x) := e(
∑

i αi · xi) is the inner product between α and x. We have:

EU,Y,Y ′ e [p(U + Y ) + p(U + Y ′)]

= EU,Y,Y ′

 ∑
α∈{0,1}n

p̂α · χα(U + Y )

  ∑
β∈{0,1}n

p̂β · χβ(U + Y ′)


= EU,Y,Y ′

[∑
α,β

p̂α · p̂β · χα+β(U) · χα(Y ) · χβ(Y ′)

]
Here we use standard manipulations, e.g. χα(U + Y ) = χα(U) · χα(Y ).

= EY,Y ′

[ ∑
γ=α=β

p̂2
γ · χγ(Y ) · χγ(Y

′)

]
Because EU e [χα+β(U)] equals 0 when α 6= β, and 1 otherwise.

= EU e [p(U)]2 +
∑
γ 6=0

p̂2
γ · (EY [χγ(Y )])2

Because p̂0 = EU e [p(U)], and χ0(Y ) ≡ 1.

≤ EU e [p(U)]2 + ε2
1 ·

∑
γ 6=0

p̂2
γ

Because Y ε1-fools degree-1 polynomials such as
∑

i γi · Yi.

≤ EU e [p(U)]2 + ε2
1.

Because
∑

γ 6=0 p̂2
γ ≤

∑
γ p̂2

γ = 1 by Parseval’s identity.
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We now move to the case of bias far from 0. This case was solved both in [BV] and more
compactly in [Lov]. We present a stripped-down version of the solution in [Lov] which is
sufficient for our purposes and achieves slightly better parameters.

Lemma 4 (Fooling polynomials with bias far from 0). Let W be a distribution that εd-fools
degree-d polynomials. Let p be a polynomial of degree d + 1. Then

|EW e [p(W )]− EU e [p(U)]| ≤ εd

|EU e [p(U)]|
.

Proof of Lemma 4. We have the following derivation

|EW e [p(W )]− EU e [p(U)]| · |EU e [p(U)]|
= |EW,U ′ e [p(W ) + p(U ′)]− EU,U ′ e [p(U) + p(U ′)]|
= |EW,U ′ e [p(W ) + p(W + U ′)]− EU,U ′ e [p(U) + p(U + U ′)] |

Because U ′ is uniformly distributed over {0, 1}n.

≤ EU ′ |EW e [p(W ) + p(W + U ′)]− EU e [p(U) + p(U + U ′)] | ≤ εd,

where in the last inequality we use that for every fixed U ′ the polynomial p(x) + p(x + U ′)
has degree d in x, though p has degree d + 1, and that W εd-fools degree-d polynomials.

To conclude, we work out the parameters for the proof of Theorem 2.

Proof of Theorem 2. Let εd be the error for polynomials of degree d, i.e. the maximum over
polynomials p of degree d of the quantity

|EW e [p(W )]− EU e [p(U)]|.

We claim that for every d > 0 we have

εd+1 ≤ 4 ·
√

εd. (?)

Indeed, let p be an arbitrary polynomial of degree d + 1. If |EU e [p(U)]| ≤ √
εd we have by

Lemma 3 that

|EW e [p(W )]− EU e [p(U)]| ≤ 2 ·
√

εd + ε +
√

εd ≤ 4 ·
√

εd,

which confirms (?) in this case. Otherwise, if |EU e [p(U)]| ≥ √
εd we have by Lemma 4 that

|EW e [p(W )]− EU e [p(U)]| ≤ εd√
εd

=
√

εd ≤ 4 ·
√

εd,

which again confirms (?) in this case.
Finally, from (?) it follows that

εd ≤ 4
∑d−2

i=0 2−i · ε1/2d−1 ≤ 16 · ε1/2d−1

for every d, and thus the theorem is proved.
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