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ABSTRACT
We revisit the problem of hardness amplification in NP,
as recently studied by O’Donnell (STOC ‘02). We prove
that if NP has a balanced function f such that any circuit
of size s(n) fails to compute f on a 1/poly(n) fraction of
inputs, then NP has a function f ′ such that any circuit of
size s′(n) = s(

√
n)Ω(1) fails to compute f ′ on a 1/2−1/s′(n)

fraction of inputs. In particular,

1. If s(n) = nω(1), we amplify to hardness 1/2− 1/nω(1).

2. If s(n) = 2n
Ω(1)

, we amplify to hardness 1/2−1/2nΩ(1) .
3. If s(n) = 2Ω(n), we amplify to hardness 1/2−1/2Ω(

√
n).

These improve the results of O’Donnell, which only am-
plified to 1/2 − 1/

√
n. O’Donnell also proved that no con-

struction of a certain general form could amplify beyond
1/2− 1/n. We bypass this barrier by using both derandom-
ization and nondeterminism in the construction of f ′.
We also prove impossibility results demonstrating that

both our use of nondeterminism and the hypothesis that
f is balanced are necessary for “black-box” hardness ampli-
fication procedures (such as ours).
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1. INTRODUCTION
Average-case complexity is a fundamental topic in com-

plexity theory, whose study has at least two distinct motiva-
tions. On one hand, it may provide more meaningful expla-
nations than worst-case complexity about the intractability
of problem instances actually encountered in practice. On
the other hand, it provides us with methods to generate
hard instances, allowing us to harness intractability for use-
ful ends such as cryptography and derandomization.
One of the goals of this area is to establish connections

between average-case complexity and worst-case complexity,
since the latter is much better-understood. While this has
been accomplished for high complexity classes such #P and
EXP (e.g. [17, 3, 2, 7, 6, 23, 25, 26]), it remains a major
open question forNP. In fact, there are results showing that
such connections for NP are unlikely to be provable using
the same kinds of techniques used for the high complexity
classes [8, 26, 5].
A more modest goal is “hardness amplification”, where we

seek to establish connections between “mild” average-case
complexity and “strong” average-case complexity. That is,
given a problem for which a nonnegligible fraction of inputs
are “hard”, can we obtain a problem for which almost all
inputs are hard? To make this precise, let’s define “hard”.

Definition 1.1. For α ∈ [0, 1/2], a function f : {0, 1}n →
{0, 1} is α-hard for size s if every circuit of size s fails to
compute f on at least an α fraction of inputs.

Note that the maximum value of the hardness parameter
α is 1/2 because f is boolean (so can trivially be computed
with error probability at most 1/2.)
The hardness amplification problem is to convert a func-

tion f that is δ-hard for size s to a function f ′ that is
(1/2− ε)-hard for size polynomially related to s. Typically,
δ = 1/ poly(n) and the aim is to make ε = ε(n) vanish as
quickly as possible.

The standard approach to hardness amplification employs
Yao’s XOR Lemma [10]: Given a mildly hard-on-average
function f : {0, 1}n → {0, 1}, we define

f ′(x1, . . . , xk)
def
= f(x1)⊕ f(x2)⊕ · · · ⊕ f(xk)

for some k = poly(n). The XOR Lemma says that the
hardness of f ′ approaches 1/2 exponentially fast with k.
More precisely:

Yao’s XOR Lemma. If f is δ-hard for size s, then f ′ is
(1/2− 1/2Ω(δk) − 1/s′)-hard for size s′ = sΩ(1).



In particular, taking k to be a sufficiently large polynomial
in n, the amplified hardness is dominated by the 1/s′ term.
That is, we can amplify to (1/2−ε), where ε is polynomially
related to the circuit size for which f was hard.

However, if we are interested in hardness amplification
within NP, we cannot use the XOR lemma; it does not
ensure that f ′ is in NP when f is in NP. Hardness ampli-
fication within NP was first addressed in a recent paper of
O’Donnell [22], which is the starting point for our work.

1.1 O’Donnell’s Hardness Amplification
To ensure that the new function f ′ is in NP when f is

in NP, O’Donnell [22] was led to study constructions of the
form

f ′(x1, . . . , xk)
def
= C(f(x1), f(x2), . . . , f(xk)), (1)

where C is an efficiently computable monotone function.
The monotonicity of C ensures that f ′ is in NP when f
is in NP. But we are left with the task of choosing such a
function C and proving that it indeed amplifies hardness.
Remarkably, O’Donnell was able to precisely characterize

the amplification properties of Construction 1 in terms of a
combinatorial property of the combining function C, called
its expected bias. (The actual definition is not needed for
this discussion, but can be found in Section 3.) By finding
a monotone combining function in which this expected bias
is small, he obtained the first positive result on hardness
amplification in NP:

O’Donnell’s Theorem [22]. If NP has a balanced
function that is 1/poly(n)-hard for polynomial-size circuits,

then NP has a function that is (1/2 − 1/n1/2−α)-hard for
polynomial-size circuits (where α is an arbitrarily small pos-
itive constant).

However, the amplification provided by O’Donnell’s the-
orem is not as strong as what the XOR Lemma gives. It
is limited to 1/2− 1/

√
n, regardless of the circuit size s for

which the original function is hard, even if s is exponen-
tially large. The XOR Lemma, on the other hand, amplifies
to 1/2 − 1/sΩ(1). O’Donnell showed that this difference is
inherent — no construction of the form (1) with a monotone
combining function C can always amplify hardness to better
than 1/2− 1/n.1

1.2 Our Result
In this paper, we manage to amplify hardness within NP

beyond the 1/2− 1/n barrier:

Main Theorem. If NP has a balanced function that
is 1/poly(n)-hard for circuits of size s(n), then NP has
a function that is (1/2 − 1/s′(n))-hard for circuits of size

s′(n) = s(
√
n)Ω(1). In particular,

1. If s(n) = nω(1), we amplify to hardness 1/2− 1/nω(1).

2. If s(n) = 2n
Ω(1)

, we amplify to hardness 1/2−1/2nΩ(1) .

1The gap between O’Donnell’s positive result of 1/2−1/
√
n

and his negative result of 1/2 − 1/n is not significant for
what follows, and in particular, it will be subsumed by our
improvements.

3. If s(n) = 2Ω(n), we amplify to hardness 1/2−1/2Ω(
√
n).

Note that Parts 1 and 2 match the parameters of Yao’s
XOR Lemma. Part 3, however, is a bit worse, amplifying to

1/2 − 1/2Ω(
√
n) rather than 1/2 − 1/2Ω(n). This gap is not

inherent in our approach and, as mentioned below, would
be eliminated given a corresponding improvement in one of
the tools we employ.
Of course, our construction cannot be of the form in Con-

struction (1). Below we describe our two main points of
departure.

1.3 Techniques
To explain how we bypass it, we first look more closely

at the source of the 1/2 − 1/n barrier. The actual lower
bound is 1/2−1/k, where k is the input length of the mono-
tone combining function C. (This is based on the [15] lower
bound on the noise stability of monotone functions.) Since
in Construction (1), f ′ has input length n′ = n · k ≥ k, it
follows that we cannot amplify beyond 1/2− 1/n′.

Derandomization. Given the above, our first idea is to
break the link between the input length of f ′ and the in-
put length of the combining function C. We do this by
derandomizing O’Donnell’s construction. That is, the in-
puts x1, . . . , xk are no longer taken independently (as in
Construction (1), but are generated pseudorandomly from
a short seed of length n′ ¿ k, which becomes the actual
input to f ′. Our method for generating the xi’s is based
on combinatorial designs (as in the Nisan–Wigderson gen-
erator [21]) and Nisan’s pseudorandom generator for space-
bounded computation [19], and reduces the input length of
f ′ from n · k to n′ = O(n2 + log2 k). We stress that this de-
randomization is unconditional, i.e. requires no additional
complexity assumption. We remark that it is the quadratic
seed length of Nisan’s generator that limits our amplifica-

tion to 1/2− 1/2Ω(
√
n) rather than 1/2− 1/2Ω(n) in Part 3

of our Main Theorem, and thus any improvement in Nisan’s
generator would yield a corresponding improvement in our
result.
Similar derandomizations have previously been achieved

for Yao’s XOR Lemma by Impagliazzo [11] and Impagliazzo
and Wigderson [13]. The analysis of such derandomizations
is typically tailored to a particular proof, and indeed both
[11, 13] gave new proofs of the XOR Lemma for that pur-
pose. In our case, we do not know how to derandomize
O’Donnell’s original proof, but instead manage to deran-
domize a different proof due to Trevisan [24].
Our derandomization allows for k to be larger than the

input length of f ′, and hence we can go beyond the 1/2 −
1/n′ barrier. Indeed, by taking k to be a sufficiently large
polynomial, we amplify to 1/2− 1/(n′)c for any constant c.

Using Nondeterminism. To amplify further, it is tempting
to take k superpolynomial in the input length of f ′. But then
we run into a different problem: how do we ensure that f ′ is
in NP? The natural algorithm for f ′ requires running the
algorithm for f on k inputs.
To overcome this difficulty, we observe that we need only

give an efficient nondeterministic algorithm for f ′. Each
nondeterministic path may involve only polynomially many
evaluations of f while the global outcome f ′(x) depends on



exponentially many evaluations. To implement this idea,
we exploit the specific structure of the combining function
C. Namely, we (like O’Donnell) use the TRIBES function
of Ben-Or and Linial [4], which is a monotone DNF with
clauses of size O(log k). Thus, the nondeterministic algo-
rithm for f ′ can simply guess a satisfied clause and evaluate
f on the O(log k) corresponding inputs.

1.4 Other Results
We also present some complementary negative results:

• We show that the assumption that the original hard
function is balanced is necessary, in the sense that no
monotone black-box hardness amplification can am-
plify unbalanced functions of unknown bias (or even
improve their bias).

• We show that our use of nondeterminism is necessary,
in the sense that any black-box hardness amplification
in which each evaluation of f ′ is a monotone function
of at most k evaluations of f can amplify hardness to
at most 1/2− 1/k.

Note that most results on hardness amplification against
circuits are black-box. (For a non-black-box hardness am-
plification against uniform machines, see [14, 25]).
Our framework also gives a new proof of the hardness

amplification by Impagliazzo and Wigderson [13]. Our proof
is simpler and in particular its analysis does not employ the
Goldreich–Levin [9] step.

The rest of the paper is organized as follows. In Section
2, we discuss some preliminaries; in Section 3 we review ex-
isting results on hardness amplification in NP; in Section 4
we present our main results and new techniques, and Sec-
tions 5 through 9 treat the details of the proof of our main
theorem; hardness amplification of unbalanced functions is
discussed in Section 10, and finally in Section 11 we show
that the use of nondeterminism in our main result is likely
to be necessary.

2. PRELIMINARIES
We denote the uniform distribution on {0, 1}n by Un. If

Un occurs more than once in the same expression, it is under-
stood that these all represent the same random variable; for
example, Un · f(Un) denotes the random variable obtained

by choosing X
R←{0, 1}n and outputting X · f(X).

Definition 2.1. Let X and Y be two random variables
taking values over the same set S. Then the statistical dif-
ference between X and Y , is

∆(X,Y )
def
= max

T⊆S

∣

∣

∣
Pr[X ∈ T ]− Pr[Y ∈ T ]

∣

∣

∣
.

We view probabilistic functions as functions of two inputs,
e.g. h(x; r), the first being the input to the function and
the second being the randomness. (Deterministic functions
may be thought of as probabilistic functions that ignore the
randomness.) For notational convenience, we will often omit
the second input to a probabilistic function, e.g. writing
h(x) instead of h(x; r), in which case we view h(x) as the
random variable h(x;U|r|).

Definition 2.2. The bias of a 0-1 random variable X is

Bias [X]
def
=
∣

∣

∣
Pr[X = 0]− Pr[X = 1]

∣

∣

∣
= 2 ·∆(X,U1).

Analogously, the bias of a probabilistic function f : {0, 1}n →
{0, 1} is

Bias [f ]
def
=
∣

∣

∣
Pr[f(Un) = 0]− Pr[f(Un) = 1]

∣

∣

∣
,

where the probabilities are taken over both the input chosen
according to Un and the coin tosses of f . We say that f is
balanced when Bias [f ] = 0.

We say that the random variablesX and Y are ε-indisting-
uishable for size s if for every circuit C of size s,

∣

∣

∣
Pr
X
[C(X) = 1]− Pr

Y
[C(Y ) = 1]

∣

∣

∣
≤ ε.

We will routinely use the following connection between
hardness and indistinguishability.

Lemma 2.3 ([27]). Let h : {0, 1}n → {0, 1} be any
probabilistic function. Then the distributions Un ·h(Un) and
Un ·U1 are ε-indistinguishable for size s if, and only if, h is
(1/2− ε/2)-hard for size s+Θ(1).

Finally, whenever we amplify the hardness of a function
f : {0, 1}n → {0, 1} that is hard for circuits of size s(n),
we assume that s(n) is well-behaved in the sense that it is

computable in time poly(n) and s(cn) = s(n)O(1), for all
constants c > 0. Most natural functions smaller than 2n,

such as nk, 2log
k n, 2n

ε

, 2εn are well-behaved in this sense.

3. OVERVIEW OF HARDNESS AMPLIFI-
CATION IN NP

In this section we review the essential components of ex-
isting results on hardness amplification in NP. We then dis-
cuss the limitations of these techniques. By the end of this
section, we will have sketched the main result of O’Donnell
[22], following the approach of Trevisan [24]. We outline
this result in a way that will facilitate the presentation of
our results.
Let f : {0, 1}n → {0, 1} be an average-case hard func-

tion, and let C : {0, 1}k → {0, 1} be any function. In [22],
O’Donnell studies the hardness of functions of the form

C ◦f⊗k : ({0, 1}n)k → {0, 1}

where f⊗k(x1, . . . , xk)
def
= (f(x1), . . . , f(xk)), and ◦ denotes

composition. That is,

(C ◦f⊗k)(x1, . . . , xk) def= C(f(x1), . . . , f(xk)).

In order to ensure that C ◦f⊗k ∈ NP whenever f ∈ NP,
O’Donnell chooses C to be a polynomial-time computable
monotone function. (Indeed, it is not hard to see that a
monotone combination of NP functions is itself in NP.)
O’Donnell characterizes the hardness of C ◦f⊗k in terms

of a combinatorial property of the combining function C,
called its expected bias (which we define later).
We will now review the key steps in establishing this char-

acterization and O’Donnell’s final amplification theorem.

Step 1: Impagliazzo’s hardcore set. An important tool
for establishing this connection is the so-called hardcore set
lemma of Impagliazzo [11], which allows us to pass from
computational hardness to information-theoretic hardness.



Definition 3.1. We say that a (probabilistic) function
g : {0, 1}n → {0, 1} is δ-random if g is balanced and there
exists a subset H ⊆ {0, 1}n with |H| = 2δ2n such that g(x) =
U1 (i.e. a coin flip) for x ∈ H and g(x) is deterministic for
x /∈ H.

Thus, a δ-random function has a set of relative size 2δ on
which it is information-theoretically unpredictable. The Im-
pagliazzo hardcore set lemma says that any δ-hard function
f : {0, 1}n → {0, 1} has a hardcore set H ⊆ {0, 1}n of
density ≈ 2δ such that f is very hard-on-average on H.
Thus, f looks like a δ-random function to small circuits (cf.,
Lemma 2.3). (Following subsequent works, our formulation
of Impagliazzo’s lemma differs from the original one in sev-
eral respects.)

Lemma 3.2 ([11], [16], [23], [22]). For any function f :
{0, 1}n → {0, 1} that is balanced and δ-hard for size s,
there exists a δ′-random function g : {0, 1}n → {0, 1} such
that X · f(X) and X · g(X) are ε-indistinguishable for size
Ω(sε2/ log(1/δ)), with δ ≤ δ′ ≤ 2δ, where X ≡ Un.
In particular, by a standard hybrid argument,

X1 · · ·Xk · f(X1) · · · f(Xk) and X1 · · ·Xk · g(X1) · · · g(Xk)

are kε-indistinguishable for size Ω(sε2/ log(1/δ)), where the
Xi’s are uniform and independent.

Step 2: Expected Bias. By the above, proving the com-
putational hardness of C ◦f⊗k reduces to calculating the
information-theoretic hardness of C ◦g⊗k for some δ′-random
g. It turns out that information-theoretic hardness can be
characterized by the following quantity.

Definition 3.3. Let h : {0, 1}n → {0, 1} be any proba-
bilistic function. We define the expected bias of h by

ExpBias [h]
def
= E

x←Un

[

Bias [h(x)]
]

,

where Bias [h(x)] is taken over the coin tosses of h.

The next lemma shows that information-theoretic hard-
ness is equivalent to expected bias.

Lemma 3.4. For any probabilistic h : {0, 1}n → {0, 1},

∆(Un · h(Un), Un · U1) = 1

2
ExpBias [h] .

Proof. ∆(Un · h(Un), Un · U1) = E
x∈Un

[∆(h(x), U1)] =

E
x←Un

[Bias [h(x)] /2] = ExpBias [h] /2.

In particular, no circuit (regardless of its size) can distin-
guish between Un ·h(Un) and Un ·U1 with advantage greater
than ExpBias [h] /2.
Now we characterize the hardness of C ◦f⊗k in terms of

expected bias. Specifically, by taking ε = 1/s1/3 in Lemma
3.2 and using Lemmas 2.3 and 3.4, one can show the follow-
ing.

Lemma 3.5 ([22]). Let f : {0, 1}n → {0, 1} be bal-
anced and δ-hard for size s, and let C : {0, 1}k → {0, 1}
be any function. Then there exists a δ-random function
g : {0, 1}n → {0, 1} such that C ◦f⊗k : ({0, 1}n)k → {0, 1}
has hardness

1

2
− ExpBias

[

C ◦g⊗k
]

2
− k

s1/3

for circuits of size Ω
(

s1/3/ log(1/δ)
)

−size(C), where size(C)
denotes the size of a smallest circuit computing C.

What makes this lemma so useful is that the quantity
ExpBias

[

C ◦g⊗k
]

turns out to be independent of the choice
of the δ-random function g and hence also of the particu-
lar hard function f . (Specifically, it equals the expectation
of the bias of C after a random restriction that leaves each
input bit unrestricted with probability δ.) Thus we are left
with the task of understanding a purely combinatorial prop-
erty of the combining function C.

Step 3: Noise Stability. Unfortunately, it is often diffi-
cult to analyze the expected bias directly. Nonetheless, the
expected bias is closely related to the noise stability, a quan-
tity that is more amenable to analysis and well-studied (e.g.,
[15], [22], [18]).

Definition 3.6. The noise stability of C with respect to
noise δ, denoted NoiseStabδ[C], is defined by

NoiseStabδ[C]
def
= 2 · Pr

x,η
[C(x) = C(x⊕ η)]− 1,

where x is random, η is a vector whose bits are independently
one with probability δ and ⊕ denotes bitwise XOR.

The following lemma bounds the expected bias of C ◦g⊗k
(and hence the hardness in Lemma 3.5) in terms of the noise
stability of C.

Lemma 3.7. Let g : {0, 1}n → {0, 1} be δ-random. Then

ExpBias
[

C ◦ g⊗k
]

≤
√

NoiseStabδ[C].

Combining this with Lemma 3.5, we find that the hardness
of C ◦f⊗k is roughly 1/2 −

√

NoiseStabδ[C]/2. The next
step is to exhibit a combining function C with a small noise
stability (to ensure that the hardness of C ◦f⊗k is as close
to 1/2 as possible). The following is shown in [22].

Lemma 3.8 ([22]). For all δ > 0, there exists a k =
poly(1/δ) and a polynomial-time computable monotone func-

tion C : {0, 1}k → {0, 1} with NoiseStabδ[C] ≤ 1/kΩ(1).

Finally, by combining Lemmas 3.5, 3.7 and 3.8, we obtain
the following weaker version of O’Donnell’s hardness amplifi-
cation within NP. (While a stronger version of O’Donnell’s
result was mentioned in the introduction, the following ver-
sion will suffice as a starting point for our work.)

Theorem 3.9 ([22]). If there is a balanced f ∈ NP,
f : {0, 1}n → {0, 1} that is 1/ poly(n)-hard for size s(n),
then there is f ′ ∈ NP, f ′ : {0, 1}m → {0, 1} that is (1/2 −
1/mΩ(1))-hard for size s(mΩ(1))Ω(1).

Limitations of Direct Product Constructions.
O’Donnell also showed that Theorem 3.9 is essentially the
best result that one can obtain using the techniques that we
have described thus far. He showed that for all monotone
combining functions C there is a δ-hard f such that the
hardness of C ◦f⊗k is no better than 1/2−NoiseStabδ[C]/2.
This is problematic because the noise stability of monotone
functions cannot become too small.



Theorem 3.10 ([15]). For any monotone function C :
{0, 1}k → {0, 1}, NoiseStabδ[C] ≥ (1− 2δ)Ω(log2 k/k).

Therefore, for any monotone C : {0, 1}k → {0, 1} there is
a δ-hard f such that C ◦f⊗k does not have hardness 1/2 −
NoiseStabδ[C]/2 ≤ 1/2−Ω(1/k). Since C ◦f⊗k takes inputs
of length m = n · k ≥ k, this implies that we must employ a
new technique to amplify beyond hardness 1/2− Ω(1/m).

4. OUR RESULTS
In this paper, we obtain the following improvement upon

Theorem 3.9.

Theorem 4.1 (Main Theorem). If there is a balanced
f ∈ NP, f : {0, 1}n → {0, 1} that is 1/poly(n)-hard for size
s(n), then there is f ′ ∈ NP, f ′ : {0, 1}m → {0, 1} that is
(1/2− 1/s(

√
m)Ω(1))-hard for size s(

√
m)Ω(1).

We also show that the assumption that we start with a
balanced function f is essential. Specifically, we show (Sec-
tion 10) that no monotone black-box hardness amplifica-
tion can amplify the hardness of functions whose bias is
unknown. Most hardness amplifications, including the one
in this paper, are black-box. However, the assumption that
f is balanced can be dispensed with when amplifying within
NP/ poly (i.e., nondeterministic polynomial size circuits).

We now describe our two main techniques that allow us to
prove Theorem 4.1. As explained in the introduction, these
two techniques are derandomization and nondeterminism.

4.1 Derandomization
As in the previous section, let f : {0, 1}n → {0, 1} be our

hard function and let C : {0, 1}k → {0, 1} be a (monotone)
combining function.
We will derandomize O’Donnell’s construction using an

“appropriately pseudorandom” generator.

Definition 4.2. A generator G : {0, 1}l → ({0, 1}n)k is
any function. We call l the seed length of G, and we often
write G(σ) = X1 · · ·Xk, with each Xi ∈ {0, 1}n.
G is explicitly computable if given σ, 1 ≤ i ≤ k, we can

compute Xi in time poly(l, log k), where G(σ) = X1 · · ·Xk.

Instead of using the function C ◦f⊗k : ({0, 1}n)k → {0, 1},
we take a generator G : {0, 1}l → ({0, 1}n)k (where l¿ nk)
and use (C ◦f⊗k) ◦G : {0, 1}l → {0, 1}, i.e.,

(C ◦f⊗k) ◦G(σ) = C
(

f(X1), . . . , f(Xk)
)

,

where (X1, . . . , Xk) ∈ ({0, 1}n)k is the output of G(σ). This
reduces the input length of the function to l. Therefore, if
l ¿ nk we would expect (C ◦f⊗k) ◦ G to be harder (with
respect to its input length) than C ◦f⊗k. We will show that
this is indeed the case, provided the generator G satisfies
the following requirements:

1. G is indistinguishability-preserving: Analogously
to Lemma 3.5, the generator G should be such that
the computational hardness of (C ◦f⊗k) ◦G is at least
the information-theoretic hardness of (C ◦ g⊗k) ◦G for
some δ-random function g, that is, at least
1/2 − ExpBias

[

(C ◦ g⊗k) ◦G
]

. We will see that this
can be achieved provided that G is indistinguishability-
preserving; that is (analogously to the last part of
Lemma 3.2),

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)

should be indistinguishable, for any δ-random g, when

σ
R← {0, 1}l and X1, . . . , Xk ∈ {0, 1}n are the outputs

of G on input σ.

2. G fools the expected bias: G should be such that
for any δ-random g, ExpBias

[

(C ◦ g⊗k) ◦G
]

is approx-

imately ExpBias
[

C ◦ g⊗k
]

, and thus, by Lemma 3.7:

ExpBias
[

(C ◦ g⊗k) ◦G
]

≤
√

NoiseStabδ[C] + ε, (2)

for a suitably small ε. Actually, we will not show that
G fools the expected bias directly and instead will work
with a related quantity (the expected collision proba-
bility), which will still suffice to show Inequality (2).

The first requirement is achieved through a generator that
outputs combinatorial designs. This construction is essen-
tially from Nisan and Wigderson [20, 21] and has been used
in many places, e.g. [13, 23].
The second requirement is achieved as follows. We show

that ifG is pseudorandom against space-bounded algorithms
and the combining function C is computable in small space,
then Inequality (2) holds. We then use Nisan’s uncondi-
tional pseudorandom generator against space-bounded al-
gorithms [19], and show that combining functions with low
noise stability can in fact be computed in small space.2 Note
that we only use the pseudorandomness of the generator G
to relate the expected bias with respect to G to a combina-
torial property of the combining function C. In particular,
it is not used to fool the circuits trying to compute the hard
function. This is what allows us to use an unconditional
generator against a relatively weak model of computation.
Our final generator, Γ, is the generator obtained by XOR-

ing a generator that is indistinguishability-preserving and a
generator that fools the expected bias, obtaining a generator
that has both properties. The approach of XORing two gen-
erators in this way appeared in [13], and was subsequently
used in [23].
The net effect of the two above requirements of the gen-

erator Γ, is that the hardness of (C ◦f⊗k) ◦ Γ is roughly the
hardness of C ◦f⊗k, while dramatically reducing the input
length from nk to l (the seed length of Γ).

4.2 Using Nondeterminism
The derandomization described above gives hardness am-

plification up to 1/2 − 1/nc for every c. This already im-
proves upon the best previous result, namely Theorem 3.9.
However, to go beyond that new techniques are required.
The problem is that if C is a function on k bits, then by The-
orem 3.10 its noise stability will always be at least 1/kΩ(1),
and hence the hardness of the amplified function will be at
most 1/2− 1/kΩ(1).
Therefore, if we want C to be computable in polynomial

time we will always have k = poly(n) and we will never
amplify beyond 1/2− 1/ poly.
We solve this problem taking full advantage of the power

of NP, namely nondeterminism. This allows us to use a

2The same approach also works using the unconditional
pseudorandom generator against constant-depth circuits of
[20] and showing that the combining function is computable
by a constant-depth circuit; however, the space generator
gives us slightly better parameters.



function C : {0, 1}k → {0, 1} which is computable in nonde-
terministic time poly(n, log(k)); thus, the amplified function
will still be in NP for k as large as 2n.
Conversely, in Section 11 we show that any non-adaptive

monotone black-box hardness amplification that amplifies
to hardness 1/2−1/nω(1) cannot be computed in P, i.e. the
use of nondeterminism is essential.

We will now proceed by discussing the details of the de-
randomization (Sections 5, 6 and 7) and the use of nonde-
terminism (Section 8). For clarity of exposition, we focus on
the case where the original hard function f is balanced and is
1/3-hard. Hardness amplification from hardness 1/poly(n)
is discussed in Section 9, and hardness amplification of un-
balanced functions is discussed in Section 10.

5. PRESERVING INDISTINGUISHABILITY
The main result in this section is that if G is pseudoran-

dom in an appropriate sense, then the hardness of (C ◦f⊗k)◦
G is roughly

1/2− ExpBias
[

(C ◦ g⊗k) ◦G
]

for some δ-random function g. As we noted in the previous
section, it will be sufficient for G to be indistinguishability-
preserving . We give the definition of indistinguishability-
preserving and then our main result.

Definition 5.1. A generator G : {0, 1}l → ({0, 1}n)k
is said to be indistinguishability-preserving for size t if for
all (possibly probabilistic) functions f1, . . . , fk,g1, . . . , gk the
following holds:
If for every i, 1 ≤ i ≤ k the distributions

Un · fi(Un) and Un · gi(Un)

are ε-indistinguishable for size s, then

σ · f1(X1) · · · fk(Xk) and σ · g1(X1) · · · gx(Xk)

are kε-indistinguishable for size s− t, where σ is a random
seed of length l and X1 · · ·Xk is the output of G(σ).

Lemma 5.2. Let f : {0, 1}n → {0, 1} be δ-hard for size s,
let G : {0, 1}l → ({0, 1}n)k be a generator that is indisting-
uishability-preserving for size t and let C : {0, 1}k → {0, 1}
be any function. Then there exists a δ′-random g, with δ ≤
δ′ ≤ 2δ such that the function (C ◦f⊗k)◦G : {0, 1}l → {0, 1}
has hardness

1

2
− ExpBias

[

(C ◦ g⊗k) ◦G
]

2
− k

s1/3

for circuits of size Ω
(

s1/3/ log(1/δ)
)

− t − size(C) where

size(C) denotes the size of a smallest circuit computing C.

Proof. By Lemma 3.2, there exists a δ′-random function
g with δ ≤ δ′ ≤ 2δ, such that Un · f(Un) and Un · g(Un) are
ε-indistinguishable for size Ω(sε2, log(1/δ)).
For the remainder of this proof, σ will denote a uniform

random seed in {0, 1}l, and X1 · · ·Xk will denote the output
of G(σ).
Since G is a indistinguishability-preserving for size t, by

assumption, this implies that

σ · f(X1) · · · f(Xk) and σ · g(X1) · · · g(Xk)

are kε-indistinguishable for size Ω(sε2 log(1/δ))− t.

This in turn implies that

σ · C(f(X1) · · · f(Xk)) and σ · C(g(X1) · · · g(Xk))

( i.e., σ · (C ◦f⊗k) ◦G(σ) and σ · (C ◦ g⊗k) ◦G(σ))

are kε-indistinguishable for size Ω(sε2/ log(1/δ))−t−size(C).
By Claim 3.4,

σ · (C ◦ g⊗k) ◦G and σ · U1
are (ExpBias

[

(C ◦ g⊗k) ◦G
]

/2)-indistinguishable for any
size; therefore we have that

σ · (C ◦f⊗k) ◦G and σ · U1
are (ExpBias

[

(C ◦ g⊗k) ◦G
]

/2 + kε)-indistinguishable for

size Ω(sε2/ log(1/δ)) − t − size(C). The result follows by

setting ε = 1/s1/3 and applying Lemma 2.3.

In particular, we note that the identity generator G :
{0, 1}nk → ({0, 1}n)k, i.e. G(x) = x, is indistinguishabi-
lity-preserving for size 0 (by a hybrid argument), and thus
Lemma 3.5 is a corollary of Lemma 5.2. However, the iden-
tity generator has seed-length nk and is therefore a very poor
pseudorandom generator. Fortunately, there are indisting-
uishability-preserving pseudorandom generators with much
shorter seeds which will allow us to use Lemma 5.2 to obtain
much stronger hardness amplifications.

Lemma 5.3. For every n ≥ 2 and every k there is an
explicitly computable generator IPk : {0, 1}l → ({0, 1}n)k
with seed length l = O(n2) that is indistinguishability-pre-
serving for size k2.

Proof. The generator is due to Nisan andWigderson [20,
21], and is based on combinatorial designs. Specifically, we
let S1, . . . , Sk ⊆ [l] be an explicit family of sets such that
|Si| = n for all i, and |Si ∩ Sj | ≤ log k for all i 6= j.
Nisan [20] gives a construction of such sets with l = O(n2).
Then the generator IPk : {0, 1}l → ({0, 1}n)k is defined by
IPk(σ) = (σ|S1 , . . . , σ|Sk ), where σ|Si ∈ {0, 1}n denotes the
projection of σ onto the coordinates indexed by the set Si.
The proof that this generator is indistinguishability preserv-
ing for size k2 follows the arguments in [21, 23].

6. FOOLING THE EXPECTED BIAS
In this section we prove a derandomized version of Lemma

3.7. Informally, we show that if C is computable in a re-
stricted model of computation and G “fools” that restricted
model of computation, then for any δ-random function g:

ExpBias
[

(C ◦ g⊗k) ◦G
]

≤
√

NoiseStabδ[C] + ε.

The restricted model of computation we consider is that
of nonuniform space-bounded algorithms which make one
pass through the input, reading it in blocks of length n.
These are formally modelled by branching programs of the
following type:

Definition 6.1. A (probabilistic, read-once, oblivious)
branching program of size s with block-size n is a finite state
machine with s states, over the alphabet {0, 1}n (with a fixed
start state, and an arbitrary number of accepting states).
Each edge is labelled with a symbol in {0, 1}n. For every
state a and symbol α ∈ {0, 1}n, the edges leaving a and la-
belled with α are assigned a probability distribution. Then



computation proceeds as follows. The input is read sequen-
tially, one block of n bits at a time. If the machine is in
state a and it reads α, then it chooses an edge leaving a and
labelled with α according to its probability, and moves along
it. The width of a branching program is the maximum, over
i, of the number of states that are reachable after reading i
symbols.

Intuitively, the space of the algorithm is the logarithm of
the width.
In [19], Nisan builds an unconditional generator against

branching programs. (Improved PRGs were obtained in [12]
but for our purposes Nisan’s original PRG is essentially as
good, and we use it because of its simplicity.)
Now we formally define pseudorandom generators against

branching programs and then we give Nisan’s result.

Definition 6.2. A generator G : {0, 1}l → ({0, 1}n)k is
ε-pseudorandom against branching programs of size s and
block-size n if for every branching program B of size s and
block-size n:

∣

∣Pr[B(G(Ul)) = 1]− Pr[B(Unk) = 1]
∣

∣ ≤ ε.

Theorem 6.3 ([19]). There exists a generator

Nk : {0, 1}l → ({0, 1}n)k

such that, for every k ≤ 2n,

• Nk is 2−n-pseudorandom against branching programs
of size 2n and block-size n.

• Nk has seed length O(n log k).

• Nk is explicitly computable.

We now state the derandomized version of Lemma 3.7.

Lemma 6.4. Let

• g : {0, 1}n → {0, 1} be a δ-random function,

• C : {0, 1}k → {0, 1} be computable by a branching pro-
gram of width w and block-size 1,

• G : {0, 1}l → ({0, 1}n)k be ε/2-pseudorandom against
branching programs of size k · w2 and block-size n.

Then ExpBias
[

(C ◦ g⊗k) ◦G
]

≤
√

NoiseStabδ[C] + ε.

Proof. We will not show that G fools the expected bias,
but rather the following related quantity. For a probabilistic
boolean function h(x; r) we define its (normalized) expected
collision probability as

ExpCP[h]
def
= E

x

[

2 · Pr
r,r′

[h(x; r) = h(x; r′)]− 1
]

.

The same reasoning that shows Lemma 3.7, shows that for
every probabilistic boolean function h:

ExpBias [h] ≤
√

ExpCP[h]. (3)

Let h(x; r) : ({0, 1}n)k → {0, 1} be the probabilistic func-
tion C ◦ g⊗k. Even though h is defined in terms of g, it turns
out that its expected collision probability is the same for all
δ-random functions g, and simply equals the noise stability
of C:

ExpCP[h] = NoiseStabδ[C]. (4)

Now we construct a probabilistic branching program M :
({0, 1}n)k → {0, 1} of width w2, size kw2 and block-size n

such that for every x ∈ ({0, 1}n)k:
Pr[M(x) = 1] = Pr

r,r′
[h(x; r) = h(x; r′)].

To do this, we first note that, using the branching program
for C, we can build a probabilistic branching program with
block-size n and width w which computes C ◦ g⊗k: The
states of the branching program are the same as those of
the branching program for C, and we define the transitions
as follows. Upon reading symbol α ∈ {0, 1}n in state s,
if g(α) = 0 (resp. g(α) = 1), we deterministically go to
the state given by the 0-transition (resp., 1-transition) of C
from state s, and if g(α) is a coin flip, then we put equal
probability on these two transitions.
Then, to obtain M , run two independent copies of this

branching program (i.e., using independent choices for the
probabilistic state transitions) and accept if and only if ex-
actly one of the two copies accepts. Now,
∣

∣

∣
ExpCP[(C ◦ g⊗k) ◦G]−NoiseStabδ[C]

∣

∣

∣

=
∣

∣

∣
ExpCP[(C ◦ g⊗k) ◦G]− ExpCP[C ◦ g⊗k]

∣

∣

∣
(by (4))

= 2 ·
∣

∣

∣
Pr[M ◦G(Ul) = 1]− Pr[M(Un·k) = 1]

∣

∣

∣

≤ ε. (by pseudorandomness of G)

The lemma follows combining this with Equation (3).

7. AMPLIFICATION UP TO 1/2− 1/poly

In this section we sketch our hardness amplification up to
1/2 + 1/nc, for every c:

Theorem 7.1. If there is a balanced f : {0, 1}n → {0, 1}
in NP that is (1/3)-hard for size s(n) ≥ nω(1), then for
every c > 0 there is a function f ′ : {0, 1}m → {0, 1} in NP
that is (1/2− 1/mc)-hard for size (s(

√
m))Ω(1).

To amplify we use the TRIBES function, a monotone
read-once DNF.

Definition 7.2. The TRIBES function on k bits is:

TRIBESk(x1, . . . , xk)
def
=

(x1 ∧ . . .∧ xb)∨ (xb+1 ∧ . . .∧ x2b)∨ . . .∨ (xk−b+1 ∧ . . .∧ xk)
where there are k/b clauses each of size b, and b is the largest

integer such that (1 − 2−b)k/b ≥ 1/2. Note that this makes
b = O(log k).

The TRIBES DNF has very low noise stability when per-
turbed with constant noise.

Lemma 7.3 ([22, 18]). For every constant δ > 0,

NoiseStabδ[TRIBESk] ≤ 1

kΩ(1)
.

A key step in our result is that TRIBESk is (trivially)
computable by a branching program of width 3, and there-
fore we can use Lemma 6.4 to fool its expected bias.
We now define the generator we will use in our derandom-

ized direct product construction.



Definition 7.4. The generator Γk is defined as follows:

Γk(x, y) := IPk(x)⊕Nk(y).

We recall the properties of Γ we are interested in:

Lemma 7.5. The following hold:

1. Γk is indistinguishability-preserving for size k2.

2. Γk is 2−n-pseudorandom against branching programs
of size 2n and block-size n.

3. Γk has seed length O(n2).

4. Γk is explicitly computable (see Definition 4.2 for the
definition of explicit).

Proof. (1) By Lemma 5.3 and the fact that an indi-
stinguishability-preserving generator XORed with any fixed
string (in particular, Nk(y) for any y) is still indistinguish-
ability-preserving . (2) By Theorem 6.3 and the fact that
XORing with any fixed string (in particular, IPk(x) for any
x) preserves pseudorandomness against branching programs.
(3) By the seed lengths of IPk (Lemma 5.3) and Nk (The-
orem 6.3). (4) Because IPk is explicit (Lemma 5.3) and Nk

is explicit (Theorem 6.3).

Proof of Theorem 7.1. Given f : {0, 1}n → {0, 1} that
is δ-hard for size s(n) (for δ = 1/3) and a constant c, let

k = nc
′

for c′ = O(c) to be determined later. Consider the
function f ′ : {0, 1}m → {0, 1} defined by

f ′
def
= (TRIBESk ◦f⊗k) ◦ Γk.

Note that f ′ ∈ NP since f ∈ NP, TRIBES is monotone
and both Γ and TRIBES are efficiently computable.
We now analyze the hardness of f ′. Since Γk is indisting-

uishability-preserving for size k2 by Lemma 7.5, Lemma 5.2
implies that there is a δ′-random function g (for δ ≤ δ′ ≤ 2δ)
such that f ′ has hardness

1

2
− ExpBias

[

(TRIBESk ◦ g⊗k) ◦ Γk
]

2
− k

s(n)1/3
(5)

for circuits of size Ω
(

s(n)1/3
)

− k2 − size(TRIBESk). Next

we bound the hardness. By Lemma 7.5, we know that Γk
is 2−n-pseudorandom against branching programs of size 2n

and block-size n. In particular, since k = poly(n), Γk is
1/k-pseudorandom against branching programs of size 9k
and block-size n. Since TRIBESk is trivially computable
by a branching program of width 3, we can apply Lemma
6.4 in order to bound ExpBias

[

(TRIBESk ◦ g⊗k) ◦ Γk
]

by
√

NoiseStabδ′ [TRIBESk] + 2/k. And this noise stability is

at most 1/kΩ(1) by Lemma 7.3. Since k = poly(n) and

s(n) = nω(1), the k/s1/3 term in the hardness (5) is negligi-

ble and we obtain hardness at least 1/2− 1/kΩ(1).
We now bound the circuit size: Since TRIBESk is com-

putable by circuits of size O(k), and s(n) = nω(1), the size

is at least s(n)Ω(1).
To conclude, note that f ′ has input length m = n2 by

Lemma 7.5. The result then follows by an appropriate choice
of c′ = O(c).

8. USING NONDETERMINISM
In this section we discuss how to use nondeterminism to

get the following theorem.

Theorem 8.1. If there is a balanced f : {0, 1}n → {0, 1}
in NP that is (1/3)-hard for size s(n), then there is an

f ′ : {0, 1}m → {0, 1} in NP that is (1/2− 1/(s(
√
m))Ω(1))-

hard for size (s(
√
m))Ω(1).

Our main observation is that TRIBESk is a DNF with
clause size O(log k), and therefore it is computable in NP
even for superpolynomial k:

Lemma 8.2. Let f : {0, 1}n → {0, 1} be in NP, and let

Gk : {0, 1}l → ({0, 1}n)k be any explicitly computable gen-
erator (see Definition 4.2) with l ≥ n. Then the function

f ′
def
= (TRIBESk ◦f⊗k) ◦Gk is computable in NP for every

k ≤ 2poly(n).

Proof. We compute f ′(σ) nondeterministically as fol-
lows: Guess a clause vi ∧ . . . ∧ vj in TRIBESk. Accept if
for every h s.t. i ≤ h ≤ j we have f(Xh) = 1, where
G(σ) = (X1, . . . , Xk) and the values f(Xh) are computed
using the NP algorithm for f .
It can be verified that this algorithm has an accepting

computation path on input σ iff f ′(σ) = 1. Note that the
clauses have size logarithmic in k, which is polynomial in
n. Moreover, G is explicitly computable. The result fol-
lows.

Now the proof of Theorem 8.1 proceeds along the same

lines as the proof of Theorem 7.1, setting k
def
= s(n)Ω(1).

9. AMPLIFYING FROM HARDNESS 1/poly

Our amplification from hardness Ω(1) to 1/2 − ε (The-
orem 7.1) can be combined with O’Donnell’s amplification
from hardness 1/ poly to hardness Ω(1) to obtain an ampli-
fication from 1/ poly to 1/2− ε. However, since O’Donnell’s
construction blows up the input length polynomially, we
will only obtain ε = 1/s(nΩ(1)) (where the hidden con-
stant depends on the initial polynomial hardness) rather

than ε = 1/s(
√
n)Ω(1) (as in Theorem 7.1). Thus we show

here how to amplify directly from 1/poly to 1/2 − ε using
our approach.
Amplification from hardness Ω(1) (Theorem 7.1) relies on

the fact that the TRIBES DNF has very low noise stability
with respect to noise parameter δ = Ω(1) (i.e., Lemma 7.3.).
Similarly, to amplify from hardness 1/ poly(n) we need to
employ a combining function that has low noise stability
with respect to noise 1/poly(n). To this end, following [22],
we also employ the recursive-majorities function, RMAJr.
Let MAJ denote the majority function.

Definition 9.1. The RMAJr function on 3r bits is de-
fined recursively by:

RMAJ1(x1, x2, x3)
def
= MAJ(x1, x2, x3)

RMAJr(x1, . . . , x3r )
def
=

RMAJr−1
(

MAJ(x1, x2, x3), . . . ,MAJ(x3n−2, x3n−1, x3n)
)

Unfortunately, RMAJr does not have sufficiently low noise
stability to be used on its own; for this reason, we will
consider the function TRIBESk ◦RMAJ⊗kr . Using a simi-
lar analysis to [22] one can prove the following.



Proposition 9.2. For r = Ω(log(1/δ)),

NoiseStabδ[TRIBESk ◦RMAJ⊗kr ] ≤ 1

kΩ(1)

We set r
def
= O(log n), where the constant in the choice of

O(log n) will depend on the hardness of the original mildly
hard function.
The next step is to show that the derandomization of

Section 6 still goes through. To achieve this, it suffices
to show that TRIBESk ◦RMAJ⊗kr can be computed by a
small branching program. Indeed, a simple argument shows
that RMAJr can be computed by branching program of
width 2O(r), and combining this with the observation that
TRIBESk can be computed by a branching program of con-
stant width, we obtain the following.

Lemma 9.3. TRIBESk ◦RMAJ⊗kr can be computed by a
(read-once, oblivious) branching program of width 2O(r).

The remaining details for proving Theorem 4.1 are essen-
tially the same as in the proof of Theorem 8.1. All that is left
to observe is that (TRIBESk ◦RMAJ⊗kO(logn) ◦f⊗k)◦Γ ∈ NP
whenever f ∈ NP because the recursive majorities each only
depend on 2O(logn) = poly(n) bits of the input, and hence
we only incur a (deterministic) polynomial slow-down.

10. ON THE BALANCING HYPOTHESIS
The hardness amplification results in the previous sections

start from balanced functions. In this section we study this
hypothesis. Our main finding is that, while this hypothesis
is not necessary for hardness amplification within NP/poly
(i.e., non-deterministic polynomial size circuits), it is likely
to be necessary for hardness amplification within NP.
To see that this hypothesis is not necessary for ampli-

fication within NP/poly, note that if the bias B(n) of
the original hard function f : {0, 1}n → {0, 1} is known,
then we can easily pad f to obtain a balanced function
f̄ : {0, 1}n+1 → {0, 1}:

f̄(x, p)
def
=







f(x) if p = 0
1 if p = 1 and x ≤ B(n)2n

0 otherwise

It is easy to see that f̄ is 1/ poly(n)-hard if f is. Since
a circuit can know (non-uniformly) the bias B(n) of f , the
following hardness amplification within NP/ poly is a corol-
lary to the proof of Theorem 4.1.

Corollary 10.1. If there is f ∈ NP/poly, f : {0, 1}n →
{0, 1} that is 1/ poly(n)-hard for size s(n), then there is f ′ ∈
NP/ poly, f ′ : {0, 1}m → {0, 1} that is (1/2−1/s(√m)Ω(1))-

hard for size s(
√
m)Ω(1).

Now we return to hardness amplification within NP. One
should note that, in our results, to amplify the hardness of
f : {0, 1}n → {0, 1} up to 1/2 − ε it is only necessary that
Bias [f ] ≤ εc for some universal constant c. The argument
is standard and can be found, for example, in [24].
Combining this observation with the above padding tech-

nique, O’Donnell constructs several candidate hard func-
tions, one for each ‘guess’ of the bias of the original hard
function. He then combines them in a single function which
is very hard infinitely often. However, it seems that this ap-
proach, even in conjunction with derandomization and non-
determinism, can not give better hardness than 1/2− 1/n.

To what extent can we amplifiy the hardness of functions
whose bias is unknown? Non-monotone hardness amplifica-
tions, such as Yao’s XOR Lemma, work regardless of the bias
of the original hard function. However, in the rest of this
section we show that, for hardness amplifications that are
monotone and black-box, this is impossible. In particular,
we show that black-box monotone hardness amplifications
cannot amplify the hardness beyond the bias of the original
function.
We now formalize the notion of black-box monotone hard-

ness amplification and then state our lower bound.

Definition 10.2. An oracle algorithm Amp : {0, 1}l →
{0, 1} is a black-box β-bias [δ 7→ (1/2−ε)]-hardness amplifi-
cation for length n and size s if for every f : {0, 1}n → {0, 1}
such that Bias [f ] ≤ β and for every A : {0, 1}l → {0, 1} such
that

Pr[A(Ul) 6= Ampf (Ul)] ≤ 1/2− ε,

there is an oracle circuit C of size at most s such that

Pr[CA(Un) 6= f(Un)] ≤ δ.

Amp is monotone if for every x, AmpF (x) is a monotone
function of the truth table of F .

Note that if Amp is as in Definition 10.2 and if f is δ-hard
for size s′ and Bias [f ] ≤ β, then Ampf is (1/2− ε)-hard for
size s′/s.

Theorem 10.3. For any constant γ > 0, if Amp is a
monotone black-box β-bias [δ 7→ (1/2− ε)]-hardness amplifi-
cation for length n and size s ≤ 2n/3 such that 1/2 − 4ε >
δ + γ, then β ≤ O(ε+ 2−n).

The main ideas for proving this bound are the same as
in the lower bounds for black-box hardness amplification in
[26]: First we show that the above kind of hardness am-
plification satisfies certain coding-like properties. (Roughly,
Amp can be seen as a list-decodable code where the distance
property is guaranteed only for δ-distant messages with bias
at most β (cf., [24]).) Then we show that monotone func-
tions fail to satisfy these properties. The limitation we prove
of monotone functions relies on the Kruskal-Katona theorem
(see [1]).

11. NONDETERMINISM IS NECESSARY
In this section we show that deterministic, monotone, non-

adaptive black-box hardness amplifications cannot amplify
hardness beyond 1/2− 1/poly(n). Thus, the use of nonde-
terminism in our results (Section 8) is likely to be necessary.
Note that most hardness amplifications, including the one
in this paper, are black-box and non-adaptive.
O’Donnell [22] proves that any monotone direct product

construction cannot amplify to hardness better than 1/2 −
1/n, if the amplification works for every function. Our result
is orthogonal: we relax the assumption that the hardness
amplification is a direct product construction, but on the
other hand we require the proof of correctness to be black-
box.
We prove our bound even for hardness amplifications that

amplify only balanced functions (i.e. β = 0 in Def. 10.2).

Theorem 11.1. For every constant δ < 1/2, if Amp is a
black-box 0-bias [δ 7→ (1/2 − ε)]-hardness amplification for



length n and size s ≤ 2n/3 such that Ampf (x) is a monotone

function of k ≤ 2n/3 values of f , then

ε ≥ Ω

(

log2 k

k

)

.

The proof of this bound follows closely the proof of the
lower bound on hardness amplification in [26]. The main
difference is here we use bounds on the noise stability of
monotone functions rather than constant depth circuits.
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[2] László Babai, Lance Fortnow, and Carsten Lund.
Nondeterministic exponential time has two-prover
interactive protocols. Computational Complexity,
1(1):3–40, 1991.

[3] Donald Beaver and Joan Feigenbaum. Hiding
instances in multioracle queries. In 7th Annual
Symposium on Theoretical Aspects of Computer
Science, volume 415 of Lecture Notes in Computer
Science, pages 37–48, Rouen, France, 22–24 February
1990. Springer.

[4] Michael Ben-Or and Nathan Linial. Collective
coin-flipping. In Silvio Micali, editor, Randomness and
Computation, pages 91–115. Academic Press, New
York, 1990.

[5] Andrej Bogdanov and Luca Trevisan. On worst-case
to average-case reductions for NP problems. In
Proceedings of 44th FOCS, Cambridge, Massachusetts,
11–14 October 2003.

[6] Jin-Yi Cai, A. Pavan, and D. Sivakumar. On the
hardness of the permanent. In 16th International
Symposium on Theoretical Aspects of Computer
Science, Lecture Notes in Computer Science, Trier,
Germany, March 4–6 1999. Springer-Verlag.

[7] Uriel Feige and Carsten Lund. On the hardness of
computing the permanent of random matrices.
Computational Complexity, 6(2):101–132, 1996.

[8] Joan Feigenbaum and Lance Fortnow.
Random-self-reducibility of complete sets. SIAM J. on
Computing, 22(5):994–1005, October 1993.

[9] Oded Goldreich and Leonid A. Levin. A hard-core
predicate for all one-way functions. In Proceedings of
21st STOC, pages 25–32, Seattle, Washington, 15–17
May 1989.

[10] Oded Goldreich, Noam Nisan, and Avi Wigderson. On
Yao’s XOR lemma. Technical Report TR95–050,
Electronic Colloquium on Computational Complexity,
March 1995. http://www.eccc.uni-trier.de/eccc.

[11] Russell Impagliazzo. Hard-core distributions for
somewhat hard problems. In Proceedings of 36th
FOCS, pages 538–545, Milwaukee, Wisconsin, 23–25
October 1995. IEEE.

[12] Russell Impagliazzo, Noam Nisan, and Avi Wigderson.
Pseudorandomness for network algorithms. In
Proceedings of 26th STOC, pages 356–364, Montréal,
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