
Chapter 2 

Entropy, Relative Entropy 
and Mutual Information 

This chapter introduces most of the basic definitions required for the 
subsequent development of the theory. It is irresistible to play with 
their relationships and interpretations, taking faith in their later utility. 
After defining entropy and mutual information, we establish chain 
rules, the non-negativity of mutual information, the data processing 
inequality, and finally investigate the extent to which the second law of 
thermodynamics holds for Markov processes. 

The concept of information is too broad to be captured completely by a 
single definition. However, for any probability distribution, we define a 
quantity called the entropy, which has many properties that agree with 
the intuitive notion of what a measure of information should be. This 
notion is extended to define mutual information, which is a measure of 
the amount of information one random variable contains about another. 
Entropy then becomes the self-information of a random variable. Mutual 
information is a special case of a more general quantity called relative 
entropy, which is a measure of the distance between two probability 
distributions. All these quantities are closely related and share a 
number of simple properties. We derive some of these properties in this 
chapter. 

In later chapters, we show how these quantities arise as natural 
answers to a number of questions in communication, statistics, complex- 
ity and gambling. That will be the ultimate test of the value of these 
definitions. 

2.1 ENTROPY 

We will first introduce the concept of entropy, which is a measure of 
uncertainty of a random variable. Let X be a discrete random variable 
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2.1 ENTROPY 13 

with alphabet Z!? and probability mass function p(x) = Pr{X = x}, x E %. 
We denote the probability mass function by p(x) rather than p,(x) for 
convenience. Thus, p(x) and p(y) refer to two different random variables, 
and are in fact different probability mass functions, p*(x) and pY(y) 
respectively. 

Definition; The entropy H(X) of a discrete random variable X is defined 
bY 

H(X) = - c p(d log pm - (2.1) 

We also write H(p) for the above quantity. The log is to the base 2 
and entropy is expressed in bits. For example, the entropy of a fair coin 
toss is 1 bit. We will use the convention that 0 log 0 = 0, which is easily 
justified by continuity since x log x + 0 as x + 0. Thus adding terms of 
zero probability does not change the entropy. 

If the base of the logarithm is b, we will denote the entropy as H,(X). 
If the base of the logarithm is e, then the entropy is measured in nuts. 
Unless otherwise specified, we will take all logarithms to base 2, and 
hence all the entropies will be measured in bits. 

Note that entropy is a functional of the distribution of X. It does not 
depend on the actual values taken by the random variable X, but only 
on the probabilities. 

We shall denote expectation by E. Thus if X - p(x), then the expected 
value of the random variable g(X) is written 

E,g(X) = c g(dP(d > 
XEZ 

w2) 

or more simply as Eg(X) when the probability mass function is under- 
stood from the context. 

We shall take a peculiar interest in the eerily self-referential expecta- 
tion of g(X) under p(x) when g(X) = log &J . 

Remark: The entropy of X can also be interpreted as the expected 
value of log &J, where X is drawn according to probability- mass 
function p(x). Thus 

1 
H(X) = EP log - 

p(X) * 

This definition of entropy is related to the definition of entropy in 
thermodynamics; some of the connections will be explored later. It is 
possible to derive the definition of entropy axiomatically by defining 
certain properties that the entropy of a random variable must satisfy. 
This approach is illustrated in a problem at the end of the chapter. We 
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will not use the axiomatic approach to justify the definition of entropy; 
instead, we will show that it arises as the answer to a number of natural 
questions such as “What is the average length of the shortest descrip- 
tion of the random variable. 3” First, we derive some immediate con- 
sequences of the definition. 

Lemma 2.1.1: H(X) 2 0. 

Proof: 0 <P(x) I 1 implies lOg(llP(x)) 2 0. Cl 

Lemma 2.1.2: H,(X) = (log, a)&(X). 

Proof: log, P = log, a log, P. 0 

The second property of entropy enables us to change the base of the 
logarithm in the definition. Entropy can be changed from one base to 
another by multiplying by the appropriate factor. 

Example 2.1.1; Let 

with probability p , 
with probability 1 - p . (2.4) 

Then 

(2.5) 

In particular, H(X) = 1 bit whenp = 1 / 2. The graph of the function H( P) 
is shown in Figure 2.1. The figure illustrates some of the basic prop- 
erties of entropy-it is a concave function of the distribution and equals 
0 when p = 0 or 1. This makes sense, because when p = 0 or 1, the 
variable is not random and there is no uncertainty. Similarly, the 
uncertainty is maximum when p = g, which also corresponds to the 
maximum value of the entropy. 

Example 2.1.2: Let 

with probability l/2 , 
with probability l/4 , 
with probability l/8 , 
with probability l/8 . 

(2.6) 

The entropy of X is 

1 1 7 
HGy)=-clogs-alog~-~log~-81og8=4bits. (2.7) 



2.2 JOlNT ENTROPY AND CONDlTlONAL ENTROPY 15 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

P 

Figure 2.1. H(p) versus p. 

Suppose we wish to determine the value of X with the minimum number 
of binary questions. An efficient first question is “Is X = a?” This splits 
the probability in half. If the answer to the first question is no, then the 
second question can be “Is X = b?” The third question can be “Is X = c?” 
The resulting expected number of binary questions required is 1.75. 
This turns out to be the minimum expected number of binary questions 
required to determine the value of X. In Chapter 5, we show that the 
minimum expected number of binary questions required to determine X 
lies between H(X) and H(X) + 1. 

2.2 JOINT ENTROPY AND CONDITIONAL ENTROPY 

We have defined the entropy of a single random variable in the previous 
section. We now extend the definition to a pair of random variables. 
There is nothing really new in this definition because (X, Y) can be 
considered to be a single vector-valued random variable. 

Definition: The joint entropy H(X, Y) of a pair of discrete random 
variables (X, Y) with a joint distribution p(x, y) is defined as 

MX, Y) = - c c ph, y) log pb, y) , rEZyE4r cm 

which can also be expressed as 

H(x, Y> = -E log p(X, Y) . (2.9) 
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We also define the conditional entropy of a random variable given 
another as the expected value of the entropies of the conditional 
distributions, averaged over the conditioning random variable. 

Definition: If (X, Y) -p(x, y), then the conditional entropy H(YIX) is 
defined as 

H(YIX) = c p(x)H(YIX = xl 
rE2f 

(2.10) 

= - 2 p(x) c P(Yld log P(Y Ix) 
xE% YE3 

(2.11) 

= - c c pb, y) log P(Y Id 
WETYE 

= - qdX,Y~ log p(YIX) * 

(2.12) 

(2.13) 

The naturalness of the definition of joint entropy and conditional 
entropy is exhibited by the fact that the entropy of a pair of random 
variables is the entropy of one plus the conditional entropy of the other. 
This is proved in the-following- theorem. 

Theorem 2.2.1 (Chain rule): 

H(X, Y) = H(X) + H(YJX) . 

Proof: 

-- 

wx, Y) = - c c pb, Y) log pb, y) 
XEXYESl 

= - c c pb, y) log PWP( y 1x1 
XElYE% 

= - c c p(n, y) log pw- c c Ph, Y) log P(YlX) 
WEX YE?? HEEYE 

= - c p(x) log p(x) - c c p(x, Y) log P(Yld 
XEI XEZ”yE9 

= H(X) + H(YlX). 

Equivalently, we can write 

log p(X, Y) = log p(X) + log p(YIX) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

and take the expectation of both sides of the equation to obtain the 
theorem. 0 
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Corollary: 

H(X, YIZ) = H(XIZ) + H(YIX, 2). (2.21) 

Proof: The proof follows along the same lines as the theorem. Cl 

Example 2.2.1: Let (X, Y) have the following joint distribution: 

X Ill Y 1 2 3 4 

1 1 - 1 1 1 
ii 16 32 32 

2 1 1 1 
16 3 ‘32 

- 1 
32 

3 1 1 1 
16 iii 

- 1 
16 16 

4 1 
4 0 0 0 

The marginal distribution of X is ( $, f , i, $ ) and the marginal 
distribution of Y is ( a, a, %, 4 ), and hence H(X) = 7/4 bits and H(Y) = 
2 bits. Also, 

H(X(Y)= f: p(Y=i)H(XIY=i) 
i=l 

=+H(~,~,~,, 1 1 1 1 > +4 &H ( 1 1 1 1 
4’z’g’g > (2.22) 

+; H(l,O,O,O) (2.23) 

(2.24) 

11 
= 8 bits. (2.25) 

Similarly H(YIX) = 13/8 bits and H(X, Y) = 27/8 bits. 

Remark: Note that H(YIX) # H(XI Y). However, H(X) - H(XI Y) = 
H(Y) - H(YIX), a property that we shall exploit later. 
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2.3 RELATIVE ENTROPY AND MUTUAL INFORMATION 

The entropy of a random variable is a measure of the uncertainty of the 
random variable; it is a measure of the amount of information required 
on the average to describe the random variable. In this section, we 
introduce two related concepts: relative entropy and mutual infor- 
mation. 

The relative entropy is a measure of the distance between two 
distributions. In statistics, it arises as an expected logarithm of the 
likelihood ratio. The relative entropy D(p 11 a> is a measure of the 
inefficiency of assuming that the distribution is Q when the true dis- 
tribution is p. For example, if we knew the true distribution of the 
random variable, then we could construct a code with average descrip- 
tion length H(p). If, instead, we used the code for a distribution 4, we 
would need H(p) + D( p 11 a> bits on the average to describe the random 
variable. 

Definition: The relative entropy or Kullback Leibler distance between 
two probability mass functions p(x) and q(x) is defined as 

pm 
D(pllq)= c PWlW Q(x) 

xE2f 

p(X) =E,log- 
q(X) ’ 

(2.26) 

(2.27) 

In the above definition, we use the convention (based on continuity 
arguments) that 0 log i = 0 and p log 5 = 00. 

We will soon show that relative entropy is always non-negative and is 
zero if and only if p = q. However, it is not a true distance between 
distributions since it is not symmetric and does not satisfy the triangle 
inequality. Nonetheless, it is often useful to think of relative entropy as 
a “distance” between distributions. 

We now introduce mutual information, which is a measure of the 
amount of information that one random variable contains about another 
random variable. It is the reduction in the uncertainty of one random 
variable due to the knowledge of the other. 

Definition: Consider two random variables X and Y with a joint 
probability mass function p(x, y) and marginal probability mass func- 
tions p(x) and p(y). The mutual information I(X;Y) is the relative 
entropy between the joint distribution and the product distribution 
pWp( y>, i.e., 

I(X, Y) = c Ic p(x, y) log Pk Y) 
XEB?YE% pWp(y) 

(2.28) 
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= D(p(x, y)llp(x)p(y)) (2.29) 

= Epcx, y) 1% 
pw, Y) 

pWp(Y) - 
(2.30) 

Example 2.3.1: Let aP = (0, 1) and consider two distributions p and q 
on SF’. Let p(0) = 1 - r, p( 1) = r, and let q(0) = 1 - s, q( 1) = s. Then 

l-r 
D(pllq)=(l-r)log~ +rlogi (2.31) 

and 

l-s 
D(qJlp)=(l-s)logl_r+slog~. (2.32) 

If r=s, then D(p)lq)=D(qllp)=O. If r=1/2, s=1/4, then we can 
calculate 

1 i wld=pgg+2 t I log _i = 1 
1 

- log3 = 0.2075 bits, (2.33) 4 4 2 

whereas 

D(qllp)= 3 4 log i + ; log z $ 3 = 
2 2 

4 log 3 - 1 = 0.1887 bits . (2.34) 

Note that D( p II q) z D( q II p) in general. 

2.4 RELATIONSHIP BETWEEN ENTROPY AND MUTUAL 
INFORMATION 

We can rewrite the definition of mutual information 1(X, Y) as 

Pk Y) m Y) = c Pb, Y) log p(x)p(y) 
x, Y 

= c per, Y) log p$$ 
x9 Y 

(2.35) 

(2.36) 

= - c p(x, y) log p(x) + 2 p(x, y) log p(xI y) (2.37) x9 Y x3 Y 

= -7 p(x) log P(X) - (-c P(X, Y) log PNY)) (2.38) 
xv Y 

= H(X) - H(XIY) , (2.39) 
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Thus the mutual information 1(X, Y) is the reduction in the uncertainty 
of X due to the knowledge of Y. 

By symmetry, it also follows that 

1(X, Y) = H(Y) - H(YIX). (2.40) 

Thus X says as much about Y as Y says about X. 
Since H(X, Y) = H(X) + H(YIX) as shown in Section 2.2, we have 

1(X, Y) = H(X) + H(Y) - H(X, Y) . 

Finally, we note that 

(2.41) 

WC m = H(X) - H(XIX) = H(X). (2.42) 

Thus the mutual information of a random variable with itself is the 
entropy of the random variable. This is the reason that entropy is 
sometimes referred to as self-information. 

Collecting these results, we have the following theorem. 

Theorem 2.4.1 (Mutual information and entropy): 

Kc Y) = H(X) - H(Xl Y) , 

1(X, Y) = H(Y) - H(YIX), 

1(x; Y) = H(X) + H(Y) - H(X, Y) , 

1(X, Y) = I(y; X) , 

1(X, X) = H(X) . 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 

Figure 2.2. Relationship between entropy and mutual information. 
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The relationship between H(X), H(Y), H(X, Y), H(XIY), H(YIX) and 
1(X, Y) is expressed in a Venn diagram (Figure 2.2). Notice that the 
mutual information 1(X; Y) corresponds to the intersection of the infor- 
mation in X with the information in Y. 

Example 2.4.1: For the joint distribution of example 2.2.1, it is easy 
to calculate the mutual information 1(X; Y) = H(X) - H(XIY) = H(Y) - 
H(YIX) = 0.375 bits. 

2.5 CHAIN RULES FOR ENTROPY, RELATIVE ENTROPY AND 
MUTUAL INFORMATION 

We now show that the entropy of a collection of random variables is the 
sum of the conditional entropies. 

Theorem 2.5.1 (Chain rule for entropy): Let X,, X2, . . . , X, be drawn 
according to p(xl, x,, . . . ,x,). Then 

H(x,,x,, - * . , x,1= li H(x,IXi-1,. . . ,x1>. 
i=l 

Proof: By repeated application of the two-variable expansion rule for 
entropies, we have 

H(x,, x2 I= H(x, ) + H(x, Ix, ) , (2.49) 

H(x,,x,, . . .,x,)=H(x,)+H(x,Ix,)+.~.+H(x,IX,-,,...,X,) (2.52) 

= $ H(x,IXi-1, X > . . . . 1 . (2.53) 
i=l 

Alternative Proof: We write p(X1, . . . ,x,)=Il~~, p(XiIXi-1,. . . ,X1) 

and evaluate 

H(x,,x,, . . . ,x,> 
=- c P(X,, x2, ’ ’ ’ ,x,)logP(x,,x,,...,x,) (2.54) 

“19-9,. . . ,x, 
=- c P(X,, x2, ’ ’ ’ 9 x,Jlog fi P(&-~, .  l l ,x1) (2.55) 

Zl,+,&. * * $2, i=l 
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=- c i p(x1,x2,. . . &log p(qlql,. . . J,) (2.56) 
x1,x2,. . .9x, i=l 

= -2 c p(x1,x2,. . . ,x,)logp(x,lxi-l,. . . ,x1) (2.57) 
i=l +,.3,. + * 9X, 

= -c c p(x1,x2,. . . ,“Jogp(x,~x~-l,~ * - ,xJ (2.58) 
i=l 21’22,. . . ,ri 

(2.59) 

We now define the conditional mutual information as the reduction in 
the uncertainty of X due to knowledge of Y when 2 is given. 

Definition: The conditional mutual information of random variables X 
and Y given 2 is defined by 

1(X, Y(Z) = H(XIZ) - H(XlY, 2) 

= qdx, y, 2) log 
pa, YlZ> 

pwp)pwIz) 

Mutual information also satisfies a chain rule. 

Theorem 2.5.2 (Chain rule for information): 

I&, x2, * * * , x$ y, = i I(xi; ylxi-l, xi-2> 
i=l 

Proof: 

. 

(2.60) 

(2.61) 

,X1). (2.62) 

K&,x,, * * * , x,;Y,=H(x,,x,,...,x,)-H(x,,x, ,..., X,IY) (2.63) 

= ~ H(x,(Xi_l, . . * pxl>- C H(xilxi-l, *. * ,xl, y, 
i=l i=l 

=i I<Xi;YIXl,X,,...,Xi-l)” q 
i=l 

(2.64) 

We define a conditional version of the relative entropy. 

Definition: The conditional relative entropy D( p( y lx>ll q( y lx>> is the 
average of the relative entropies between the conditional probability 
mass functions p( y lx) and q( y Ix) averaged over the probability mass 
function p(x). More precisely, 

P(Y Ix) D(p(ylx)llq(ylx)) = 5 P(x); Pbw 1% g$j (2.65) 
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P(YIX) = %x, y) 1% - q(YJX) * 
(2.66) 

The notation for conditional relative entropy is not explicit since it 
omits mention of the distribution p(x) of the conditioning random 
variable. However, it is normally understood from the context. 

The relative entropy between two joint distributions on a pair of 
random variables can be expanded as the sum of a relative entropy and 
a conditional relative entropy. The chain rule for relative entropy will be 
used in Section 2.9 to prove a version of the second law of thermo- 
dynamics. 

Theorem 2.5.3 (Chain rule for relative entropy): 

mph, y>/ qb, y)> = D(p(dll q(x)) + WP(Y 1411 q(y Id> l (2.67) 

Proof: 

Pk, Y) D( p(x, y>ll q(x, yN = c c Pk Y) 1% - 
x Y 4(x, Y) 

(2.68) 

(2.69) 

= c c P(X, ,,logP$ + c c PC% Y)lWP~ @JO) 
x Y x Y 

= ~Cp<dllqW> + D(p( ylx>ll q( yJr)> . •J (2.71) 

2.6 JENSEN’S INEQUALITY AND ITS CONSEQUENCES 

In this section, we shall prove some simple properties of the quantities 
defined earlier. We begin with the properties of convex functions. 

Definition; A function f(x) is said to be convex over an interval (a, b) if 
foreveryx,,x,E(a,b)andO~A~l, 

fchx, + (I- h)x+ A/b,) + Cl- Nf(3Gs). (2.72) 

A function f is said to be strictly convex if equality holds only if A = 0 or 
A= 1. 

Definition: A function f is concave if - f is convex. 

A function is convex if it always lies below any chord. A function is 
concave if it always lies above any chord. 
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Examples of convex functions include x2, IX I, e”, x log x (for x 2 0), etc. 
Examples of concave functions include log x and A& for x 10. Figure 2.3 
shows some examples of convex and concave functions. Note that linear 
functions ax + b are both convex and concave. Convexity underlies many 
of the basic properties of information theoretic quantities like entropy 
and mutual information. Before we prove some of these properties, we 
derive some simple results for convex functions. 

Theorem 2.6.1: If the function f has a second derivative which is 
non-negative (positive) everywhere, then the function is convex (strictly 
convex). 

Proof: We use the Taylor series expansion of the function around x,,, 
i.e., 

where x* lies between x0 and x. By hypothesis, 
last term is always non-negative for all x. 

f(x) = f(xJ + f ‘(x,)(x -x0> + fF(x - xJ2 

f”(x*> 2 0, and thus the 

j(x) = x* 
(a) 

j(x) = ex 

(2.73) 

Figure 2.3. Examples of (a) convex and (b) concave functions. 
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We let X, = Ax, + (1 - h)x, and take x = X, to obtain 

Similarly, taking x = x0, we obtain 

flx2) 2 /lx(-)) + f’(X())M& - x,)1 * (2.75) 

Multiplying (2.74) by A and (2.75) by 1 - A and adding, we obtain (2.72). 
The proof for strict convexity proceeds along the same lines. Cl 

Theorem 2.6.1 allows us to immediately verify the strict convexity of 
x2, er and x logx for x 2 0, and the strict concavity of logx: and ~5 for 
x I 0. 

Let E denote expectation. Thus EX = CxEx p(x)x in the discrete case 
and EX = J xfl~) & in the continuous case. 

The next inequality is one of the most widely used in mathematics 
and one that underlies many of the basic results in information theory. 

Theorem 2.6.2 (Jensen’s inequality): If f is a convex function and X is 
a random variable, then 

EflX) 1 REX). (2.76) 

Moreover, if f is strictly convex, then equality in (2.76) implies that 
X = EX with probability 1, i.e., X is a constant. 

Proof: We prove this for discrete distributions by induction on the 
number of mass points. The proof of conditions for equality when f is 
strictly convex will be left to the reader. 

For a two mass point distribution, the inequality becomes 

(2.77) 

which follows directly from the definition of convex functions. Suppose 
the theorem is true for distributions with k - 1 mass points. Then 
writing p i =pJ(l -pk) for i = 1,2, . . . , k - 1, we have 

2 Piflxi)=pkflxkI+C1 -P,lY plflx,) 
i=l i=l 

(2.78) 

LpkflXk) + (1 -PAIf (‘2’ Plzi) 
i=l 

k-l 

(2.79) 

1 f( PkXk +(l -pk) c pfxi > (2.80) 
i=l 
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= f( li Pixi) 9 
i=l 

(2.81) 

where the first inequality follows from the induction hypothesis and the 
second follows from the definition of convexity. 

The proof can be extended to continuous distributions by continuity 
arguments. Cl 

We now use these results to prove some of the properties of entropy 
and relative entropy. The following theorem is of fundamental impor- 
tance. 

Theorem 2.6.3 (Information inequality): Let p(x), q(x), x E %‘, be two 
probability mass functions. Then 

mp(lqeO (2.82) 

with equality if and only if 

p(x) = q(x) for aZZ x . (2.83) 

Proof: Let A = {x : p(x) > 0} be the support set of p(x). Then 

-D(pllq)= - c p(r)logP~ 
XEA 

= c p(x)log$$ 
XEA 

q(x) I log c p(x)- 
XEA pw 

= log c q&c) 
XEA 

(2.84) 

(2.85) 

(2.86) 

(2.87) 

5 log c q(x) 
XEZ 

(2.88) 

= log1 (2.89) 

= 0, (2.90) 

where (2.86) follows from Jensen’s inequality. Since log t is a strictly 
concave function of t, we have equality in (2.86) if and only if q(x)/ 
p(x) = 1 everywhere, i.e., p(x) = q(x). Hence we have D( p 11 q> = 0 if and 
only if p(x) = q(x) for all x. Cl 
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Corollary (Non-negativity of mutual information): For any two ran- 
dom variables, X, Y, 

I(x;YPO, (2.91) 

with equality if and only if X and Y are independent. 

Proof: 1(X, Y) = D( p(;c, y>ll p(x) p(y)) 2 0, with equality if and only if 
p(x, y) = p(x) p(y), i.e., X and Y are independent. Cl 

Corollary: 

D(p( yldll dY 1x1) 10 9 (2.92) 

with equality if and only if p( y Ix) = q( y(x) for all y and x with p(x) > 0. 

Corollary: 

1(X, Y(Z)rO, (2.93) 

with 
2. 

equality if and only if X and Y are conditionally independent given 

We now show that the uniform distribution over the range %’ is the 
maximum entropy distribution over this range. It follows that any 
random variable with this range has an entropy no greater than log I %I. 

Theorem 2.6.4: H(X)5 logl%l, where 1x1 denotes the number of ele- 
ments in the range of X, with equality if and only if X has a uniform 
distribution over 2. 

Proof: Let u(x) = & be the uniform probability mass function over 8, 
and let p(x) be the probability mass function for X. Then 

D(pllu) = c PW log a - p(x) - logliz - H(X). (2.94) 

Hence by the non-negativity of relative entropy, 

osD(pllu)=log12tl -2WL 0 (2.95) 

Theorem 2.6.5 (Conditioning reduces entropy): 

H(Xl Y) 5 H(X) (2.96) 

with equality if and only if X and Y are independent. 
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Proof: 0 5 1(X, Y) = H(X) - H(XIY). Cl 

Intuitively, the theorem says that knowing another random variable 
Y can only reduce the uncertainty in X. Note that this is true only on the 
average. Specifically, H(XIY = y) may be greater than or less than or 
equal to H(X), but on the average H(XIY) = C, p( y)H(XIY = y) I H(X). 
For example, in a court case, specific new evidence might increase 
uncertainty, but on the average evidence decreases uncertainty. 

Example 2.6.1: Let (X, Y) have the following joint distribution: 

Then H(X) = H( i, g ) = 0.544 bits, H(XIY = 1) = 0 bits and H(XIY = 2) = 
1 bit. We calculate H(XIY) = $H(XJY = 1) + $H(XIY = 2) = 0.25 bits. 
Thus the uncertainty in X is increased if Y = 2 is observed and de- 
creased if Y = 1 is observed, but uncertainty decreases on the average. 

Theorem 2.6.6 (Independence bound on entropy): Let Xl, X,, . . , ,X, be 
drawn according to p(x,, x,, . . . , x~>. Then - 

with equality if and only if the Xi are independent. 

Proof: By the chain rule for entropies, 

H(x,,x, ,  .  -  l ,  xn>= 2 H(XiIXi-1, l l l 

i=l 

(2.97) 

9 Xl) (2.98) 

(2.99) 

where the inequality follows directly from the previous theorem. We 
have equality if and only if Xi is independent of Xi- 1, . . . , X1 for all i, i.e., 
if and only if the Xi’s are independent. 0 



2.7 THE LOG SUM 1NEQUALIl-Y AND ITS APPLICATZONS 29 

2.7 THE LOG SUM INEQUALITY AND ITS APPLICATIONS 

We now prove a simple consequence of the concavity of the logarithm, 
which will be used to prove some concavity results for the entropy. 

Theorem 2.7.1 (Log sum inequality): For non-negative numbers, a,, 
a,, . . . y a, and b,, b,, . . . , b,, 

i 1 ai 
i=l 

og F 2 (2 ai) log $$ 
i i=l i-l z 

(2.100) 

with equality if and only if 2 = const. I 

We again use the convention that 0 log 0 = 0, a log 8 = 00 if a > 0 and 
0 log 8 = 0. These follow easily from continuity. 

Proof: Assume without loss of generality that ai > 0 and bi > 0. 
The function fct) = t log t is strictly convex, since f”(t) = i log e > 0 for 

all positive t. Hence by Jensen’s inequality, we have 

C &ifitiJ2f(C aiti) (2.101) 

for ai 2 0, Ci (Y~ = 1. Setting pi = bi/~~=1 bj and ti = ailbi, we obtain 

c &log~Bc&logc$--, (2.102) 
j i J J 

which is the log sum inequality. cl 

We now use the log sum inequality to prove various convexity results. 
We begin by reproving Theorem 2.6.3, which states that D(p 11 q> 2 0 
with equality if and only if p(x) = q(x). 

By the log sum inequality, 

p(x) D(pllq) = c PW log i. (2.103) 

(2.104) 

1 
= 1 log 1 = 0 (2.105) 

with equality if and only if p(x)lq(x) = c. Since both p and q are 
probability mass functions, c = 1, and hence we have D(p 11 q) = 0 if and 
only if p(x) = q(x) for all 2. 
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Theorem 2.7.2: DC p 11 q) is conuex in the pair (p, a), i.e., if (ply q1 > and 
(p2, q2) are two pairs of probability mass functions, then 

D(hp, + (1 - h)p,IlAq, + Cl- Nq& mP,Ilq,) + (I- A)D(P2Il%) 

(2.106) 

for alZ OIAsl. 

Proof: We apply the log sum inequality to a term on the left hand 
side of (2.106), i.e., 

Ap,(x) + (1 - h)P,(x) 
(Ap,(d + (1 - Ah(x))log Aq (x) + (1 - A)qZ(x) 

1 

Ap,(x) 
s ‘Pdx) log Aql(x) - + (1 - A)p,(x) log (1 - A)&) 

(1 - A)q2(x) ’ 
(2.107) 

Summing this over all x, we obtain the desired property. cl 

Theorem 2.7.3 (Concavity of entropy): H(p) is a concave function of p. 

Proof: 

H(p)=k&+D(pl~u), (2.108) 

where u is the uniform distribution on I%‘I outcomes. The concavity of H 
then follows directly from the convexity of D. 

Alternative Proof: Let XI be a random variable with distribution p1 
taking on values in a set A. Let X, be another random variable with 
distribution pz on the same set. Let 

with probability A 
with probability 1 - A (2.109) 

Let 2 = X0. Then the distribution of 2 is Ap, + (1 - A)p,. Now since 
conditioning reduces entropy, we have 

H(ZkH(Zl@, (2.110) 

or equivalently, 

H(Ap,+(l-A)p,)~AH(p,)+(1-A)H(P2)~ (2.111) 

which proves the concavity of the entropy as a function of the dis- 
tribution. Cl 
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One of the consequences of the concavity of entropy is that mixing 
two gases of equal entropy results in a gas with higher entropy. 

Theorem 2.7.4: Let (X, Y) - p(x, y) = p(x)p( y Ix>. The mutual informa- 
tion I(X; Y) is a concave function of p(x) for fixed p( y 1x) and a convex 
function of p( y Ix) for fixed p(x). 

Proof: To prove the first part, we expand the mutual information 

I(x; Y) = H(Y) - H(YIX) = H(Y) - c p(x)H(YIX = xc). (2.112) 
x 

If p( y IX) is fixed, then p(y) is a linear function of p(x). Hence H(Y), 
which is a concave function of p( y), is a concave function of p(x). The 
second term is a linear function ofp(x). Hence the difference is a concave 
function of p(x). 

To prove the second part, we fix p(x) and consider two different 
conditional distributions pJ ~1%) and pz( y lx). The corresponding joint 
distributions are p&, y) = p(x) pl( ylx) and p&, y) = p(x) p2( ylx), and 
their respective marginals are p(x), pi(y) and p(x), p2(y). Consider a 
conditional distribution 

p,(ylx> = Ap,(yld + (I- h)P,(Yl~) (2.113) 

that is a mixture of pl( ylx) and p2( ylx). The corresponding joint dis- 
tribution is also a mixture of the corresponding joint distributions, 

p*(x, y) = hp,(x, y) + (1 - NP,h Y) 9 (2.114) 

and the distribution of Y is also a mixture 

pn(y) = Ap,(y) + (I- NP,(Y) l (2.115) 

Hence if we let Q&X, y) = p(x)p,( y) be the product of the marginal 
distributions, we have 

q,(x, y) = Aq,(x, y) + (I- A)q&, Y). (2.116) 

Since the mutual information is the relative entropy between the joint 
distribution and the product of the marginals, i.e., 

m n=mP,Ilq,L (2.117) 

and relative entropy D( p II q) is a convex function of (p, q), it follows that 
the mutual information is a convex function of the conditional dis- 
tribution. 0 
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2.8 DATA PROCESSING INEQUALITY 

The data processing inequality can be used to show that no clever 
manipulation of the data can improve the inferences that can be made 
from the data. 

Definition: Random variables X, Y, Z are said to form a Markov chain 
in that order (denoted by X-, Y + 2) if the conditional distribution of 2 
depends only on Y and is conditionally independent of X. Specifically, X, 
Y and 2 form a Markov chain X+ Y+ 2 if the joint probability mass 
function can be written as 

PC5 y,  d = pWp( y ldp(z) y) l (2.118) 

Some simple consequences are as follows: 

l X+ Y+ 2 if and only if X and 2 are conditionally independent 
given Y. Markovity implies conditional independence because 

Pk 4Y) = Pk Y, d = Pk Y)P(Z I Y) p(y) 
P(Y) 

= p(~ly)p(zly) l 
(2.119) 

This is the characterization of Markov chains that can be extended 
to define Markov fields, which are n-dimensional random processes 
in which the interior and exterior are independent given the values 
on the boundary. 

l X- Y-, 2 implies that 2 --, Y+ X. Thus the condition is some- 
times written X- Y f, 2. 

l If 2 = f(Y), then X-* Y+ 2. 

We can now prove an important and useful theorem demonstrating 
that no processing of Y, deterministic or random, can increase the 
information that Y contains about X. 

Theorem 2.8.1 (Data processing inequality): If X+ Y+ 2, then 
I(X, Y) 1 I(X, 2). 

Proof: By the chain rule, we can expand mutual information in two 
different ways. 

I(X, Y, 2) = I(X, 2) + I(X, YIZ) (2.120) 

= I(X, 2) + I(X, YIZ) . (2.121) 
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Since X and 2 are conditionally independent given Y, we have 
I(X, ZlY) = 0. Since 1(X, YlZ) ~0, we have 

1(x, Y) 1 I(X, 2) . (2.122) 

We have equality if and only if 1(X, YlZ) = 0, i.e., X+2+ Y forms a 
Markov chain. Similarly, one can prove that I(Y; 2) 2 1(X, 2). Cl 

Corollary: In particular, if2 = g(Y), we have I(X, Y) 2 I(X; g(Y)). 

Proof: X+ Y+g(Y) forms a Markov chain. 0 

Thus functions of the data Y cannot increase the information about X. 

Corollary: IfX+ Y+ 2, then I(X, YlZ) I I(X, Y). 

Proof: From (2.120) and (2.121), and using the fact that 1(X, ZIY) = 
0 by Markovity and 1(X, 2) 10, we have 

I(X, YIZ) I I(X, Y) . q (2.123) 

Thus the dependence of X and Y is decreased (or remains unchanged) 
by the observation of a “downstream” random variable 2. 

Note that it is also possible that 1(X, YlZ> > 1(X; Y) when X, Y and 2 
do not form a Markov chain. For example, let X and Y be independent 
fair binary random variables, and let 2 = X + Y. Then 1(X; Y) = 0, but 
1(X; YlZ) = H(XIZ) - H(X(Y, 2) = H(XIZ) = P(Z = 1) H(XIZ = 1) = $ bit. 

2.9 THE SECOND LAW OF THERMODYNAMICS 

One of the basic laws of physics, the second law of thermodynamics, 
states that the entropy of an isolated system is non-decreasing. We now 
explore the relationship between the second law and the entropy func- 
tion that we have defined earlier in this chapter. 

In statistical thermodynamics, entropy is often defined as the log of 
the number of microstates in the system. This corresponds exactly to our 
notion of entropy if all the states are equally likely. But why does the 
entropy increase? 

We model the isolated system as a Markov chain (see Chapter 4) with 
transitions obeying the physical laws governing the system. Implicit in 
this assumption is the notion of an overall state of the system and the 
fact that, knowing the present state, the future of the system is 
independent of the past. In such a system, we can find four different 
interpretations of the second law. It may come as a shock to find that 
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the entropy does not always increase. However, relative entropy always 
decreases. 

1. Relative entropy D( p,,ll&) decreases with n. Let ,u~ and CL:, be two 
probability distributions on the state space of a Markov chain at 
time n, and let pn +1 and & + 1 be the corresponding distributions at 
time n + 1. Let the corresponding joint mass fun&ions be denoted 
by p and q. Thus p(=2,,~,+~)=p(=c,) d~,+lIx,) ad q(+x,+l)= 
q(x, ) dx,, + I Ix,), where r( l I . ) is the probability transition function 
for the Markov chain. Then by the chain rule for relative entropy, 
we have two expansions: 

D(P(x,,x,+,)llq(x,,x,,,)) 

= ~(P(x,)ll&,N + D(p(x,+,Ix,)IIq(Xn+llXn)) 

=~(P(x,+IM&I+1>) + ~(P(x,lx,+l)lIQ(x,IXn+l))’ 

Since both p and q are derived from the Markov chain, the 
conditional probability mass functions p(x, + I lx, ) and q(x, + 1 Ix, ) 
are equal to F(x~+~ Ix,> ad hence D(p(x,+,(x,)((q(x~+lIx,)) = 0. 
Now using the non-negativity of D( p(x, Ix, + 1 ) II q(xn Ix, + 1 )) (Corol- 
lary to Theorem 2.6.3), we have 

or 

Consequently, the distance between the probability mass func- 
tions is decreasing with time n for any Markov chain. 

An example of one interpretation of the preceding inequality is 
to suppose that the tax system for the redistribution of wealth is 
the same in Canada and in England. Then if ccn and & represent 
the distributions of wealth among individuals in the two countries, 
this inequality shows that the relative entropy distance between 
the two distributions decreases with time. The wealth distribu- 
tions in Canada and England will become more similar. 

2. Relative entropy D( pn II p) between a distribution I-L, on the states at 
time n and a stationary distribution JL decreases with n. In 
(2.125), & is any distribution on the states at time n. If we let pk 
be any stationary distribution p, then &+ I is the same stationary 
distribution. Hence 

~kllP)~D(Prl+1lIPL (2.126) 
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which implies that any state distribution gets closer and closer to 
each stationary distribution as time passes. The sequence 
D( pn 11 p) is a monotonically non-increasing non-negative sequence 
and must therefore have a limit. The limit is actually 0 if the 
stationary distribution is unique, but this is more difficult to 
prove. 

3. Entropy increases if the stationary distribution is uniform. In 
general, the fact that the relative entropy decreases does not 
imply that the entropy increases. A simple counterexample is 
provided by any Markov chain with a non-uniform stationary 
distribution. If we start this Markov chain from the uniform 
distribution, which already is the maximum entropy distribution, 
the distribution will tend to the stationary distribution, which has 
a lower entropy than the uniform. Hence the entropy decreases 
with time rather than increases. 

If, however, the stationary distribution is the uniform dis- 
tribution, then we can express the relative entropy as 

In this case the monotonic decrease in relative entropy implies a 
monotonic increase in entropy. This is the explanation that ties in 
most closely with statistical thermodynamics, where all the mi- 
crostates are equally likely. We now characterize processes having 
a uniform stationary distribution. 

Definition: A probability transition matrix [P,], Pti = Pr{X,+, = 
AX, = i} is called doubly stochastic if 

CP,=l, j=l,2,... (2.128) 

and 

CP,=l, i = 1,2,. . . (2.129) 
j 

Remark: The uniform distribution is a stationary distribution 
of P if and only if the probability transition matrix is doubly 
stochastic. See Problem 1 in Chapter 4. 

4. The conditional entropy H(x, IX, ) increases with n for a stationary 
Markov process. If the Markov process is stationary, then H(X, > is 
constant. So the entropy is nonincreasing. However, we will prove 
that H(X,(X,) increases with n. Thus the conditional uncertainty 
of the future increases. We give two alternative proofs of this 
result. First, we use the properties of entropy, 
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H(x, Ix, > 1 H(x, Ix,, x, 1 (conditioning reduces entropy) (2.130) 

= H(x, 1x2 > (by Markovity ) (2.131) 

(by stationarity) . (2.132) 

Alternatively, by an application of the data processing 
to the Markov chain Xl+Xn-pXn, we have 

inequality 

I(xl;xn~,)rI(x~;xn). (2.133) 

Expanding the mutual informations in terms of entropies, we have 

H(X,_,)-H(X,-,Ix~)~H(X,)-H(X,IX,). (2.134) 

By stationarity, H(x, _ I ) = H(x, ), and hence we have 

H(x,-,Ix,)~wxnIx,). (2.135) 

(These techniques can also be used to show that H(x, IX, ) is 
increasing in n for any Markov chain. See problem 35.) 

5. Shuffles increase entropy. If 2’ is a shuffle (permutation) of a deck 
of cards and X is the initial (random) position of the cards in the 
deck and if the choice of the shuffle 2’ is independent of X, then 

mm 2 mm, (2.136) 

where TX is the permutation of the deck induced by the shuffle 2’ 
on the initial permutation X. Problem 31 outlines a proof. 

2.10 SUFFICIENT STATISTICS 

This section is a sidelight showing the power of the data processing 
inequality in clarifying an important idea in statistics. Suppose we have 
a family of probability mass functions { f@(x)} indexed by 6, and let X be 
a sample from a distribution in this family. Let Z’(X) be any statistic 
(function of the sample) like the sample mean or sample variance. Then 
IV+ X+ T(X), and by the data processing inequality, we have 

I@; T(X)> 5 I@; X) (2.137) 

for any distribution on 8. However, if equality holds, no information is 
lost. 
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A statistic T(X) is called sufficient for 8 if it contains all the informa- 
tion in X about 8. 

Definition: A function Z’(X) is said to be a sufficient statistic relative to 
the family { f,(z)} if X is independent of 8 given T(X), i.e., 8 + T(X)+ X 
forms a Markov chain. 

This is the same as the 
inequality, 

condition for equality in the data processing 

I@; X) = I@; T(X)) (2.138) 

for all distributions on 8. Hence sufficient statistics preserve mutual 
information and conversely. 

Here are some examples of sufficient statistics: 

1. LetX,,X, ,..., X,,Xi E{O,l}, b e an independent and identically 
distributed (i.i.d.) sequence of coin tosses of a coin with unknown 
parameter 8 = Pr<X, = 1). Given n, the number of l’s is a sufficient 
statistic for 8. Here Z’(X1, X,, . . . , X, > = C y= 1 Xi. In fact, we can 
show that given T, all sequences having that many l’s are equally 
likely and independent of the parameter 8. Specifically, 

Pr (X1,X, ,..., Xn)=(xl,x2 ,..., 

otherwise . 
(2.139) 

Thus e-tCXi3(X~,X2,... , X, ) forms a Markov chain, and T is a 
sufficient statistic for 8. 

The next two examples involve probability densities instead of prob- 
ability mass functions, but the theory still applies. We define entropy 
and mutual information for continuous random variables in Chapter 9. 

2. If X is normally distributed with mean 8 and variance 1, i.e., if 

1 
fob) = s e -(r43)2/2 = N(@, 1)) (2.140) 

and X1,X,, . . . ,X, are drawn independently according to this 
distribution, then a sufficient statistic for 8 is Xn = E Ey= 1 Xi. It 
can be verified that the conditional distribution of X,, X2, . . . , X, , 
conditioned on & and n does not depend on 8. 
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3. If fe = Uniform@, 8 + l), then a sufficient statistic for 8 is 

T(x,,X,, * - .,XJ=<max{X& ,..., X,},min{X,,X, ,..., X,}>. 

(2.141) 

The proof of this is slightly more complicated, but again one can 
show that the distribution of the data is independent of the 
parameter given the statistic 2’. 

The minimal sufficient statistic is a sufficient statistic that is a 
function of all other sufficient statistics. 

Definition: A statistic T(X) is a minimal sufficient statistic relative to 
{ f,(x)} if it is a function of every other sufficient statistic U. Interpreting 
this in terms of the data processing inequality, this implies that 

8+ T(X)+ U(X)+X. (2.142) 

Hence a minimal sufficient statistic maximally compresses the infor- 
mation about 6 in the sample. Other sufficient statistics may contain 
additional irrelevant information. For example, for a normal distribu- 
tion with mean 6, the pair of functions giving the mean of all odd 
samples and the mean of all even samples is a sufficient statistic, but 
not a minimal sufficient statistic. In the preceding examples, the suffici- 
ent statistics are also minimal. 

2.11 FANO’S INEQUALITY 

Suppose we know a random variable Y and we wish to guess the value of 
a correlated random variable X. Fano’s inequality relates the probability 
of error in guessing the random variable X to its conditional entropy 
H(XIY). It will be crucial in proving the converse to Shannon’s second 
theorem in Chapter 8. From the problems at the end of the chapter, we 
know that the conditional entropy of a random variable X given another 
random variable Y is zero if and only if X is a function of Y. Hence we 
can estimate X from Y with zero probability of error if and only if 
H(X(Y) = 0. 

Extending this argument, we expect to be able to estimate X with a 
low probability of error only if the conditional entropy H(XI Y) is small. 
Fano’s inequality quantifies this idea. 

Suppose we wish to estimate a random variable X with a distribution 
p(x). We observe a random variable Y which is related to X by the 
conditional distribution p( y lx). From Y, we calculate a function g(Y) = 
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X, which is an estimate of X. We wish to bound the probability that 
X # X. We observe that X+ Y+ X forms a Markov chain. Define the 
probability of error 

P,=Pr{~#X}. (2.143) 

Theorem 2.11.1 (Funds inequality): 

~(P~)+P,log(J~I-l)~H(xIy). (2.144) 

This inequality can be weakened to 

l+PelogppH(X~Y) (2.145) 

or 

pe’ 
H(XIY) - 1 

logpq * (2.146) 

Remark: Note that P, = 0 implies that H(XIY) = 0, as intuition 
suggests. 

Proof: Define an error random variable, 

E= 
i 

1 ifitzx, 
0 ifx=x. 

(2.147) 

Then, using the chain rule for entropies to expand H(E, XI Y) in two 
different ways, we have 

H(E, XlY) = H(XI Y) + H(E IX, Y) (2.148) \ , 
=o 

= ptfl:) + H(XIE, Y) . (2.149) 
SEW,) SP,log(lBI-l) 

Since conditioning reduces entropy, H(E I Y) zs H(E) = H(P,). Now since 
E is a function of X and g(Y), the conditional entropy H(E IX, Y) is equal 
to 0. Also, since E is a binary-valued random variable, H(E) = H(P, ). 
The remaining term, H(X( E, Y), can be bounded as follows: 

H(XIE,Y)=P~(E=O)HXIY,E=O)+P~(E=~)H(XIY,E=~) 

(2.150) 

~w-Pe)o+Pelog(~~~-l), (2.151) 
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since given E = 0, X = g(Y), and given E = 1, we can upper bound the 
conditional entropy by the log of the number of remaining outcomes 
( IS.?I - 1 if g( Y) E 25, else 1 El ). Combining these results, we obtain Fano’s 
inequality. Cl 

&mark Suppose that there is no knowledge of Y. Thus X must he 
guessed without any information. Let X E { 1,2,. . . , m} and p1 L pz z 
. . . 1 pm. Then the best guess of X is X = 1 and the resulting probability 
of error is P, = 1 - PI. Fano’s inequality becomes 

H(P,)+P,log(m-l)rH(X). (2.152) 

The probability mass function 

(p1,p2,..*,pm)= pt! pt! l-P,,m-*““‘a 
> 

(2.153) 

achieves this hound with equality. Thus Fano’s inequality is sharp. 

The following telegraphic summary omits qualifying conditions. 

SUMMARY OF CHAPTER 2 

Definition: The entmw H(X) of a discrete random variable X is defined by 

H(X)= - Yz p(x) log p(x). - (2.154) 
+E9 

Properties of H: 

1. H(X)rO. 
2. H,(X) = (log, a) H,(X). 
3. (Conditioning reduces entropy) For any two random variables, X and Y, 

we have 

H(XIY) I H(X) (2.155) 

with equality if and only if X and Y are independent. 
4. H(XI, X2, . . . , X, ) I Cy= 1 H(X, ), with equality if and only if the random 

variables Xi are independent. 
5. H(X) I log (%‘I with equality if and only if X is uniformly distributed 

over 8. 
6. H(p) is concave in p. 

Definition: The relative entropy D(pllq) of the probability mass function p 
with respect to the probability mass diction Q is defined by 
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(2.156) 

Definition: The mutual information between two random variables X and Y 
is defined as 

z(x; Y) = 2 
p(=c, Y) 

2 Pk Y) log pop(y) * 
ZEaT YEW 

Alternative expressions: 
1 

H(x) = E, log p(x) 

(2.157) 

(2.158) 

1 
H(x, n = E, log p(x, y) (2.159) 

1 
H(XIY) = E, log - 

p(X(Y) 
PK Y) z(x; n = E, log p(x)p(y) 

Pcx) 
D(Plld = E, h3 m 

(2.160) 

(2.161) 

(2.162) 

Properties of D and I: 

1. Z(X, Y) = H(X) - ZZ(XIY) = H(Y) - H(YIX) = H(X) + H(Y) - NX, Y). 
2. D(p 11 q) L 0 with equality if and only if p(x) = q(x), for all x E kf’ . 
3. Z(X, Y) = D( p(x, y)II p(x)p(y)) 2 0, with equality if and only if p(x, y) = 

p(x)p(y), i.e., X and Y are independent. 
4. of I%pI = m, and u is the uniform distribution over 8, then D(plJu) = 

log m - H(p). 
5. D( p 114) is convex in the pair (p, q). 

Chain rules 

Entropy: H(x,,X,, . . .v X,1= Cy=l HVr,(Xi-1, *a * ,X1)* 
Mutual 

information: ZcX,,X,, . . . ,X,; Y)= Cy-,, Z(Xi; YJxl,X2, + * * ,Xi-1). 
Relative entropy: D(p(x, y)IIqCx, yN = D(p(n)l(q(xN + D(p(y(x)((q(y(x)h 

Jensen’s inequality: If f is a convex function, then EflX) 1 f(EX). 

Log sum inequality: For n positive numbers, a,, a,, . . . , a,, and b,, 
b 2, ***, b p&P 

$ Ui10gz2($ U,)lOgw 
i=l 8 i=l r=l i 

(2.163) 

I with equality if and only if a&b, = constant. I 
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Data processing inequality: If X+ Y+ 2 forms a Markov chain, then 
Z(X, Y) 2 Z(x; 2) 

Second law of thermodynamics: For a Markov chain, 

1. Relative entropy D( p, 11 CL;) decreases with time. 
2. Relative entropy D( ~~11 CL) between a distribution and the stationary 

distribution decreases with time. 
3. Entropy H(X,) increases if the stationary distribution is uniform. 
4. The conditional entropy H(X, IX, ) increases with time for a stationary 

Markov chain. 
5. The conditional entropy H(X,jX,) of the initial condition X0 increases 

for any Markov chain. 

Suffkient statistic: T(X) is sticient relative to {f,(z)} if and only if 
1(0; X) = I(@; Z’(X)) for all distributions on 8. 

Fano’s inequality: Let P, = Fr{ g(Y) #X}, where g is any function of Y. 
Then 

H(P,)+P,log(l~“(-l)rH(XIY). (2.164) 

PROBLEMS FOR CHAPTER 2 

1. Coin flips. A fair coin is flipped until the first head occurs. Let X 
denote the number of flips required. 
(a) Find the entropy H(X) in bits. The following expressions may be 

useful: 
m 03 
c 

r rn = - c nrn 
n=l l-r’ n=l 

=&* 

(b) A random variable X is drawn according to this distribution. Find 
an “efficient” sequence of yes-no questions of the form, “Is X 
contained in the set S?” Compare H(X) to the expected number of 
questions required to determine X. 

Entropy of f uncfions. Let X be a random variable taking on a finite 
number of values. What is the (general) inequality relationship of 
H(X) and H(Y) if 
(a) Y = 2x? 
(b) Y = cos X? 

Minimum entropy. What is the minimum value of Np,, . . . , p, > = 
H(p) as p ranges over the set of n-dimensional probability vectors? 
Find all p’s which achieve this minimum. 

Axiomafic definition of entropy. If we assume certain axioms for our 
measure of information, then we will be forced to use a logarithmic 
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measure like entropy. Shannon used this to justify his initial defini- 
tion of entropy. In this book, we will rely more on the other properties 
of entropy rather than its axiomatic derivation to justify its use. The 
following problem is considerably more difficult than the other prob- 
lems in this section. 

If a sequence of symmetric functions H,( pl, pz, . . . , p, ) satisfies 
the following properties, 

l Normalization: H2 ( 3, i > = 1, 
l Continuity: H,( p, 1 - p) is a continuous function of p, 

l Grouping: WP,, ~2,. . -7 p,) = H,-,(P, + ~2, ~3,. . -3 P,) + 

(P, + ~2) H,((&, (+G2 1, 

prove that H, must be of the form 

H,Jp,, ~2,. - - 3 pm)= - 2 PilWPi, m = 2,3, . , . . 
i=l 

(2.165) 

There are various other axiomatic formulations which also result in 
the same definition of entropy. See, for example, the book by Csiszar 
and Korner [83]. 

5. Entropy of functions of a random variable. Let X be a discrete random 
variable. Show that the entropy of a function of X is less than or 
equal to the entropy of X by justifying the following steps: 

H(X, g(X)> z’H(X) + H(g(X)(X) (2.166) 

(b) 
= H(X); (2.167) 

H(x, g(X)> ~H(g(xN + HW(gWN (2.168) 

Cd) 
2 H(g(XN . (2.169) 

Thus H(g(X)) 5 H(X). 

6. Zero conditional entropy. Show that if H(YJX) = 0, then Y is a function 
of X, i.e., for all x with p(x) > 0, there is only one possible value of y 
with p(x, y) > 0. 

7. Pure randomness and bent coins. Let X1,X2, . . . , Xn denote the out- 
comes of independent flips of a bent coin. Thus Pr{X, = 1) = p, 
Pr{Xi = 0} = 1 - p, where p is unknown. We wish to obtain a se- 
quence Z,, Z,, . . . , ZK of fair coin flips from X1, X2, . . . , X,. Toward 
this end let f : En + {O,l}* (where {O,l}* = {A, 0, 1, 00, 01,. . . } is 
the set of all finite length binary sequences) be a mapping 
flJLx2, * * . , X, 1 = (Z,, Z,, . . . , Z,), where Zi - Bernoulli ( fr 1, and K 
may depend on (X1, . . . ,X,). In order that the sequence Z,, Z,, . . . 
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appear to be fair coin flips, the map f from bent coin flips to fair flips 
must have the property that all 2A sequences (2, , Z,, . . . , Zk ) of a 
given length k have equal probability (possibly 0), for k = 1,2, . . . . 
For example, for n = 2, the map flO1) = 0, fll0) = 1, flO0) = f(l1) = A 
(the null string), has the property that Pr{Z, = 11X= l} = Pr{Z, = 
OIK= l} = 4. 
Give reasons for the following inequalities: 

(a) 
nH(p) =H(XI, . . . ,X,,) 

(b) 
rH(Z,, Z,, . . . ,&,K) 

Cc) 

= H(K) + H(Z,, . . . , Z,IK) 

(d) 
= H(K) + E(K) 

(e) 

rEK. 

Thus no more than nH(p) fair coin tosses can be derived from (X1, 
. , X, ), on the average. 

ii) Exhibit a good map f on sequences of length 4. 

8. World Series. The World Series is a seven-game series that terminates 
as soon as either team wins four games. Let X be the random variable 
that represents the outcome of a World Series between teams A and 
B; possible values of X are AA& BABABAB, and BBBAAAA. Let Y 
be the number of games played, which ranges from 4 to 7. Assuming 
that A and B are equally matched and that the games are indepen- 
dent, calculate H(X), H(Y), H(YIX), and H(X)Y). 

9. Znfinite entropy. This problem shows that the entropy of a discrete 
random variable can be infinite. Let A = CI=, (n log2 n)-‘. (It is easy 
to show that A is finite by bounding the infinite sum by the integral of 
(x log2 x)- ‘.) Sh ow that the integer-valued random variable X defined 
by Pr(X = n) = (An log’ n)-’ for n = 2,3, . . . has H(X) = + 00. 

10. Conditional mutual information vs. unconditional mutual information. 
Give examples of joint random variables X, Y and 2 such that 

(a> 1(X; YIPI> < 1(X, Y), 
(b) 1(X; YIZ) > 1(X, Y). 

11. Average entropy. Let H(p) = -p log, p - (1 - p) log,(l - p) be the bi- 
nary entropy function. 
(a) Evaluate H( l/4) using the fact that log 2 3 = 1.584. Hint: Con- 

sider an experiment with four equally likely outcomes, one of 
which is more interesting than the others. 

(b) Calculate the average entropy H(p) when the probability p is 
chosen uniformly in the range 0 I p I 1. 
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(c) (Optional) Calculate the average entropy H(p,, pz, p3) where 
( pl, pz, pa) is a uniformly distributed probability vector. General- 
ize to dimension n. 

12. Venn diug~ums. Using Venn diagrams, we can see that the mutual 
information common to three random variables X, Y and 2 should be 
defined by 

1(x; y; 2) = 1(X, Y) - 1(x; Yp?) . 

This quantity is symmetric in X, Y and 2, despite the preceding 
asymmetric definition. Unfortunately, 1(X, Y, 2) is not necessarily 
nonnegative. Find X, Y and 2 such that 1(X, Y, 2) < 0, and prove the 
following two identities: 

1(X, y; 2) = H(X, Y, 2) - H(X) - H(Y) - H(Z) + 1(X; Y) + I(y; 2) 

+ I(Z; X) 

1(X, Y, 2) = H(X, Y, 2) - H(X, Y) - H(Y, 2) - H(Z, X) 

+ H(X) + H(Y) + H(Z) 

The first identity can be understood using the Venn 
for entropy and mutual information. The second 
easily from the first. 

diagram analogy 
identity follows 

13. Coin weighing. Suppose one has n coins, among which there may or 
may not be one counterfeit coin. If there is a counterfeit coin, it may 
be either heavier or lighter than the other coins. The coins are to be 
weighed by a balance. 
(a) Find an upper bound on the number of coins n so that k weighings 

will find the counterfeit coin (if any) and correctly declare it to be 
heavier or lighter. 

(b) (Difficult) What is th e coin weighing strategy for k = 3 weighings 
and 12 coins? 

14. Drawing with and without replacement. An urn contains r red, w white, 
and b black balls. Which has higher entropy, drawing k ~2 balls from 
the urn with replacement or without replacement? Set it up and show 
why. (There is both a hard way and a relatively simple way to do 
this.) 

15. A metric. A function p(x, y) is a metric if for all x, y, 

l p(x, y) 2 0 

l p(x, y) = dy, xl 

l p(x,y)=O if and only ifx=y 
l PC& y) + dy, 2) 2 p(x, 2). 
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(a) Show that p(X, Y) = H(XIY) + H(YIX) satisfies the first, second 
and fourth properties above. If we say that X = Y if there is a 
one-to-one function mapping X to Y, then the third property is 
also satisfied, and p(X, Y) is a metric. 

(b) Verify that p(X, Y) can also be expressed as 

PK Y)=H(X)+H(Y)-21(X,Y) (2.170) 

= mx, Y) - 1(X, Y) (2.171) 

=2H(X,Y)--H(X)--H(Y). (2.172) 

16. Example of joint entropy. Let p(x, y) be given by 

Find 
(a) H(X), WY). 
(b) HWIY), HWIX). 
cc> H(x, Y). 
(d) HO’) - IWJX). 
(4 1(X; Y). 
(f) Draw a Venn diagram for the quantities in (a) through (e). 

17. Inequality. Show In x L 1 - $ for x > 0. 
18. Entropy of a sum. Let X and Y be random variables that take on 

values x,, x2, . . . , x, andy,, yz, . . . , y,, respectively. Let 2 = X + Y. 
(a) Show that H(ZIX) = H(YIX). Argue that if X, Y are independent, 

then H(Y)sH(Z) and H(X)rH(Z). Thus the addition of in- 
dependent random variables adds uncertainty. 

(b) Give an example (of necessarily dependent random variables) in 
which H(X) > H(Z) and H(Y) > H(Z). 

(c) Under what conditions does H(Z) = H(X) + H(Y)? 

19. Entropy of a disjoint mixture. Let X1 and Xz be discrete random 
variables drawn according to probability mass functions pl(. ) and 
p2( * ) over the respective alphabets %I = {1,2, . . . , m} and 
ft& = (m + 1,. . . , n). Let 

x = 
X1, with probability a , 
Xz, with probability 1 - (Y . 

(a) Find H(X) in terms of If(X, ) and H(X,) and CY. 
(b) Maximize over cy to show that 2H’X’ % 2H(X1) + 2wCxz’ and interpret 

using the notion that 2HW) is the effective alphabet size. 
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20. 

21. 

22. 

23. 

24. 

25. 

26. 

A measure of correlation. Let X1 and Xz be identically distributed, but 
not necessarily independent. Let 

wx2 Ix, 1 
P’l- H(X) - 

1 

(a) Show p = 1(X,; X,)IH(x,). 
(b) Show Olpsl. 
(c) When is p = O? 
(d) When is p = l? 

Data processing. Let X1 + Xz +X3 + - - - + X,, form a Markov chain in 
this order; i.e., let 

Pk, x2, * ’ ’ , x,) =p(lcJp(x21x& * - p(x,Ix,-,) * 

Reduce 1(X1; X2, . . . , Xn ) to its simplest form. 

Bottleneck. Suppose a (non-stationary) Markov chain starts in one of 
n states, necks down to A < n states, and then fans back to m > k 
states. Thus X1-*X2-+X,, X,~{1,2,. . . , n}, X,E{1,2,. . . , k}, 
x3 E {1,2,. . . , m}. 
(a) Show that the dependence of X1 and X3 is limited by the bottle- 

neck by proving that 1(X,; X3) 5 log k. 
(b) Evaluate 1(X1; X,) for k = 1, and conclude that no dependence can 

survive such a bottleneck. 

Run length coding. Let Xl, X2, . . . , X, be (possibly dependent) binary 
random variables. Suppose one calculates the run lengths R = 
(Rl, 4,. . . ) of this sequence (in order as they occur). For example, 
the sequence x = 0001100100 yields run lengths R = (3,2,2,1,2). 
Compare H(X,, X2, . . . , X,, ), H(R) and H(X,, R). Show all equalities 
and inequalities, and bound all the differences. 

Markov’s inequality for probabilities. Let p(x) be a probability mass 
function. Prove, for all d L 0, 

Pr{ p(X) 5 d} log ( 1 $ (H(X). (2.173) 

Logical order of ideas. Ideas have been developed in order of need, and 
then generalized if necessary. Reorder the following ideas, strongest 
first, implications following: 
(a) Chain rule for 1(X,, . . . ,X,; Y) , chain rule for D(p(x,, . . . , 

%JI&,, x2, - * * , x, )), and chain rule for H(X, , X2, . . . , X, ). 
(b) D( fll g) L 0, Jensen’s inequality, 1(X, Y) L 0. 

Second law of thermodynamics. Let X1, X2, X3 . . . be a stationary first- 
order Markov chain. In Section 2.9, it was shown that H(X,IX, ) L 
H(Xndl(Xl) for n =2,3,. . . . Thus conditional uncertainty about the 
future grows with time. This is true although the unconditional 
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uncertainty H(X,) remains constant. However, show by example 
H(x, IX1 = x 1 ) does not necessarily grow with n for every x,. 

that 

27. Condifional mutual information. Consider a sequence of n binary ran- 
dom variables XI, XZ, . . . , X,. Each sequence with an even number of 
l’s has probability 2-(n-1’ and each sequence with an odd number of 
l’s has probability 0. Find the mutual informations 

m1;x2>, r<x,;x,Ix,), - -. ,Icx,-,;x,Ix,, . * * ,x,-2> * 

28. Mixing increases entropy. Show that the entropy of the probability 
distribution, (pl, . . . , pi, . . . , Pj, . . . , p, ), is less than the entropy of 

P. +P 

the distribution (pl, . . . , r 
P. +P 

. . . , r p,). Show that in 
general any transfer of problbiiity that 2malks’the distribution more 
uniform increases the entropy. 

29. Inequalities. Let X, Y and 2 be joint random variables. Prove the 
following inequalities and find conditions for equality. 
(a) H(X, YIZ) 2 MXIZ). 
(b) 1(X, y; 2) 2 1(X, 2). 
(c) H(X, Y,Z)-H(X, Y)sH(X,Z)-H(X). 
(d) 1(X, Z(Y) 2 I(Z; YIX) - I(Z; Y) + 1(X, 2). 

30. Maximum entropy. Find the probability mass function p(x) that max- 
imizes the entropy H(X) of a non-negative integer-valued random 
variable X subject to the constraint 

EX= c np(n)=A 
n=O 

for a fixed value A > 0. Evaluate this maximum H(X). 

31. Shuffles increase entropy. Argue that for any distribution on shuffles T 
and any distribution on card positions X that 

HVX) 2 H(TxJT) (2.174) 

= H(PTxIT) (2.175) 

= H(X(T) (2.176) 

= H(X), (2.177) 

if X and 2’ are independent. 

32. Conditional entropy. Under what conditions does H(Xlg(Y)) = HCXIY)? 

33. Fano’s inequalify. Let pr(X = i) = pi, i = 1, 2, . . . , m and let p1 zp2 1 
+I ’ - - ‘p,. The minimal probability of error predictor of X is 
X = 1, with resulting probability of error P, = 1 - pl. Maximize H(p) 
subject to the constraint 1 - p1 = P, to find a bound on P, in terms of 
H. This is Fano’s inequality in the absence of conditioning. 
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34. Monotonic convergence of the empirical distribution. Let 6, denote the 
empirical probability mass function corresponding to Xi, XZ, . , . , Xn 
i.i.d. -p(x), x E %. Specifically, 

(2.178) 

is the proportion of times that Xi = x in the first n samples, where I is 
an indicator function. 
(a) Show for %’ binary that 

(2.179) 

Thus the expected relative entropy “distance” from the empirical 
distribution to the true distribution decreases with sample size. 
Hint: Write ljzn = i rj, + ifi: and use the convexity of D. 

(b) Show for an arbitrary discrete Z!? that 

35. Entropy of initial conditions. Prove that H(X,(X,) is non-decreasing 
with n for any Markov chain. 

HISTORICAL NOTES 

The concept of entropy was first introduced in thermodynamics, where it was 
used to provide a statement of the second law of thermodynamics. Later, 
statistical mechanics provided a connection between the macroscopic property of 
entropy and the microscopic state of the system. This work was the crowning 
achievement of Boltzmann, who had the equation S = k In W inscribed as the 
epitaph on his gravestone. 

In the 193Os, Hartley introduced a logarithmic measure of information for 
communication. His measure was essentially the logarithm of the alphabet size. 
Shannon [238] was the first to define entropy and mutual information as defined 
in this chapter. Relative entropy was first defined by Kullback and Leibler [167]. 
It is known under a variety of names, including the Kullback Leibler distance, 
cross entropy, information divergence and information for discrimination, and 
has been studied in detail by Csiszar [78] and Amari [lo]. 

Many of the simple properties of these quantities were developed by Shan- 
non. Fano’s inequality was proved in Fano [105]. The notion of sufficient statistic 
was defined by Fisher [ill], and the notion of the minimal sufficient statistic was 
introduced by Lehmann and Scheffe [174]. The relationship of mutual informa- 
tion and sufficiency is due to Kullback [165]. 

The relationship between information theory and thermodynamics has been 
discussed extensively by Brillouin [46] and Jaynes [143]. Although the basic 
theorems of information theory were originally derived for a communication 
system, attempts have been made to compare these theorems with the fundamen- 
tal laws of physics. There have also been attempts to determine whether there are 
any fundamental physical limits to computation, including work by Bennett [24] 
and Bennett and Landauer [25]. 


