
Categorizing Web Queries According to
Geographical Locality

Luis Gravano
Columbia University

gravano@cs.columbia.edu

Vasileios Hatzivassiloglou
Columbia University

vh@cs.columbia.edu

Richard Lichtenstein
Harvard University

lichtens@fas.harvard.edu

ABSTRACT
Web pages (and resources, in general) can be characterized
according to their geographical locality. For example, a web
page with general information about wildflowers could be
considered a global page, likely to be of interest to a ge-
ographically broad audience. In contrast, a web page with
listings on houses for sale in a specific city could be regarded
as a local page, likely to be of interest only to an audi-
ence in a relatively narrow region. Similarly, some search
engine queries (implicitly) target global pages, while other
queries are after local pages. For example, the best re-
sults for query [wildflowers] are probably global pages about
wildflowers such as the one discussed above. However, lo-
cal pages that are relevant to, say, San Francisco are likely
to be good matches for a query [houses for sale] that was
issued by a San Francisco resident or by somebody moving
to that city. Unfortunately, search engines do not analyze
the geographical locality of queries and users, and hence
often produce sub-optimal results. Thus query [wildflow-
ers] might return pages that discuss wildflowers in specific
U.S. states (and not general information about wildflowers),
while query [houses for sale] might return pages with real
estate listings for locations other than that of interest to the
person who issued the query. Deciding whether an unseen
query should produce mostly local or global pages—without
placing this burden on the search engine users—is an im-
portant and challenging problem, because queries are often
ambiguous or underspecify the information they are after.
In this paper, we address this problem by first defining how
to categorize queries according to their (often implicit) ge-
ographical locality. We then introduce several alternatives
for automatically and efficiently categorizing queries in our
scheme, using a variety of state-of-the-art machine learning
tools. We report a thorough evaluation of our classifiers us-
ing a large sample of queries from a real web search engine,
and conclude by discussing how our query categorization
approach can help improve query result quality.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’03, November 3–8, 2003, New Orleans, Louisiana, USA.
Copyright 2003 ACM 1-58113-723-0/03/0011 ...$5.00.

Categories and Subject Descriptors
H.3 [Information Storage and Retrieval]: Information
Search and Retrieval—query formulation, search process

General Terms
Algorithms, Experimentation, Human Factors

Keywords
web search; information retrieval; search engines; query clas-
sification; query modification

1. INTRODUCTION
Web pages (and resources, in general) can be character-

ized according to their geographical locality. For example, a
web page with general information about wildflowers could
be considered a global page, likely to be of interest to a ge-
ographically broad audience. In contrast, a web page with
listings on houses for sale in a specific city could be regarded
as a local page, likely to be of interest only to an audience in
a relatively narrow region. Earlier research [9] has addressed
the problem of automatically computing the “geographical
scope” of web resources.

Often search engine queries (implicitly) target global web
pages, while other queries are after local pages. For example,
the best results for query [wildflowers] are probably global
pages about wildflowers discussing what types of climates
wildflowers grow in, where wildflowers can be purchased,
or what types of wildflower species exist. In contrast, local
pages that are relevant to, say, San Francisco are likely to
be good matches for a query [houses for sale] that was is-
sued by a San Francisco resident, or by somebody moving
to San Francisco, even if “San Francisco” is not mentioned
in the query. The user’s intent when submitting a query
may not be always easy to determine, but if underspecified
queries such as [houses for sale] can be detected, they can
be subsequently modified by adding the most likely target
geographical location or by getting further user input to cus-
tomize the results.

Unfortunately, search engines do not analyze the geo-
graphical locality of queries and users, and hence often pro-
duce sub-optimal results, even if these results are on-topic
and reasonably “popular” or “authoritative.” Thus query
[wildflowers] might return pages that discuss wildflowers in
specific U.S. states (and not general information about wild-
flowers). In fact, as of the writing of this paper, the first
10 results that Google provides for this query include 5
pages each of which discusses wildflowers in only one U.S.

state (e.g., “Texas Wildflowers”). Similarly, the top 10 re-
sults that Google returns for query [houses for sale] include
real estate pages for Tuscany, United Kingdom, and New
Zealand. These pages are likely to be irrelevant to, say,
somebody interested in San Francisco real estate who types
such an underspecified query.

Deciding whether a query posed by a regular search engine
user should produce mostly local or global pages is an im-
portant and challenging problem, because queries are often
ambiguous or underspecify the information they are after,
as in the examples above. By identifying that, say, query
[wildflowers] is likely after “global” information, a search
engine could rank the results for this query so that state-
specific pages do not appear among the top matches. By
identifying that, say, query [houses for sale] is likely after
“local” information, a search engine could filter out pages
whose geographical locality is not appropriate for the user
who issued the query. Note that deciding which location
is of interest to a user who wrote an underspecified query
such as [houses for sale] is an orthogonal, important issue
that we do not address in this paper. Our focus is on iden-
tifying that such a query is after “local” pages in nature,
and should therefore be treated differently by a search en-
gine than queries that are after “global” pages. By knowing
that a user query is after local information, a search engine
might choose to privilege pages whose geographical locality
coincides with that of the user’s or, alternatively, attempt
to obtain further input from the user on what location is of
interest.

In this paper, we first define how to categorize user queries
according to their (often implicit) geographical locality. We
then introduce several alternatives for automatically and ef-
ficiently classifying queries according to their locality, using
a variety of state-of-the-art machine learning tools. We re-
port a thorough evaluation of our classifiers using a large
sample of queries from a real web search engine query log.
Finally, we discuss how our query categorization approach
can help improve query result quality. The specific contri-
butions of this paper are as follows:

• A discussion on how to categorize user queries accord-
ing to their geographical locality, based on a careful
analysis of a large query log from the Excite web site
(Section 3).

• A feature representation for queries; we derive the fea-
ture representation of a query from the results pro-
duced for the query by a web search engine such as
Google (Section 4.1).

• A variety of automatic query classification strategies
that use our feature representation for queries (Sec-
tion 4.2).

• A large-scale experimental evaluation of our strategies
over real search engine queries (Section 5).

• Preliminary query reformulation and page re-ranking
strategies that exploit our query classification tech-
niques to improve query result quality (Section 6).

2. RELATED WORK
Traditional information-retrieval research has studied how

to best answer keyword-based queries over collections of text

documents [18]. These collections are typically assumed
to be relatively uniform in terms of, say, their quality and
scope. With the advent of the web, researchers are studying
other “dimensions” to the data that help separate useful re-
sources from less-useful ones in an extremely heterogeneous
environment like the web. Notably, the Google search en-
gine [4] and the HITS algorithm [7, 13] estimate the “impor-
tance” of web pages by analyzing the hyperlinks that point
to them, thus capturing an additional dimension to the web
data, namely how important or authoritative the pages are.

Ding et al. [9] extract yet another crucial dimension of the
web data, namely the geographical scope of web pages. For
example, the Stanford Daily newspaper has a geographical
scope that consists of the city of Palo Alto (where Stanford
University is located), while the New York Times newspa-
per has a geographical scope that includes the entire U.S.
To compute the geographical scope of a web page, Ding et
al. propose two complementary strategies: a technique based
on the geographical distribution of HTML links to the page,
and a technique based on the distribution of geographical
references in the text of the page. Ding et al. report on
a search-engine prototype that simply filters out from the
results for a user query any pages not in the geographical
scope of the user. This technique does not attempt to de-
termine whether a query is best answered with “global” or
“local” pages, which is the focus of our paper. Ding et al.
built on the work by Buyukkokten et al. [6], who discussed
how to map a web site (e.g., http://www-db.stanford.edu)
to a geographical location (e.g., Palo Alto) and presented a
tool to display the geographical origin of the HTML links
to a given web page. This tool then helps visualize the geo-
graphical scope of web pages [6].

A few commercial web sites manually classify web re-
sources by their location, or keep directory information that
lists where each company or web site is located. The North-
ernLight search engine1 extracts addresses from web pages,
letting users narrow their searches to specific geographical
regions (e.g., to pages “originated” within a five-mile radius
of a given zip code). Users benefit from this information
because they can further filter their query results. McCur-
ley [14] presented a variety of approaches for recognizing
geographical references on web pages, together with a nav-
igational tool to browse pages by geographical proximity
and their spatial context. (Please refer to [16] for additional
references.) None of these techniques addresses our focus
problem in this paper: automatically determining the geo-
graphical locality associated with a given, unmodified search
engine query.

3. DEFINING GEOGRAPHICAL
LOCALITY

As discussed above, queries posed to a web search engine
can be regarded as local, if their best matches are likely to
be “local” pages, or as global, if their best matches are likely
to be “global” pages. In an attempt to make this distinction
more concrete, we now discuss several examples of local and
global queries.

Global queries often do not include a location name, as
is the case for query [Perl scripting]. A user issuing this
query is probably after tutorials about the Perl language,
and hence pages on the topic with a restricted geographi-

1http://www.northernlight.com/

cal scope are less desirable than global pages. Other global
queries do not mention a location explicitly either, but are
topically associated with one particular location. An exam-
ple of such a query is [Elgin marbles], which is topically as-
sociated with the city of Athens. We consider these queries
as global, since their best matches are broad, global pages,
not localized pages with a limited geographical scope. In-
terestingly, global queries sometimes do include a location
name. For example, a query might be just a location name
(e.g., [Galapagos Islands]) or a request for concrete infor-
mation about a location (e.g., [Boston area codes]). Gen-
eral resources about the location (e.g., tourist guides) are
arguably to be preferred for such queries, which are hence
regarded as global. Other global queries include locations
that are strongly associated topic-wise with the rest of the
query. Query [Woody Allen NYC] is an example of such a
query. The location mentioned in this query (i.e., “NYC,”
for “New York City”) is not used to restrict query results to
pages of interest to New York residents, but rather expresses
a topic specification. Query [Ansel Adams Yosemite] is an-
other example: photographer Ansel Adams took a famous
series of photographs in Yosemite.

Local queries often include a location name, as is the case
for query [Wisconsin Christmas tree producers association].
The location mentioned in this query (i.e., “Wisconsin”) is
used to “localize” the query results. Query [houses for sale
New York City] is a related example. Other local queries
do not include a location name, but still implicitly request
“localized” results. Query [houses for sale] is an example of
such a query. These queries tend to be underspecified, but
are still asked by (presumably näıve) search engine users.

We conducted a thorough examination of a large num-
ber (over 1,200) of real search engine queries. Most queries
that we encountered can be cleanly categorized as being ei-
ther global or local. However, other queries are inherently
ambiguous, and their correct category is impossible to deter-
mine without further information on the user intent behind
them. For example, query [New York pizza] could be con-
strued as a local query if it is, say, after pizza delivery web
sites for the New York area. In contrast, the same query
could be regarded as a global query if the user who issues it
wants to learn about the characteristics of New York-style
pizza.

4. USING CLASSIFIERS TO DETERMINE
LOCALITY

We earlier established that queries are associated with lo-
cal or global status, which influences the kind of results that
are desirable. Since current search engines do not directly
take into account geographical information, for certain types
of queries they produce a large number of on-topic but un-
wanted results, as in the [houses for sale] example discussed
earlier. In this section, we discuss automatic methods that
can determine, given a query, whether the query is a lo-
cal or global one. To build the two-class classifier, we ex-
perimented with several state-of-the-art classification tech-
niques, using widely available implementations for each. We
describe below the features used in the classification, how we
extract them from web pages, and the classifiers with which
we experimented.

4.1 Classification Features
Web queries, which we treat in this paper as ordered bags

of words with no other structure, are typically fairly short.
In the collection of 2,477,283 real queries that we used in
our experiments (Section 5.1), 84.9% were five words long
or shorter. Because few words are available per query, bas-
ing the classification directly on the words in the query may
lead to severe sparse data problems. Even more importantly,
some of the characteristics that make a query local or global
are not directly observable in the query itself, but rather in
the results returned. For example, a query that returns re-
sults that contain few references to geographical locations is
likely to be global, while a query that returns results spread
uniformly over many locations without including a signifi-
cant percentage of results with no locations is likely to be
local.

For these reasons, we base our classification on a sample
of results actually returned for a given query rather than the
words in the query itself. By observing distributional char-
acteristics in the unmodified results, the classifier can infer
the type of the query (global or local) so that the results can
be appropriately filtered or re-ordered, or the query modi-
fied. In a way the approach is similar in spirit to query
expansion techniques that rely on pseudo-relevance feedback
[5]. In our experiments, we use Google (via the Google
API2) to obtain the top 50 web pages that match the query.
For simplicity, we limited our search to HTML pages, skip-
ping over non-HTML documents. We chose Google because
it represents state-of-the-art web search technology and of-
fers a published interface for submitting large numbers of
queries.

We represent the web pages returned by Google as text
documents. This conversion is achieved by using the lynx

HTML browser with the -dump option. We base our classi-
fication features on measures of frequency and dispersion of
location names in these text files. For this purpose, we have
constructed a database of 1,605 location names by concate-
nating lists of all country names3, of the capitals of these
countries4, of the fifty U.S. states, and of all cities in the
United States with more than 25,000 people5. We then com-
pare the words in each text document with the database of
location names, and output any matching entries and their
count per document. This matching is case insensitive, be-
cause we found capitalization of location names in web pages
to be erratic. Note that we do not attempt to disambiguate
words that match location names but also have other senses
(e.g., “China”), as this is a hard problem in natural language
analysis; instead, we count such words as locations. An al-
ternative approach that would detect and disambiguate lo-
cation names would be to use a named-entity tagger. We
experimented with a well-known third-party named-entity
tagger, but we encountered a very high error rate because
of the noise often introduced in web pages.

Our classification features combine these location counts
in various ways. For each query, we measure the average

2http://www.google.com/apis
3Obtained from the United Nations, http://www.un.org/
Overview/unmember.html.
4Obtained from the CIA World Factbook, http://www.
capitals.com/.
5Obtained from the U.S. Census Bureau (2000 census
figures), http://www.census.gov/prod/2002pubs/00ccdb/
cc00_tabC1.pdf.

(per returned web page) number of location words in the re-
trieved results. We count the average frequency of location
words at different levels of detail (country, state, city), as
well as the average of the aggregate total for all locations.
We obtain these frequencies for both the total count (tokens)
and the unique location words in each page (types), as it is
possible that a few locations would be repeated many times
across the results, indicating a global query, or that many lo-
cations would be repeated few times each, indicating a local
query. We also consider the total number of unique locations
across all the returned documents taken together, divided by
the number of retrieved documents. For the average token
frequencies of city, state, and country locations we also cal-
culate the minimum and maximum across the set of returned
web pages. To account for the hierarchical nature of location
information, we calculate an alternative frequency for states
where we include in the count for each state the counts for
all cities from that state that were found in that text; this
allows us to group together location information for cities
in the same state. We also include some distributional mea-
sures, namely the fraction of the pages that include at least
one location of any kind, the percentage of words that match
locations across all pages, and the standard deviation of the
total per page location count. Finally, we add to our list
of features the total number of words in all of the returned
documents, to explore any effect the local/global distinction
may have on the size of the returned documents. These cal-
culations provide for 20 distinct features that are passed on
to the classifier.6 The core data needed to produce these
20 query features (i.e., the locations mentioned in each web
page) could be efficiently computed by a search engine such
as Google at page-indexing time. Then, the final feature
computation could be quickly performed at query time us-
ing this core data.

4.2 Classification Methods
We initially trained a classifier using Ripper [8], which

constructs a rule-based classifier in an incremental manner.
The algorithm creates an initial set of very specific rules
based on the data, similar to the way in which decision trees
are generated. The rules are then pruned iteratively to elim-
inate the ones that do not seem to be valid for a large enough
subset of the training data, so as to prevent overfitting.

Although Ripper provides a robust classifier with high
accuracy and transparency (a human can easily examine
the produced rules), it outputs binary “local”–“global” de-
cisions. In many cases, it is preferable to obtain a measure
of confidence in the result or an estimate of the probability
that the assigned class is the correct one. To add this capa-
bility to our classifier, we experimented with logistic regres-
sion [19]. Logistic, or log-linear, regression models a binary
output variable (the class) as a function of a weighted sum
of several input variables (the classification features). Con-
ceptually, a linear predictor η is first fitted over the training
data in a manner identical to regular regression analysis,
i.e.,

η = w0 +

k�

i=1

wi · Fi

where Fi is the i-th feature and wi is the weight assigned to
6Studying the effect on classification accuracy of a richer
feature set (e.g., including as well all words on the result
pages) is the subject of interesting future work.

that feature during training. Subsequently, η is transformed
to the final response, C, via the logistic transformation

C =
eη

1 + eη

which guarantees that C is between 0 and 1. Each of the
endpoints of the interval (0, 1) is associated with one of the
classes, and C gives the probability that the correct class is
the one associated with “1”. In practice, the calculations are
not performed as a separate regression and transformation,
but rather as a series of successive regressions of transformed
variables via the iterative reweighted least squares algorithm
[1].7 We used the implementation of log-linear regression
provided in the R statistical package.8

Another desideratum for our classifier is its ability to sup-
port different costs for the two possible kinds of errors (mis-
classifying local queries versus misclassifying global queries).
Which kind of error is the most important may vary for
different settings; for our search modification application,
we consider the misclassification of global queries as local
ones a more serious error. This is because during our sub-
sequent modification of the returned results (Section 6), we
reorder the results for some of the queries that we consider
global, but we modify the original queries for some of the
queries classified as local, returning potentially very different
results. Consequently, the results can change more signifi-
cantly for a query classified as local, and the potential for
error is higher when a global query is labeled local than the
other way around.

Both Ripper and log-linear regression can incorporate dif-
ferent costs for each type of error. We experimented with
a third classification approach that also supports this fea-
ture, Support Vector Machines (SVMs) [2], which have been
found quite effective for text matching problems [11]. SVM
classifiers conceptually convert the original measurements of
the features in the data to points in a high-dimensional space
that facilitates the separation between the two classes more
than the original representation. While the transformation
between the original and the high-dimensional space may be
complex, it needs not to be carried out explicitly. Instead,
it is sufficient to calculate a kernel function that only in-
volves dot products between the transformed data points,
and can be calculated directly in the original feature space.
We report experiments with two of the most common kernel
functions: a linear kernel,

K(x,y) = x · y + 1

and a Gaussian (radial basis function) kernel,

K(x,y) = e
−‖x−y‖2/2σ2

where σ is a parameter (representing the standard deviation
of the underlying distribution). This latter kernel has been
recommended for text matching tasks [10]. Regardless of the
choice of kernel, determining the optimal classifier is equiva-
lent to determining the hyperplane that maximizes the total
distance between itself and representative transformed data
points (the support vectors). Finding the optimal classi-
fier therefore becomes a constrained quadratic optimization

7This is because the modeled distribution is binomial rather
than normal, and hence the variance depends on the mean—
see [19] for the technical details.
8http://www.r-project.org/

Set
Original

number of
queries

Number of
appropriate

queries
Global Local

Training 595 439 368 (83.8%) 71 (16.2%)
Development 199 148 125 (84.5%) 23 (15.5%)
Test 497 379 334 (88.1%) 45 (11.9%)

Table 1: Distribution of global and local queries in our training, development, and test sets.

problem. In our experiments, we use the SVM-Light imple-
mentation9 [12].

In many binary classification tasks, one of the two classes
predominates, and thus trained classifiers tend to favor that
class in the absence of strong evidence to the contrary. This
certainly applies to our task; as we show in Section 5.1,
83–89% of web queries are global. Weiss and Provost [21]
showed that this imbalance can lead to inferior classifier
performance on the test set, and that the problem can be
addressed through oversampling of the rarer class in the
training data. Their method examines different oversam-
pling rates by constructing artificial training sets where the
smaller class is randomly oversampled to achieve a specific
ratio between samples from the two classes. For each such
sampling ratio, a classifier is trained, which assigns a score
to each object indicating strength of evidence for one of the
classes. By fixing a specific strength threshold, we divide
the classifier output into the two classes. Further, by vary-
ing this threshold10 we can obtain an error-rate curve for
each class as a function of the threshold. The entire process
results in a Receiver-Operator Characteristic (ROC) curve
[3] for each sampling ratio. Specific points on the curve that
optimize the desired combination of error rates can then be
selected, and the performance of the classification method
across the different thresholds can be measured from the
area between the curve and the x-axis. Weiss and Provost
use the C4.5 classifier [17], a decision tree classifier with
additional pruning of nodes to avoid overfitting. We use a
software package provided by them (and consequently also
the C4.5 algorithm) to explore the effect that different ratios
of global to local queries during training have on classifier
performance.

5. EXPERIMENTAL RESULTS
We now describe the data (Section 5.1) and metrics (Sec-

tion 5.2) that we use for the experimental evaluation of the
query classifiers (Section 5.3).

5.1 Data
For the experiments reported in this paper, we used a sam-

ple of real queries submitted to the Excite search engine.11

We had access to a portion of the December 1999 query log of
Excite, containing 2,477,283 queries. We randomly selected
initial sets of queries for training, development (tuning the
parameters of the classifiers we train), and testing purposes
by selecting each of these queries for inclusion in each set
with a constant (very small) probability. These probabilities
were set to 400/2,477,283, 400/2,477,283, and 500/2,477,283

9Available from http://svmlight.joachims.org/.
10Setting the threshold to each extreme assigns all or none
of the data points to that category.

11http://www.excite.com/

for the three sets, respectively. Subsequently we combined
the training and development set, and reassigned the queries
in the combined set so that three-fourths were placed in the
training set and one-fourth in the development; we kept the
test set separate. This process generated 595, 199, and 497
queries in the initial versions of the training, development,
and test sets. We further eliminated queries that passed any
of the following tests:

• Upon examination, they appeared likely to produce
results with explicit sexual content.

• When supplied to Google—and after filtering out any
non-HTML results and any broken links—the queries
produced fewer than 40 files. This constraint is meant
to ensure that we are not including in our experimen-
tal data queries that contain misspellings or deal with
extremely esoteric subjects, for which not enough ma-
terial for determining locality would be available.

• They had already been included in an earlier set (we
constructed first the training set, then the develop-
ment set, and finally the test set). Since multiple peo-
ple may issue the same query, duplicates can be found
in the log. Although our algorithms take no special ad-
vantage of duplicates, we eliminated them to avoid any
bias. Taking into account variations of upper/lower
case and spacing between queries (but not word or-
der), this constraint removed 6 queries from the test
set.

These filtering steps left us with 439 queries in the training
set, 148 queries in the development set, and 379 queries in
the test set.

We then classified the queries using the criteria laid out
in Section 3. Table 1 shows the size of the three sets before
and after filtering, and the distribution of local and global
queries in each set. We observe that, in general, most queries
(83–89%) tend to be global.

5.2 Evaluation Metrics
We consider a number of evaluation metrics to rate the

performance of the various classifiers and their configura-
tions. Since a large majority of the queries are global (85.6%
in the training, development, and test sets combined), over-
all classification accuracy (i.e., the percentage of correct
classification decisions) may not be the most appropriate
measure. This is because a baseline method that always
suggests the most populous class (“global”) will have an ac-
curacy equal to the proportion of global queries in the eval-
uated set. Yet such a classifier will offer no improvement
during search since it provides no new information. The sit-
uation is analogous to applications in information retrieval
or medicine where very few of the samples should be labeled
positive (e.g., in a test for a disease that affects only 0.1%

of patients). While we do not want overall accuracy to de-
crease from the baseline (at least not significantly), we will
utilize measures that capture the classifier’s improved ability
to detect the rarer class relative to the baseline method.

Two standard such metrics are precision and recall for
the local queries. Precision is the ratio of the number of
items correctly assigned to the class divided by the total
number of items assigned to the class. Recall is the ratio
of the number of items correctly assigned to a class as com-
pared with the total number of items in the class. Note that
the baseline method achieves precision of 100% but recall of
0%. For a given classifier with adjustable parameters, often
precision can be increased at the expense of recall, and vice
versa; therefore we also compute the F-measure [20] (with
equal weights) to combine precision and recall into a single
number,

F-measure =
2 × Precision × Recall

Precision + Recall

Finally, we argued earlier that one kind of misclassification
errors may be assigned a higher cost. We can then calculate
the average cost [15],

Average cost =
�

X∈{Global,Local}

Cost(X) × Rate(X)

where Cost(X) is the cost of wrong X classifications and
Rate(X) is the rate of wrong X classifications. Average cost
is the measure to minimize from a decision theory perspec-
tive. The rate of wrong classifications for a class is equal
to the number of data points that have been misclassified
into that class divided by the total number of classification
decisions, and the costs for each misclassification error are
predetermined parameters. If both costs are set to 1, then
the average cost becomes equal to the total error rate, i.e.,
one minus accuracy. In our experiments, we report the av-
erage cost considering the mislabeling of global queries as
local twice as important as the mislabeling of local queries,
for the reasons explained in the previous section.

5.3 Results
We trained the classifiers of Section 4.2 on the 439 queries

in our training set. Ripper and the regression model were
trained on that training set without modification. For C4.5
and SVMs, we explored the effect that different proportions
of local queries in the training set have on overall perfor-
mance. For that purpose, we used our development set to
evaluate the performance effects of different local query pro-
portions, and select the optimal classifier within each family.

For the C4.5-based classifier, we used the C4.4 software
provided by Foster Provost and Claudia Perlich to explore
the effect of different proportions of local and global queries.
We created training sets by randomly oversampling or un-
dersampling the minority (local) class as needed, in incre-
ments of 10%. For any given proportion of local queries
between 10% and 90%, we started from our training set,
modified it according to the above sampling method to have
the desired proportion of local queries, trained the corre-
sponding C4.5 classifier, and evaluated its performance on
our development set. The natural proportion of the local
class in the unmodified training data is also included as one
of the proportions used to build and evaluate a classifier. In
this manner, we obtain curves for the various metrics as the
proportion of local queries varies (Figure 1). We observe

Figure 1: Evaluation metrics for C4.5 classifiers
trained on different proportions of local queries.

that the highest value for precision and F-measure, and the
lowest value for the average cost, are obtained when the
classifier is trained with a significantly amplified proportion
of local queries (80%). Further, running C4.5 with 80% lo-
cal queries also produced the largest area under the ROC
curve obtained when different precision/recall tradeoffs in
the development set are explored. On the basis of this in-
formation, we selected the proportion of 80% local queries
as the optimal configuration for C4.5. We refer to that con-
figuration as C4.5(80), and this is the version of C4.5 that
we evaluated on the test set.

Using our own implementation for constructing extended
training sets with a given proportion of local queries, we
performed similar experiments for Support Vector Machines
with linear and Gaussian kernels. For these classifiers, we
also experimented with versions trained with equal error
costs for the two kinds of classification errors, and with ver-
sions where, during training, a false local assignment counts
for twice as much as a false global assignment. We found
that the optimal proportion of local queries is closer to the
natural proportion with SVMs compared to C4.5 classifiers;
the proportions chosen from our development set were 50%
for the linear SVM classifier with equal error costs, 30% for
the linear SVM classifier with unequal error costs, 30% for
the Gaussian SVM classifier with equal error costs, and 20%
for the Gaussian SVM classifier with unequal error costs.
We denote the optimal classifiers from these four families
as SVM-Linear-E(50), SVM-Linear-U(30), SVM-Gaussian-
E(30), and SVM-Gaussian-U(20), respectively. Figure 2
shows the curve obtained for the SVM-Gaussian-U family
of classifiers.

Having determined the best value for the proportion of
local queries for C4.5 and SVM-based classifiers, we evalu-
ate these classifiers, as well as the classifiers obtained from
Ripper and log-linear regression, on our test set.12 Table 2
shows the values of the evaluation metrics obtained on the
unseen test set. The classifier using a linear kernel SVM
with unequal error costs achieves the highest F-measure,

12We also experimented with variable error costs for the Rip-

per classifier, using the same 2:1 error cost correspondence,
but the resulting classifier was identical to the Ripper clas-
sifier obtained with equal error costs.

Classifier Recall Precision F-Measure Average Cost Accuracy
Ripper 53.33% 47.06% 50.00% 0.1979 87.34%
Log-linear Regression 37.78% 58.62% 45.95% 0.1372 89.45%
C4.5(80) 40.00% 32.73% 36.00% 0.2665 83.11%
SVM-Linear-E(50) 48.89% 48.89% 48.89% 0.1821 87.86%
SVM-Linear-U(30) 48.89% 53.66% 51.16% 0.1609 88.92%
SVM-Gaussian-E(30) 37.78% 53.13% 44.16% 0.1530 88.65%
SVM-Gaussian-U(20) 37.78% 53.13% 44.16% 0.1530 88.65%
Baseline (always global) 0.00% 100.00% 0.00% 0.1187 88.13%

Table 2: Evaluation metrics on the test set of selected classifiers optimized over the development set.

Figure 2: Evaluation metrics for Support Vector
Machines with Gaussian kernel and false local as-
signments weighted twice as much as false global as-
signments, trained on different proportions of local
queries.

while the log-linear classifier achieves the lowest average
classification cost. As expected, the SVM classifiers that
were trained with unequal error costs achieve the same or
lower average cost (which also utilizes the same unequal er-
ror costs) compared to their counterparts trained with equal
error costs. Overall, Ripper, log-linear regression, and the
two SVM classifiers with linear kernels achieve the highest
performance, with small differences between them. They
are followed by the two SVM classifiers with a Gaussian
kernel function, while C4.5 trails significantly behind the
other classifiers.

The features used for classification vary considerably from
classifier to classifier.13 Ripper achieves one of the best clas-
sification performances using only one simple rule, based
only on the average number of city locations per returned
web page: if that number exceeds a threshold, the query is
classified as local, otherwise as global. On the other hand,
the C4.5 and SVM classifiers utilize all or almost all the
features. The log-linear regression classifier falls in-between
these two extremes, and primarily utilizes the average num-
bers of unique city, state, and country names per retrieved
page, as well as the total number of unique locations per
page (4 features).

For concreteness, and to conclude our discussion, Table 3

13Most classifiers automatically ignore some of the provided
features, to avoid overfitting.

shows the performance of our classifiers on a few represen-
tative examples of local and global queries.

6. IMPROVING SEARCH RESULTS
The core of this paper is on classifying queries as either

local or global. In this section, we present preliminary ideas
on how to exploit this classification to improve the quality
of the query results. Further exploration of these and other
directions is the subject of interesting future work.

Consider a query that has been classified as local using
the techniques of Section 4. By definition, this query is
best answered with “localized” pages. We can easily deter-
mine if the query includes any location name by using the
dictionary-based approach of Section 4.1. If no locations are
present in the query (e.g., as in query [houses for sale]), in
the absence of further information we can attempt to “lo-
calize” the query results to the geographical area of the user
issuing the query, for which we can rely on registration in-
formation provided by the user, for example. Consequently,
we can simply expand the query by appending the user’s
location to it, to turn, say, the query [houses for sale] into
[houses for sale San Francisco] for a San Francisco resident.
Alternatively, a search engine might attempt to obtain addi-
tional information from the user to further localize the query
as appropriate. For example, the query [houses for sale] can
then be transformed into [houses for sale New York City] for
a San Francisco resident who is moving to New York City. In
either case, the expanded query will tend to produce much
more focused and localized results than the original query
does. As of the writing of this paper, all of the top-10 results
returned by Google for query [houses for sale San Francisco]
are results of relevance to a person interested in Bay Area
real estate. In contrast, most of the results for the original
query, [houses for sale], are irrelevant to such a person, as
discussed in the Introduction. An alternative, more expen-
sive strategy for handling these queries is to compute and
exploit the geographical scope of web pages as defined in [9].
Then, pages with a geographical scope that includes the lo-
cation of the user issuing the query would be preferred over
other pages. In contrast, a local query in which locations are
mentioned is likely to return pages with the right locality,
making any further modification of the query or reranking
of the results unnecessary.

Consider now a query that has been classified as global
using the techniques of Section 4. By definition, this query
is best answered with “broad” pages. Rather than attempt-
ing to modify a global query so that it returns “broad”
pages, we can follow a result reranking strategy to privilege
these pages over more localized ones. One possible rerank-
ing strategy is to reorder the results from, say, Google for

Class Query
Classifier

Ripper Regression C4.5(80) SVM-LE SVM-LU SVM-GE SVM-GU

Global

[Perl scripting] Global −0.9381 Global −1.9163 −1.7882 −1.0627 −1.0590
[world news] Global −0.8306 Local −0.5183 −0.3114 −0.4166 −0.1440
[wildflowers] Global −0.5421 Global −0.7267 −0.8082 −0.8931 −0.8144
[Elgin marbles] Local 0.4690 Local 0.6426 0.6654 0.0378 0.1016
[Galapagos Islands] Global −0.7941 Global −1.2834 −1.1998 −0.9826 −0.8575
[Boston zip code] Local −0.0243 Local 0.6874 0.6152 0.0408 0.0797
[Woody Allen
NYC]

Global −0.2226 Global −0.3253 −0.3541 −0.6182 −0.5272

Local

[houses for sale] Global −0.6759 Global −1.0769 −1.0962 −0.9242 −0.8516
[Volkswagen clubs] Local −0.0933 Global 1.0844 0.7917 0.0562 0.0837
[Wisconsin
Christmas tree
producers
association]

Global 0.1927 Local −0.1667 −0.4421 −0.4461 −0.3582

[New York style
pizza delivery]

Global −0.0938 Global −0.5945 −0.6809 −0.5857 −0.4824

Table 3: Classification assignments made by different classifiers on several example queries. SVM-LE, SVM-
LU, SVM-GE, and SVM-GU stand for classifiers SVM-Linear-E(50), SVM-Linear-U(30), SVM-Gaussian-
E(30), and SVM-Gaussian-U(20), respectively. For regression and SVM classifiers, positive numbers indicate
assignment to the local class, and negative numbers indicate assignment to the global class; the absolute
magnitude of the numbers increases as the classifier’s confidence in its decision increases. (We linearly
transformed the regression output from the (0, 1) to the (−1, 1) range.) The scale of the numbers is
consistent across queries and between all SVM classifiers, but not directly comparable between regression
classifiers (bound between −1 and 1) and SVM classifiers (unbounded).

the unmodified query based on the geographical scope of the
pages as defined in [9]. Thus pages with a broad geograph-
ical scope (e.g., covering the entire United States) would
prevail over other pages with a narrower scope. A less ex-
pensive alternative is to classify the result pages as local
or global following a procedure similar to that of Section 4
for queries. Specifically, we implemented this alternative
by training C4.5Rules, a rule-based version of the C4.5
decision-tree classifier, with a collection of 140 web pages
categorized in the Yahoo! directory. Pages classified under
individual states in the “Regional” portion of the directory
were regarded as local, while pages under general categories
were regarded as global. The feature representation for the
pages was analogous to that for the queries in Section 4.1
but restricted to features that are meaningful over individual
pages (e.g., total number of locations on a page), as opposed
to over a collection of pages (e.g., minimum number of lo-
cations per page in the top-50 result pages for a query). At
query time, we reorder the results so as to privilege global
pages over local ones. This is based on the locality classifi-
cation of the pages, which can be precomputed off-line since
it is query-independent or performed on the fly as we do in
our prototype implementation. This procedure is efficient,
and produced promising initial results for a handful of global
queries (e.g., [wildflowers]) that we tried.

Our preliminary approach to query modification is there-
fore as follows: Given a query specified by the user, we sup-
ply first the unmodified query to the search engine and col-
lect the top 50 results. We extract location names from
these results14, and calculate the features of Section 4.1.
Using one of the best performing classifiers of Section 4, we
determine if the query is global or local. If it is local and

14As noted earlier, these names could be cached along with
each web page at the time of indexing, to increase efficiency.

contains at least one location name, nothing is done—the
results returned from the unmodified query are presented
to the user. If the query is local and contains no location,
we add the user’s location (or, alternatively, request further
information from the user, as discussed), reissue the query
and present the results. Finally, if the query is global, we
calculate the scope of each retrieved web page using part of
the location features computed earlier and the C4.5Rules

classifier, and rerank the results so that more global pages
are higher in the list shown to the user. We have built a pro-
totype implementation of this algorithm, using the classifier
obtained from Ripper (because of the relative simplicity of
its rules) for query classification, and Google as the search
engine.

7. CONCLUSION
We have described an attribute of queries, locality, that—

to the best of our knowledge—has not been explored before
either in theoretical work or in practical search engines but
can significantly affect the appropriateness of the results
returned to the user. We defined a categorization scheme
for queries based on their geographical locality, and showed
how queries can be represented for purposes of determining
locality by features based on location names found in the
results they produce. Using these features, automatic clas-
sifiers for determining locality can be built. We explored
several state-of-the-art classification approaches, and evalu-
ated their performance on a large set of actual queries. The
empirical results indicated that for many queries locality can
be determined effectively.

The bulk of the paper discussed methods for classifying
queries according to locality, and empirically established
that this is desirable and feasible for many queries. We
also presented some first thoughts on possible query refor-

mulation and result reranking strategies that utilize locality
information to actually improve the results the user sees.
Although our strategies for query modification and result
reranking are preliminary, they illustrate a promising fam-
ily of approaches that we plan to investigate in the future
so that we can exploit the classification of queries based on
their geographical locality in order to improve search result
quality.

Acknowledgments
This material is based upon work supported in part by the
National Science Foundation under Grants No. IIS-97-33880
and IIS-98-17434. We are grateful to Claudia Perlich and
Foster Provost for providing us with their adaptation of the
C4.5 classifier that we used in our experiments. Also, we
would like to thank Thorsten Joachims for answering our
questions on SVM-Light, and David Parkes for his helpful
comments and insight.

8. REFERENCES
[1] D. M. Bates and D. G. Watts. Nonlinear Regression

Analysis and its Applications. Wiley, New York, 1988.

[2] B. E. Boser, I. M. Guyon, and V. Vapnik. A training
algorithm for optimal margin classifiers. In
Proceedings of the Fifth Annual Workshop on
Computational Learning Theory, Pittsburgh, 1992.

[3] A. Bradley. The use of the area under the ROC curve
in the evaluation of machine learning algorithms.
Pattern Recognition, 30(7):1145–1159, 1998.

[4] S. Brin and L. Page. The anatomy of a large-scale
hypertextual web search engine. In Proceedings of the
Seventh International World Wide Web Conference
(WWW7), Apr. 1998.

[5] C. Buckley, J. Allan, G. Salton, and A. Singhal.
Automatic query expansion using SMART: TREC 3.
In Proceedings of the Third Text REtrieval Conference
(TREC-3), pages 69–80, April 1995. NIST Special
Publication 500-225.

[6] O. Buyukkokten, J. Cho, H. Garćıa-Molina,
L. Gravano, and N. Shivakumar. Exploiting
geographical location information of web pages. In
Proceedings of the ACM SIGMOD Workshop on the
Web and Databases (WebDB’99), June 1999.

[7] S. Chakrabarti, B. Dom, P. Raghavan,
S. Rajagopalan, D. Gibson, and J. Kleinberg.
Automatic resource compilation by analyzing
hyperlink structure and associated text. In
Proceedings of the Seventh International World Wide
Web Conference (WWW7), Apr. 1998.

[8] W. W. Cohen. Learning trees and rules with
set-valued functions. In Proceedings of the Thirteenth
International Joint Conference on Artificial
Intelligence, 1996.

[9] J. Ding, L. Gravano, and N. Shivakumar. Computing
geographical scopes of web resources. In Proceedings of
the Twenty-sixth International Conference on Very
Large Databases (VLDB’00), 2000.

[10] G. W. Flake, E. J. Glover, S. Lawrence, and C. L.
Giles. Extracting query modifications from nonlinear
SVMs. In Proceedings of the Eleventh International
World-Wide Web Conference, Dec. 2002.

[11] M. A. Hearst. Trends and controversies: Support
vector machines. IEEE Intelligent Systems,
13(4):18–28, July 1998.

[12] T. Joachims. Estimating the generalization of
performance of an SVM efficiently. In Proceedings of
the Fourteenth International Conference on Machine
Learning, 2000.

[13] J. Kleinberg. Authoritative sources in a hyperlinked
environment. In Proceedings of the Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages
668–677, Jan. 1998.

[14] K. S. McCurley. Geospatial mapping and navigation
of the web. In Proceedings of the Tenth International
World Wide Web Conference (WWW10), May 2001.

[15] M. Pazzani, C. Merz, P. Murphy, K. Ali, T. Hume,
and C. Brunk. Reducing misclassification costs. In
Proceedings of the Eleventh International Conference
on Machine Learning, Sept. 1997.

[16] R. Purves, A. Ruas, M. Sanderson, M. Sester, M. van
Kreveld, and R. Weibel. Spatial information retrieval
and geographical ontologies: An overview of the
SPIRIT project. In Proceedings of the 25th ACM
International Conference on Research and Develop-
ment in Information Retrieval (SIGIR’02), 2002.

[17] R. J. Quinlan. C4.5: Programs for Machine Learning.
Morgan Kaufman, 1993.

[18] G. Salton. Automatic Text Processing: The
transformation, analysis, and retrieval of information
by computer. Addison-Wesley, 1989.

[19] T. J. Santner and D. E. Duffy. The Statistical Analysis
of Discrete Data. Springer-Verlag, New York, 1989.

[20] C. J. van Rijsbergen. Information Retrieval.
Butterworths, London, 2nd edition, 1979.

[21] G. M. Weiss and F. Provost. The effect of class
distribution on classifier learning: An empirical study.
Technical Report ML-TR-44, Computer Science
Department, Rutgers University, Aug. 2001.

