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Abstract

Much of knowledge modeling in the molecular biology domain involves interactions between proteins, genes, various

forms of RNA, small molecules, etc. Interactions between these substances are typically extracted and codified

manually, increasing the cost and time for modeling and substantially limiting the coverage of the resulting knowledge

base. In this paper, we describe an automatic system that learns from text interaction verbs; these verbs can then form

the core of automatically retrieved patterns which model classes of biological interactions. We investigate text features

relating verbs with genes and proteins, and apply statistical tests and a logistic regression statistical model to determine

whether a given verb belongs to the class of interaction verbs. Our system, AVAD, achieves over 87% precision and 82%

recall when tested on an 11 million word corpus of journal articles. In addition, we compare the automatically obtained

results with a manually constructed database of interaction verbs and show that the automatic approach can

significantly enrich the manual list by detecting rarer interaction verbs that were omitted from the database.
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1. Introduction

Almost every day, new biological sub-
stances, such as genes, proteins and other
molecules, are discovered and interactions
between them are studied. The results are
reported in numerous publications. Even a
molecular biologist working in this fast-devel-
oping field cannot keep track of all these
newly identified interactions without the help

of an effective knowledge extraction computer

system. Researchers have developed systems

to extract automatically interaction relation-

ships among proteins, genes and other biolo-

gical molecules. These systems apply patterns

that are manually pre-constructed, in terms of

pre-defined interaction verbs and/or pre-spe-

cified protein and gene names [1,2], or even

are fully instantiated in a knowledge database

or by a semantic grammar [3,4].
Thus, current approaches perform auto-

matic interaction extraction based on patterns

that are already known. Their power is greatly
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limited by the small set of pre-defined inter-
action verbs used in the patterns. For in-
stance, Blaschke et al. [1] used a set of 14 pre-
specified verbs that denoted actions related to
protein interactions; Proux et al. [2] limited
interaction verbs by presenting them explicitly
in ‘request scenarios’.

One way to ease this limitation is to enlarge
the size of the interaction verb set automati-
cally. Discovering interaction verbs automati-
cally would allow substantial improvements in
the performance and power of current sys-
tems. It would also balance current manually
built verb lists, which tend to contain the most
common interaction verbs, with other rarer
members of this class (e.g., co-localize and
synergize , both of which were automatically
discovered by the system presented in this
paper).

Finding the interaction verbs is also an
important step in the automatic discovery of
relationship patterns from large biological
text corpora. Interaction verbs naturally link
their subject and object, which are the parti-
cipants in the interaction. Sekimizu et al. [5]
built a system to find the subjects and objects
for the frequently seen verbs in the genome
domain, as the basis for a genome-related
thesaurus. The verbs they used, however, were
still pre-defined. To discover interaction pat-
terns automatically, we can start from a set of
automatically discovered interaction verbs
and use text mining techniques to extract the
initial patterns and corresponding tuples of
genes or proteins that participate in the
relationships indicated by the interaction
verbs. We can then generalize the evidence
obtained for individual proteins and genes by
using clustering techniques on the proteins
and genes in these tuples to automatically
recover subclasses that have a similar func-
tional behavior. As a result, we can propose
appropriately restricted versions of the pat-
terns for inclusion in a database of relations

between finely grained subclasses of biological
substances.

In this paper, we present AVAD, a system
that uses a novel automatic method to dis-
cover interaction verbs that code for gene and
protein interactions in molecular biology
articles. We treat the discovery of such verbs
as a two-category classification problem:
among all verbs appearing in the text, auto-
matically determine those that code for bio-
logical interactions and those that serve a
normal discourse purpose (e.g., say , report ,
be). The features that AVAD uses include the
frequency of a verb before gene or protein
names (for convenience, we denote ‘gene or
protein name’ as GPN), the frequency of that
verb after GPNs and the frequencies of the
verb in different domains (biological, medical
and financial). First, we apply statistical tests
to the features. Then we use either a rule-
based combination or a fitted linear model to
decide whether the verb is an interaction verb.

Although AVAD populates a knowledge
base with interaction verbs and such a knowl-
edge base can be used for information extrac-
tion with either pre-defined or automatically
learned patterns, AVAD is not itself an
information extraction system or even a
pattern learning system. AVAD operates ear-
lier in the knowledge modeling pipeline. It
learns without human intervention the anchor
words (interaction verbs) with which patterns
can be extracted or automatically learned.
Those patterns can then be used in a follow-
up information extraction system in similar
ways as the more limited manually con-
structed patterns are currently used.

In Section 2, we outline the structure of
AVAD and describe the methods we use for
preprocessing text and recognizing verbs,
GPNs and associations between them. In
Section 3, we discuss the statistical methods
used over the word pair counts obtained
earlier. Section 4 presents our analysis of the
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results generated from a large collection of
biological journal articles by different versions
of AVAD. Section 5 contains a discussion of
experimental factors that affect the evaluation
and AVAD’s performance; we note limita-
tions in the data and the language tools used
by AVAD that reduce the observed precision
and recall, but do not reflect fundamental
limitations of the approach. Finally, Section 6
presents a comparison between a manually
constructed database of interaction verbs and
several sets of verbs produced by AVAD; we
establish that the output of the automated
system can complement the manual list by
detecting interaction verbs missed during the
knowledge engineering process.

2. Extracting information from text

The basic premise of our approach for
determining if a verb is an interaction verb is
to extract from the text the subjects and
objects in its various occurrences over a large
biological corpus. We reason that, for an
interaction verb, these are likely to be entities
from the biological domain (most commonly,
genes and proteins), while for discourse verbs
the subjects and objects are often not biolo-
gical substances (e.g. authors report and
believe , a study or another paper is cited , etc.).

AVAD includes a collection of modules
that preprocess HTML input to produce
annotated XML files with information about
word and sentence breaks and part of speech
labels. Further analysis of the text (e.g. to
detect co-occurring verbs and GPNs) is per-
formed on the annotated text. We assume that
the input to our system comes in HTML form,
as most journal articles available online are
already in this format. Additional preproces-
sing modules can be activated to handle
ASCII text or PDF files.

In the preprocessing phase we start with the

HTML::TreeBuilder perl module from CPAN

(http://www.cpan.org) to parse the HTML

files. Then, we discard the HTML tags that

are used for graphic display purposes but

carry no useful information for text analysis.

We output the contents of the HTML files as

raw text and transform that to XML files via

a pipeline containing five additional phases:

1) GPN tagger . We need to detect names of
proteins and genes, since we base our verb
statistics on the verb’s associations with
these words and phrases. We use a small
dictionary of 2783 GPNs, which provides
us with a manually built, high-quality, but
relatively small set of GPNs. Since we use
these GPNs as seed points for the detec-
tion of interaction verbs, high precision in
the labeling of GPNs is more important
than high recall*/if desirable, another
source of GPNs, such as GenBank [6],
can be used. We maximally match phrases
from the text against the dictionary and
perform this step first because of some
gene names that contain punctuation
marks (e.g. ‘Inositol (1,4,5) P3 receptor
1’), which would otherwise confuse
our sentence boundary detector and toke-
nizer.

2) Sentence boundary detector . We use MX-
TERMINATOR [7] (http://www.cis.upen-
n.edu/�/adwait/statnlp.html) to detect
sentence boundaries.

3) Tokenizer . We use a tokenizer for arbi-
trary raw text, a sed script developed for
the Penn Treebank (http://www.cis.upen-
n.edu/�/treebank/tokenizer.sed).

4) Part-of-speech (POS) tagger . The statis-
tical part-of-speech tagger [8] assigns a
part of speech label, such as noun, adjec-
tive or verb, to each word in the text. We
use this information to detect verbs and
verb groups, as explained later.
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5) XML generator . The XML generator
transforms the output of the part-of-
speech tagger to XML. We use only four
tags: (1) PAPER, which is the root tag for
each file; (2) S for ‘Sentence’; (3) W for
‘Word,’ which has a POS attribute; and
(4) GPN for ‘gene or protein name’. A
very simple example XML file is shown in
Fig. 1.

Once all files in a corpus of biological texts
have been annotated and transformed to
XML as described above, our system detects
verb groups and subsequently finds GPNs
that are close to these verb groups, either
before or after the verb. AVAD collects the
‘before’ and ‘after’ counts separately for each
verb in the corpus. Similar counts can also be
obtained from corpora in other domains to
compare with the frequencies of verbs in the
biology domain.

Using the part of speech labels, we have
built finite state machines (FSMs) to detect
combinations of verbs and auxiliaries that
comprise a single verb group. We automati-
cally detect the head (main verb) in a verb
group and associate it with any GPNs to the
left and right of the verb group. Detected
verbs are normalized to a canonical form
using the SCOL automatic stemmer available
from http://www.sfs.nphil.uni-tuebingen.de/
�/abney, so that statistics for all morpholo-

gical variants of the same verb will be
collected together. Fig. 2 shows the finite state
machine used to detect verb groups starting
from an observed GPN. The detection algo-
rithm uses a parameter that controls how
close the GPN and the verb group must be to
consider their association valid. We have
experimented with values in the range of 0�/4
intervening tokens, observing little difference
in the final results of AVAD. Note that our
algorithms for detecting an association be-
tween verbs and GPNs simulate locally a
dependency parser to find the head verb for
a GPN subject (after) or a GPN object
(before). We have found that these finite-state
methods offer reasonable accuracy for this
specialized task, thus avoiding the intensive
computation that a full parser, such as Refs.
[9] or [10], would require.

3. Classifying verbs

After association counts have been col-
lected for all verbs in the corpus, we have a
big table in which each verb has a row with
‘GPN before’ and ‘GPN after’ frequencies, as
well as the total frequency of the verb. Next,
an appropriate statistical test is needed to
rank the verbs in descending order of their
likelihood of being an interaction verb. We
have applied Pearson’s x2-test and its one-
sided variant, commonly known as the pro-
portions test [11]. Under the latter, we assume:

The ratio of the ‘before’ (or ‘after’)

frequency to the total frequency of an
interaction verb is higher than the corre-
sponding ratio for a common (non-inter-

action) verb.

(1)

To apply the test, we need to estimate the

Fig. 1. An XML file for an artificially simple article. The article

has only one sentence, ‘A is activated by B.’ A and B are GPNs;

PAPER is the root tag; S stands for ‘sentence’; and W stands

for ‘word’, which has a POS (part-of-speech) attribute. In this

example, VBZ stands for ‘verb in present tense, third person

singular’, VBN for ‘verb, past participle’ and IN for ‘preposi-

tion’.
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ratio for a common verb. We estimate the
‘before’, ‘after’ and total frequency of a
common verb by summing all the frequencies
of the verbs in the table, except those of the
verb in question. For each verb, we apply the
proportions test twice, for the before and after
counts. The test hypotheses are given below

H0;position: rverb;position� rcommon;position

H1;position: rverb;position� rcommon;position (2)

where r means ratio and position is either
‘before’ or ‘after’. Using a contingency table
with four cells corresponding to the before/
after and total frequencies of the verb in
question and all other verbs, we can calculate
the x2 statistic for both the original x2-test and
the proportions test.

We combine the results of the ‘before’ and
‘after’ tests in two ways: either by requiring
that both H1,before and H1,after are true (con-
junction) or that either of them is true

(disjunction). We would normally expect con-

junction to perform better, as an interaction

verb normally has biological substances as

both subject and object. However, due to the

limited GPN dictionary and possible verb-

GPN link detection errors, we tested the

disjunction rule as an alternative.
In addition to the two tests involving the

before or after frequencies of each verb, we

also consider the difference between the rate

of occurrence of a verb between a corpus of

biological articles and other collections of text

in other domains. We measure differences in

these rates of occurrence with the log-like-

lihood test [12], calculating that value for each

verb and each other domain that we examine.

We use the log-likelihood values, together

with our previously computed results of the

before/after tests, as features in a logistic

regression model [13] that constitutes another

way to combine information from the differ-

ent indicators and predict whether a verb

Fig. 2. The finite state machine for finding the head verb after a GPN. When the FSM stops at one of its end (double-circled) states, it

returns the last-met verb as the head verb. ‘e’ Stands for the empty transition.
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belongs to the interaction verb class. In
classical linear modeling, the response vari-
able y is modeled as y�/bTx�/e , where b is a
vector of weights, x is the vector of the values
of the predictor variables and e is an error
term which is assumed to be normally dis-
tributed with zero mean and constant var-
iance, independent of the mean of y . The log-
linear regression model generalizes this setting
to binomial sampling where the response
variable follows a Bernoulli distribution (cor-
responding to a two-category outcome); note
that the variance of the error term is not
independent of the mean of y anymore. In
Section 4, we present the results of fitting
regression models of different interaction
orders to these features and compare the
performance of the regression models to the
conjunction and disjunction rules.

4. Results and evaluation

For the experiments reported in this paper,
we used 1381 HTML articles extracted from
the European Molecular Biology Organiza-
tion (EMBO) Journal Online (http://www.em-
boj.org/) to form our corpus of biological
articles. This corpus contains 10,931,907
words. For the purpose of comparing verb
frequencies with those in other domains, we
used two additional corpora: a collection of 1
year of articles from the Wall Street Journal,
including general news articles but focusing
primarily on financial news (22,503,667
words) and a set of 29,784 articles from 20
cardiology journals (88,944,123 words).

4.1. Experiment I

In this experiment, without looking at
context, experts with M.S. or Ph.D. degrees
in biology and related disciplines, such as
mathematical genetics, labeled 647 (48% of

the total) verbs as positive (interaction verbs)

out of 1346 verbs in the EMBO corpus. Only

verbs occurring more than 15 times in the

corpus were supplied to the experts. This was

carried out to alleviate the data sparseness

issue, as verbs with very low counts would

likely have unreliable statistics. Using the

‘after’ test, the ‘before’ test and the conjunc-

tion and disjunction of the ‘after’ and ‘before’

tests at the significance level of 5%, we give

the precision, recall and F-measure of the x2-

test and the proportions test in Table 1 and

Table 2, respectively. Precision is the percen-

tage of correctly classified interaction verbs

among those that the system reports as

interaction verbs; recall is the percentage of

correctly classified interaction verbs among all

verbs labeled as interaction verbs by the

experts. The F-measure [14] combines the

usually competing measures of precision and

recall in a single number with equal weights.
Generally, the precision of the proportions

test is higher than that of the x2-test, but the

recall is lower. Also, as expected, the conjunc-

tion rule between the before and after tests

leads to higher precision (and lower recall)

than either test alone, while the opposite is

true for the disjunction rule.
We subsequently fit a log-linear (logistic

regression) model on the features of a verb,

including the total frequency, the before and

after frequency, the proportions and x2-test

statistics, the ranks in the two sorted lists and

the log-likelihood tests between the biology

and other domains. We randomly select two-

Table 1

The results of the x2 test for Experiment I

Precision (%) Recall (%) F-measure (%)

Before 51.4 32.9 40.1

After 54.3 36.8 43.9

Conjunction 53.9 21.5 30.7

Disjunction 52.5 48.2 50.3
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thirds of the verbs as the training set to fit the
model on and then use the fitted model on the
test set, the remaining one-third of the verbs.
We repeat the procedure ten times with
different random splits and compute the
averages. We analyzed models of various
orders of feature interaction; Table 3 shows
the results for an order 2 model on all
features. The regression-based model utilizes
information from both within and outside the
corpus of biological articles (by comparing
verb frequencies with the corresponding fre-
quencies in the Wall Street Journal and
medical corpus) and optimizes the weights
for the various counts and test probabilities
according to the training data. The combined
model offers the best performance, outper-
forming any single test or feature or the
conjunction or disjunction rules alone.

4.2. Experiment II

Our best results from Experiment I (Table
3) indicate around 60% precision and recall on
unseen data. We analyzed the cases where the
system disagreed with the labels assigned by
the experts and followed this analysis with

discussions with them. We found, to our
surprise, that the experts would often revise
their decisions when presented with examples
where verbs were used as interaction verbs (or
the opposite). Thus, we designed a second
experiment, aiming to create another gold
standard where the experts would be more
confident in their labels.

We randomly selected 150 verbs, and sup-
plied to experts ten example sentences where
each occurred. By viewing the verbs in con-
text, the experts were more certain of their
status as interaction or non-interaction verbs.
Using a strict criterion that interaction verbs
act as such in almost all the supplied example
sentences, only 17 of the 150 verbs were
labeled as interaction verbs, namely ‘aggre-
gate’, ‘assemble’, ‘associate’, ‘attach’, ‘bun-
dle’, ‘cleave’, ‘co-express’, ‘co-immuno-
precipitate’, ‘co-migrate’, ‘co-precipitate’,
‘co-localize’, ‘disrupt’, ‘inactivate’, ‘relocate’,
‘repress’, ‘synergize’ and ‘translocate’.

We then repeated the calculations of the
statistical tests and the training and testing of
the log-linear models. We show in Table 4
results from the proportions test (which
performed better than the x2-test) at different
levels of confidence. As the significance level a
increases, the precision rates drop, but the
recall rates increase. As in Experiment I, the
precision of conjunction is higher than that of
disjunction and recall exhibits the opposite
behavior. Table 5 shows the corresponding
results for the x2-test, which achieves consis-
tently high recall (as in Experiment I), but
significantly lower precision and overall F-
measure than the proportions test.

The system achieves the best overall result
of F-measure 84.9% when using the propor-
tions test by conjunction at a significance level
of 10%. This is significantly higher than the
result using the x2-test whose best F-measure
is 55.6%. It is also better than the best result of
Experiment I, F-measure 59.5% on the test set

Table 2

The results of the proportions test for Experiment I

Precision (%) Recall (%) F-measure (%)

Before 64.4 23.2 34.1

After 70.5 28.4 40.5

Conjunction 78.2 13.3 22.7

Disjunction 64.6 38.3 48.1

Table 3

Average results of the log-linear model with interaction terms of

order 2 on all the features for Experiment I

Precision (%) Recall (%) F-measure (%)

Training 71.7 68.9 70.3

Test 61.1 58.0 59.5
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using the linear model (Table 3). This demon-
strates that when the labels of the verbs
become more accurate, the performance of
AVAD improves in both precision and recall
when using the proportions test. The log-
linear model performed slightly worse than
the proportions test on this data, which we
attribute to the small number of positively
labeled samples. Table 6 lists the average
scores obtained by the log-linear model on
the training and test data; note that the model
achieves a much better performance on the
training data, indicating that overfitting is
taking place. Because of the low number of
verbs labeled as interaction verbs in Experi-
ment II (11%), only a first-order log-linear
model can be fitted (models of higher order
are singular).

Table 4 shows that AVAD achieves preci-
sion, recall and F-measure above 80% using
the conjunction rule and a relatively high

confidence level for the statistical test. These
numbers represent a significant improvement
over our results for Experiment I, thus
indicating the importance of providing the
experts with enough information to properly
assess whether a relatively not so frequent
verb is an interaction verb. Note that it would
have been worthwhile to measure the consis-
tency of expert decisions during both experi-
ments and in particular for the first
experiment. One such measure of consistency
is the rate of agreement between experts on

Table 4

Performance of AVAD using the proportions test and conjunction/disjunction rules at different significance levels on the gold standard

of Experiment II

Precision (%) Recall (%) F-measure (%)

a�/1% Conjunction 100 58.8 74.1

Disjunction 45.5 88.2 60.0

a�/5% Conjunction 86.7 76.5 81.3

Disjunction 39.5 88.2 54.5

a�/10% Conjunction 87.5 82.4 84.9

Disjunction 37.2 94.1 53.3

Table 5

Performance of AVAD using the x2 test and conjunction/disjunction rules at different significance levels on the gold standard of

Experiment II

Precision (%) Recall (%) F-measure (%)

a�/1% Conjunction 52.6 58.8 55.6

Disjunction 29.4 88.2 44.1

a�/5% Conjunction 40.6 76.5 53.1

Disjunction 22.4 88.2 35.7

a�/10% Conjunction 37.1 76.5 50.0

Disjunction 21.1 88.2 34.1

Table 6

Performance of AVAD using the log-linear regression model

with no interaction terms on the gold standard of Experiment II

Precision (%) Recall (%) F-measure (%)

Training 92.7 78.9 85.3

Test 73.4 76.3 74.8
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the same data. However, for Experiments I
and II reported above, the two participating
experts marked separate subsets of verbs and
each verb was marked by only one expert, due
to limited time and availability of experts. We
analyze a shared sample of verbs marked by
multiple experts to measure expert agreement
in Section 6.

5. An analysis of AVAD’s errors

In this section, we examine AVAD’s errors
according to the data from Experiment II (:/

15% of the system’s decision are in error
according to the gold standard of that experi-
ment). We are looking for systematic patterns
of errors and attempt to classify them into
those that reflect a true limitation of AVAD’s
statistical approach and those that can be
attributed to the limited amount of data we
have for training or represent limitations of
the tools that AVAD uses, such as the part-of-
speech tagger.

To find the reasons for misclassification, we
check in context the misclassified verbs. We
ranked the verbs in ascending order of their
proportions test P-values. Then we check
those verbs with top ranks and bottom ranks.
If there are common verbs among those verbs
with top ranks, the precision will be damaged
and if there are interaction verbs among those
verbs with bottom ranks, the recall will be
reduced. We find several factors that may
affect the precision:

1) Some common, non-interaction verbs
have high frequency in biological texts,
either in the ‘before’ case or in the ‘after’
case, such as ‘detect’, ‘identify’, ‘play’,
‘characterize’, etc. They are frequently
used to describe an experiment, to analyze
results, to state a fact, etc. They take a
GPN as a subject or object, but they do

not indicate any interaction. An example
is shown in Fig. 3(a), where detect is not
an interaction verb but it is a ‘before’ head
verb for the GPN. Among those verbs,
some appear almost equally significantly
in the ‘before’ and ‘after’ cases. We call
them ‘balanced’ verbs. An example is
‘detect’, which appears 535 times in the
‘after’ case and 198 times in the ‘before’
case out of a total frequency 6464. The P-
values of the proportions test are B/10�16

and 0.016 for the ‘before’ and ‘after’ cases,
respectively. Both are significant at the 5%
significance level. These verbs cannot be
eliminated by the conjunction rule at the
significance level of 5%. If they are
unbalanced, however, like ‘play’, which
is frequently used in the active form*/

‘GPN plays a role in. . .’*/and is seldom
used in the passive form, they will be
rejected by the conjunction rule. But the
disjunction rule does not work for either
of the ‘balanced’ and ‘unbalanced’ cases.
This also explains why the precision of the
disjunction rule is significantly lower than
that of the conjunction rule.

2) The errors caused by the part-of-speech
tagger (with 95% reported accuracy, but
trained on a completely different domain)
can also affect the precision because part-
of-speech labels are used to find the
‘before’ verb and the ‘after’ verb (Section
2). For example, in the sentence in Fig.
3(b), ‘was’ is wrongly found as the ‘after’
head verb because the part of speech of
‘co-expressed’ is mistakenly reported as an
adjective, ‘JJ’, instead of a past participle,
‘VBN’. When the FSM meets ‘co-ex-
pressed’, it stops and returns the last-met
verb, ‘was’, as the head verb.

3) The ‘before’ verb or the ‘after’ verb found
by the algorithm in Section 2 is not always
the actual head verb for the GPN in the
sentences because our head verb detection
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algorithm does not analyze the structure
of the sentences (e.g. prepositional phrases
embedded in complex noun phrases). An
example can be found in the sentence in
Fig. 3(c) where limited is not the ‘after’
head verb for the GPN but is the head
verb for homology.On the other hand, the
reason why the recall drops is that there is
not enough evidence, that is, either the
‘before’ or the ‘after’ frequency of a verb is
not large enough to get a significant test
result. The following factors may affect
the recall:

4) The GPN dictionary is not large enough
to cover all the GPNs in the corpus. For
instance, the interaction verb ‘cleave’
appears 1112 times in the corpus, but for
only 27 times it is caught as an ‘after’ verb
and for 24 times as a ‘before’ verb. In
many cases, the GPNs near it are not
tagged as such by the GPN tagger. For
those interaction verbs with a low total
frequency, for instance, lower than 50, the
situation will be worse when the GPNs
near it are not tagged because it will
greatly affect the result of the proportions
test since the denominator of the ratio is
small and a little fluctuation of the
numerator may cause a big fluctuation
of the ratio.

5) The errors caused by the POS tagger may
also affect the recall rate. Take the sen-
tence in Fig. 3(b) as an example again.
Because ‘co-expressed’ is wrongly tagged
as ‘JJ’ instead of ‘VBN’, the searching
algorithm returns ‘was’ as the head verb.
This reduces the ‘after’ frequency of ‘co-
express’ by one. If there were many cases

in the corpus like this or too few occur-
rences of ‘co-express’ to start with, the
frequency of ‘co-express’ appearing near a
GPN would not be large enough to obtain
a significant test result.

This analysis indicates that a large part of
the current errors made by AVAD are due to
either errors made by external tools (factors 2
and 5), errors made by our verb detection
finite state grammar (factor 3) or the limited
size of the GPN dictionary we currently use
(factor 4). Only the first of the items above
represents an inherent limitation of the
method. We expect that as the field of text
analysis with biological documents matures,
specialized tools, such as part-of-speech tag-
gers trained for this domain and even efficient
finite-state parsers that partially recover sen-
tence structure more accurately will become
available. The existence of such tools ([15])
has helped improve the accuracy of text
analysis systems in other information extrac-
tion applications. Finally, obtaining a larger
high-quality collection of GPNs, whether
manually built or filtered from entries in
databases, such as GenBank, is certainly a
possibility.

6. Comparison with a manually built list of
activation verbs

AVAD automatically produces a list of
interaction verbs by examining a large number
of biology articles. As noted in the introduc-
tion, such lists are useful for modeling

Fig. 3. Some example sentences indicating where AVAD can be misled.
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protein�/protein and gene�/protein interac-

tions and consequently have been built by

hand before. In this section, we compare the

sets of interaction verbs produced by AVAD

under different configurations to a reference

list of interaction verbs, the one used in the

GeneWays system.
GeneWays, currently under construction at

Columbia University, is a system for the

automatic analysis of large amounts of textual

data in the biology domain. GeneWays anno-

tates journal articles, locating genes and

proteins, extracting relationships between

them, validating those relationships across

articles and representing them graphically. In

addition to the validation, database manage-

ment and visualization components, its text

analysis component includes algorithms for

the detection and disambiguation of genes and

proteins in text and for the detection of

relationships that match patterns known to

the system. Currently, the patterns that re-

present the system’s understanding of biolo-

gical relationships are encoded as part of

GeneWays detailed knowledge model, which

was built by hand by consulting experts in the

domain of pathway analysis [16]. These pat-

terns are then represented as rules in a

semantic grammar and a parser adapted to

the biological domain [17], extracts new

instances of gene and protein relationships

as new texts arrive.
The authors of the present paper are part of

the multidisciplinary team that is building

GeneWays and in fact, our work on AVAD

was motivated by the need to augment and

adapt the manually built knowledge base of

interaction verbs and relationship patterns

that is currently used in the GeneWays

system. Selecting the interaction verbs for

that knowledge base and specifying restric-

tions on their subjects and objects took a

considerable amount of time during the design

of the knowledge base; updates to the knowl-

edge base either as new biological subdomains

are considered or simply as the field evolves

are difficult to perform. Therefore, there is a

significant benefit from having access to

automatically produced lists of interaction

verbs, even if the results of an automated

system, such as AVAD, need curation by

experts before being incorporated in the

knowledge base.
In Table 7 we examine six different config-

urations of AVAD (using the proportions test

and either the conjunction or disjunction rule

and three different significance levels: 1, 5 and

10%). These configurations produce different

numbers of interaction verbs, with those being

most productive expected to have lesser accu-

racy. We compare AVAD’s output with the

manually built list of interaction verbs in

GeneWays, which contains 96 single-word

verbs and 15 multiword verb expressions

(phrasal verbs and other verb groups, such

as ‘suppress activity of’); we base our compar-

isons only on the single-word verbs, since

AVAD only detects interaction verbs of this

type. We asked two biologists, both with

Ph.D. degrees in molecular biology or a

related discipline, to judge each of the verbs

proposed by AVAD and mark it as either an

interaction verb or a common, discourse verb;

to keep the number of judgments manageable,

these decisions were made without looking at

text examples of the use of the verbs, so the

caveats mentioned earlier during our discus-

sion of Experiments I and II apply. As a

control, we included the manually constructed

entries in the GeneWays knowledge base, for

a total of 462 verbs or verb groups (447 single-

word verbs). For each AVAD configuration,

we list how many interaction verbs it reports,

how many of those are judged as correct by at

least one or both evaluators, how many are

found among the 96 single-word verbs in the
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manually built GeneWays knowledge base

and how many of the verbs not in GeneWays’

knowledge base at least one or both of the

experts consider correct.
We observe from Table 7 that AVAD

covers 35�/40% of the knowledge base with

the conjunction rule and more than half with

the more permissive disjunction rule. Its

precision is 80�/90% if we apply the broader

interpretation considering a verb an interac-

tion verb if one of the experts says so and 70%

on the stricter gold standard that requires

agreement between the experts; precision

remains �/50% in all cases even with the

disjunction rule. Most significantly, AVAD

proposes a substantial number of verbs not in

the knowledge base and its precision on those

verbs is only about 5% less than its overall

precision. This means that AVAD’s output

can be used to effectively quadruple the size of

the knowledge base after curation, while only

proposing a verb that will be rejected by the

experts about one-third of the time. By using a

corpus larger than our current collection of 11

million words, it is likely that many more

interaction verbs can be reliably extracted.
We also measured the agreement between

the two experts and found that they assign the

same label to verbs in 355 of the 462 cases, or

77% of the time. This shows that the problem

of determining the status of a verb as an

interaction verb or not is a non-trivial one. It

is not a simple task for the biologists to

unambiguously choose the interaction verbs

from a list, much less construct the list from

scratch in the first place. Interestingly, there

were several cases where the experts consid-

ered the entries in the manually built knowl-

edge base to be invalid: in four of the 96

single-word entries, both experts labeled the

verb as a common verb, and in an additional

11 cases, one of them did so (there were two

and one additional such cases, respectively,

among the 15 multiword verb phrases in the

knowledge base). This results in a precision

for the manually built list of 94.6% under the

Table 7

Comparison of verbs in AVAD’s output, the manually built knowledge base for GeneWays and two expert biologists’ assignments of

status as interaction verbs or not

and, 1% and, 5% and, 10% or, 1% or, 5% or, 10%

Verbs proposed by AVAD 95 110 131 338 384 423

Verbs found in knowledge base 34 37 39 55 57 57

Coverage of knowledge base (%) 35.4 38.5 40.6 57.3 59.4 59.4

Correct interaction verbs proposeda 87 99 120 268 306 333

Correct interaction verbs proposedb 70 76 90 184 204 219

Overall precisiona (%) 91.6 90.0 91.6 79.3 79.7 78.7

Overall precisionb (%) 73.7 69.1 68.7 54.4 53.1 51.8

Verbs not in the knowledge base 61 73 92 283 327 366

Correct interaction verbs not in KBa 53 62 81 214 250 277

Correct interaction verbs not in KBb 40 43 55 136 154 169

Precision on verbs not in KBa (%) 86.9 84.9 88.0 75.6 76.5 75.7

Precision on verbs not in KBb (%) 65.6 58.9 59.8 48.0 47.1 46.2

The six system configurations are denoted by ‘and’ or ‘or’ for conjunction and disjunction, respectively, and the significance level

applied on the output of the proportions test.
a For measures involving a gold standard a verb is considered an interaction verb if at least one of the two experts rate it as such.
b For measures involving a gold standard a verb is considered an interaction verb only if both experts agree.
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first standard and 83.8% under the second,
stricter standard.

7. Conclusion

We have described AVAD, a system that
automatically discovers interaction verbs be-
tween genes and proteins. The system achieves
respectable precision (61.1%) and recall
(58.0%) when it categorizes interaction verbs
marked by experts out of context. But when
the evaluation is focused on the cases where
the experts can safely label the verbs by
checking their contexts, performance rises to
87.5% precision and 82.4% recall.

The system is in addition able to recover
interaction verbs that are relatively infrequent
or specialized and are thus unlikely to be
captured during manual knowledge engineer-
ing. For example, AVAD automatically clas-
sified co-localize and synergize as interaction
verbs, both of which do not appear in the
detailed knowledge model for interaction
verbs constructed for the GeneWays system
[16]. Our analysis showed that AVAD pro-
poses a large number of verbs that humans
did not include in the knowledge base and
that most of these verbs should in fact be
included in the knowledge base.

Our approach may be used by current
interaction extraction systems as an extension
or refinement by automatically enlarging the
size of the interaction verb sets they use. It is
also an important step in our automatic
discovery of interaction patterns from large
biological corpora. We plan to extend its
coverage to interactions among other biologi-
cal substances in addition to genes and
proteins, such as tRNA, mRNA and other
molecules, by including the names of these
substances in the dictionary. Extending our
current coverage of verb forms to deverbal

nominal forms (e.g. activation) is another goal
of future work.

Acknowledgements

The authors thank Andrey Rzhetsky for
providing valuable input during the design of
the system and serving as one of the expert
judges. Michael Krauthammer and Pavel
Morozov served as the other two judges and
we are grateful for the hours they spent
marking verb lists for us. We also thank Carol
Friedman and Pauline Kra for providing us
with the manually constructed list of interac-
tion verbs currently used in the GeneWays
system, which we compared to the automati-
cally identified interaction verbs. Finally, we
thank Adam P. Arkin who supplied us with
the gene and protein dictionary used in the
experiments reported here. This work was
supported in part by National Science Foun-
dation Information Technology Research
Award No. 0121687, as well as by grants
from the National Institutes of Health and the
New York State Science and Technology
Foundation. All opinions, findings and re-
commendations reported in this article are
those of the authors and do not necessarily
represent the views of the NSF, NIH or
NYSSTF.

References

[1] C. Blaschke, M.A. Andrade, C. Ouzounis, A. Valencia,

Automatic extraction of biological information from

scientific text: protein�/protein interactions, Proceedings

of the Seventh Conference on Intelligent Systems in

Molecular Biology, 1999, pp. 60�/67.

[2] D. Proux, F. Rechenmann, L. Julliard, A pragmatic

information extraction strategy for gathering data on

genetic interaction, Proceedings of the Eighth Interna-

tional Conference on Intelligent Systems for Molecular

Biology, La Jolla, CA, 2000, pp. 279�/285.

[3] J.C. Park, H.S. Kim, J.J. Kim, Bidirectional incremental

parsing for automatic pathway identification with combi-

V. Hatzivassiloglou, W. Weng / International Journal of Medical Informatics 67 (2002) 19�/32 31



natory categorical grammar, Pacific Symp. Biocomput. 6

(2001) 396�/407.

[4] A. Yakushiji, Y. Tateisi, Y. Miyao, J. Tsujii, Event

extraction from biomedical papers using a full parser,

Proceedings of Pacific Symposium on Biocomputing, 2000,

pp. 408�/419.

[5] T. Sekimizu, H.S. Park, J. Tsujii, Identifying the interac-

tion between genes and gene products based on frequently

seen verbs in MedLine abstracts, in: Genome Informatics,

Universal Academy Press, Tokyo, 1998.

[6] D.A. Benson, M.S. Boguski, D.J. Lipman, J. Ostell, B.F.

Ouellete, B.A. Rapp, D.L. Wheeler, GenBank, Nucl. Acids

Res. 27 (1) (1999) 12�/17.

[7] J.C. Reynar, A. Ratnaparkhi, A maximum entropy

approach to identifying sentence boundaries. Proceedings

of the Fifth Conference on Applied Natural Language

Processing, Washington, DC, 1997.

[8] E. Brill, Transformation-based error-driven learning and

natural language processing: a case study in part of speech

tagging, Comput. Linguist. 21 (4) (1995) 543�/565.

[9] M.J. Collins, Three generative, lexicalized models for

statistical parsing, Proceedings of the Thirty-fifth Annual

Meeting of the Association for Computational Linguistics,

Madrid, Spain, 1997, pp. 16�/23.

[10] E. Charniak, Immediate head parsing for language models,

Proceedings of the Thirty-ninth Annual Meeting of the

Association for Computational Linguistics, Toulouse,

France, 2001.

[11] J.L. Fleiss, Statistical Methods for Rates and Proportions,

second ed, Wiley, New York, 1981.

[12] P. Rayson, R. Garside, R, Comparing corpora using

frequency profiling, Proceedings of the Workshop on

Comparing Corpora, Thirty-eighth ACL, Hong Kong,

2000, pp. 1�/6.

[13] J. Santner, D.E. Duffy, The Statistical Analysis of Discrete

Data, Springer Verlag, New York, 1989.

[14] C.J. van Rijsbergen, Information Retrieval, second ed,

Butterworths, London, 1979.

[15] D. Appelt, J. Hobbs, J. Bear, D. Israel, M. Tyson, Fastus:

a finite state processor for information extraction from real

world text, Proceedings of the Thirteenth International

Joint Conference on Artificial Intelligence, Chambery,

France, 1993.

[16] A. Rzhetsky, T. Koike, S. Kalachikov, S.M. Gomez, M.

Krauthammer, S.H. Kaplan, P. Kra, J.J. Russo, C. Fried-

man, A knowledge model for analysis and simulation of

regulatory networks, Bioinformatics 16 (2000) 1120�/1128.

[17] C. Friedman, P. Kra, H. Yu, M. Krauthammer, A.

Rzhetsky, GENIES: a natural-language processing system

for the extraction of molecular pathways from journal

articles, Bioinformatics 17 (2001) S74�/82.

V. Hatzivassiloglou, W. Weng / International Journal of Medical Informatics 67 (2002) 19�/3232


	Learning anchor verbs for biological interaction patterns from published text articles
	Introduction
	Extracting information from text
	Classifying verbs
	Results and evaluation
	Experiment I
	Experiment II

	An analysis of AVAD’s errors
	Comparison with a manually built list of activation verbs
	Conclusion
	Acknowledgements
	References


