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ABSTRACT

We describe several experimental parameters and a penatileh
technigue used in our online document clustering systerbRCI
These modifications were introduced into CIDR to reduce time r
ning time so that incoming documents be clustered in almest r
time. We discuss how several of these parameters are jdstifie
linguistic grounds and report preliminary quantitativeuks on the
effects that these parameters have on speed and accuracy.

1. INTRODUCTION

We report our experience with the development and testiGjOR,

a system for the automated placement of text documentsadpicet
clusters. Our focus in CIDR is somewhat unusual. We haveestar
from the assumption that our clustering system should airm#x-
imal efficiency, so that it will be able to classify tens of tisands of
documents in real time. This puts a premium on operationa¢dp
rather than classification accuracy, and raises a numbetesésting
research questions, namely, what modifications to a stdrdtaru-
ment clustering approach offer significant speedup gaidsvarat
penalty in classification accuracy each of them incurs. \iér pfe-
liminary answers to these questions in this paper.

Our development of CIDR was constrained by limited avaligbi
of time and manpower resources. We did not participate ipillo¢
TDT study in 1997, and did not become officially involved in T2
until November 1998. As a result, we were not able to pardiepn
the formative TDT workshops, and we submitted our first rssuh
the development subset of the TDT corpus only days beforaive s
mitted the official evaluation run. Unlike other compet#o€IDR is
the product of essentially a single implementor, spannidenvalop-
ment period of six person-weeks. Thus, we view our currestesy

as less of a finished competitive product and more of a prpgoty

that embodies a basic clustering technique and allows uspiore
modifications to it in order to investigate speed-accuraagleoffs.

We have designed CIDR in a modular way that facilitates the re

placement of components for rapid prototyping. We are galaily
interested in augmenting CIDR with language-informed témphes
and knowledge sources, a topic we return to in the last seofithis
paper.

*The author’s current address is IBM T. J. Watson Researche€e30
Saw Mill River Road, Hawthorne, NY 10532.

2. EXPERIMENTAL PARAMETERS AND
SYSTEM DESCRIPTION

CIDR uses at its core a fairly standard single-pass clusjeai-
gorithm [1] with a deferral of zero. The innovative elemenfs
our work lie in modifications to that algorithm that offer sificant
speed gains without sacrificing much accuracy. We descnibe fi
the general algorithm, and then discuss five experimentainpe:
ters and other modifications that were introduced for thegpse of
reducing running time.

Our algorithm takes one article at a time and assigns it tclie
ter that looks most similar to it. Matching between a new doent
and existing clusters is based on a comparison betweenthdate
ument and the centroids of the existing clusters. Each dentirs
represented as a vector of word frequencies modified bysevdwc-
ument frequencies (a TF*IDF product, as is standard in médion
retrieval [5]). Centroids of clusters are represented imélar man-
ner but the TF*IDF values associated with them are the weight
averages of the corresponding TF*IDF values of the docusnaint
ready assigned to that cluster. The algorithm initiallycpkathe first
document by itself in the first cluster, and this single @ushakes
the initial working collection of clusters. As new documertre
processed, they are compared to the centroids of the dusténe
working collection and are either placed in the most siméxsist-
ing cluster or in a newly created cluster, consisting of aret new
document. Similarity between a document and a centroid & me
sured by the cosine (normalized inner product) of the cpmed-
ing TF*IDF vectors, and a predetermined cutoff thresholecgies
when the similarity is unacceptably low and a new clusteughbe
created instead.

In order to satisfy the on-line restriction, we estimate ihesrse
document frequencies from a separate collection, ratlaertthe ar-
ticles we are clustering. We use the documents in the TDEciidin
between January and April 1998 for this purpose. In additianin-
troduce the following modifications to the algorithm:

e We ignore all but the first DECAYTHRESHOLD (typically

50-200) words in input documents. This speeds up the con-
struction of the TF*IDF vectors for documents, and also hope
fully focuses the comparisons to the most important words fo
each document. Earlier summarization research (see for-exa
ple [2]) indicates that the first paragraph of a document-typi
cally contains the most salient points, at least for newslast

e We ignore any words in the documents with inverse docu-



ment frequencies (IDF) less than IDFHRESHOLD (typi-
cally around 3), since such words are not likely to affect the
comparisons significantly. This significantly reduces tize s
of the vector representations for articles and clusters.

for each centroid. This is accomplished by imposing a max-
imum number of words for each centroid (KEEPORDS);

the words with the highest TF*IDF values are selected fay thi
set. A second experimental parameter, KERPRESHOLD,
selects additional words that are included in the centroid,
top of the fixed number specified by KEBRORDS, if their
individual TF*IDF values meet or exceed that threshold. -Typ
ical values are 10-20 for KEE®/ORDS and around 3 for
KEEP.THRESHOLD, although experiments have indicated

that many times even three or four words are sufficient to ac-

curately describe the cluster. Three example cluster aielstr
are shown below, demonstrating that ten (and sometimes)thre
words give a clear picture of what each cluster is about:

— CLUSTERO00001 (90 documents): [grand 1.16, jury
1.07, whitewater 1.00, mcdougal 0.76, susan 0.43, tes
tify 0.38, privilege 0.26, contempt 0.16, ewing 0.13,
smaltz 0.07]

— CLUSTERO00008 (113 documents): [space 1.98, shut-
tle 1.17, station 0.75, nasa 0.51, columbia 0.37, mis-
sion 0.33, mir 0.30, astronauts 0.14, steering 0.11, safel
0.04]

— CLUSTERO00026 (10 documents): [universe 1.50, ex-
pansion 1.00, bang 0.90]

ter, SIML THRESHOLD, controls when a new cluster is cre-
ated. Low values for this parameter result in a more fine-

grained separation of the input documents. We have fourtd the
a value around 0.1 offers a good compromise between preci

sion and recall (or false positives and misses).

3. PARALLELIZED VERSION

We have also experimented with a quasi-parallel versiomefse-
guential algorithm described above. In this parallel mpdel make
a distinction between a designated "main processor” fatabxil-
iary processors”. The main processor takes thedirstrticles (typ-
ically one quarter to one third of the total) and clusterathes-
ing the techniques of the previous section. In this way, roétd of
C(m) clusters are established. The main idea behind paralieliza
is that these profiles do not change significantly as newlestare
added to the clusters, although some new clusters will bmddr
For example, Figures 1 and 2 show two sample cluster cestedid
ter 10,000 documents are processed, and after all 22,44@8raods
are processed, indicating little change to the centroitis. dluxiliary
processors use this fixed collection@{m) clusters as their set of
working clusters, and either assign the remaining docusiterthese
clusters or set them aside as too different from the existingters.
In a final pass, the main processor reassigns the documantsatie
been set aside during the parallel phase, creating newecduas
needed. To observe the on-line restriction, auxiliary pssors do
not actually assign documents to clusters or modify cetiérorhey
only store their assignment recommendations in a “hint” file
documents are assigned to clusters, in sequential ordénghyain
processor during the final phase.

In order to speed up the comparisons between cluster cen-
troids and documents, we only keep the most important words

In addition to the parameters mentioned above, a fifth parame

word score word score
suharto 2.48 suharto 2.61
jakarta 0.58 jakarta 0.58
habibie 0.47 habibie 0.53
students | 0.45 students | 0.43
student 0.22 student 0.21
protesters| 0.20 protesters| 0.19
asean 0.11 asean 0.10
campuses| 0.05 campuses| 0.04
geertz 0.04 geertz 0.04
medan 0.04 medan 0.04

Figure 1. Centroid for cluster 44 (the two scores are afte®d®
documents (left) and all 22,443 documents (right)).

word score word score
microsoft 3.31 microsoft 3.24
justice 1.06 windows 0.98
department| 1.01 justice 0.93
windows 0.90 department| 0.88
corp 0.60 corp 0.61
- software 0.51 software 0.57
ellison 0.09 ellison 0.07
hatch 0.06 hatch 0.06
netscape 0.05 netscape 0.04
metcalfe 0.03 metcalfe 0.03

¥:igure 2: Centroid for cluster 62 (the two scores are aftefd®

documents (left) and all 22,443 documents (right)).
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Figure 3: Parallelization diagram. The two axes are not drathe
same scale, but the area under the curve and the positioaisedét
points on the two axes correspond to real data.

Figure 3 indicates the gains in run-time when running thelfer
version of the algorithm. The main processor operates onuhe
C(N). It starts at the origin and moves down and to the right. The
figure is drawn in a way such that the area under the curve sl equ
to the number of comparisons between documents and clieier ¢
troids. At the beginning, there are only a few clusters, swefe
comparisons are required to classify a document. Towaelgrid

of the run, many clusters exist and at that stage, more cosopar
are required. With no parallelization, the main processmuld’have

to take time proportional to the total area under the curfégare 3.



We introduce a number of document3, chosen in a way such that
a reasonable number of cluste€®,P), have already been created.
The role of the auxiliary processors is to compare docunaunts-
beredP + 1 and higher with all clusters in the range..C(P).
When this task is completed, the main processor re-exarttiess
assignments. For each documenfd > P), the main processor
checks whether the similarity between documéand its assigned
cluster is still above the established threshold. If it scumentd

is immediately added to clustér,. If, however, the centroid for
clusterCy has changed in such a way that the similarity betwéen
andCj is now below the threshold, the main processor compares
against all existing clusters before making the final plaaendeci-
sion.

Clustering, and especially on-line clustering, is an iendy non-
parallel operation, so making the decisions in parallelasra to
introduce some additional errors. By analyzing the resufitghis
process, we have found that 78% of the cluster assignmeisiaies
made during the parallel phase are the same as if the fulks¢igl
model were employed, and that only 5% of the documents exainin
by the auxiliary processors are set aside for the final ph&#a.ten
auxiliary processors, the parallelized version is at |&aste times
faster in our experiments. This comes at a cost of a potgnH#abo
higher error rate, which can be a defensible compromise.

4. RESULTS

To select the values of the input parameters, we ran two exper
ments using parts of the development (dev-test) corpus fweec
the 3,851 articles included in the sample index file from the-"
amples” subdirectory of the TDT distribution). We ran oustgm

on this small corpus on up to 13 machines at the same time, the

we measured its performance using the master tables irttlole
the TDT CD-ROM. In this way, we selected our first approxiroati
of the best values for the four parameters SITMRESHOLD, DE-
CAY_THRESHOLD, IDETHRESHOLD, and KEEPNORDS. Pa-
rameter KEEPTHRESHOLD was set equal to IDFHRESHOLD
in our experiments. Table 1 lists several choices of parammeind
the corresponding scores obtained during this trainingg@ha

This experiment led to the selection of the following conabin
tion of parameters, which we used for the official submission
SIM_.THRESHOLD = 0.1, DECAYTHRESHOLD = 100 words,
IDF_THRESHOLD = 3, and KEERNORDS = 10. They gave a
story-weighted average detection cost of 0.0089 on ourriateset
(without parallelization), and, as we found later, 0.0098irig par-
allelization) and 0.0077 (without parallelization) on tféicial test
set.

After we sent out the official submission, we continued expent-
ing with the input parameters, and we selected two more pateam
sets. Our later experiments offer a significant improvenoenav-
erage cost detection (0.0051-0.0068, measured on ounahtest
set), as we were able to better tune the clustering parasnedée
submitted the results from these two selected combinatibms-
rameters, produced with the non-parallel version of ouorilgm,
as contrasting submissions. We also submitted as a congastb-
mission the results obtained when our initial set of parensdiused
for the official results) was run with the non-parallel versof the
algorithm (the parallel version takes 27 hours on the ev@uoaor-
pus, versus 73 hours for the non-parallel version, on a Stra-Ul
Sparc 2/300). Table 2 summarizes our submitted runs, wigje F
ure 4 shows the miss—false alarm rate graph for one of these ru

Story Weighted
SIM | DECAY | IDF | KEEP B(miss)[ P(fa) | Camoct
0.01 100 3 10 0.9643 | 0.0038| 0.0230
0.03 100 3 10 0.8214 | 0.0063| 0.0226
0.02 100 3 20 0.8571 | 0.0038| 0.0208
0.02 | 1000 3 10 0.9286 | 0.0017| 0.0202
0.02 100 8 30 0.9643 | 0.0008| 0.0201
0.02 100 3 8 0.9643 | 0.0006| 0.0199
0.02 50 3 10 0.6071 | 0.0044| 0.0164
0.02 100 2 10 0.6800 | 0.0026| 0.0162
0.02 100 3 10 0.4900 | 0.0061| 0.0158
0.02 100 1 50 0.4100 | 0.0054| 0.0135
0.05 100 3 5 0.4286 | 0.0048| 0.0133
0.05 100 3 15 0.5357 | 0.0025| 0.0132
0.05 100 4 10 0.5000 | 0.0031| 0.0131
0.02 100 3 1 0.3600 | 0.0048| 0.0119
0.02 100 8 10 0.4500 | 0.0023| 0.0113
0.25 100 3 10 0.5357 | 0.0004| 0.0111
0.20 100 4 10 0.5307 | 0.0004| 0.0111
0.06 100 3 10 0.3929 | 0.0027| 0.0105
0.05 100 3 10 0.4000 | 0.0025| 0.0105
0.05 100 3 30 0.3200 | 0.0040| 0.0103
0.09 100 3 10 0.4000 | 0.0014| 0.0094
0.15 100 3 10 0.4286 | 0.0006| 0.0092
0.10 100 3 5 0.4000 | 0.0011| 0.0091
0.20 100 3 10 0.4286 | 0.0004| 0.0090
0.13 100 3 10 0.4286 | 0.0004| 0.0090
0.10 100 3 10 0.3800 | 0.0014| 0.0090
0.10 100 3 15 0.3800 | 0.0010| 0.0086
0.14 100 3 10 0.4000 | 0.0001| 0.0081
0.10 100 4 10 0.3600 | 0.0009| 0.0081
No.10 67 3 10 0.3100 | 0.0018| 0.0080
0.12 100 3 10 0.3500 | 0.0007| 0.0077
0.11 100 3 10 0.3500 | 0.0007| 0.0077
0.08 100 3 10 0.3100 | 0.0014| 0.0076
0.10 200 3 10 0.2500 | 0.0024| 0.0073
0.10 100 3 20 0.3100 | 0.0010| 0.0072
0.10 50 3 10 0.2400 | 0.0021| 0.0068
0.10 100 2 10 0.1900 | 0.0013| 0.0051

Table 1: Parameters (KEEP refers to KEBRORDS) and corre-
sponding scores for several training runs, listed in irgireporder
of performance. Lines in bold indicate runs that are inctuitethe

official evaluation.

5. CONCLUSION AND FUTURE
DIRECTIONS

We have explored several ways to cut down the running timexf t
clustering algorithms without a disproportionate penaltythe ac-
curacy of cluster assignments. Some of these not only offpead
benefit but also help focus the similarity measure to the mazbr-
tant part of a document or the core elements of a cluster,ithus
proving performance over the unmodified version of the sae ¢
tering algorithm.

CIDR was inspired by our work on document grouping and sum-
marization within an NSF STIMULATE grant. A major charaeter
istic of our approach on that task is to complement infororate-
trieval techniques with shallow text analysis, so that thener are
informed by linguistic knowledge. We intend to introducelsiin-
guistic elements into the comparisons performed by CIDH,\aa



o Story Weighted Topic Weighted
Run | Parallelization?| SIM | DECAY | IDF | KEEP P(miss)| P{a) | Cacieer | P(MISS)| P(fa) | Cacioct
1 yes 0.1 100 3 10 0.3861 | 0.0018| 0.0095 | 0.3309 | 0.0018| 0.0084
2 no 0.1 100 3 10 0.3164 | 0.0014| 0.0077 | 0.3139 | 0.0014| 0.0077
3 no 0.1 100 2 10 0.3178 | 0.0014| 0.0077 | 0.2905 | 0.0014| 0.0072
4 no 0.1 200 3 10 0.5045 | 0.0014| 0.0114 | 0.3201 | 0.0014| 0.0077
Table 2: Official evaluation of CIDR.
% Cl DR1_boundary_DEF=10. di r/ det _nwt +asr. sys WOOd Cllffs, New Jersey, 1992
i QDR arandom perf or mrice — . Chin-Yew Lin and Eduard Hovy. “Identifying Topics by Po-
o QDR tapic weighted score sition”. In Proceedings of the 5th ACL Conference on Ap-
. plied Natural Language Processing, pp. 283—-290, Washing-
60 . ton, D.C., April 1997.
° €0 g . Dragomir R. Radev. “Learning Correlations Between Liagu
L tic Indicators and Semantic Constraints: Reuse of Context-
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Figure 4: Scatterplot of miss rate versus false alarm rate fo
one variant of CIDR on the official test set. The correspogdin
parameters for this run were SIVHRESHOLD=0.1, DECAY
THRESHOLD=100, IDETHRESHOLD=KEERPTHRESHOLD=3,
KEEP.WORDS=10, and no parallelization.

have started doing so by already weighing likely proper sdigap-
italized words within a context of mixed case text) twice agcmas
their TF*IDF value would indicate. We will extend this appah by
giving privileged status to elements of a document such eitan,
time period, and major named participants. We will also esgthe
possible use of external knowledge sources, such as the &dix F
Book and the database of named entities collected by ourlérofi
tool [3], to automatically identify the elements within &aevent
that should be given priority during matching.

We are also interested in exploring cluster centroid stgler the
course of an event and use it for detecting sub-events. @a&sis
related to our work on summary generation from multiplectet.
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