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Abstract

We present a corpus-based study of the se-
quential ordering among premodifiers in noun
phrases. This information is important for the
fluency of generated text in practical appli-
cations. We propose and evaluate three ap-
proaches to identify sequential order among pre-
modifiers: direct evidence, transitive closure,
and clustering. Our implemented system can
make over 94% of such ordering decisions cor-
rectly, as evaluated on a large, previously un-
seen test corpus.

1 Introduction

Sequential ordering among premodifiers affects
the fluency of text, e.g., “large foreign finan-
cial firms” or “zero-coupon global bonds” are
desirable, while “foreign large financial firms”
or “global zero-coupon bonds” sound odd. The
difficulties in specifying a consistent ordering of
adjectives have already been noted by linguists
[Whorf 1956; Vendler 1968]. During the process
of generating complex sentences by combining
multiple clauses, there are situations where mul-
tiple adjectives or nouns modify the same head
noun. The text generation system must order
these modifiers in a similar way as domain ex-
perts use them to ensure fluency of the text. For
example, the description of the age of a patient
precedes his ethnicity and gender in medical do-
main as in “a 50 year-old white female patient”.
Yet, general lexicons such as WordNet [Miller et
al. 1990] and COMLEX [Grishman et al. 1994],
do not store such information.

In this paper, we present automated tech-
niques for addressing this problem of determin-
ing, given two premodifiers A and B, the pre-
ferred ordering between them. Our methods
rely on and generalize empirical evidence ob-
tained from large corpora, and are evaluated

objectively on such corpora. They are informed
and motivated by our practical need for order-
ing multiple premodifiers in the magic system
[Dalal et al. 1996]. magic utilizes co-ordinated
text, speech, and graphics to convey informa-
tion about a patient’s status after coronary by-
pass surgery; it generates concise but complex
descriptions that frequently involve four or more
premodifiers in the same noun phrase.

To demonstrate that a significant portion of
noun phrases have multiple premodifiers, we
extracted all the noun phrases (NPs, exclud-
ing pronouns) in a two million word corpus of
medical discharge summaries and a 1.5 million
word Wall Street Journal (WSJ) corpus (see
Section 4 for a more detailed description of the
corpora). In the medical corpus, out of 612,718
NPs, 12% have multiple premodifiers and 6%
contain solely multiple adjectival premodifiers.
In the WSJ corpus, the percentages are a little
lower, 8% and 2%, respectively. These percent-
ages imply that one in ten NPs contains mul-
tiple premodifiers while one in 25 contains just
multiple adjectives.

Traditionally, linguists study the premodifier
ordering problem using a class-based approach.
Based on a corpus, they propose various se-
mantic classes, such as color, size, or national-
ity, and specify a sequential order among the
classes. However, it is not always clear how
to map premodifiers to these classes, especially
in domain-specific applications. This justifies
the exploration of empirical, corpus-based al-
ternatives, where the ordering between A and
B is determined either from direct prior evi-
dence in the corpus or indirectly through other
words whose relative order to A and B has al-
ready been established. The corpus-based ap-
proach lacks the ontological knowledge used by
linguists, but uses a much larger amount of di-



rect evidence, provides answers for many more
premodifier orderings, and is portable to differ-
ent domains.

In the next section, we briefly describe prior
linguistic research on this topic. Sections 3 and
4 describe the methodology and corpus used in
our analysis, while the results of our experi-
ments are presented in Section 5. In Section 6,
we demonstrate how we incorporated our or-
dering results in a general text generation sys-
tem. Finally, Section 7 discusses possible im-
provements to our current approach.

2 Related Work

The order of adjectives (and, by analogy, nom-
inal premodifiers) seems to be outside of the
grammar; it is influenced by factors such as
polarity [Malkiel 1959], scope, and colloca-
tional restrictions [Bache 1978]. Linguists [Goy-
vaerts 1968; Vendler 1968; Quirk and Green-
baum 1973; Bache 1978; Dixon 1982] have per-
formed manual analyses of (small) corpora and
pointed out various tendencies, such as the facts
that underived adjectives often precede derived
adjectives, and shorter modifiers precede longer
ones. Given the difficulty of adequately describ-
ing all factors that influence the order of pre-
modifiers, most earlier work is based on plac-
ing the premodifiers into broad semantic classes,
and specifying an order among these classes.
More than ten classes have been proposed, with
some of them further broken down into sub-
classes. Though not all these studies agree on
the details, they demonstrate that there is fairly
rigid regularity in the ordering of adjectives.
For example, Goyvaerts [1968, p. 27] proposed
the order quality ≺ size/length/shape ≺
old/new/young ≺ color ≺ nationality ≺
style ≺ gerund ≺ denominal1; Quirk and
Greenbaum [1973, p. 404] the order general
≺ age ≺ color ≺ participle ≺ provenance
≺ noun ≺ denominal; and Dixon [1982, p.
24] the order value ≺ dimension ≺ physical
property≺ speed≺ human propensity≺ age
≺ color.

Researchers have also looked at adjective or-
dering across languages [Dixon 1982; Frawley
1992]. Frawley [1992], for example, observed
that English, German, Hungarian, Polish, Turk-
ish, Hindi, Persian, Indonesian, and Basque, all

1Where A ≺ B stands for “A precedes B”.

order value before size and both of those before
color.

As with most manual analyses, the corpora
used in these analyses are relatively small com-
pared with modern corpora-based studies. Fur-
thermore, different criteria were used to ar-
rive at the classes. To illustrate, the adjec-
tive “beautiful” can be classified into at least
two different classes because the phrase “beau-
tiful dancer” can be transformed from either the
phrase “dancer who is beautiful”, or “dancer
who dances beautifully”.

Several deep semantic features have been pro-
posed to explain the regularity among the po-
sitional behavior of adjectives. Teyssier [1968]
first proposed that adjectival functions, i.e.
identification, characterization, and classifica-
tion, affect adjective order. Martin [1970] car-
ried out psycholinguistic studies of adjective
ordering. Frawley [1992] extended the work
by Kamp [1975] and proposed that intensional
modifiers precede extensional ones. However,
while these studies offer insights at the complex
phenomenon of adjective ordering, they cannot
be directly mapped to a computational proce-
dure.

On the other hand, recent computational
work on sentence planning [Bateman et al.
1998; Shaw 1998b] indicates that generation re-
search has progressed to a point where hard
problems such as ellipsis, conjunctions, and or-
dering of paradigmatically related constituents
are addressed. Computational corpus stud-
ies related to adjectives were performed by
[Justeson and Katz 1991; Hatzivassiloglou and
McKeown 1993; Hatzivassiloglou and McKeown
1997], but none was directly on the ordering
problem. [Knight and Hatzivassiloglou 1995]
and [Langkilde and Knight 1998] have proposed
models for incorporating statistical information
into a text generation system, an approach that
is similar to our way of using the evidence ob-
tained from corpus in our actual generator.

3 Methodology

In this section, we discuss how we obtain the
premodifier sequences from the corpus for anal-
ysis and the three approaches we use for estab-
lishing ordering relationships: direct corpus ev-
idence, transitive closure, and clustering analy-
sis. The result of our analysis is embodied in a



function, compute order(A,B), which returns
the sequential ordering between two premodi-
fiers, word A and word B.

To identify orderings among premodifiers,
premodifier sequences are extracted from sim-
plex NPs. A simplex NP is a maximal noun
phrase that includes premodifiers such as de-
terminers and possessives but not post-nominal
constituents such as prepositional phrases or
relative clauses. We use a part-of-speech tag-
ger [Brill 1992] and a finite-state grammar to
extract simplex NPs. The noun phrases we ex-
tract start with an optional determiner (DT) or
possessive pronoun (PRP$), followed by a se-
quence of cardinal numbers (CDs), adjectives
(JJs), nouns (NNs), and end with a noun. We
include cardinal numbers in NPs to capture the
ordering of numerical information such as age
and amounts. Gerunds (tagged as VBG) or past
participles (tagged as VBN), such as “heated”
in “heated debate”, are considered as adjectives
if the word in front of them is a determiner,
possessive pronoun, or adjective, thus separat-
ing adjectival and verbal forms that are con-
flated by the tagger. A morphology module
transforms plural nouns and comparative and
superlative adjectives into their base forms to
ensure maximization of our frequency counts.
There is a regular expression filter which re-
moves obvious concatenations of simplex NPs
such as “takeover bid last week” and “Tylenol
40 milligrams”.

After simplex NPs are extracted, sequences
of premodifiers are obtained by dropping deter-
miners, genitives, cardinal numbers and head
nouns. Our subsequent analysis operates on the
resulting premodifier sequences, and involves
three stages: direct evidence, transitive closure,
and clustering. We describe each stage in more
detail in the following subsections.

3.1 Direct Evidence

Our analysis proceeds on the hypothesis that
the relative order of two premodifiers is fixed
and independent of context. Given two premod-
ifiers A and B, there are three possible under-
lying orderings, and our system should strive
to find which is true in this particular case: ei-
ther A comes before B, B comes before A, or
the order between A and B is truly unimpor-
tant. Our first stage relies on frequency data
collected from a training corpus to predict the

order of adjective and noun premodifiers in an
unseen test corpus.

To collect direct evidence on the order of
premodifiers, we extract all the premodifiers
from the corpus as described in the previous
subsection. We first transform the premodi-
fier sequences into ordered pairs. For example,
the phrase “well-known traditional brand-name
drug” has three ordered pairs, “well-known ≺
traditional”, “well-known ≺ brand-name”, and
“traditional ≺ brand-name”. A phrase with n
premodifiers will have

(n
2

)
ordered pairs. From

these ordered pairs, we construct a w×w matrix
Count , where w the number of distinct modi-
fiers. The cell [A, B] in this matrix represents
the number of occurrences of the pair “A ≺ B”,
in that order, in the corpus.

Assuming that there is a preferred ordering
between premodifiers A and B, one of the cells
Count [A,B] and Count [B,A] should be much
larger than the other, at least if the corpus be-
comes arbitrarily large. However, given a corpus
of a fixed size there will be many cases where
the frequency counts will both be small. This
data sparseness problem is exacerbated by the
inevitable occurrence of errors during the data
extraction process, which will introduce some
spurious pairs (and orderings) of premodifiers.
We therefore apply probabilistic reasoning to
determine when the data is strong enough to
decide that A ≺ B or B ≺ A. Under the null
hypothesis that the two premodifiers order is ar-
bitrary, the number of times we have seen one of
them follows the binomial distribution with pa-
rameter p = 0.5. The probability that we would
see the actually observed number of cases with
A ≺ B, say m, among n pairs involving A and
B is

n∑

k=m

(
n

k

)
· pk · (1− p)(n−k) (1)

which for the special case p = 0.5 becomes

n∑

k=m

(
n

k

)
· 0.5k · 0.5(n−k) =

n∑

k=m

(
n

k

)
· 0.5n (2)

If this probability is low, we reject the null hy-
pothesis and conclude that A indeed precedes
(or follows, as indicated by the relative frequen-
cies) B.



3.2 Transitivity

As we mentioned before, sparse data is a seri-
ous problem in our analysis. For example, the
matrix of frequencies for adjectives in our train-
ing corpus from the medical domain is 99.8%
empty—only 9,106 entries in the 2,232 × 2,232
matrix contain non-zero values. To compen-
sate for this problem, we explore the transi-
tive properties between ordered pairs by com-
puting the transitive closure of the ordering re-
lation. Utilizing transitivity information corre-
sponds to making the inference that A ≺ C fol-
lows from A ≺ B and B ≺ C, even if we have no
direct evidence for the pair (A,C) but provided
that there is no contradictory evidence to this
inference either. This approach allows us to fill
from 15% (WSJ) to 30% (medical corpus) of the
entries in the matrix.

To compute the transitive closure of the order
relation, we map our underlying data to special
cases of commutative semirings [Pereira and Ri-
ley 1997]. Each word is represented as a node of
a graph, while arcs between nodes correspond to
ordering relationships and are labeled with ele-
ments from the chosen semiring. This formal-
ism can be used for a variety of problems, us-
ing appropriate definitions of the two binary op-
erators (collection and extension) that operate
on the semiring’s elements. For example, the
all-pairs shortest-paths problem in graph the-
ory can be formulated in a min-plus semiring
over the real numbers with the operators min
for collection and + for extension. Similarly,
finding the transitive closure of a binary relation
can be formulated in a max -min semi-ring or a
or -and semiring over the set {0, 1}. Once the
proper operators have been chosen, the generic
Floyd-Warshall algorithm [Aho et al. 1974] can
solve the corresponding problem without modi-
fications.

We explored three semirings appropriate to
our problem. First, we apply the statistical de-
cision procedure of the previous subsection and
assign to each pair of premodifiers either 0 (if
we don’t have enough information about their
preferred ordering) or 1 (if we do). Then we use
the or -and semiring over the {0,1} set; in the
transitive closure, the ordering A ≺ B will be
present if at least one path connecting A and B
via ordered pairs exists. Note that it is possible
for both A ≺ B and B ≺ A to be present in the

transitive closure.
This model involves conversions of the corpus

evidence for each pair into hard decisions on
whether one of the words in the pair precedes
the other. To avoid such early commitments,
we use a second, refined model for transitive
closure where the arc from A to B is labeled
with the probability that A precedes indeed B.
The natural extension of the ({0, 1}, or, and)
semiring when the set of labels is replaced with
the interval [0, 1] is then ([0, 1], max, min).
We estimate the probability that A precedes B
as one minus the probability of reaching that
conclusion in error, according to the statistical
test of the previous subsection (i.e., one minus
the sum specified in equation (2). We obtained
similar results with this estimator and with the
maximal likelihood estimator (the ratio of the
number of times A appeared before B to the
total number of pairs involving A and B).

Finally, we consider a third model in which
we explore an alternative to transitive closure.
Rather than treating the number attached to
each arc as a probability, we treat it as a cost,
the cost of erroneously assuming that the corre-
sponding ordering exists. We assign to an edge
(A,B) the negative logarithm of the probability
that A precedes B; probabilities are estimated
as in the previous paragraph. Then our prob-
lem becomes identical to the all-pairs shortest-
path problem in graph theory; the correspond-
ing semiring is ((0, +∞), min, +). We use log-
arithms to address computational precision is-
sues stemming from the multiplication of small
probabilities, and negate the logarithms so that
we cast the problem as a minimization task (i.e.,
we find the path in the graph the minimizes
the total sum of negative log probabilities, and
therefore maximizes the product of the original
probabilities).

3.3 Clustering

As noted earlier, earlier linguistic work on
the ordering problem puts words into seman-
tic classes and generalizes the task from order-
ing between specific words to ordering the cor-
responding classes. We follow a similar, but
evidence-based, approach for the pairs of words
that neither direct evidence nor transitivity can
resolve. We compute an order similarity mea-
sure between any two premodifiers, reflecting
whether the two words share the same pat-



tern of relative order with other premodifiers
for which we have sufficient evidence. For each
pair of premodifiers A and B, we examine ev-
ery other premodifier in the corpus, X; if both
A ≺ X and B ≺ X, or both A � X and B � X,
one point is added to the similarity score be-
tween A and B. If on the other handA ≺ X and
B � X, or A � X and B ≺ X, one point is sub-
tracted. X does not contribute to the similarity
score if there is not sufficient prior evidence for
the relative order of X and A, or of X and B.
This procedure closely parallels non-parametric
distributional tests such as Kendall’s τ [Kendall
1938].

The similarity scores are then converted into
dissimilarities and fed into a non-hierarchical
clustering algorithm [Späth 1985], which sep-
arates the premodifiers in groups. This is
achieved by minimizing an objective function,
defined as the sum of within-group dissimilari-
ties over all groups. In this manner, premodi-
fiers that are closely similar in terms of sharing
the same relative order with other premodifiers
are placed in the same group.

Once classes of premodifiers have been in-
duced, we examine every pair of classes and de-
cide which precedes the other. For two classes
C1 and C2, we extract all pairs of premodifiers
(x, y) with x ∈ C1 and y ∈ C2. If we have evi-
dence (either direct or through transitivity) that
x ≺ y, one point is added in favor of C1 ≺ C2;
similarly, one point is subtracted if x � y. After
all such pairs have been considered, we can then
predict the relative order between words in the
two clusters which we haven’t seen together ear-
lier. This method makes (weak) predictions for
any pair (A,B) of words, except if (a) both A
and B are placed in the same cluster; (b) no or-
dered pairs (x, y) with one element in the class
of A and one in the class of B have been identi-
fied; or (c) the evidence for one class preceding
the other is in the aggregate equally strong in
both directions.

4 The Corpus

We used two corpora for our analysis: hospi-
tal discharge summaries from 1991 to 1997 from
the Columbia-Presbyterian Medical Center, and
the January 1996 part of the Wall Street Jour-
nal corpus from the Penn TreeBank [Marcus et
al. 1993]. To facilitate comparisons across the

two corpora, we intentionally limited ourselves
to only one month of the WSJ corpus, so that
approximately the same amount of data would
be examined in each case. The text in each cor-
pus is divided into a training part (2.3 million
words for the medical corpus and 1.5 million
words for the WSJ) and a test part (1.2 million
words for the medical corpus and 1.6 million
words for the WSJ).

All domain-specific markup was removed, and
the text was processed by the mxterminator
sentence boundary detector [Reynar and Rat-
naparkhi 1997] and Brill’s part-of-speech tag-
ger [Brill 1992]. Noun phrases and pairs of pre-
modifiers were extracted from the tagged corpus
according to the methods of Section 3. From
the medical corpus, we retrieved 934,823 sim-
plex NPs, of which 115,411 have multiple pre-
modifiers and 53,235 multiple adjectives only.
The corresponding numbers for the WSJ cor-
pus were 839,921 NPs, 68,153 NPs with multiple
premodifiers, and 16,325 NPs with just multiple
adjectives.

We separately analyze two groups of premodi-
fiers: adjectives, and adjectives plus nouns mod-
ifying the head noun. Although our techniques
are identical in both cases, the division is moti-
vated by our expectation that the task will be
easier when modifiers are limited to adjectives,
because nouns tend to be harder to match cor-
rectly with our finite-state grammar and the in-
put data is sparser for nouns.

5 Results

We applied the three ordering algorithms pro-
posed in this paper to the two corpora sepa-
rately for adjectives and adjectives plus nouns.
For our first technique of directly using evidence
from a separate training corpus, we filled the
Count matrix (see Section 3.1) with the fre-
quencies of each ordering for each pair of pre-
modifiers using the training corpora. Then, we
calculated which of those pairs correspond to a
true underlying order relation, i.e., pass the sta-
tistical test of Section 3.1 with the probability
given by equation (2) less than or equal to 50%.
We then examined each instance of ordered pre-
modifiers in the corresponding test corpus, and
counted how many of those the direct evidence
method could predict correctly. Note that if A
and B occur sometimes as A ≺ B and some-



Corpus Test
pairs Direct evidence

Transitivity
(max-min)

Transitivity
(min-plus)

Medical/
adjectives

27,670 92.67% (88.20%–98.47%) 89.60% (94.94%–91.79%) 94.93% (97.20%–96.16%)

Financial/
adjectives

9,925 75.41% (53.85%–98.37%) 79.92% (72.76%–90.79%) 80.77% (76.36%–90.18%)

Medical/
adjectives
and nouns

74,664 88.79% (80.38%–98.35%) 87.69% (90.86%–91.50%) 90.67% (91.90%–94.27%)

Financial/
adjectives
and nouns

62,383 65.93% (35.76%–95.27%) 69.61% (56.63%–84.51%) 71.04% (62.48%–83.55%)

Table 1: Accuracy of direct-evidence and transitivity methods on different data strata of our test
corpora. In each case, overall accuracy is listed first in bold, and then, in parentheses, the percentage
of the test pairs that the method has an opinion for (rather than randomly assign a decision because
of lack of evidence) and the accuracy of the method within that subset of test cases.

times as B ≺ A, no prediction method can get
all those instances correct. We elected to follow
this evaluation approach, which lowers the ap-
parent scores of our method, rather than forcing
each pair in the test corpus to one unambiguous
category (A ≺ B, B ≺ A, or arbitrary).

Under this evaluation method, stage one of
our system achieves on adjectives in the medi-
cal domain 98.47% correct decisions on pairs for
which a determination of order could be made.
Since 11.80% of the total pairs in the test corpus
involve previously unseen combinations of ad-
jectives and/or new adjectives, the overall accu-
racy is 92.67%. The corresponding accuracy on
data for which we can make a prediction and the
overall accuracy is 98.35% and 88.79% for adjec-
tives plus nouns in the medical domain, 98.37%
and 75.41% for adjectives in the WSJ data, and
95.27% and 65.93% for adjectives plus nouns in
the WSJ data. Note that the WSJ corpus is
considerably more sparse, with 64.24% unseen
combinations of adjective and noun premodi-
fiers in the test part. Using lower thresholds
in equation (2) results in a lower percentage of
cases for which the system has an opinion but a
higher accuracy for those decisions. For exam-
ple, a threshold of 25% results in the ability to
predict 83.72% of the test adjective pairs in the
medical corpus with 99.01% accuracy for these
cases.

We subsequently applied the transitivity
stage, testing the three semiring models dis-
cussed in Section 3.2. Early experimentation
indicated that the or -and model performed

poorly, which we attribute to the extensive
propagation of decisions (once a decision in fa-
vor of the existence of an ordering relationship is
made, it cannot be revised even in the presence
of conflicting evidence). Therefore we report re-
sults below for the other two semiring models.
Of those, the min-plus semiring achieved higher
performance. That model offers additional pre-
dictions for 9.00% of adjective pairs and 11.52%
of adjective-plus-noun pairs in the medical cor-
pus, raising overall accuracy of our predictions
to 94.93% and 90.67% respectively. Overall ac-
curacy in the WSJ test data was 80.77% for ad-
jectives and 71.04% for adjectives plus nouns.
Table 1 summarizes the results of these two
stages.

Finally, we applied our third, clustering ap-
proach on each data stratum. Due to data
sparseness and computational complexity is-
sues, we clustered the most frequent words in
each set of premodifiers (adjectives or adjectives
plus nouns), selecting those that occurred at
least 50 times in the training part of the cor-
pus being analyzed. We report results for the
adjectives selected in this manner (472 frequent
adjectives from the medical corpus and 307 ad-
jectives from the WSJ corpus). For these words,
the information collected by the first two stages
of the system covers most pairs. Out of the
111,176 (=472·471/2) possible pairs in the med-
ical data, the direct evidence and transitivity
stages make predictions for 105,335 (94.76%);
the corresponding number for the WSJ data is
40,476 out of 46,971 possible pairs (86.17%).



The clustering technique makes ordering pre-
dictions for a part of the remaining pairs—on
average, depending on how many clusters are
created, this method produces answers for 80%
of the ordering cases that remained unanswered
after the first two stages in the medical corpus,
and for 54% of the unanswered cases in the WSJ
corpus. Its accuracy on these predictions is 56%
on the medical corpus, and slightly worse than
the baseline 50% on the WSJ corpus; this lat-
ter, aberrant result is due to a single, very fre-
quent pair, chief executive, in which executive
is consistently mistagged as an adjective by the
part-of-speech tagger.

Qualitative analysis of the third stage’s out-
put indicates that it identifies many interest-
ing relationships between premodifiers; for ex-
ample, the pair of most similar premodifiers on
the basis of positional information is left and
right, which clearly fall in a class similar to the
semantic classes manually constructed by lin-
guists. Other sets of adjectives with strongly
similar members include {mild, severe, signifi-
cant} and {cardiac, pulmonary, respiratory}.

We conclude our empirical analysis by test-
ing whether a separate model is needed for pre-
dicting adjective order in each different domain.
We trained the first two stages of our system
on the medical corpus and tested them on the
WSJ corpus, obtaining an overall prediction ac-
curacy of 54% for adjectives and 52% for adjec-
tives plus nouns. Similar results were obtained
when we trained on the financial domain and
tested on medical data (58% and 56%). These
results are not much better than what would
have been obtained by chance, and are clearly
inferior to those reported in Table 1. Although
the two corpora share a large number of ad-
jectives (1,438 out of 5,703 total adjectives in
the medical corpus and 8,240 in the WSJ cor-
pus), they share only 2 to 5% of the adjective
pairs. This empirical evidence indicates that ad-
jectives are used differently in the two domains,
and hence domain-specific probabilities must be
estimated, which increases the value of an au-
tomated procedure for the prediction task.

6 Using Ordered Premodifiers in
Text Generation

Extracting sequential ordering information of
premodifiers is an off-line process, the results of

(a) “John is a diabetic male white 74-
year-old hypertensive patient
with a red swollen mass in the
left groin.”

(b) “John is a 74-year-old
hypertensive diabetic white male
patient with a swollen red mass
in the left groin.”

Figure 1: (a) Output of the generator without
our ordering module, containing several errors.
(b) Output of the generator with our ordering
module.

which can be easily incorporated into the over-
all generation architecture. We have integrated
the function compute order(A,B) into our mul-
timedia presentation system magic [Dalal et
al. 1996] in the medical domain and resolved
numerous premodifier ordering tasks correctly.
Example cases where the statistical prediction
module was helpful in producing a more fluent
description in magic include placing age infor-
mation before ethnicity information and the lat-
ter before gender information, as well as spe-
cific ordering preferences, such as “thick” before
“yellow” and “acute” before “severe”. magic’s
output is being evaluated by medical doctors,
who provide us with feedback on different com-
ponents of the system, including the fluency of
the generated text and its similarity to human-
produced reports.

Lexicalization is inherently domain depen-
dent, so traditional lexica cannot be ported
across domains without major modifications.
Our approach, in contrast, is based on words
extracted from a domain corpus and not on
concepts, therefore it can be easily applied to
new domains. In our MAGIC system, aggre-
gation operators, such as conjunction, ellip-
sis, and transformations of clauses to adjectival
phrases and relative clauses, are performed to
combine related clauses together and increase
conciseness [Shaw 1998a; Shaw 1998b]. We
wrote a function, reorder premod(. . . ), which is
called after the aggregation operators, takes the
whole lexicalized semantic representation, and
reorders the premodifiers right before the lin-
guistic realizer is invoked. Figure 1 shows the
difference in the output produced by our gener-



ator with and without the ordering component.

7 Conclusions and Future Work

We have presented three techniques for explor-
ing prior corpus evidence in predicting the order
of premodifiers within noun phrases. Our meth-
ods expand on observable data, by inferring
new relationships between premodifiers even for
combinations of premodifiers that do not occur
in the training corpus. We have empirically val-
idated our approach, showing that we can pre-
dict order with more than 94% accuracy when
enough corpus data is available. We have also
implemented our procedure in a text generator,
producing more fluent output sentences.

We are currently exploring alternative ways
to integrate the classes constructed by the third
stage of our system into our generator. In
the future, we will experiment with semantic
(rather than positional) clustering of premodi-
fiers, using techniques such as those proposed in
[Hatzivassiloglou and McKeown 1993; Pereira et
al. 1993]. The qualitative analysis of the output
of our clustering module shows that frequently
positional and semantic classes overlap, and we
are interested in measuring the extent of this
phenomenon quantitatively. Conditioning the
premodifier ordering on the head noun is an-
other promising approach, at least for very fre-
quent nouns.
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