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ABSTRACT

Central to the widespread use of t-distributed stochastic neighbor embedding
(t-SNE) is the conviction that it produces visualizations whose structure roughly
matches that of the input. To the contrary, we prove that (1) the strength of the
input clustering, and (2) the extremity of outlier points, cannot be reliably inferred
from the t-SNE output. We demonstrate the prevalence of these failure modes in
practice as well.

1 INTRODUCTION

t-SNE and related data visualization methods have become staples in modern exploratory data anal-
ysis. They just seem to work: practitioners find that these techniques effortlessly tease out inter-
esting cluster structures in datasets. Consequently they are now used ubiquitously in a wide array
of fields, ranging from single-cell genomics to language model interpretability (Kobak & Berens,
2019; Petukhova et al., 2025). The practical success of these techniques has naturally piqued some
interest in the theoretical computer science community as well.

Existing analysis of t-SNE has established that, given high-dimensional data with spherical, well-
separated cluster structure, t-SNE outputs a visualization which preserves that cluster structure
(Arora et al., 2018; Linderman & Steinerberger, 2019). In other words, t-SNE is provably good at
generating true positives in its visualization of clusters. Curiously, t-SNE’s susceptibility to gener-
ate false positives, i.e. fabricated clusters in the output visualization, has remained largely unstudied.
One should note that this is not a purely academic curiosity, since the interpretation of t-SNE out-
puts have important consequences downstream in the sciences, influencing hypothesis generation,
experimental design, and scientific conclusions.

As an illustration of the danger of false positives, consider the 2D t-SNE visualization of a 100-point
dataset residing in R100 (depicted on the right).

Based on this plot, it is tempting to conclude that the
input dataset obviously contains two distinct clusters.
In this case, one would likely design their subsequent
data analysis workflow guided by these two salient clus-
ters. However a closer examination of the original (high-
dimensional) dataset reveals that the situation perhaps
may not be as clear-cut. By standard cluster saliency met-
rics, for instance, the input dataset appears quite poorly
clustered according to the partition that t-SNE so strongly
suggests, see Table 1.

Table 1: Clustering scores (with respect to k-means) according to various popular cluster saliency metrics.
The range in the first column specifies the possible values that can be attained. A higher value indicates data
being highly clustered.

Cluster Score (range) t-SNE (2D) Original Data (100D)
Silhouette [−1, 1] .918 .006
Calinski-Harabasz [0,∞] 5590 1.61
Dunn Index [0,∞] 3.65 .998
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The interpoint distance matrix plots on the right
further elucidate this discrepancy. t-SNE’s two-
dimensional visualization (right) features a siz-
able separation between small intra-cluster and
large inter-cluster distances. This separation
is not present in the original input data (left),
where interpoint distances are near-uniform.

Our work formalizes this phenomenon and other “cluster-happy” behaviors exhibited by t-SNE.
Our theoretical analysis, suffused with experiments, shows that one should take positively clustered
outputs with a grain of salt. Our contributions are as follows:

• Misrepresentation of clusters: We prove that both highly-clustered and arbitrarily un-
clustered datasets can produce the same maximally clustered visualization, see Theorem 3
and Corollary 4. Moreover, we prove that arbitrarily close inputs can have vastly distinct
visualizations, see Theorem 5. We identify the peculiar property of t-SNE that explains
these behaviors. We use this understanding to design a targeted adversarial attack that
disrupts cluster structure in the output, see Figure 3.

• Misrepresentation of outliers: We prove that, regardless of input structure, the resulting
t-SNE output is incapable of depicting extreme outliers, in the sense of depicting one point
as substantially far away from all the others, see Theorem 8. In practice, on both synthetic
and real datasets, we observe a more concerning phenomenon that faraway outliers are
often subsumed into the cluster structure of the bulk of points, see Figures 4 and 5.

While there has been some work investigating the shortcomings of t-SNE in various practical settings
(see Section 2.2 for a detailed discussion of the relevant literature), to the best of our knowledge this
is the first work which theoretically analyzes some of the key limitations of t-SNE.

2 RELATED WORK

Confidence in the data visualizations produced by t-SNE and related methods is a somewhat con-
tentious subject in data science (Marx, 2024). Some works argue that these methods have merit in
terms of preserving cluster structure, while others warn us about the fundamental issues with them
and the broader goal of data visualization.

2.1 PERFORMANCE GUARANTEES AND ANALYSIS OF T-SNE

Shaham & Steinerberger (2017) were among the first to provide a guarantee on the visualization pro-
duced by optimal SNE embeddings of well-clustered data. Works by Linderman & Steinerberger
(2019) and Arora et al. (2018) refined and extended this analysis, showing that t-SNE outputs pro-
duced using gradient descent yield well-clustered visualizations so long as the input is sufficiently
well-clustered. The latter work established this guarantee in considerable generality, including cases
where the input is sampled from a mixture of well-separated log-concave distributions.

Along with these algorithmic performance guarantee results, there is a line of work that seeks to
establish a more fundamental understanding of t-SNE as an optimization problem. Cai & Ma (2022),
for instance, characterized the distinct phases of gradient-based optimization of t-SNE, and proved
an asymptotic equivalence between the early exaggeration phase and spectral clustering. Auffinger
& Fletcher (2023) proved a consistency result for a continuous analogue of t-SNE, viewing the
optimization problem as producing a map between distributions rather than just point sets. Jeong
& Wu (2024) and Weinkove (2024) studied the gradient flow of t-SNE. The former showed mild
assumptions under which optima exist, and the latter showed that, even in cases where the gradient
flow diverges the relative interpoint distances stabilize in the limit.

2.2 WEAKNESSES AND CRITICISMS

Bunte et al. (2012) were among the first to investigate the potential shortcomings of using KL-
divergence in a t-SNE visualization and proposed a generalization to other divergences that may be
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better suited for specific datasets and user needs. Building upon the precision-recall framework of
Venna et al. (2010), Im et al. (2018) extended this result and explored specific intrinsic structures
within data that may be less suited for t-SNE. They concluded that while t-SNE is more attuned to
reveal intrinsic cluster structure, it usually fails to reveal intrinsic manifold structure.

In terms of analyzing cluster structure specifically, Yang et al. (2021) provided empirical evidence
that t-SNE visualizations are prone to false negatives. They presented a selection of well-clustered
real-world datasets which t-SNE embeddings, even with reasonable parameter-tuning, do not seem
to faithfully represent. They also showed that these practical datasets do not abide by the theoretical
cluster separation conditions that are required by Arora et al. (2018) analysis. Chari & Pachter
(2023) argued that t-SNE and UMAP are unreliable tools for exploratory data analysis. Taking
single-cell genomic data as an important real-world example, they provided systematic empirical
evidence that these embeddings suffer high distortion, and often misrepresent neighborhood and
cluster structure. Curiously, to the best of our knowledge, there is no systematic theoretical study
investigating false positive behavior of t-SNE.

More recently, Snoeck et al. (2025) provided theoretical evidence that, not just t-SNE, but any em-
bedding technique that attempts to visualize data in constant dimensions is bound to misrepresent the
neighborhood structure in most datasets. This work focuses exclusively on how misrepresentations
induced by t-SNE visualizations can lead to false conclusions in terms of data analysis.

3 PRELIMINARIES

Given an input dataset1 X = {x1, . . . , xn} ⊂ RD, the goal of t-SNE is to find an embedding
Y = {y1, . . . , yn} ⊂ Rd (where d ≪ D, typically d = 2) that approximately maintains the
neighborhood structure in X . t-SNE accomplishes this by assigning affinities to input data points
which encode how likely an input point is to be a neighbor to a given point. The goal then is to find
a configuration of the embedded points Y that induces a similar neighborhood affinity. Specifically,
for n > 2, let P = P (X) ∈ Rn×n

+ and Q = Q(Y ) ∈ Rn×n
+ be the input and embedded affinity

matrices describing the pairwise neighborhood similarities in the input and the output, respectively.
t-SNE constructs P by first computing the affinities for each point i defined as (for any j ̸= i)2

Pj|i(X;σi) :=
exp(−∥xi − xj∥2/(2σ2

i ))∑
k ̸=i exp(−∥xi − xk∥2/(2σ2

i ))
Pi|i := 0, (1)

where σi ≥ 0 encodes the (point-dependent) neighborhood scalings3. It is worth noting that P·|i is a
valid probability distribution over [n]. The matrix P is then constructed based on a crucial parameter
called the perplexity, which is denoted by ρ ∈ (1, n− 1) and can be viewed as a proxy for effective
number of neighbors, as follows.

(1) For each i ∈ [n], select the (unique, see Lemma 13) neighborhood scale σ∗
i ≥ 0 that

minimizes the gap between the entropy of P·|j(X;σ∗
i ) and log2 ρ.

(2) Define P = [Pij ]i,j∈[n] where Pij :=
1
2n (Pi|j(σ

∗
j )+Pj|i(σ

∗
i )) if i ̸= j and zero otherwise.

To avoid the so-called the crowding problem (see Van der Maaten & Hinton (2008) for details), the
output affinity matrix Q is computed based on a t-distribution. Specifically, for i ̸= j

Qij(Y ) :=
(1 + ∥yi − yj∥2)−1∑

k,l;k ̸=l(1 + ∥yk − yl∥2)−1
Qii := 0. (2)

As indicated before, the objective then is to minimize the gap between the input and the output
affinities. This is accomplished by penalizing the relative entropy (KL-divergence) from P to Q,
where these affinity matrices are viewed as probability distributions.

minimizeY LX(Y ) := KL(P (X)∥Q(Y )) =
∑
i,j
i̸=j

Pij(X) log
(Pij(X)

Qij(Y )

)
.

1Without loss of generality, we shall assume that the input dimension D = n− 1.
2When X and σ∗

i are clear from context, we will often drop it from the notation.
3We define Pj|i(X; 0) := limσi→0 Pj|i(X;σi).
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This highly non-convex objective is usually optimized by initializing at a good starting point via an
early exaggeration phase, followed by performing standard gradient descent methods and returning
an embedding Y that corresponds to a local minimum of the objective. Our central task is to study
the nature of the these (local minimum) embeddings returned by t-SNE and their relation to the
space of input datasets.
Definition 1. For an (n > 2)-point dataset X ⊂ Rn−1 and perplexity parameter ρ ∈ (1, n − 1),
define

t-SNEρ(X) := {Y ⊂ Rd : ∇Y LX(Y ) = 0}
as the set of outputs Y ⊂ Rd that are stationary to the t-SNE objective on a given input X .

Furthermore, for a set of n-point datasets Xn, we define t-SNEρ(Xn) =
⋃

X∈Xn
t-SNEρ(X). If

Xn is the set of all n-point datasets, we denote t-SNEρ(Xn) as Im(t-SNEρ,n).

All the supporting proofs for our formal statements can be found in the Appendix,
and the code related to our empirical demonstrations is available on Github at
https://github.com/njbergam/tsne-exaggerates-clusters.

4 MISREPRESENTATION OF CLUSTER STRUCTURE

Previous works by Linderman & Steinerberger (2019) and Arora et al. (2018) have identified that
clustered inputs induce clustered t-SNE visualizations in a suitable sense. A key question for practi-
tioners left unanswered by these analyses is: when does a clustered output imply a clustered input?
More generally, what information can be deduced about the input given a visualization? We answer
this question by providing theoretical and practical evidence that the strength of cluster structure
in the input cannot be reliably inferred from the low-dimensional visualization. In particular, we
prove that (i) similarly clustered t-SNE visualizations do not imply similarly clustered inputs, and
(ii) distinctly clustered visualizations do not imply distinctly different inputs.

To quantify the strength of the cluster structure in a dataset, we employ well-known cluster indices
such as the average silhouette score (Rousseeuw, 1987), the Calinski-Harabasz index (Caliński &
Harabasz, 1974), and the Dunn index (Dunn, 1974). For sake of readability, we focus on presenting
our results with respect to the average silhouette score. Our results hold identically for the other
indices as well (see Appendix A).
Definition 2. Given a partition C1 ⊔ C2 ⊔ · · · ⊔ Ck = [n] of n points {x1, . . . , xn} = X , the
silhouette score of a point xi (w.r.t. the partition), denoted S(i), is the normalized difference between
the average within- and the closest across-cluster distances from xi:

S(i) := b(i)− a(i)

max{b(i), a(i)}
a(i) :=

∑
j∈C(i)

∥xi − xj∥
|C(i)| − 1

b(i) := min
m∈[k]

Cm ̸=C(i)

∑
j∈Cm

∥xi − xj∥
|Cm|

,

where C(i) is the cluster to which i belongs. Note that if |C(i)| = 1, then S(i) is defined to be zero.
The average silhouette score then is simply the average across all points in X:

S̄(X;Cm∈[k]) :=
1

n

∑
i∈[n]

S(i).

Observe that the (average) silhouette score ranges from −1 to 1 with a score of 1 being assigned to
maximally clustered data, −1 to incorrectly clustered data, and 0 to unclustered data.

Defining the strength of a clustering with respect to this cluster index, we show that any stationary
t-SNE output can be produced by an arbitrarily unclustered input:
Theorem 3. Fix any n > k > 1, and n-point dataset X ⊂ Rn−1 with partition C1⊔ · · ·⊔Ck = [n]
such that |Cm∈[k]| > 1 and S̄(X;Cm∈[k]) is well defined. For all 0 < ϵ ≤ 1, there exists n-point
dataset Xϵ ⊂ Rn−1 such that

S̄(Xϵ;Cm∈[k]) = ϵ · S̄(X;Cm∈[k]),

yet, for any ρ ∈ (1, n− 1):
t-SNEρ(X) = t-SNEρ(Xϵ).
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Figure 1: Visualizations of single-cell data (top row) versus an arbitrarily unclustered impostor dataset
(bottom row). Based on the 2D t-SNE visualization (left column), it is difficult do distinguish which dataset
(real or impostor) may have produced the plot. Plotting the high-dimensional interpoint distances (right column)
confirms that the imposter dataset is unclustered in some sense. As a reference we also plot the 2D PCA
visualization (center column) to indicate that this issue does not occur with other methods. The numbers on the
bottom left of each figure shows the cluster salience in terms of the average silhouette score for the 2D t-SNE
plot (left), 2D PCA plot (center), and high-dimensional input (right) for the real dataset (top) and the impostor
dataset (bottom). Note that the color coding in all of the scatter plots corresponds to a DBSCAN clustering
(Ester et al., 1996) of the top left t-SNE plot.

It is important to understand the implications of this result. For any high-dimensional dataset X
(regardless of how clustered it is), we can find an arbitrarily unclustered impostor dataset Xϵ such
that all t-SNE stationary points (local as well as global) of X and Xϵ match perfectly! In other words
it is impossible to distinguish between X and Xϵ based on the low-dimensional t-SNE visualization.

As a consequence, the same maximally clustered visualization can be produced by a sequence of
impostor datasets ranging from maximally clustered to arbitrarily unclustered,

Corollary 4. For all n ≥ 4 even, and partition C1 ⊔ C2 = [n] such that |C1| = |C2| = n
2 . There

exist a sequence of n-point datasets in Rn−1, {Xϵ}0<ϵ≤1, with

S̄(Xϵ;C1, C2) = ϵ

such that for any ρ ∈ (1, n− 1), we have Y ∈
⋂

0<ϵ≤1 t-SNEρ(Xϵ) with

S̄(Y ;C1, C2) = 1.

The above shows that Y , a perfectly clustered visualization, is a local (and global, see the proof in
Appendix) minimizer for any member of a set of inputs that range from being maximally clustered
to being arbitrarily unclustered. Thus, even from a perfectly clustered visualization, the strength of
the input’s cluster structure cannot be inferred.

Note that the existence of an impostor Xϵ is not just theoretical; it can be constructed practically as
well (see Appendix A.5 for an explicit construction). Hence this phenomenon can be demonstrated
in real-world scenarios, see Figure 1. In this case, we select a preprocessed version of the well-
known PBMC3k single-cell genomics dataset (2638 points, 50 dimensions; 10x Genomics (2019))
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Figure 2: Myriad 2D t-SNE visualizations, all produced by small perturbations of the same 200-point input
dataset. Each perturbation satisfies the conditions of Theorem 5 for ϵ = 0.01.

as X . We show that there is an arbitrary unclustered impostor dataset Xϵ that is essentially indistin-
guishable from the real dataset in terms of its 2D t-SNE visualization. In short, similarity in t-SNE
visualization does not necessarily imply similarity in the input space.

Symmetrically, similarity in the input space does not guarantee similarity in the t-SNE visualizations.
In fact, any two drastically different visualizations can be produced by arbitrarily close inputs:
Theorem 5. Fix any n > 2 and ρ ∈ (1, n− 1). For all ϵ > 0 and all Y, Y ′ ∈ Im(t-SNEρ,n), there
exists n-point datasets X = {x1, . . . , xn} and X ′ = {x′

1, . . . , x
′
n} ⊂ Rn−1 such that ∀i ̸= j

1− ϵ ≤ ∥xi − xj∥2

∥x′
i − x′

j∥2
≤ 1 + ϵ,

yet Y ∈ t-SNEρ(X) and Y ′ ∈ t-SNEρ(X
′).

Thus even minor perturbations of the input dataset can develop into massive changes in the visual-
ization. Figure 2 demonstrates this phenomenon quite clearly. We start with a dataset X that is a
regular unit simplex (all pairwise distances are unit length). By systematically perturbing the input
X ever so slightly (ϵ ≤ 0.01), t-SNE produces strikingly different outputs.

The key observation behind our main Theorems 3 and 5 is the simple yet counter-intuitive fact4
that t-SNE is not only invariant under multiplicative scaling of the input squared distances, but also
additive scaling of these distances. Specifically given a dataset X = {x1, . . . , xn}, for any dataset
X ′ = {x′

1, . . . , x
′
n} and C ∈ R such that, ∥x′

i − x′
j∥2 = ∥xi − xj∥2 + C ≥ 0 for i ̸= j, we

have t-SNEρ(X) = t-SNEρ(X
′) (see Lemma 16 for a formal statement). As a consequence, for

any input dataset, we can simply pump up the interpoint distances and construct an impostor dataset
which has the same visualization profile but is arbitrarily close to a regular simplex (and hence is
arbitrarily unclustered)5. This observation also leads to the following seemingly bizarre fact.
Lemma 6. Fix any n > 2 and ρ ∈ (1, n− 1). For any ϵ > 0, define the set of ϵ-perturbations of a
unit simplex as ∆ϵ := {X = {x1, . . . , xn} ⊂ Rn−1 : ∀i ̸= j, ∥xi − xj∥2 ∈ [1 − ϵ, 1 + ϵ]}. Then,
for all ϵ > 0

Im(t-SNEρ,n) = t-SNEρ(∆ϵ).

In other words, there is a set of datasets ∆ϵ arbitrarily close to a regular unit simplex that generates
all possible stationary t-SNE outputs! The instability of t-SNE on such datasets (c.f. Figure 2) has
real-world consequences since many high-dimensional datasets fall into this regime (Beyer et al.,
1999; Aggarwal et al., 2001) due to the concentration of measure phenomenon (Ledoux, 2001). In
particular, such datasets are susceptible to single-point adversarial attacks. Consider a dataset X
sampled from a mixture of two high-dimensional Gaussians. t-SNE, as expected, reveals the two
underlying clusters (c.f. Figure 3, first panel). However, we can add just a single “poison” point to
X and destroy the clustered visualization (see Figure 3 second panel). This failure mode of t-SNE
is also observed on a real high-dimensional datasets (see Figure 5 left vs. center).

The success of the poison point attack can be attributed to additive invariance. Given an input
dataset in ∆ϵ from a clustered, high-dimensional distribution, the set of interpoint distances occupy
a tight band between 1 − ϵ and 1 + ϵ. Since t-SNE is invariant under additive scaling, the dataset
appears identically as if all the distances are in the range [0, 2ϵ]. Thus, from t-SNE’s perspective,

4To the best of our knowledge, no theory or practical work on t-SNE has studied this observation formally.
5See Algorithm 1 for a formalization of this process.
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Figure 3: t-SNE versus PCA plots in response to the injection of a single “poison” point in the input dataset.
The original dataset, visualized in panels 1 and 3, consists of 400 points sampled from a mixture of two well-
separated Gaussians in R2000. The poison point is then placed at the mean of the previously sampled points;
the resulting 401-point dataset is visualized in panels 2 and 4.

the variation between inter-cluster distance (≈ 2ϵ) and intra-cluster (≈ 0) is large. However, when
the poison point is added at the mean, the minimum distance from any point to the rest of the
set is approximately halved. As a result, almost all distances remain in the range [1 − ϵ, 1 + ϵ],
but, as t-SNE sees it, the effective inter-cluster (≈ (1 + ϵ) − 1

2 (1 − ϵ) = 1
2 + 3

2ϵ) and intra-cluster
(≈ (1−ϵ)− 1

2 (1−ϵ) =
1
2−

1
2ϵ) gap has been reduced, causing the cluster structure to go unrecognized

in some cases.

In the next section, we explore this phenomenon on a real-world dataset (Figure 5), where we con-
trast it with t-SNE’s strikingly indifferent response to the injection of outlier points.

5 MISREPRESENTATION OF OUTLIERS

Most analysis on t-SNE, including the previous section, is concerned with whether it faithfully
depicts global structure, specifically cluster structure. In this section, we consider how t-SNE rep-
resents points that drastically deviate from the global structure: namely, outliers. It is natural to
hope that data visualization methods can enable the identification of outliers. Unfortunately, we find
that t-SNE cannot fulfill this desideratum, as it arbitrarily suppresses the severity of outliers in its
depiction of certain datasets.

An intuitive explanation of this phenomenon can be made based on the asymmetry of the input and
output affinity matrices of t-SNE. Roughly speaking, the input affinity behaves like a normalized,
symmetrized nearest neighbor graph, where the log of the perplexity roughly corresponds to the
number of neighbors. Meanwhile, the output affinity behaves more like a radius neighborhood
graph, at least in the sense that each point’s neighborhood scale is the same. This means the output
affinity is optimized to represent the outlier point in close proximity with at least some points, even
if it was extremely far from those points in the input.

To begin to formalize this observation, we provide a geometric definition of an outlier.

Definition 7. Fix X ⊂ RD, x0 ∈ RD, and α ∈ R+. We say X is an (α, x0)-outlier configuration
if there exists a hyperplane separating x0 and X \ {x0} with margin width at least

α ·max{1, diam(X \ {x0})},

Define the outlier number of a dataset, denoted α(X), as the largest α for which there exists x0 ∈ X
such that X is an (α, x0)-outlier configuration.

This definition can be generalized to accommodate more than one outlier, but for the purposes of
theoretical analysis we consider just one. Note that the outlier extremity α is defined relative to the
diameter of the rest of the points, unless that diameter is below 1. The choice of a threshold here
is important and intuitive: it allows us to have a suitable notion of outlier in extreme cases such as
when diam(X \ {x0}) = 0.

Our main theorem establishes that any stationary t-SNE output, regardless of its input, is incapable
of depicting extreme outliers.
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Figure 4: t-SNE’s versus PCA’s response to α-outliers. Top row: on a dataset that tracks financial activity,
around 1% of which is fraudulent, t-SNE fails while PCA largely succeeds at separating fraudulent (red) from
non-fraudulent (black) points. Note that each of the fraudulent data points is an (α > 0)-outlier with respect
to the non-fraudulent group; the top right figure shows how t-SNE and PCA register those α-values in their
output. Middle row: a similar analysis on a synthetic dataset comprised of a Gaussian sample plus a single
α-outlier, with varying values of α. Bottom row: mixture of two Gaussians plus 1, 10, and 100 α-outliers.
Despite a large gap (α > 1) between the outliers and the two clusters, t-SNE is unable to separate them.

Theorem 8. Fix n > 2 and ρ ∈ (1, n − 1). Let Y = {y0, y1, . . . , yn−1} ∈ Im(t-SNEρ,n) be a
stationary t-SNE embedding. Without loss of generality let y0 be the outlier point. Then we have:

α(Y ) = α(Y, y0) ≤
√
1 +

(
1 +

2

n− 2

)( 8

1 +
∑n−1

i=1 P0|i(X)

)
= 3 + o(1)

for all X = {x0, x1, . . . , xn−1} such that Y ∈ t-SNEρ(X).

The result is proven via analysis of the t-SNE gradient: we argue that if the outlier is too far away,
its gradient is nonzero, thus violating stationarity. Key to this analysis is a comparison between the
aggregate behavior of the outlier point’s affinities in the input versus the output; in other words, the
comparison between

∑n
i=1 Pi0 and

∑n
i=1 Qi0. This is where the fundamental asymmetry of t-SNE

comes in. While the latter is dependent on the position of the outlier point y0, per Lemma 19, the
former has a lower bound of 1/(2n) due to the normalization of the conditional affinity probabilities.

The input-agnostic nature of this result is striking: even if the input is an extreme outlier config-
uration, a t-SNE output cannot depict its extremity past roughly α = 3. This behavior stands in
stark contrast to that of principal component analysis (PCA), as shown in Figure 4 on both real and
synthetic data models. PCA tends to preserve the α outlier number, while t-SNE seldom depicts
outliers past α > 0.2 in practice, and sometimes even depicts them as within the convex hull of the
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Figure 5: t-SNE’s response to the injection of poison points (middle) and α-outliers (right) on the BBC News
Article dataset. Middle: injecting poison points (red) to the original dataset (black) significantly disrupts the
underlying cluster structure. Right: while injecting (α > 1)-outliers (red) does not disrupt the underlying
cluster structure (black), the extreme outliers themselves are not well separated. The bottom left label in each
plot denotes silhouette score of the t-SNE projected original points (without the injected points) with respect to
the true labels (business, entertainment, politics, sport, tech).

rest of the points (hence α = 0). Furthermore, when faced with multiple outliers, (Figure 4, bottom)
t-SNE gracefully accommodates them into the global structure of the bulk of the data.

Our result suggests that t-SNE is an inappropriate tool to use in situations involving outlier detection.
Consider, for instance, a dataset of financial transactions where the goal is to detect fraudulent user,
studied by Pozzolo et al. (2015). In this dataset, only 0.172% percent of the points (492 out of
284, 807) are fraudulent and by many standard statistical metrics register as outliers. Comparing the
t-SNE and PCA plots on a random representative subset of this data (5050 points, of which 50 are
fraudulent), we see that t-SNE mixes the frauds with the bulk of the points while PCA keeps them
separated for the most part, see Figure 4, top row.

Finally, note the distinction between t-SNE’s muted response to outliers and its dramatic sensitivity
to poison points. We illustrate this distinction on a dataset of BBC news articles (Greene & Cunning-
ham, 2006), see Figure 5. Given RoBERTa (Liu et al., 2019) sentence embeddings of these articles
(n = 2225, D = 1024), we find that injecting 220 poison points (see Appendix B.1 for the explicit
construction) can halve the silhouette score of the t-SNE embedding with respect to the ground-truth
labelling, whereas injecting 1100 large-α-outliers slightly improves the silhouette score.

6 DISCUSSION

Our study of t-SNE has established in considerable generality that one cannot infer the degree of
cluster structure or the extremity of outliers from a t-SNE plot, see Theorems 3, 5, and 8. The proofs
and intuitions behind these statements guided us to the surprising empirical observation that one
cannot even infer the existence of clusters or outliers. In particular, the injection of a small subset of
adversarially chosen points can largely mask the cluster structure, while sizable injections of outlier
points are masked within the cluster structure, see Figures 3, 4, 5, and 7.

We have identified two properties of t-SNE that give rise to these idiosyncratic behaviors: (1) addi-
tive invariance with respect to the squared interpoint distances, and (2) the asymmetry between the
input and output affinity matrices. While we have uncovered significant false positive failure modes
that arise from these properties, we cannot completely rule out their utility. Additive invariance,
while brittle under certain adversarial perturbations, may be robust to certain random perturbations.
Indeed, adding random noise to a dataset is approximately equivalent to adding a constant to the
interpoint distances due to concentration of measure. Additive invariance effectively allows t-SNE
to ignore such noise, see Figure 6. This phenomenon is worthy of further study.

t-SNE belongs to a wide selection of data visualization techniques that are yet to be understood
fully (McInnes et al., 2018; Jacomy et al., 2014; Tang et al., 2016; Amid & Warmuth, 2019). Our
hope is that this work inspires the reader to explore this fascinating landscape further and pursue the
essential question: what can be provably deduced from a visualization?
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A APPENDIX: MISREPRESENTATION OF CLUSTER STRUCTURE

A.1 ADDITIONAL EXPERIMENTS

In Figure 6, we plot a sample from a mixture of two Gaussians in 250, 500, 1000, 2000, and 4000
dimensions. Notice that as the dimension of the Gaussian increases, the interpoint distance matrix
of the input points (bottom) approaches a simplex but the t-SNE corresponding visualization (top)
remains qualitatively unchanged.

Figure 6: t-SNE’s interplay with Gaussian concentration of measure.

A.2 CALINSKI-HARABASZ INDEX

For an n-point dataset X = {x1, . . . , xn} ⊂ Rn−1 and a partition of the dataset into clusters
C1 ⊔C2 ⊔ · · · ⊔Ck = [n] with n > k > 1, the Calinski-Harabasz Index is defined as the ratio of the
distance between cluster centers to the internal distance to a cluster’s center. Let E be the function
sending S ⊆ [n] to Rn−1 such that:

E(S) =
1

|S|
∑
i∈S

xi.

Then the Calinski-Harabasz Index is defined as6:

CH(X;Cm∈[k]) =

1
k−1

∑
m∈[k] |Cm| · ∥E(Cm)− E([n])∥2

1
n−k

∑
m∈[k]

∑
i∈Cm

∥xi − E(Cm)∥2
.

It ranges from 0 to∞ with a score of∞ being assigned to perfectly clustered data, 1 to unclustered
data and 0 to incorrectly clustered data.

Now we provide an analogue to Theorem 3 with respect to the Calinski-Harabasz Index:

Theorem 9. Fix any n > k > 1, and n-point dataset X ⊂ Rn−1 with partition C1⊔ · · ·⊔Ck = [n]
such that CH(X;Cm∈[k]) > 1. For all 1 < ϵ ≤ CH(X;Cm∈[k]), there exists n-point dataset
Xϵ ⊂ Rn−1 such that

CH(Xϵ;Cm∈[k]) = ϵ,

yet, for any ρ ∈ (1, n− 1):
t-SNEρ(X) = t-SNEρ(Xϵ).

6If the denominator and numerator are 0, then CH(X;Cm∈[k]) := 1. If only the denominator is 0, then
CH(X;Cm∈[k]) := ∞.
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Corollary 10. For all n ≥ 4 even, and partition C1 ⊔ C2 = [n] such that |C1| = |C2| = n
2 . There

exist a sequence of n-point datasets in Rn−1, {Xϵ}1<ϵ≤∞, with

CH(Xϵ;C1, C2) = ϵ

such that for any ρ ∈ (1, n− 1),
⋂

1<ϵ≤∞ t-SNEρ(Xϵ) contains n-point dataset Y ⊆ R2 with

CH(Y ;C1, C2) =∞.

Proof of Theorem 9. First, let us assume that CH(X;Cm∈[k]) < ∞. Let g be the function from
Corollary 18, and let f(C) = CH(g(C);Cm∈[k]). Note that f is continuous whenever the de-
nominator of CH( · ;Cm∈[k]) is non-zero which is always the case for C ∈ [0, 1]. Therefore,
the image of f on [0, 1) contains the interval (f(1), f(0)] = (1,CH(X;Cm∈[k])]. Thus, for all
ϵ ∈ (1,CH(X;Cm∈[k])], there exists C ∈ [0, 1) such that Xϵ = g(C) satisfies the hypothesis.

If CH(X;Cm∈[k]) =∞, then f is continuous on (0, 1) only. Thus for all ϵ ∈ (1,CH(X;Cm∈[k])),
there exists C ∈ (0, 1) such that Xϵ = g(C) satisfies the hypothesis and for ϵ = CH(X;Cm∈[k])),
Xϵ = X satisfies the hypothesis.

For proof of Corollary 10 see Appendix A.4.

A.3 DUNN INDEX

For an n-point dataset X = {x1, . . . , xn} ⊂ Rn−1 and a partition of the dataset into clusters
C1 ⊔ C2 ⊔ · · · ⊔ Ck = [n] with |Cm∈[k]| > 1, the Dunn index measures the ratio between the
minimum inter-cluster distance and maximum intra-cluster distance. Specifically, the Dunn index is
given by the expression7

DI(X;Cm∈[k]) =
minm,l∈[k],m̸=l,i∈Cm,j∈Cl

∥xi − xj∥
maxm∈[k],i,j∈Cm

∥xi − xj∥
.

It ranges from 0 to∞ with a score of 0 being assigned to incorrectly clustered data, 1 to unclustered
data, and∞ to perfectly clustered data.

Now we provide an analogue to Theorem 3 with respect to the Dunn Index:

Theorem 11. Fix any n > k > 1, and n-point dataset X ⊂ Rn−1 with partition C1⊔· · ·⊔Ck = [n]
such that |Cm∈[k]| > 1 and DI(X;Cm∈[k]) > 1. For all 1 < ϵ ≤ DI(Xϵ;Cm∈[k]), there exists n-
point dataset Xϵ ⊂ Rn−1 such that

DI(Xϵ;Cm∈[k]) = ϵ,

yet, for any ρ ∈ (1, n− 1):
t-SNEρ(X) = t-SNEρ(Xϵ).

Corollary 12. For all n ≥ 4 even, and partition C1 ⊔ C2 = [n] such that |C1| = |C2| = n
2 . There

exist a sequence of n-point datasets in Rn−1, {Xϵ}1<ϵ≤∞, with

DI(Xϵ;C1, C2) = ϵ

such that for any ρ ∈ (1, n− 1),
⋂

1<ϵ≤∞ t-SNEρ(Xϵ) contains n-point dataset Y ⊆ R2 with

DI(Y ;C1, C2) =∞.

Proof of Theorem 11. First, let us assume that DI(X;Cm∈[k]) < ∞. Let g be the function from
Corollary 18, and f(C) = DI(g(C);Cm∈[k]). Fix i, j ∈ [n] such that:

min
m,l∈[k],m̸=l,i′∈Cm,j′∈Cl

∥xi′ − xj′∥ = ∥xi − xj∥,

7If the denominator and numerator are 0, then DI(X;Cm∈[k]) := 1. If only the denominator is 0, then
DI(X;Cm∈[k]) := ∞.
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and t, r ∈ [n] such that:
max

m∈[k],i′,j′∈Cm

∥xi′ − xj′∥ = ∥xr − xt∥,

Then:

f(C) =

√
(1− C) · ∥xi − xj∥+ C√
(1− C) · ∥xr − xt∥+ C

,

since g preserves the ordering of the distances. Thus, f is continuous on [0, 1) and the image of f on
[0, 1) is (f(0), f(1)] = (1,DI(X;Cm∈[k])]. Therefore, for all ϵ ∈ (1,DI(X;Cm∈[k])], there exists
C ∈ [0, 1) such that Xϵ = g(C) satisfies the hypothesis.

If DI(X;Cm∈[k]) = ∞, then f is continuous on (0, 1) only. Thus for all ϵ ∈ (1,DI(X;Cm∈[k])),
there exist C ∈ (0, 1) such that Xϵ = g(C) satisfies the hypothesis and for ϵ = DI(X;Cm∈[k]),
Xϵ = X satisfies the hypothesis.

For proof of Corollary 12 see Appendix A.4.

A.4 PROOFS

The main effort of this section will be to prove Lemma 6 which gives us Theorems 3 and 5. We first
introduce a number of technical lemmas that collectively show that t-SNE is invariant under additive
and multiplicative scaling of the input.
Lemma 13. Let H(·) denote the entropy function. For any n > 2, X = {x1, . . . , xn} ⊂ Rn−1 and
ρ ∈ (1, n− 1), there is a unique σi ≥ 0 that minimizes∣∣∣H(P·|i(X;σi))− log2 ρ

∣∣∣.
Proof. This follows easily from the fact that H(P·|i(X;σ)) is a continuous, strictly increasing func-
tion of σ (see e.g. Lemma 4.2 of Jeong & Wu (2024)), where limσ→∞ H(P·|i(X;σ)) = log2(n−1)
and H(P·|i(X; 0)) ∈ (0, log2(n− 1)).

Definition 14. For any n ≥ 1, dataset X = {x1, . . . , xn} ⊂ Rn−1, and C ≥ 0, define
X+C = {x′

1, . . . , x
′
n} ⊂ Rn−1 such that for all i ̸= j

∥x′
i − x′

j∥2 = ∥xi − xj∥2 + C.

Lemma 15. Fix any n ≥ 1. For all n-point datasets X = {x1, . . . , xn} ⊂ Rn−1 and C ≥ 0, there
exists X+C = {x′

1, . . . , x
′
n} ⊂ Rn−1 such that for all i ̸= j, ∥x′

i − x′
j∥2 = ∥xi − xj∥2 + C.

Proof. Let D be the squared inter-point distance matrix of X . Thus, the inter-point squared distance
matrix of X+C is D+C = D+C · (11T −In). By a famous theorem by Schoenberg (1938), X+C is
isometrically embeddable in Rn−1 with respect to ℓ2 metric if and only if ∀u ∈ Rn with uT 1⃗ = 0,
uTD+Cu ≤ 0 holds. Indeed,

uTD+Cu = uTDu+ C · (uT 1⃗)(⃗1Tu)− C · uTu = uTDu− C · ∥u∥2 ≤ 0,

where the final inequality uses the fact that D is embeddable.

Lemma 16. Fix any n > 2. For all n-point datasets X ⊂ Rn−1, ρ ∈ (1, n− 1), and C ≥ 0:

t-SNEρ(X) = t-SNEρ(X+C).

Proof. It is sufficient to show that the input affinity matrices for X and X+C are identical. Indeed,
for all i, j ∈ [n], i ̸= j and for all σi > 0

Pj|i(X;σi) =
exp

(
−∥xi − xj∥22/(2σ2

i )
)∑

k ̸=i exp (−∥xi − xk∥22/(2σ2
i ))

=
exp

(
−(∥xi − xj∥22 + C)/(2σ2

i )
)∑

k ̸=i exp (−(∥xi − xk∥22 + C)/(2σ2
i ))

= Pj|i(X+C ;σi).

If σi = 0, then Pj|i(X) is purely a function of the ordering of the squared interpoint distances,
which is unaffected by adding a constant.
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Lemma 17. Fix any n > 2. For all n-point datasets X ⊂ Rn−1, ρ ∈ (1, n− 1), and C > 0:
t-SNEρ(X) = t-SNEρ(C ·X).

Proof. First note that for any dataset X and its scaling C ·X , and all σi ≥ 0, we have the following:

Pj|i(C ·X;C · σi) =
exp(−C2 · ∥xi − xj∥2/(2C2 · σ2

i ))∑n
k=1,k ̸=j exp(−C2 · ∥xi − xk∥2/(2C2 · σ2

i ))
= Pj|i(X;σi).

Let H(·) denote the entropy function. By the above, H(P·|i(X;σi)) = H(P·|i(C ·X;C · σi)). Let
σ∗
i and correspondingly γ∗

i be the (unique, per Lemma 13) neighborhood scalings that satisfy the
perplexity condition for X and C ·X respectively (see Section 3). Then γ∗

i = C · σ∗
i .

Therefore P·|i(C ·X; γ∗
i ) = P·|i(C ·X;C · σ∗

i ) = P·|i(X;σ∗
i ), yielding the result.

Using the additive and multiplicative invariance of t-SNE, we now prove Lemma 6:

Proof of Lemma 6. Fix any ϵ > 0. It suffices to show that Im(t-SNEρ,n) ⊆ t-SNEρ(∆ϵ). Fix any
Y ∈ Im(t-SNEρ,n), there exists a n-point dataset X = {x1, . . . , xn} ⊂ Rn−1 such that:

Y ∈ t-SNEρ(X).

Using additive and multiplicative invariance, we will manipulate X such that it is in ∆ϵ which
by Lemma 16 and Lemma 17 will not change the output. Let Dmax = maxi̸=j∥xi − xj∥2 and
Dmin = mini,j∈[n],i̸=j∥xi − xj∥2. WLOG, assume that Dmax ̸= 0 otherwise X+1 ∈ ∆ϵ. Set
A = 1

2ϵ

∣∣(1 − ϵ)Dmax − (1 + ϵ)Dmin

∣∣ and B = 1+ϵ
Dmax+A . Note that since A ≥ 0 and Dmax > 0,

B is well defined and strictly greater than 0. Then the dataset B · (X+A) = {x′
1, . . . , x

′
n} exists by

Lemma 15 and is such that:
t-SNEρ(X) = t-SNEρ(B · (X+A))

by Lemma 16 and Lemma 17. Moreover, for all i ̸= j:

∥x′
i − x′

j∥2 =
1 + ϵ

Dmax +A
· (∥xi − xj∥2 +A) ≤ 1 + ϵ,

and

∥x′
i − x′

j∥2 ≥ (1 + ϵ)
Dmin +A

Dmax +A

≥ (1 + ϵ)
Dmin + 1

2ϵ

(
(1− ϵ)Dmax − (1 + ϵ)Dmin

)
Dmax +

1
2ϵ

(
(1− ϵ)Dmax − (1 + ϵ)Dmin

)
≥ (1 + ϵ)

(1− ϵ)(Dmax −Dmin)

(1 + ϵ)(Dmax −Dmin)
= 1− ϵ,

where the second inequality follows because A ≥ 1
2ϵ

(
(1− ϵ)Dmax− (1+ ϵ)Dmin

)
> −Dmax.

The above lemmas give us the following useful corollary that will allow us to prove Theorem 3,
Theorem 9, and Theorem 11.
Corollary 18. Fix any n > 2, and X = {x1, . . . , xn} ⊂ Rn−1. There exists a well-defined,
continuous function g : [0, 1]→ Rn×n−1 such that:

C 7→ ((1− C) ·X)+C ,

and for all ρ ∈ (1, n− 1) and C ∈ [0, 1) :

t-SNEρ(X) = t-SNEρ(g(C)).

Proof. g is well defined by Lemma 15 and WLOG continuous since it continuously transforms the
distances in X:

∀i, j ∈ [n], i ̸= j, ∥g(C)i − g(C)j∥ =
√
(1− C) · ∥xi − xj∥2 + C.

Moreover, by Lemmas 16 and 17, for all C ∈ [0, 1) :

t-SNEρ(X) = t-SNEρ(g(C)).
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Using the above lemmas, Theorem 3, Corollary 4, and Theorem 5 are proven.
Theorem 3. Fix any n > k > 1, and n-point dataset X ⊂ Rn−1 with partition C1⊔ · · ·⊔Ck = [n]
such that |Cm∈[k]| > 1 and S̄(X;Cm∈[k]) is well defined. For all 0 < ϵ ≤ 1, there exists n-point
dataset Xϵ ⊂ Rn−1 such that

S̄(Xϵ;Cm∈[k]) = ϵ · S̄(X;Cm∈[k]),

yet, for any ρ ∈ (1, n− 1):
t-SNEρ(X) = t-SNEρ(Xϵ).

Proof of Theorem 3. Let g be the function from Corollary 18, and f(C) = S̄(g(C);Cm∈[k]). Note
that f is continuous for C ∈ [0, 1] since g is continuous, and S̄( · ;Cm∈[k]) is continuous whenever
for all i ∈ [n], a(i), b(i) ̸= 0 which follows from S̄(X;Cm∈[k]) being well-defined and the definition
of g. Therefore, the image of f on [0, 1) contains the interval (f(1), f(0)] = (0, S̄(X;Cm∈[k])] (or
if S̄(X;Cm∈[k]) ≤ 0, [S̄(X;Cm∈[k]), 0)). Thus, for all ϵ ∈ (0, 1], there exists C ∈ [0, 1) such that
Xϵ = g(C) satisfies the hypothesis.

Now we can prove Corollary 4, Corollary 10, and Corollary 12 simultaneously:

Proof of Corollaries 4, 10, and 12. The proof proceeds by showing a dataset and its output who
have an average silhouette score of 1, Calinski-Harabasz index of∞, and Dunn index of∞, and then
applies Theorem 3, Theorem 9, and Theorem 12 respectively. WLOG fix partition C1 ⊔ C2 = [n]
with C1 = [1, n/2] and C2 = [n/2 + 1, n]. Consider the n-point dataset, X = {x1, . . . , xn} ⊆
Rn−1, such that for all i ∈ C1, xi = 0⃗, and for all i ∈ C2, xi = e⃗1.

Routine calculations show that the conditional input affinities are:

Pi|j =



1

n
2 −1+n

2 exp

(
− 1

2σ2
j

) i ∈ C(j), i ̸= j

exp

(
− 1

2σ2
j

)
n
2 −1+n

2 exp

(
− 1

2σ2
j

) i ̸∈ C(j)

0 i = j.

By symmetry, σj = σi for all i, j ∈ [n]. Hence, let σ be the neighborhood size for all j ∈ [n] which
is non-zero and well defined for ρ ∈ [1, n− 1]. Thus the symmetrized input affinities are:

Pij =


1

n2

2 −n+n2

2 exp(− 1
2σ2 )

i ∈ C(j), i ̸= j

exp(− 1
2σ2 )

n2

2 −n+n2

2 exp(− 1
2σ2 )

i ∈ C1, j ∈ C2

0 i = j.

Any set Y = {y1, . . . , yn} ⊆ R is a global minimizer if Pij = Qij for all i, j ∈ [n]. In this case, this

is achieved if yi∈C1
= 0 and yi∈C2

=
√

exp
(

1
2σ2

)
− 1. Furthermore, since Y can be isometrically

embedded in Rd for all d ≥ 1, this result holds for t-SNE embeddings of all dimensions.

To finish the proof note that for all i ∈ [n], a(i) = 0 when defined with respect to Y and partition
C1 ⊔ C2.

Theorem 5. Fix any n > 2 and ρ ∈ (1, n− 1). For all ϵ > 0 and all Y, Y ′ ∈ Im(t-SNEρ,n), there
exists n-point datasets X = {x1, . . . , xn} and X ′ = {x′

1, . . . , x
′
n} ⊂ Rn−1 such that ∀i ̸= j

1− ϵ ≤ ∥xi − xj∥2

∥x′
i − x′

j∥2
≤ 1 + ϵ,

yet Y ∈ t-SNEρ(X) and Y ′ ∈ t-SNEρ(X
′).

Proof of Theorem 5. The proof is immediate by application of Lemma 6.
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A.5 IMPOSTOR DATASET CONSTRUCTION

The construction of an impostor dataset based on an input dataset is done as follows.

Algorithm 1 Impostor Dataset Creation
Require: Dataset X = {x1, . . . , xn} with at least two distinct points, and tolerance ϵ > 0

1: Construct squared interpoint distance matrix of X , denote it by D
2: Form D′ ← ϵ

maxi,j Dij
·D + (11⊤ − In)

3: Run classical multidimensional scaling on D′ to obtain its Euclidean embedding

Xϵ = {x′
1, . . . , x

′
n} ⊂ Rn−1.

4: return Xϵ

B APPENDIX: MISREPRESENTATION OF OUTLIERS

B.1 ADDITIONAL EXPERIMENTS

We provide a comparison of t-SNE and PCA on the BBC news dataset. For ease of presentation, we
take a three-cluster, (n = 1204)-size subset (business, sports, tech) and we analyze what happens
under injection of 120 poison points versus 120 far outliers.

Figure 7: t-SNE vs. PCA on poison points versus outlier points on a three-cluster subset of the BBC news
dataset. The label on the bottom left is silhouette score of the plot (sans injected points) with respect to their
ground-truth labels.

In both Figure 5 and Figure 7, poison points are picked as follows: first we run a k-means algorithm
on the original dataset; then, for each poison point, we pick one of the these means and 10 random
points of the dataset, and we average these two quantities (the idea is to connect the points in a way
that contradicts the ground-truth three-clustering). We found k = 2 worked well. We pick outlier
points as normal vectors centered at the mean of the dataset with variance 32 (the diameter of the
original dataset is roughly 1.5).
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B.2 PROOFS

Lemma 19. Fix n ≥ 2 and Y = {y0, . . . , yn−1} ⊂ Rd. Let β := diam(Y \ {y0}) and
γ := minj∈[n] ∥y0 − yj∥. Then

n∑
i=1

Q0i ≤
1

2 + (n− 2) · 1+γ2

1+β2

.

Proof. Let Z0 =
∑n

i=1
1

1+∥yi−y0∥2 and Z1:n =
∑

i,j:i̸=j
1

1+∥yi−yj∥2 . Then

n∑
i=1

Q0i =
Z0

2Z0 + Z1:n
=

1

2 + Z1:n/Z0
.

Now observe that

Z1:n

Z0
=

∑
i,j:i̸=j(1 + ∥yi − yj∥2)−1∑n
j=1(1 + ∥y0 − yj∥2)−1

≥
(n− 1)(n− 2)(1 + maxi,j∈[n] ∥yi − yj∥2)−1

(n− 1)(1 + minj∈[n] ∥y0 − yj∥2)−1

=
(n− 2)(1 + γ2)

1 + β2
.

Plugging this back into the previous equation gives the statement.

Lemma 20. Fix n ≥ 2 and Y = {y0, y1, ..., yn−1} ⊂ Rd. If Y is a (α, y0)-outlier configuration
such that α = α(Y ), then there exists v ∈ Rd such that for all i ∈ [n]:

∥yi − y0∥ ·
α√

1 + α2
≤ (yi − y0) · v ≤ ∥yi − y0∥.

Proof. Fix i ∈ [n], let β := diam(Y \ {y0}), and WLOG let y0 = 0. Take v as in Definition 7.
Then by Cauchy-Schwarz, (yi − y0) · v ≤ ∥yi − y0∥. To prove the other side of the inequality, we
only need to lower bound the cosine of the angle between yi − y0 and v:

(yi − y0) · v = ∥yi − y0∥ · cos(∠(v, yi)).

Since v is the maximum-margin hyperplane between y0 = 0 and Y \ {y0}, it holds that u =
v · (αmax{1, β}) is in the convex hull of Y \{y0}. Indeed, ∥u∥ = infy∈conv(Y \{y0}) ∥y∥. Thus, we
know that the closed ball Bβ(u) contains conv(Y \ {y0}). Therefore, there exists t ∈ Rd such that
∥t∥ ≤ β, u+ t = yi, and u · t ≥ 0. Hence

cos(∠(v, yi)) =
v · yi
∥yi∥

=
v · (u+ t)√

∥u∥2 + ∥t∥2 − 2u · t
≥ αmax(β, 1)√

α2 max(β, 1)2 + β2
≥ α√

1 + α2
,

completing the proof.

Theorem 8. Fix n > 2 and ρ ∈ (1, n − 1). Let Y = {y0, y1, . . . , yn−1} ∈ Im(t-SNEρ,n) be a
stationary t-SNE embedding. Without loss of generality let y0 be the outlier point. Then we have:

α(Y ) = α(Y, y0) ≤
√
1 +

(
1 +

2

n− 2

)( 8

1 +
∑n−1

i=1 P0|i(X)

)
= 3 + o(1)

for all X = {x0, x1, . . . , xn−1} such that Y ∈ t-SNEρ(X).

Proof. Fix Y ∈ Im(t-SNEρ,n) and define γ = mini ∥yi − y0∥. WLOG, let y0 be the outlier point
and assume γ > 0 otherwise the hypothesis goes through trivially. Since Y is stationary, ∂L

∂y0
= 0.
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Pick v as in Lemma 20 and observe:

0 =
∂L
∂y0
· v =

n−1∑
i=1

(Pi0 −Qi0)(y0 − yi) · v
1 + ∥y0 − yi∥2

≥ α√
1 + α2

n−1∑
i=1

Pi0
∥y0 − yi∥

1 + ∥y0 − yi∥2
−

n−1∑
i=1

Qi0
∥y0 − yi∥

1 + ∥y0 − yi∥2

≥ α√
1 + α2

n−1∑
i=1

Pi0
∥y0 − yi∥

1 + ∥y0 − yi∥2
−

n−1∑
i=1

Qi0
∥y0 − yi∥

1 + ∥y0 − yi∥2

≥ α√
α2 + 1

γ

1 + (γ + β)2

n−1∑
i=1

Pi0 −
γ + β

1 + γ2

n−1∑
i=1

Qi0

≥ α√
1 + α2

γ

1 + (γ + β)2
1 +

∑n−1
i=1 P0|i

2n
− γ + β

1 + γ2

1

2 + (n− 2) 1+γ2

1+β2

where, in the third line, we use Lemma 19 and the fact that
∑n

i=1 Pi|0 = 1. Multiplying by 1+γ2

γ+β ·
2n

1+
∑n−1

i=1 P0|i
> 0 and rearranging, we get that:

α√
1 + α2

· 1 + γ2

γ + β
· γ

1 + (γ + β)2
≤ 1

2 + (n− 2) · 1+γ2

1+β2

· 2n

1 +
∑n−1

i=1 P0|i

≤ 1 + β2

(n− 2)(1 + γ2)
· 2n

1 +
∑n−1

i=1 P0|i

=
1 + β2

1 + γ2
·
(
1 +

2

n− 2

)
· 2

1 +
∑n−1

i=1 P0|i
.

Recall, by definition of α-outlier configuration, that γ ≥ α ·max{β, 1}. Rearranging, we have:(
1 +

2

n− 2

)
· 2

1 +
∑n−1

i=1 P0|i
≥ α√

1 + α2
· γ

γ + β
· 1 + γ2

1 + (γ + β)2
· 1 + γ2

1 + β2

≥ α√
1 + α2

γ3

(γ + β)3
1 + γ2

1 + β2

≥ α√
1 + α2

α3 max{β, 1}3

(αmax{β, 1}+ β)3
1 + α2 max{β, 1}2

1 + β2

≥ α√
1 + α2

α3

(α+ β
max{β,1} )

3

1 + α2

2

≥ α√
1 + α2

α3

(1 + α)3
1 + α2

2

=
α4
√
1 + α2

2(1 + α)3
.

Assume α ≥ 3 (or else the hypothesis holds trivially), then the above is lower-bounded by

(α2 − 1)/4. Solving for α, we find α ≤
√

1 +
(
1 + 2

n−2

)
·
(

8
1+

∑n−1
i=1 P0|i

)
.
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